mirror of
https://github.com/Kapendev/parin.git
synced 2025-04-25 20:49:57 +03:00
678 lines
20 KiB
D
678 lines
20 KiB
D
/**********************************************************************************************
|
|
*
|
|
* raymath v1.5 - Math functions to work with Vector2, Vector3, Matrix and Quaternions
|
|
*
|
|
* CONVENTIONS:
|
|
* - Matrix structure is defined as row-major (memory layout) but parameters naming AND all
|
|
* math operations performed by the library consider the structure as it was column-major
|
|
* It is like transposed versions of the matrices are used for all the maths
|
|
* It benefits some functions making them cache-friendly and also avoids matrix
|
|
* transpositions sometimes required by OpenGL
|
|
* Example: In memory order, row0 is [m0 m4 m8 m12] but in semantic math row0 is [m0 m1 m2 m3]
|
|
* - Functions are always self-contained, no function use another raymath function inside,
|
|
* required code is directly re-implemented inside
|
|
* - Functions input parameters are always received by value (2 unavoidable exceptions)
|
|
* - Functions use always a "result" variable for return
|
|
* - Functions are always defined inline
|
|
* - Angles are always in radians (DEG2RAD/RAD2DEG macros provided for convenience)
|
|
* - No compound literals used to make sure libray is compatible with C++
|
|
*
|
|
* CONFIGURATION:
|
|
* #define RAYMATH_IMPLEMENTATION
|
|
* Generates the implementation of the library into the included file.
|
|
* If not defined, the library is in header only mode and can be included in other headers
|
|
* or source files without problems. But only ONE file should hold the implementation.
|
|
*
|
|
* #define RAYMATH_STATIC_INLINE
|
|
* Define static inline functions code, so #include header suffices for use.
|
|
* This may use up lots of memory.
|
|
*
|
|
*
|
|
* LICENSE: zlib/libpng
|
|
*
|
|
* Copyright (c) 2015-2023 Ramon Santamaria (@raysan5)
|
|
*
|
|
* This software is provided "as-is", without any express or implied warranty. In no event
|
|
* will the authors be held liable for any damages arising from the use of this software.
|
|
*
|
|
* Permission is granted to anyone to use this software for any purpose, including commercial
|
|
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
|
|
*
|
|
* 1. The origin of this software must not be misrepresented; you must not claim that you
|
|
* wrote the original software. If you use this software in a product, an acknowledgment
|
|
* in the product documentation would be appreciated but is not required.
|
|
*
|
|
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
|
|
* as being the original software.
|
|
*
|
|
* 3. This notice may not be removed or altered from any source distribution.
|
|
*
|
|
**********************************************************************************************/
|
|
|
|
module popka.vendor.ray.raymath;
|
|
|
|
extern (C):
|
|
|
|
// Function specifiers definition
|
|
|
|
// We are building raylib as a Win32 shared library (.dll).
|
|
|
|
// We are using raylib as a Win32 shared library (.dll)
|
|
|
|
// Provide external definition
|
|
|
|
// Functions may be inlined, no external out-of-line definition
|
|
|
|
// plain inline not supported by tinycc (See issue #435) // Functions may be inlined or external definition used
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Defines and Macros
|
|
//----------------------------------------------------------------------------------
|
|
|
|
enum PI = 3.14159265358979323846f;
|
|
|
|
enum EPSILON = 0.000001f;
|
|
|
|
enum DEG2RAD = PI / 180.0f;
|
|
|
|
enum RAD2DEG = 180.0f / PI;
|
|
|
|
// Get float vector for Matrix
|
|
|
|
extern (D) auto MatrixToFloat(T)(auto ref T mat)
|
|
{
|
|
return MatrixToFloatV(mat).v;
|
|
}
|
|
|
|
// Get float vector for Vector3
|
|
|
|
extern (D) auto Vector3ToFloat(T)(auto ref T vec)
|
|
{
|
|
return Vector3ToFloatV(vec).v;
|
|
}
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Types and Structures Definition
|
|
//----------------------------------------------------------------------------------
|
|
|
|
// Vector2 type
|
|
struct Vector2
|
|
{
|
|
float x;
|
|
float y;
|
|
}
|
|
|
|
// Vector3 type
|
|
struct Vector3
|
|
{
|
|
float x;
|
|
float y;
|
|
float z;
|
|
}
|
|
|
|
// Vector4 type
|
|
struct Vector4
|
|
{
|
|
float x;
|
|
float y;
|
|
float z;
|
|
float w;
|
|
}
|
|
|
|
// Quaternion type
|
|
alias Quaternion = Vector4;
|
|
|
|
// Matrix type (OpenGL style 4x4 - right handed, column major)
|
|
struct Matrix
|
|
{
|
|
float m0;
|
|
float m4;
|
|
float m8;
|
|
float m12; // Matrix first row (4 components)
|
|
float m1;
|
|
float m5;
|
|
float m9;
|
|
float m13; // Matrix second row (4 components)
|
|
float m2;
|
|
float m6;
|
|
float m10;
|
|
float m14; // Matrix third row (4 components)
|
|
float m3;
|
|
float m7;
|
|
float m11;
|
|
float m15; // Matrix fourth row (4 components)
|
|
}
|
|
|
|
// NOTE: Helper types to be used instead of array return types for *ToFloat functions
|
|
struct float3
|
|
{
|
|
float[3] v;
|
|
}
|
|
|
|
struct float16
|
|
{
|
|
float[16] v;
|
|
}
|
|
|
|
// Required for: sinf(), cosf(), tan(), atan2f(), sqrtf(), floor(), fminf(), fmaxf(), fabs()
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Module Functions Definition - Utils math
|
|
//----------------------------------------------------------------------------------
|
|
|
|
// Clamp float value
|
|
float Clamp (float value, float min, float max);
|
|
|
|
// Calculate linear interpolation between two floats
|
|
float Lerp (float start, float end, float amount);
|
|
|
|
// Normalize input value within input range
|
|
float Normalize (float value, float start, float end);
|
|
|
|
// Remap input value within input range to output range
|
|
float Remap (
|
|
float value,
|
|
float inputStart,
|
|
float inputEnd,
|
|
float outputStart,
|
|
float outputEnd);
|
|
|
|
// Wrap input value from min to max
|
|
float Wrap (float value, float min, float max);
|
|
|
|
// Check whether two given floats are almost equal
|
|
int FloatEquals (float x, float y);
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Module Functions Definition - Vector2 math
|
|
//----------------------------------------------------------------------------------
|
|
|
|
// Vector with components value 0.0f
|
|
Vector2 Vector2Zero ();
|
|
|
|
// Vector with components value 1.0f
|
|
Vector2 Vector2One ();
|
|
|
|
// Add two vectors (v1 + v2)
|
|
Vector2 Vector2Add (Vector2 v1, Vector2 v2);
|
|
|
|
// Add vector and float value
|
|
Vector2 Vector2AddValue (Vector2 v, float add);
|
|
|
|
// Subtract two vectors (v1 - v2)
|
|
Vector2 Vector2Subtract (Vector2 v1, Vector2 v2);
|
|
|
|
// Subtract vector by float value
|
|
Vector2 Vector2SubtractValue (Vector2 v, float sub);
|
|
|
|
// Calculate vector length
|
|
float Vector2Length (Vector2 v);
|
|
|
|
// Calculate vector square length
|
|
float Vector2LengthSqr (Vector2 v);
|
|
|
|
// Calculate two vectors dot product
|
|
float Vector2DotProduct (Vector2 v1, Vector2 v2);
|
|
|
|
// Calculate distance between two vectors
|
|
float Vector2Distance (Vector2 v1, Vector2 v2);
|
|
|
|
// Calculate square distance between two vectors
|
|
float Vector2DistanceSqr (Vector2 v1, Vector2 v2);
|
|
|
|
// Calculate angle between two vectors
|
|
// NOTE: Angle is calculated from origin point (0, 0)
|
|
float Vector2Angle (Vector2 v1, Vector2 v2);
|
|
|
|
// Calculate angle defined by a two vectors line
|
|
// NOTE: Parameters need to be normalized
|
|
// Current implementation should be aligned with glm::angle
|
|
|
|
// TODO(10/9/2023): Currently angles move clockwise, determine if this is wanted behavior
|
|
float Vector2LineAngle (Vector2 start, Vector2 end);
|
|
|
|
// Scale vector (multiply by value)
|
|
Vector2 Vector2Scale (Vector2 v, float scale);
|
|
|
|
// Multiply vector by vector
|
|
Vector2 Vector2Multiply (Vector2 v1, Vector2 v2);
|
|
|
|
// Negate vector
|
|
Vector2 Vector2Negate (Vector2 v);
|
|
|
|
// Divide vector by vector
|
|
Vector2 Vector2Divide (Vector2 v1, Vector2 v2);
|
|
|
|
// Normalize provided vector
|
|
Vector2 Vector2Normalize (Vector2 v);
|
|
|
|
// Transforms a Vector2 by a given Matrix
|
|
Vector2 Vector2Transform (Vector2 v, Matrix mat);
|
|
|
|
// Calculate linear interpolation between two vectors
|
|
Vector2 Vector2Lerp (Vector2 v1, Vector2 v2, float amount);
|
|
|
|
// Calculate reflected vector to normal
|
|
|
|
// Dot product
|
|
Vector2 Vector2Reflect (Vector2 v, Vector2 normal);
|
|
|
|
// Rotate vector by angle
|
|
Vector2 Vector2Rotate (Vector2 v, float angle);
|
|
|
|
// Move Vector towards target
|
|
Vector2 Vector2MoveTowards (Vector2 v, Vector2 target, float maxDistance);
|
|
|
|
// Invert the given vector
|
|
Vector2 Vector2Invert (Vector2 v);
|
|
|
|
// Clamp the components of the vector between
|
|
// min and max values specified by the given vectors
|
|
Vector2 Vector2Clamp (Vector2 v, Vector2 min, Vector2 max);
|
|
|
|
// Clamp the magnitude of the vector between two min and max values
|
|
Vector2 Vector2ClampValue (Vector2 v, float min, float max);
|
|
|
|
// Check whether two given vectors are almost equal
|
|
int Vector2Equals (Vector2 p, Vector2 q);
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Module Functions Definition - Vector3 math
|
|
//----------------------------------------------------------------------------------
|
|
|
|
// Vector with components value 0.0f
|
|
Vector3 Vector3Zero ();
|
|
|
|
// Vector with components value 1.0f
|
|
Vector3 Vector3One ();
|
|
|
|
// Add two vectors
|
|
Vector3 Vector3Add (Vector3 v1, Vector3 v2);
|
|
|
|
// Add vector and float value
|
|
Vector3 Vector3AddValue (Vector3 v, float add);
|
|
|
|
// Subtract two vectors
|
|
Vector3 Vector3Subtract (Vector3 v1, Vector3 v2);
|
|
|
|
// Subtract vector by float value
|
|
Vector3 Vector3SubtractValue (Vector3 v, float sub);
|
|
|
|
// Multiply vector by scalar
|
|
Vector3 Vector3Scale (Vector3 v, float scalar);
|
|
|
|
// Multiply vector by vector
|
|
Vector3 Vector3Multiply (Vector3 v1, Vector3 v2);
|
|
|
|
// Calculate two vectors cross product
|
|
Vector3 Vector3CrossProduct (Vector3 v1, Vector3 v2);
|
|
|
|
// Calculate one vector perpendicular vector
|
|
|
|
// Cross product between vectors
|
|
Vector3 Vector3Perpendicular (Vector3 v);
|
|
|
|
// Calculate vector length
|
|
float Vector3Length (const Vector3 v);
|
|
|
|
// Calculate vector square length
|
|
float Vector3LengthSqr (const Vector3 v);
|
|
|
|
// Calculate two vectors dot product
|
|
float Vector3DotProduct (Vector3 v1, Vector3 v2);
|
|
|
|
// Calculate distance between two vectors
|
|
float Vector3Distance (Vector3 v1, Vector3 v2);
|
|
|
|
// Calculate square distance between two vectors
|
|
float Vector3DistanceSqr (Vector3 v1, Vector3 v2);
|
|
|
|
// Calculate angle between two vectors
|
|
float Vector3Angle (Vector3 v1, Vector3 v2);
|
|
|
|
// Negate provided vector (invert direction)
|
|
Vector3 Vector3Negate (Vector3 v);
|
|
|
|
// Divide vector by vector
|
|
Vector3 Vector3Divide (Vector3 v1, Vector3 v2);
|
|
|
|
// Normalize provided vector
|
|
Vector3 Vector3Normalize (Vector3 v);
|
|
|
|
//Calculate the projection of the vector v1 on to v2
|
|
Vector3 Vector3Project (Vector3 v1, Vector3 v2);
|
|
|
|
//Calculate the rejection of the vector v1 on to v2
|
|
Vector3 Vector3Reject (Vector3 v1, Vector3 v2);
|
|
|
|
// Orthonormalize provided vectors
|
|
// Makes vectors normalized and orthogonal to each other
|
|
// Gram-Schmidt function implementation
|
|
|
|
// Vector3Normalize(*v1);
|
|
|
|
// Vector3CrossProduct(*v1, *v2)
|
|
|
|
// Vector3Normalize(vn1);
|
|
|
|
// Vector3CrossProduct(vn1, *v1)
|
|
void Vector3OrthoNormalize (Vector3* v1, Vector3* v2);
|
|
|
|
// Transforms a Vector3 by a given Matrix
|
|
Vector3 Vector3Transform (Vector3 v, Matrix mat);
|
|
|
|
// Transform a vector by quaternion rotation
|
|
Vector3 Vector3RotateByQuaternion (Vector3 v, Quaternion q);
|
|
|
|
// Rotates a vector around an axis
|
|
|
|
// Using Euler-Rodrigues Formula
|
|
// Ref.: https://en.wikipedia.org/w/index.php?title=Euler%E2%80%93Rodrigues_formula
|
|
|
|
// Vector3Normalize(axis);
|
|
|
|
// Vector3CrossProduct(w, v)
|
|
|
|
// Vector3CrossProduct(w, wv)
|
|
|
|
// Vector3Scale(wv, 2*a)
|
|
|
|
// Vector3Scale(wwv, 2)
|
|
Vector3 Vector3RotateByAxisAngle (Vector3 v, Vector3 axis, float angle);
|
|
|
|
// Calculate linear interpolation between two vectors
|
|
Vector3 Vector3Lerp (Vector3 v1, Vector3 v2, float amount);
|
|
|
|
// Calculate reflected vector to normal
|
|
|
|
// I is the original vector
|
|
// N is the normal of the incident plane
|
|
// R = I - (2*N*(DotProduct[I, N]))
|
|
Vector3 Vector3Reflect (Vector3 v, Vector3 normal);
|
|
|
|
// Get min value for each pair of components
|
|
Vector3 Vector3Min (Vector3 v1, Vector3 v2);
|
|
|
|
// Get max value for each pair of components
|
|
Vector3 Vector3Max (Vector3 v1, Vector3 v2);
|
|
|
|
// Compute barycenter coordinates (u, v, w) for point p with respect to triangle (a, b, c)
|
|
// NOTE: Assumes P is on the plane of the triangle
|
|
|
|
// Vector3Subtract(b, a)
|
|
// Vector3Subtract(c, a)
|
|
// Vector3Subtract(p, a)
|
|
// Vector3DotProduct(v0, v0)
|
|
// Vector3DotProduct(v0, v1)
|
|
// Vector3DotProduct(v1, v1)
|
|
// Vector3DotProduct(v2, v0)
|
|
// Vector3DotProduct(v2, v1)
|
|
Vector3 Vector3Barycenter (Vector3 p, Vector3 a, Vector3 b, Vector3 c);
|
|
|
|
// Projects a Vector3 from screen space into object space
|
|
// NOTE: We are avoiding calling other raymath functions despite available
|
|
|
|
// Calculate unprojected matrix (multiply view matrix by projection matrix) and invert it
|
|
// MatrixMultiply(view, projection);
|
|
|
|
// Calculate inverted matrix -> MatrixInvert(matViewProj);
|
|
// Cache the matrix values (speed optimization)
|
|
|
|
// Calculate the invert determinant (inlined to avoid double-caching)
|
|
|
|
// Create quaternion from source point
|
|
|
|
// Multiply quat point by unprojecte matrix
|
|
// QuaternionTransform(quat, matViewProjInv)
|
|
|
|
// Normalized world points in vectors
|
|
Vector3 Vector3Unproject (Vector3 source, Matrix projection, Matrix view);
|
|
|
|
// Get Vector3 as float array
|
|
float3 Vector3ToFloatV (Vector3 v);
|
|
|
|
// Invert the given vector
|
|
Vector3 Vector3Invert (Vector3 v);
|
|
|
|
// Clamp the components of the vector between
|
|
// min and max values specified by the given vectors
|
|
Vector3 Vector3Clamp (Vector3 v, Vector3 min, Vector3 max);
|
|
|
|
// Clamp the magnitude of the vector between two values
|
|
Vector3 Vector3ClampValue (Vector3 v, float min, float max);
|
|
|
|
// Check whether two given vectors are almost equal
|
|
int Vector3Equals (Vector3 p, Vector3 q);
|
|
|
|
// Compute the direction of a refracted ray
|
|
// v: normalized direction of the incoming ray
|
|
// n: normalized normal vector of the interface of two optical media
|
|
// r: ratio of the refractive index of the medium from where the ray comes
|
|
// to the refractive index of the medium on the other side of the surface
|
|
Vector3 Vector3Refract (Vector3 v, Vector3 n, float r);
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Module Functions Definition - Matrix math
|
|
//----------------------------------------------------------------------------------
|
|
|
|
// Compute matrix determinant
|
|
|
|
// Cache the matrix values (speed optimization)
|
|
float MatrixDeterminant (Matrix mat);
|
|
|
|
// Get the trace of the matrix (sum of the values along the diagonal)
|
|
float MatrixTrace (Matrix mat);
|
|
|
|
// Transposes provided matrix
|
|
Matrix MatrixTranspose (Matrix mat);
|
|
|
|
// Invert provided matrix
|
|
|
|
// Cache the matrix values (speed optimization)
|
|
|
|
// Calculate the invert determinant (inlined to avoid double-caching)
|
|
Matrix MatrixInvert (Matrix mat);
|
|
|
|
// Get identity matrix
|
|
Matrix MatrixIdentity ();
|
|
|
|
// Add two matrices
|
|
Matrix MatrixAdd (Matrix left, Matrix right);
|
|
|
|
// Subtract two matrices (left - right)
|
|
Matrix MatrixSubtract (Matrix left, Matrix right);
|
|
|
|
// Get two matrix multiplication
|
|
// NOTE: When multiplying matrices... the order matters!
|
|
Matrix MatrixMultiply (Matrix left, Matrix right);
|
|
|
|
// Get translation matrix
|
|
Matrix MatrixTranslate (float x, float y, float z);
|
|
|
|
// Create rotation matrix from axis and angle
|
|
// NOTE: Angle should be provided in radians
|
|
Matrix MatrixRotate (Vector3 axis, float angle);
|
|
|
|
// Get x-rotation matrix
|
|
// NOTE: Angle must be provided in radians
|
|
|
|
// MatrixIdentity()
|
|
Matrix MatrixRotateX (float angle);
|
|
|
|
// Get y-rotation matrix
|
|
// NOTE: Angle must be provided in radians
|
|
|
|
// MatrixIdentity()
|
|
Matrix MatrixRotateY (float angle);
|
|
|
|
// Get z-rotation matrix
|
|
// NOTE: Angle must be provided in radians
|
|
|
|
// MatrixIdentity()
|
|
Matrix MatrixRotateZ (float angle);
|
|
|
|
// Get xyz-rotation matrix
|
|
// NOTE: Angle must be provided in radians
|
|
|
|
// MatrixIdentity()
|
|
Matrix MatrixRotateXYZ (Vector3 angle);
|
|
|
|
// Get zyx-rotation matrix
|
|
// NOTE: Angle must be provided in radians
|
|
Matrix MatrixRotateZYX (Vector3 angle);
|
|
|
|
// Get scaling matrix
|
|
Matrix MatrixScale (float x, float y, float z);
|
|
|
|
// Get perspective projection matrix
|
|
Matrix MatrixFrustum (
|
|
double left,
|
|
double right,
|
|
double bottom,
|
|
double top,
|
|
double near,
|
|
double far);
|
|
|
|
// Get perspective projection matrix
|
|
// NOTE: Fovy angle must be provided in radians
|
|
|
|
// MatrixFrustum(-right, right, -top, top, near, far);
|
|
Matrix MatrixPerspective (
|
|
double fovY,
|
|
double aspect,
|
|
double nearPlane,
|
|
double farPlane);
|
|
|
|
// Get orthographic projection matrix
|
|
Matrix MatrixOrtho (
|
|
double left,
|
|
double right,
|
|
double bottom,
|
|
double top,
|
|
double nearPlane,
|
|
double farPlane);
|
|
|
|
// Get camera look-at matrix (view matrix)
|
|
|
|
// Vector3Subtract(eye, target)
|
|
|
|
// Vector3Normalize(vz)
|
|
|
|
// Vector3CrossProduct(up, vz)
|
|
|
|
// Vector3Normalize(x)
|
|
|
|
// Vector3CrossProduct(vz, vx)
|
|
|
|
// Vector3DotProduct(vx, eye)
|
|
// Vector3DotProduct(vy, eye)
|
|
// Vector3DotProduct(vz, eye)
|
|
Matrix MatrixLookAt (Vector3 eye, Vector3 target, Vector3 up);
|
|
|
|
// Get float array of matrix data
|
|
float16 MatrixToFloatV (Matrix mat);
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Module Functions Definition - Quaternion math
|
|
//----------------------------------------------------------------------------------
|
|
|
|
// Add two quaternions
|
|
Quaternion QuaternionAdd (Quaternion q1, Quaternion q2);
|
|
|
|
// Add quaternion and float value
|
|
Quaternion QuaternionAddValue (Quaternion q, float add);
|
|
|
|
// Subtract two quaternions
|
|
Quaternion QuaternionSubtract (Quaternion q1, Quaternion q2);
|
|
|
|
// Subtract quaternion and float value
|
|
Quaternion QuaternionSubtractValue (Quaternion q, float sub);
|
|
|
|
// Get identity quaternion
|
|
Quaternion QuaternionIdentity ();
|
|
|
|
// Computes the length of a quaternion
|
|
float QuaternionLength (Quaternion q);
|
|
|
|
// Normalize provided quaternion
|
|
Quaternion QuaternionNormalize (Quaternion q);
|
|
|
|
// Invert provided quaternion
|
|
Quaternion QuaternionInvert (Quaternion q);
|
|
|
|
// Calculate two quaternion multiplication
|
|
Quaternion QuaternionMultiply (Quaternion q1, Quaternion q2);
|
|
|
|
// Scale quaternion by float value
|
|
Quaternion QuaternionScale (Quaternion q, float mul);
|
|
|
|
// Divide two quaternions
|
|
Quaternion QuaternionDivide (Quaternion q1, Quaternion q2);
|
|
|
|
// Calculate linear interpolation between two quaternions
|
|
Quaternion QuaternionLerp (Quaternion q1, Quaternion q2, float amount);
|
|
|
|
// Calculate slerp-optimized interpolation between two quaternions
|
|
|
|
// QuaternionLerp(q1, q2, amount)
|
|
|
|
// QuaternionNormalize(q);
|
|
Quaternion QuaternionNlerp (Quaternion q1, Quaternion q2, float amount);
|
|
|
|
// Calculates spherical linear interpolation between two quaternions
|
|
Quaternion QuaternionSlerp (Quaternion q1, Quaternion q2, float amount);
|
|
|
|
// Calculate quaternion based on the rotation from one vector to another
|
|
|
|
// Vector3DotProduct(from, to)
|
|
// Vector3CrossProduct(from, to)
|
|
|
|
// QuaternionNormalize(q);
|
|
// NOTE: Normalize to essentially nlerp the original and identity to 0.5
|
|
Quaternion QuaternionFromVector3ToVector3 (Vector3 from, Vector3 to);
|
|
|
|
// Get a quaternion for a given rotation matrix
|
|
Quaternion QuaternionFromMatrix (Matrix mat);
|
|
|
|
// Get a matrix for a given quaternion
|
|
|
|
// MatrixIdentity()
|
|
Matrix QuaternionToMatrix (Quaternion q);
|
|
|
|
// Get rotation quaternion for an angle and axis
|
|
// NOTE: Angle must be provided in radians
|
|
|
|
// Vector3Normalize(axis)
|
|
|
|
// QuaternionNormalize(q);
|
|
Quaternion QuaternionFromAxisAngle (Vector3 axis, float angle);
|
|
|
|
// Get the rotation angle and axis for a given quaternion
|
|
|
|
// QuaternionNormalize(q);
|
|
|
|
// This occurs when the angle is zero.
|
|
// Not a problem: just set an arbitrary normalized axis.
|
|
void QuaternionToAxisAngle (Quaternion q, Vector3* outAxis, float* outAngle);
|
|
|
|
// Get the quaternion equivalent to Euler angles
|
|
// NOTE: Rotation order is ZYX
|
|
Quaternion QuaternionFromEuler (float pitch, float yaw, float roll);
|
|
|
|
// Get the Euler angles equivalent to quaternion (roll, pitch, yaw)
|
|
// NOTE: Angles are returned in a Vector3 struct in radians
|
|
|
|
// Roll (x-axis rotation)
|
|
|
|
// Pitch (y-axis rotation)
|
|
|
|
// Yaw (z-axis rotation)
|
|
Vector3 QuaternionToEuler (Quaternion q);
|
|
|
|
// Transform a quaternion given a transformation matrix
|
|
Quaternion QuaternionTransform (Quaternion q, Matrix mat);
|
|
|
|
// Check whether two given quaternions are almost equal
|
|
int QuaternionEquals (Quaternion p, Quaternion q);
|
|
|
|
// RAYMATH_H
|