iup-stack/iup/srcmglplot/mgl2/datac.h

548 lines
30 KiB
C++
Executable File
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/***************************************************************************
* datac.h is part of Math Graphic Library
* Copyright (C) 2007-2016 Alexey Balakin <mathgl.abalakin@gmail.ru> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU Library General Public License as *
* published by the Free Software Foundation; either version 3 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU Library General Public *
* License along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifndef _MGL_DATAC_H_
#define _MGL_DATAC_H_
#include "mgl2/data.h"
#include "mgl2/datac_cf.h"
//-----------------------------------------------------------------------------
#include <vector>
#include <string>
//-----------------------------------------------------------------------------
#ifndef SWIG
dual MGL_EXPORT mglLinearC(const dual *a, long nx, long ny, long nz, mreal x, mreal y, mreal z);
dual MGL_EXPORT mglSpline3C(const dual *a, long nx, long ny, long nz, mreal x, mreal y, mreal z,dual *dx=0, dual *dy=0, dual *dz=0);
dual MGL_EXPORT mglSpline3Cs(const dual *a, long nx, long ny, long nz, mreal x, mreal y, mreal z);
//-----------------------------------------------------------------------------
/// Class for working with complex data array
class MGL_EXPORT mglDataC : public mglDataA
{
public:
using mglDataA::Momentum;
long nx; ///< number of points in 1st dimensions ('x' dimension)
long ny; ///< number of points in 2nd dimensions ('y' dimension)
long nz; ///< number of points in 3d dimensions ('z' dimension)
dual *a; ///< data array
std::string id; ///< column (or slice) names
bool link; ///< use external data (i.e. don't free it)
/// Initiate by other mglDataC variable
mglDataC(const mglDataC &d) { a=0; mgl_datac_set(this,&d); } // NOTE: must be constructor for mglDataC& to exclude copy one
mglDataC(const mglDataA &d) { a=0; mgl_datac_set(this,&d); }
#if MGL_HAVE_RVAL
mglDataC(mglDataC &&d):nx(d.nx),ny(d.ny),nz(d.nz),a(d.a),id(d.id),link(d.link)
{ s=d.s; temp=d.temp; func=d.func; o=d.o; d.a=0; d.func=0; }
#endif
mglDataC(const mglDataA &re, const mglDataA &im) { a=0; mgl_datac_set_ri(this,&re,&im); }
mglDataC(HCDT d) { a=0; mgl_datac_set(this, d); }
mglDataC(HCDT re, HCDT im) { a=0; mgl_datac_set_ri(this, re, im); }
mglDataC(bool, mglDataC *d) // NOTE: Variable d will be deleted!!!
{ if(d)
{ nx=d->nx; ny=d->ny; nz=d->nz; a=d->a; d->a=0;
temp=d->temp; func=d->func; o=d->o; s=d->s;
id=d->id; link=d->link; delete d; }
else { a=0; Create(1); } }
/// Initiate by flat array
mglDataC(int size, const dual *d) { a=0; Set(d,size); }
mglDataC(int rows, int cols, const dual *d) { a=0; Set(d,cols,rows); }
mglDataC(int size, const double *d) { a=0; Set(d,size); }
mglDataC(int rows, int cols, const double *d) { a=0; Set(d,cols,rows); }
mglDataC(int size, const float *d) { a=0; Set(d,size); }
mglDataC(int rows, int cols, const float *d) { a=0; Set(d,cols,rows); }
mglDataC(const dual *d, int size) { a=0; Set(d,size); }
mglDataC(const dual *d, int rows, int cols) { a=0; Set(d,cols,rows); }
mglDataC(const double *d, int size) { a=0; Set(d,size); }
mglDataC(const double *d, int rows, int cols) { a=0; Set(d,cols,rows); }
mglDataC(const float *d, int size) { a=0; Set(d,size); }
mglDataC(const float *d, int rows, int cols) { a=0; Set(d,cols,rows); }
/// Allocate memory and copy data from std::vector<T>
mglDataC(const std::vector<int> &d) { a=0; Set(d); }
mglDataC(const std::vector<float> &d) { a=0; Set(d); }
mglDataC(const std::vector<double> &d) { a=0; Set(d); }
mglDataC(const std::vector<std::complex<double> > &d) { a=0; Set(d); }
mglDataC(const std::vector<std::complex<float> > &d) { a=0; Set(d); }
/// Read data from file
mglDataC(const char *fname) { a=0; Read(fname); }
/// Allocate the memory for data array and initialize it zero
mglDataC(long xx=1,long yy=1,long zz=1) { a=0; Create(xx,yy,zz); }
/// Delete the array
virtual ~mglDataC() { if(!link && a) delete []a; }
/// Move all data from variable d, and delete this variable.
inline void Move(mglDataC *d) // NOTE: Variable d will be deleted!!!
{ if(d && d->GetNN()>1)
{ bool l=link; dual *b=a;
nx=d->nx; ny=d->ny; nz=d->nz; a=d->a; d->a=b;
temp=d->temp; func=d->func; o=d->o; s=d->s;
id=d->id; link=d->link; d->link=l; delete d; }
else if(d) { *this = d->a[0]; delete d; }
}
inline dual GetVal(long i, long j=0, long k=0) const
{ return mgl_datac_get_value(this,i,j,k);}
inline void SetVal(dual f, long i, long j=0, long k=0)
{ mgl_datac_set_value(this,f,i,j,k); }
/// Get sizes
long GetNx() const { return nx; }
long GetNy() const { return ny; }
long GetNz() const { return nz; }
/// Link external data array (don't delete it at exit)
inline void Link(dual *A, long NX, long NY=1, long NZ=1)
{ mgl_datac_link(this,A,NX,NY,NZ); }
inline void Link(mglDataC &d) { Link(d.a,d.nx,d.ny,d.nz); }
/// Allocate memory and copy the data from the gsl_vector
inline void Set(gsl_vector *m) { mgl_datac_set_vector(this,m); }
/// Allocate memory and copy the data from the gsl_matrix
inline void Set(gsl_matrix *m) { mgl_datac_set_matrix(this,m); }
/// Allocate memory and copy the data from the (float *) array
inline void Set(const float *A,long NX,long NY=1,long NZ=1)
{ mgl_datac_set_float(this,A,NX,NY,NZ); }
/// Allocate memory and copy the data from the (double *) array
inline void Set(const double *A,long NX,long NY=1,long NZ=1)
{ mgl_datac_set_double(this,A,NX,NY,NZ); }
/// Allocate memory and copy the data from the (complex *) array
inline void Set(const dual *A,long NX,long NY=1,long NZ=1)
{ mgl_datac_set_complex(this,A,NX,NY,NZ); }
/// Allocate memory and scanf the data from the string
inline void Set(const char *str,long NX,long NY=1,long NZ=1)
{ mgl_datac_set_values(this,str,NX,NY,NZ); }
/// Import data from abstract type
inline void Set(HCDT dat) { mgl_datac_set(this, dat); }
inline void Set(const mglDataA &dat) { mgl_datac_set(this, &dat); }
inline void Set(const mglDataA &re, const mglDataA &im) { mgl_datac_set_ri(this, &re, &im); }
inline void Set(HCDT re, HCDT im) { mgl_datac_set_ri(this, re, im); }
inline void SetAmpl(const mglDataA &ampl, const mglDataA &phase)
{ mgl_datac_set_ap(this, &ampl, &phase); }
/// Allocate memory and copy data from std::vector<T>
inline void Set(const std::vector<int> &d)
{ if(d.size()>0) { Create(d.size()); for(long i=0;i<nx;i++) a[i] = d[i]; }
else Create(1); }
inline void Set(const std::vector<float> &d)
{ if(d.size()>0) Set(&(a[0]),d.size()); else Create(1); }
inline void Set(const std::vector<double> &d)
{ if(d.size()>0) Set(&(a[0]),d.size()); else Create(1); }
inline void Set(const std::vector<std::complex<double> > &d)
{ if(d.size()>0) { Create(d.size()); for(long i=0;i<nx;i++) a[i] = d[i]; }
else Create(1); }
inline void Set(const std::vector<std::complex<float> > &d)
{ if(d.size()>0) { Create(d.size()); for(long i=0;i<nx;i++) a[i] = d[i]; }
else Create(1); }
/// Create or recreate the array with specified size and fill it by zero
inline void Create(long mx,long my=1,long mz=1)
{ mgl_datac_create(this,mx,my,mz); }
/// Rearange data dimensions
inline void Rearrange(long mx, long my=0, long mz=0)
{ mgl_datac_rearrange(this,mx,my,mz); }
/// Transpose dimensions of the data (generalization of Transpose)
inline void Transpose(const char *dim="yx")
{ mgl_datac_transpose(this,dim); }
/// Extend data dimensions
inline void Extend(long n1, long n2=0)
{ mgl_datac_extend(this,n1,n2); }
/// Reduce size of the data
inline void Squeeze(long rx,long ry=1,long rz=1,bool smooth=false)
{ mgl_datac_squeeze(this,rx,ry,rz,smooth); }
/// Crop the data
inline void Crop(long n1, long n2,char dir='x')
{ mgl_datac_crop(this,n1,n2,dir); }
/// Insert data
inline void Insert(char dir, long at=0, long num=1)
{ mgl_datac_insert(this,dir,at,num); }
/// Delete data
inline void Delete(char dir, long at=0, long num=1)
{ mgl_datac_delete(this,dir,at,num); }
/// Join with another data array
inline void Join(const mglDataA &d)
{ mgl_datac_join(this,&d); }
/// Modify the data by specified formula
inline void Modify(const char *eq,long dim=0)
{ mgl_datac_modify(this, eq, dim); }
/// Modify the data by specified formula
inline void Modify(const char *eq,const mglDataA &vdat, const mglDataA &wdat)
{ mgl_datac_modify_vw(this,eq,&vdat,&wdat); }
/// Modify the data by specified formula
inline void Modify(const char *eq,const mglDataA &vdat)
{ mgl_datac_modify_vw(this,eq,&vdat,0); }
/// Modify the data by specified formula assuming x,y,z in range [r1,r2]
inline void Fill(mglBase *gr, const char *eq, const char *opt="")
{ mgl_datac_fill_eq(gr,this,eq,0,0,opt); }
inline void Fill(mglBase *gr, const char *eq, const mglDataA &vdat, const char *opt="")
{ mgl_datac_fill_eq(gr,this,eq,&vdat,0,opt); }
inline void Fill(mglBase *gr, const char *eq, const mglDataA &vdat, const mglDataA &wdat,const char *opt="")
{ mgl_datac_fill_eq(gr,this,eq,&vdat,&wdat,opt); }
/// Equidistantly fill the data to range [x1,x2] in direction dir
inline void Fill(dual x1,dual x2=mglNaN,char dir='x')
{ mgl_datac_fill(this,x1,x2,dir); }
/// Fill the data by interpolated values of vdat parametrically depended on xdat,ydat,zdat for x,y,z in range [p1,p2] using global spline
inline void RefillGS(const mglDataA &xdat, const mglDataA &vdat, mreal x1, mreal x2,long sl=-1)
{ mgl_datac_refill_gs(this,&xdat,&vdat,x1,x2,sl); }
/// Fill the data by interpolated values of vdat parametrically depended on xdat,ydat,zdat for x,y,z in range [p1,p2]
inline void Refill(const mglDataA &xdat, const mglDataA &vdat, mreal x1, mreal x2,long sl=-1)
{ mgl_datac_refill_x(this,&xdat,&vdat,x1,x2,sl); }
inline void Refill(const mglDataA &xdat, const mglDataA &vdat, mglPoint p1, mglPoint p2,long sl=-1)
{ mgl_datac_refill_x(this,&xdat,&vdat,p1.x,p2.x,sl); }
inline void Refill(const mglDataA &xdat, const mglDataA &ydat, const mglDataA &vdat, mglPoint p1, mglPoint p2,long sl=-1)
{ mgl_datac_refill_xy(this,&xdat,&ydat,&vdat,p1.x,p2.x,p1.y,p2.y,sl); }
inline void Refill(const mglDataA &xdat, const mglDataA &ydat, const mglDataA &zdat, const mglDataA &vdat, mglPoint p1, mglPoint p2)
{ mgl_datac_refill_xyz(this,&xdat,&ydat,&zdat,&vdat,p1.x,p2.x,p1.y,p2.y,p1.z,p2.z); }
/// Fill the data by interpolated values of vdat parametrically depended on xdat,ydat,zdat for x,y,z in axis range of gr
inline void Refill(HMGL gr, const mglDataA &xdat, const mglDataA &vdat, long sl=-1, const char *opt="")
{ mgl_datac_refill_gr(gr,this,&xdat,0,0,&vdat,sl,opt); }
inline void Refill(HMGL gr, const mglDataA &xdat, const mglDataA &ydat, const mglDataA &vdat, long sl=-1, const char *opt="")
{ mgl_datac_refill_gr(gr,this,&xdat,&ydat,0,&vdat,sl,opt); }
inline void Refill(HMGL gr, const mglDataA &xdat, const mglDataA &ydat, const mglDataA &zdat, const mglDataA &vdat, const char *opt="")
{ mgl_datac_refill_gr(gr,this,&xdat,&ydat,&zdat,&vdat,-1,opt); }
/// Put value to data element(s)
inline void Put(dual val, long i=-1, long j=-1, long k=-1)
{ mgl_datac_put_val(this,val,i,j,k); }
/// Put array to data element(s)
inline void Put(const mglDataA &dat, long i=-1, long j=-1, long k=-1)
{ mgl_datac_put_dat(this,&dat,i,j,k); }
/// Set names for columns (slices)
inline void SetColumnId(const char *ids)
{ mgl_datac_set_id(this,ids); }
/// Make new id
inline void NewId() { id.clear(); }
/// Read data from tab-separated text file with auto determining size
inline bool Read(const char *fname)
{ return mgl_datac_read(this,fname); }
/// Read data from text file with specifeid size
inline bool Read(const char *fname,long mx,long my=1,long mz=1)
{ return mgl_datac_read_dim(this,fname,mx,my,mz); }
/// Save whole data array (for ns=-1) or only ns-th slice to text file
void Save(const char *fname,long ns=-1) const
{ mgl_datac_save(this,fname,ns); }
/// Get whole data array (for ns=-1) or only ns-th slice to string
std::string Get(long ns=-1) const
{ return mgl_datac_to_string(this,ns); }
/// Read data from tab-separated text files with auto determining size which filenames are result of sprintf(fname,templ,t) where t=from:step:to
inline bool ReadRange(const char *templ, double from, double to, double step=1, bool as_slice=false)
{ return mgl_datac_read_range(this,templ,from,to,step,as_slice); }
/// Read data from tab-separated text files with auto determining size which filenames are satisfied to template (like "t_*.dat")
inline bool ReadAll(const char *templ, bool as_slice=false)
{ return mgl_datac_read_all(this, templ, as_slice); }
/// Read data from text file with size specified at beginning of the file
inline bool ReadMat(const char *fname, long dim=2)
{ return mgl_datac_read_mat(this,fname,dim); }
/// Read data array from HDF file (parse HDF4 and HDF5 files)
inline int ReadHDF(const char *fname,const char *data)
{ return mgl_datac_read_hdf(this,fname,data); }
/// Save data to HDF file
void SaveHDF(const char *fname,const char *data,bool rewrite=false) const
{ mgl_datac_save_hdf(this,fname,data,rewrite); }
/// Get real part of data values
inline mglData Real() const
{ return mglData(true,mgl_datac_real(this)); }
/// Get imaginary part of data values
inline mglData Imag() const
{ return mglData(true,mgl_datac_imag(this)); }
/// Get absolute value of data values, i.e. |u|
inline mglData Abs() const
{ return mglData(true,mgl_datac_abs(this)); }
/// Get square of absolute value of data values, i.e. |u|^2
inline mglData Norm() const
{ return mglData(true,mgl_datac_norm(this)); }
/// Get argument of data values
inline mglData Arg() const
{ return mglData(true,mgl_datac_arg(this)); }
/// Get column (or slice) of the data filled by formulas of named columns
inline mglDataC Column(const char *eq) const
{ return mglDataC(true,mgl_datac_column(this,eq)); }
/// Get momentum (1D-array) of data along direction 'dir'. String looks like "x1" for median in x-direction, "x2" for width in x-dir and so on.
inline mglDataC Momentum(char dir, const char *how) const
{ return mglDataC(true,mgl_datac_momentum(this,dir,how)); }
/// Get sub-array of the data with given fixed indexes
inline mglDataC SubData(long xx,long yy=-1,long zz=-1) const
{ return mglDataC(true,mgl_datac_subdata(this,xx,yy,zz)); }
inline mglDataC SubData(const mglDataA &xx, const mglDataA &yy, const mglDataA &zz) const
{ return mglDataC(true,mgl_datac_subdata_ext(this,&xx,&yy,&zz)); }
inline mglDataC SubData(const mglDataA &xx, const mglDataA &yy) const
{ return mglDataC(true,mgl_datac_subdata_ext(this,&xx,&yy,0)); }
inline mglDataC SubData(const mglDataA &xx) const
{ return mglDataC(true,mgl_datac_subdata_ext(this,&xx,0,0)); }
/// Get trace of the data array
inline mglDataC Trace() const
{ return mglDataC(true,mgl_datac_trace(this)); }
/// Get array which is result of summation in given direction or directions
inline mglDataC Sum(const char *dir) const
{ return mglDataC(true,mgl_datac_sum(this,dir)); }
/// Get the data which is direct multiplication (like, d[i,j] = this[i]*a[j] and so on)
inline mglDataC Combine(const mglDataA &dat) const
{ return mglDataC(true,mgl_datac_combine(this,&dat)); }
/// Resize the data to new size of box [x1,x2]*[y1,y2]*[z1,z2]
inline mglDataC Resize(long mx,long my=1,long mz=1, mreal x1=0,mreal x2=1, mreal y1=0,mreal y2=1, mreal z1=0,mreal z2=1) const
{ return mglDataC(true,mgl_datac_resize_box(this,mx,my,mz,x1,x2,y1,y2,z1,z2)); }
/// Get array which values is result of interpolation this for coordinates from other arrays
inline mglDataC Evaluate(const mglData &idat, bool norm=true) const
{ return mglDataC(true,mgl_datac_evaluate(this,&idat,0,0,norm)); }
inline mglDataC Evaluate(const mglData &idat, const mglData &jdat, bool norm=true) const
{ return mglDataC(true,mgl_datac_evaluate(this,&idat,&jdat,0,norm)); }
inline mglDataC Evaluate(const mglData &idat, const mglData &jdat, const mglData &kdat, bool norm=true) const
{ return mglDataC(true,mgl_datac_evaluate(this,&idat,&jdat,&kdat,norm)); }
/// Find correlation with another data arrays
inline mglDataC Correl(const mglData &dat, const char *dir) const
{ return mglDataC(true,mgl_datac_correl(this,&dat,dir)); }
/// Find auto correlation function
inline mglDataC AutoCorrel(const char *dir) const
{ return mglDataC(true,mgl_datac_correl(this,this,dir)); }
/// Create n-th points distribution of this data values in range [v1, v2]
inline mglData Hist(long n,mreal v1=0,mreal v2=1, long nsub=0) const
{ return mglData(true,mgl_data_hist(this,n,v1,v2,nsub)); }
/// Create n-th points distribution of this data values in range [v1, v2] with weight w
inline mglData Hist(const mglDataA &w, long n,mreal v1=0,mreal v2=1, long nsub=0) const
{ return mglData(true,mgl_data_hist_w(this,&w,n,v1,v2,nsub)); }
/// Get array which is result of maximal values in given direction or directions
inline mglData Max(const char *dir) const
{ return mglData(true,mgl_data_max_dir(this,dir)); }
/// Get array which is result of minimal values in given direction or directions
inline mglData Min(const char *dir) const
{ return mglData(true,mgl_data_min_dir(this,dir)); }
/// Cumulative summation the data in given direction or directions
inline void CumSum(const char *dir) { mgl_datac_cumsum(this,dir); }
/// Integrate (cumulative summation) the data in given direction or directions
inline void Integral(const char *dir) { mgl_datac_integral(this,dir); }
/// Differentiate the data in given direction or directions
inline void Diff(const char *dir) { mgl_datac_diff(this,dir); }
/// Double-differentiate (like laplace operator) the data in given direction
inline void Diff2(const char *dir) { mgl_datac_diff2(this,dir); }
/// Swap left and right part of the data in given direction (useful for fourier spectrums)
inline void Swap(const char *dir) { mgl_datac_swap(this,dir); }
/// Roll data along direction dir by num slices
inline void Roll(char dir, long num) { mgl_datac_roll(this,dir,num); }
/// Mirror the data in given direction (useful for fourier spectrums)
inline void Mirror(const char *dir) { mgl_datac_mirror(this,dir); }
/// Smooth the data on specified direction or directions
/** String \a dir may contain:
* x, y, z for 1st, 2nd or 3d dimension;
* dN for linear averaging over N points;
* 3 for linear averaging over 3 points;
* 5 for linear averaging over 5 points.
* By default quadratic averaging over 5 points is used. */
inline void Smooth(const char *dirs="xyz",mreal delta=0)
{ mgl_datac_smooth(this,dirs,delta); }
/// Limit the data to be inside [-v,v], keeping the original sign
inline void Limit(mreal v)
{ mgl_datac_limit(this, v); }
/// Hankel transform
inline void Hankel(const char *dir) { mgl_datac_hankel(this,dir); }
/// Fourier transform
inline void FFT(const char *dir) { mgl_datac_fft(this,dir); }
/// Calculate one step of diffraction by finite-difference method with parameter q
inline void Diffraction(const char *how, mreal q) { mgl_datac_diffr(this,how,q); }
/// Interpolate by cubic spline the data to given point x=[0...nx-1], y=[0...ny-1], z=[0...nz-1]
inline dual Spline(mreal x,mreal y=0,mreal z=0) const
{ return mgl_datac_spline(this, x,y,z); }
/// Interpolate by cubic spline the data to given point x,\a y,\a z which normalized in range [0, 1]
inline dual Spline1(mreal x,mreal y=0,mreal z=0) const
{ return mgl_datac_spline(this, x*(nx-1),y*(ny-1),z*(nz-1)); }
/// Interpolate by linear function the data to given point x=[0...nx-1], y=[0...ny-1], z=[0...nz-1]
inline dual Linear(mreal x,mreal y=0,mreal z=0) const
{ return mgl_datac_linear_ext(this,x,y,z,0,0,0); }
/// Interpolate by line the data to given point x,\a y,\a z which normalized in range [0, 1]
inline dual Linear1(mreal x,mreal y=0,mreal z=0) const
{ return mgl_datac_linear_ext(this,x*(nx-1),y*(ny-1),z*(nz-1),0,0,0); }
/// Interpolate by linear function the data and return its derivatives at given point x=[0...nx-1], y=[0...ny-1], z=[0...nz-1]
inline dual Linear(mglPoint &dif, mreal x,mreal y=0,mreal z=0) const
{
dual val,dx,dy,dz;
val = mgl_datac_linear_ext(this,x,y,z, &dx, &dy, &dz);
dif.Set(dx.real(),dy.real(),dz.real()); return val;
}
/// Interpolate by line the data and return its derivatives at given point x,\a y,\a z which normalized in range [0, 1]
inline dual Linear1(mglPoint &dif, mreal x,mreal y=0,mreal z=0) const
{
dual val,dx,dy,dz;
val = mgl_datac_linear_ext(this,x,y,z, &dx, &dy, &dz);
dif.Set(dx.real(),dy.real(),dz.real());
dif.x/=nx>1?nx-1:1; dif.y/=ny>1?ny-1:1; dif.z/=nz>1?nz-1:1;
return val;
}
/// Return an approximated x-value (root) when dat(x) = val
inline mreal Solve(mreal val, bool use_spline=true, long i0=0) const
{ return mgl_data_solve_1d(this, val, use_spline, i0); }
/// Return an approximated value (root) when dat(x) = val
inline mglData Solve(mreal val, char dir, bool norm=true) const
{ return mglData(true,mgl_data_solve(this, val, dir, 0, norm)); }
inline mglData Solve(mreal val, char dir, const mglData &i0, bool norm=true) const
{ return mglData(true,mgl_data_solve(this, val, dir, &i0, norm)); }
/// Copy data from other mglDataA variable
inline const mglDataA &operator=(const mglDataA &d)
{ if(this!=&d) Set(&d); return d; }
inline const mglDataC &operator=(const mglDataC &d)
{ if(this!=&d) Set(&d); return d; }
inline dual operator=(dual val)
{
#pragma omp parallel for
for(long i=0;i<nx*ny*nz;i++) a[i]=val; return val; }
inline dual operator=(mreal val)
{
#pragma omp parallel for
for(long i=0;i<nx*ny*nz;i++) a[i]=val; return val; }
/// Multiply the data by other one for each element
inline void operator*=(const mglDataA &d) { mgl_datac_mul_dat(this,&d); }
/// Divide the data by other one for each element
inline void operator/=(const mglDataA &d) { mgl_datac_div_dat(this,&d); }
/// Add the other data
inline void operator+=(const mglDataA &d) { mgl_datac_add_dat(this,&d); }
/// Subtract the other data
inline void operator-=(const mglDataA &d) { mgl_datac_sub_dat(this,&d); }
/// Multiply each element by the number
inline void operator*=(dual d) { mgl_datac_mul_num(this,d); }
/// Divide each element by the number
inline void operator/=(dual d) { mgl_datac_div_num(this,d); }
/// Add the number
inline void operator+=(dual d) { mgl_datac_add_num(this,d); }
/// Subtract the number
inline void operator-=(dual d) { mgl_datac_sub_num(this,d); }
#ifndef SWIG
/// Direct access to the data cell
inline dual &operator[](long i) { return a[i]; }
#endif
#ifndef DEBUG
/// Get the value in given cell of the data
mreal v(long i,long j=0,long k=0) const { return abs(a[i+nx*(j+ny*k)]); }
/// Set the value in given cell of the data
void set_v(mreal val, long i,long j=0,long k=0) { a[i+nx*(j+ny*k)]=val; }
#else
/// Get the value in given cell of the data with border checking
mreal v(long i,long j=0,long k=0) const { return mgl_abs(mgl_datac_get_value(this,i,j,k)); }
/// Set the value in given cell of the data
void set_v(mreal val, long i,long j=0,long k=0) { mgl_datac_set_value(this,val,i,j,k); }
#endif
/// Get the complex value in given cell of the data
dual vc(long i,long j=0,long k=0) const { return a[i+nx*(j+ny*k)]; }
dual vcthr(long i) const { return a[i]; }
/// Get the interpolated value and its derivatives in given data cell without border checking
mreal valueD(mreal x,mreal y=0,mreal z=0,mreal *dx=0,mreal *dy=0,mreal *dz=0) const
{ dual aa,ax,ay,az; mreal res;
aa = mglSpline3C(a,nx,ny,nz,x,y,z,&ax,&ay,&az); res = abs(aa);
if(dx) *dx = res?(real(aa)*real(ax)+imag(aa)*imag(ax))/res:0;
if(dy) *dy = res?(real(aa)*real(ay)+imag(aa)*imag(ay))/res:0;
if(dz) *dz = res?(real(aa)*real(az)+imag(aa)*imag(az))/res:0; return res; }
/// Get the interpolated value in given data cell without border checking
mreal value(mreal x,mreal y=0,mreal z=0) const
{ return abs(mglSpline3Cs(a,nx,ny,nz,x,y,z)); }
mreal vthr(long i) const { return abs(a[i]); }
// add for speeding up !!!
mreal dvx(long i,long j=0,long k=0) const
{ register long i0=i+nx*(j+ny*k);
return i>0? abs(i<nx-1? (a[i0+1]-a[i0-1])/mreal(2):a[i0]-a[i0-1]) : abs(a[i0+1]-a[i0]); }
mreal dvy(long i,long j=0,long k=0) const
{ register long i0=i+nx*(j+ny*k);
return j>0? abs(j<ny-1? (a[i0+nx]-a[i0-nx])/mreal(2):a[i0]-a[i0-nx]) : abs(a[i0+nx]-a[i0]);}
mreal dvz(long i,long j=0,long k=0) const
{ register long i0=i+nx*(j+ny*k), n=nx*ny;
return k>0? abs(k<nz-1? (a[i0+n]-a[i0-n])/mreal(2):a[i0]-a[i0-n]) : abs(a[i0+n]-a[i0]); }
};
//-----------------------------------------------------------------------------
/// Saves result of PDE solving (|u|^2) for "Hamiltonian" ham with initial conditions ini
inline mglDataC mglPDEc(mglBase *gr, const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, mreal dz=0.1, mreal k0=100,const char *opt="")
{ return mglDataC(true, mgl_pde_solve_c(gr,ham, &ini_re, &ini_im, dz, k0,opt)); }
/// Saves result of PDE solving for "Hamiltonian" ham with initial conditions ini along a curve ray (must have nx>=7 - x,y,z,px,py,pz,tau or nx=5 - x,y,px,py,tau)
inline mglDataC mglQO2dc(const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, const mglDataA &ray, mreal r=1, mreal k0=100)
{ return mglDataC(true, mgl_qo2d_solve_c(ham, &ini_re, &ini_im, &ray, r, k0, 0, 0)); }
inline mglDataC mglQO2dc(const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, const mglDataA &ray, mglData &xx, mglData &yy, mreal r=1, mreal k0=100)
{ return mglDataC(true, mgl_qo2d_solve_c(ham, &ini_re, &ini_im, &ray, r, k0, &xx, &yy)); }
/// Saves result of PDE solving for "Hamiltonian" ham with initial conditions ini along a curve ray (must have nx>=7 - x,y,z,px,py,pz,tau or nx=5 - x,y,px,py,tau)
inline mglDataC mglQO3dc(const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, const mglDataA &ray, mreal r=1, mreal k0=100)
{ return mglDataC(true, mgl_qo3d_solve_c(ham, &ini_re, &ini_im, &ray, r, k0, 0, 0, 0)); }
inline mglDataC mglQO3dc(const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, const mglDataA &ray, mglData &xx, mglData &yy, mglData &zz, mreal r=1, mreal k0=100)
{ return mglDataC(true, mgl_qo3d_solve_c(ham, &ini_re, &ini_im, &ray, r, k0, &xx, &yy, &zz)); }
//-----------------------------------------------------------------------------
/// Get array as solution of tridiagonal system of equations a[i]*x[i-1]+b[i]*x[i]+c[i]*x[i+1]=d[i]
/** String \a how may contain:
* 'x', 'y', 'z' for solving along x-,y-,z-directions, or
* 'h' for solving along hexagonal direction at x-y plain (need nx=ny),
* 'c' for using periodical boundary conditions,
* 'd' for diffraction/diffuse calculation. */
inline mglDataC mglTridMatC(const mglDataA &A, const mglDataA &B, const mglDataA &C, const mglDataC &D, const char *how)
{ return mglDataC(true, mgl_datac_tridmat(&A, &B, &C, &D, how)); }
//-----------------------------------------------------------------------------
/// Get sub-array of the data with given fixed indexes
inline mglDataC mglSubDataC(const mglDataA &dat, long xx, long yy=-1, long zz=-1)
{ return mglDataC(true,mgl_datac_subdata(&dat,xx,yy,zz)); }
inline mglDataC mglSubDataC(const mglDataA &dat, const mglDataA &xx, const mglDataA &yy, const mglDataA &zz)
{ return mglDataC(true,mgl_datac_subdata_ext(&dat,&xx,&yy,&zz)); }
inline mglDataC mglSubDataC(const mglDataA &dat, const mglDataA &xx, const mglDataA &yy)
{ return mglDataC(true,mgl_datac_subdata_ext(&dat,&xx,&yy,0)); }
inline mglDataC mglSubDataC(const mglDataA &dat, const mglDataA &xx)
{ return mglDataC(true,mgl_datac_subdata_ext(&dat,&xx,0,0)); }
//-----------------------------------------------------------------------------
/// Prepare coefficients for global spline interpolation
inline mglDataC mglGSplineCInit(const mglDataA &xdat, const mglDataA &ydat)
{ return mglDataC(true,mgl_gsplinec_init(&xdat, &ydat)); }
/// Evaluate global spline (and its derivatives d1, d2 if not NULL) using prepared coefficients \a coef
inline dual mglGSplineC(const mglDataA &coef, mreal dx, dual *d1=0, dual *d2=0)
{ return mgl_gsplinec(&coef, dx, d1,d2); }
//-----------------------------------------------------------------------------
#define _DN_(a) ((mglDataC *)*(a))
#define _DC_ ((mglDataC *)*d)
//-----------------------------------------------------------------------------
#ifndef SWIG
/// Wrapper class for complex expression evaluating
class MGL_EXPORT mglExprC
{
HAEX ex;
mglExprC(const mglExprC &){} // copying is not allowed
const mglExprC &operator=(const mglExprC &t){return t;} // copying is not allowed
public:
mglExprC(const char *expr) { ex = mgl_create_cexpr(expr); }
~mglExprC() { mgl_delete_cexpr(ex); }
/// Return value of expression for given x,y,z variables
inline dual Eval(dual x, dual y=0, dual z=0)
{ return mgl_cexpr_eval(ex,x,y,z); }
/// Return value of expression for given x,y,z,u,v,w variables
inline dual Eval(dual x, dual y, dual z, dual u, dual v, dual w)
{
dual var[26];
var['x'-'a']=x; var['y'-'a']=y; var['z'-'a']=z;
var['u'-'a']=u; var['v'-'a']=v; var['w'-'a']=w;
return mgl_cexpr_eval_v(ex,var); }
/// Return value of expression for given variables
inline dual Eval(dual var[26])
{ return mgl_cexpr_eval_v(ex,var); }
};
#endif
//-----------------------------------------------------------------------------
#endif
#endif