iup-stack/iup/srcmglplot/mgl2/datac.h

548 lines
30 KiB
C
Raw Normal View History

2023-02-20 16:44:45 +00:00
/***************************************************************************
* datac.h is part of Math Graphic Library
* Copyright (C) 2007-2016 Alexey Balakin <mathgl.abalakin@gmail.ru> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU Library General Public License as *
* published by the Free Software Foundation; either version 3 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU Library General Public *
* License along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifndef _MGL_DATAC_H_
#define _MGL_DATAC_H_
#include "mgl2/data.h"
#include "mgl2/datac_cf.h"
//-----------------------------------------------------------------------------
#include <vector>
#include <string>
//-----------------------------------------------------------------------------
#ifndef SWIG
dual MGL_EXPORT mglLinearC(const dual *a, long nx, long ny, long nz, mreal x, mreal y, mreal z);
dual MGL_EXPORT mglSpline3C(const dual *a, long nx, long ny, long nz, mreal x, mreal y, mreal z,dual *dx=0, dual *dy=0, dual *dz=0);
dual MGL_EXPORT mglSpline3Cs(const dual *a, long nx, long ny, long nz, mreal x, mreal y, mreal z);
//-----------------------------------------------------------------------------
/// Class for working with complex data array
class MGL_EXPORT mglDataC : public mglDataA
{
public:
using mglDataA::Momentum;
long nx; ///< number of points in 1st dimensions ('x' dimension)
long ny; ///< number of points in 2nd dimensions ('y' dimension)
long nz; ///< number of points in 3d dimensions ('z' dimension)
dual *a; ///< data array
std::string id; ///< column (or slice) names
bool link; ///< use external data (i.e. don't free it)
/// Initiate by other mglDataC variable
mglDataC(const mglDataC &d) { a=0; mgl_datac_set(this,&d); } // NOTE: must be constructor for mglDataC& to exclude copy one
mglDataC(const mglDataA &d) { a=0; mgl_datac_set(this,&d); }
#if MGL_HAVE_RVAL
mglDataC(mglDataC &&d):nx(d.nx),ny(d.ny),nz(d.nz),a(d.a),id(d.id),link(d.link)
{ s=d.s; temp=d.temp; func=d.func; o=d.o; d.a=0; d.func=0; }
#endif
mglDataC(const mglDataA &re, const mglDataA &im) { a=0; mgl_datac_set_ri(this,&re,&im); }
mglDataC(HCDT d) { a=0; mgl_datac_set(this, d); }
mglDataC(HCDT re, HCDT im) { a=0; mgl_datac_set_ri(this, re, im); }
mglDataC(bool, mglDataC *d) // NOTE: Variable d will be deleted!!!
{ if(d)
{ nx=d->nx; ny=d->ny; nz=d->nz; a=d->a; d->a=0;
temp=d->temp; func=d->func; o=d->o; s=d->s;
id=d->id; link=d->link; delete d; }
else { a=0; Create(1); } }
/// Initiate by flat array
mglDataC(int size, const dual *d) { a=0; Set(d,size); }
mglDataC(int rows, int cols, const dual *d) { a=0; Set(d,cols,rows); }
mglDataC(int size, const double *d) { a=0; Set(d,size); }
mglDataC(int rows, int cols, const double *d) { a=0; Set(d,cols,rows); }
mglDataC(int size, const float *d) { a=0; Set(d,size); }
mglDataC(int rows, int cols, const float *d) { a=0; Set(d,cols,rows); }
mglDataC(const dual *d, int size) { a=0; Set(d,size); }
mglDataC(const dual *d, int rows, int cols) { a=0; Set(d,cols,rows); }
mglDataC(const double *d, int size) { a=0; Set(d,size); }
mglDataC(const double *d, int rows, int cols) { a=0; Set(d,cols,rows); }
mglDataC(const float *d, int size) { a=0; Set(d,size); }
mglDataC(const float *d, int rows, int cols) { a=0; Set(d,cols,rows); }
/// Allocate memory and copy data from std::vector<T>
mglDataC(const std::vector<int> &d) { a=0; Set(d); }
mglDataC(const std::vector<float> &d) { a=0; Set(d); }
mglDataC(const std::vector<double> &d) { a=0; Set(d); }
mglDataC(const std::vector<std::complex<double> > &d) { a=0; Set(d); }
mglDataC(const std::vector<std::complex<float> > &d) { a=0; Set(d); }
/// Read data from file
mglDataC(const char *fname) { a=0; Read(fname); }
/// Allocate the memory for data array and initialize it zero
mglDataC(long xx=1,long yy=1,long zz=1) { a=0; Create(xx,yy,zz); }
/// Delete the array
virtual ~mglDataC() { if(!link && a) delete []a; }
/// Move all data from variable d, and delete this variable.
inline void Move(mglDataC *d) // NOTE: Variable d will be deleted!!!
{ if(d && d->GetNN()>1)
{ bool l=link; dual *b=a;
nx=d->nx; ny=d->ny; nz=d->nz; a=d->a; d->a=b;
temp=d->temp; func=d->func; o=d->o; s=d->s;
id=d->id; link=d->link; d->link=l; delete d; }
else if(d) { *this = d->a[0]; delete d; }
}
inline dual GetVal(long i, long j=0, long k=0) const
{ return mgl_datac_get_value(this,i,j,k);}
inline void SetVal(dual f, long i, long j=0, long k=0)
{ mgl_datac_set_value(this,f,i,j,k); }
/// Get sizes
long GetNx() const { return nx; }
long GetNy() const { return ny; }
long GetNz() const { return nz; }
/// Link external data array (don't delete it at exit)
inline void Link(dual *A, long NX, long NY=1, long NZ=1)
{ mgl_datac_link(this,A,NX,NY,NZ); }
inline void Link(mglDataC &d) { Link(d.a,d.nx,d.ny,d.nz); }
/// Allocate memory and copy the data from the gsl_vector
inline void Set(gsl_vector *m) { mgl_datac_set_vector(this,m); }
/// Allocate memory and copy the data from the gsl_matrix
inline void Set(gsl_matrix *m) { mgl_datac_set_matrix(this,m); }
/// Allocate memory and copy the data from the (float *) array
inline void Set(const float *A,long NX,long NY=1,long NZ=1)
{ mgl_datac_set_float(this,A,NX,NY,NZ); }
/// Allocate memory and copy the data from the (double *) array
inline void Set(const double *A,long NX,long NY=1,long NZ=1)
{ mgl_datac_set_double(this,A,NX,NY,NZ); }
/// Allocate memory and copy the data from the (complex *) array
inline void Set(const dual *A,long NX,long NY=1,long NZ=1)
{ mgl_datac_set_complex(this,A,NX,NY,NZ); }
/// Allocate memory and scanf the data from the string
inline void Set(const char *str,long NX,long NY=1,long NZ=1)
{ mgl_datac_set_values(this,str,NX,NY,NZ); }
/// Import data from abstract type
inline void Set(HCDT dat) { mgl_datac_set(this, dat); }
inline void Set(const mglDataA &dat) { mgl_datac_set(this, &dat); }
inline void Set(const mglDataA &re, const mglDataA &im) { mgl_datac_set_ri(this, &re, &im); }
inline void Set(HCDT re, HCDT im) { mgl_datac_set_ri(this, re, im); }
inline void SetAmpl(const mglDataA &ampl, const mglDataA &phase)
{ mgl_datac_set_ap(this, &ampl, &phase); }
/// Allocate memory and copy data from std::vector<T>
inline void Set(const std::vector<int> &d)
{ if(d.size()>0) { Create(d.size()); for(long i=0;i<nx;i++) a[i] = d[i]; }
else Create(1); }
inline void Set(const std::vector<float> &d)
{ if(d.size()>0) Set(&(a[0]),d.size()); else Create(1); }
inline void Set(const std::vector<double> &d)
{ if(d.size()>0) Set(&(a[0]),d.size()); else Create(1); }
inline void Set(const std::vector<std::complex<double> > &d)
{ if(d.size()>0) { Create(d.size()); for(long i=0;i<nx;i++) a[i] = d[i]; }
else Create(1); }
inline void Set(const std::vector<std::complex<float> > &d)
{ if(d.size()>0) { Create(d.size()); for(long i=0;i<nx;i++) a[i] = d[i]; }
else Create(1); }
/// Create or recreate the array with specified size and fill it by zero
inline void Create(long mx,long my=1,long mz=1)
{ mgl_datac_create(this,mx,my,mz); }
/// Rearange data dimensions
inline void Rearrange(long mx, long my=0, long mz=0)
{ mgl_datac_rearrange(this,mx,my,mz); }
/// Transpose dimensions of the data (generalization of Transpose)
inline void Transpose(const char *dim="yx")
{ mgl_datac_transpose(this,dim); }
/// Extend data dimensions
inline void Extend(long n1, long n2=0)
{ mgl_datac_extend(this,n1,n2); }
/// Reduce size of the data
inline void Squeeze(long rx,long ry=1,long rz=1,bool smooth=false)
{ mgl_datac_squeeze(this,rx,ry,rz,smooth); }
/// Crop the data
inline void Crop(long n1, long n2,char dir='x')
{ mgl_datac_crop(this,n1,n2,dir); }
/// Insert data
inline void Insert(char dir, long at=0, long num=1)
{ mgl_datac_insert(this,dir,at,num); }
/// Delete data
inline void Delete(char dir, long at=0, long num=1)
{ mgl_datac_delete(this,dir,at,num); }
/// Join with another data array
inline void Join(const mglDataA &d)
{ mgl_datac_join(this,&d); }
/// Modify the data by specified formula
inline void Modify(const char *eq,long dim=0)
{ mgl_datac_modify(this, eq, dim); }
/// Modify the data by specified formula
inline void Modify(const char *eq,const mglDataA &vdat, const mglDataA &wdat)
{ mgl_datac_modify_vw(this,eq,&vdat,&wdat); }
/// Modify the data by specified formula
inline void Modify(const char *eq,const mglDataA &vdat)
{ mgl_datac_modify_vw(this,eq,&vdat,0); }
/// Modify the data by specified formula assuming x,y,z in range [r1,r2]
inline void Fill(mglBase *gr, const char *eq, const char *opt="")
{ mgl_datac_fill_eq(gr,this,eq,0,0,opt); }
inline void Fill(mglBase *gr, const char *eq, const mglDataA &vdat, const char *opt="")
{ mgl_datac_fill_eq(gr,this,eq,&vdat,0,opt); }
inline void Fill(mglBase *gr, const char *eq, const mglDataA &vdat, const mglDataA &wdat,const char *opt="")
{ mgl_datac_fill_eq(gr,this,eq,&vdat,&wdat,opt); }
/// Equidistantly fill the data to range [x1,x2] in direction dir
inline void Fill(dual x1,dual x2=mglNaN,char dir='x')
{ mgl_datac_fill(this,x1,x2,dir); }
/// Fill the data by interpolated values of vdat parametrically depended on xdat,ydat,zdat for x,y,z in range [p1,p2] using global spline
inline void RefillGS(const mglDataA &xdat, const mglDataA &vdat, mreal x1, mreal x2,long sl=-1)
{ mgl_datac_refill_gs(this,&xdat,&vdat,x1,x2,sl); }
/// Fill the data by interpolated values of vdat parametrically depended on xdat,ydat,zdat for x,y,z in range [p1,p2]
inline void Refill(const mglDataA &xdat, const mglDataA &vdat, mreal x1, mreal x2,long sl=-1)
{ mgl_datac_refill_x(this,&xdat,&vdat,x1,x2,sl); }
inline void Refill(const mglDataA &xdat, const mglDataA &vdat, mglPoint p1, mglPoint p2,long sl=-1)
{ mgl_datac_refill_x(this,&xdat,&vdat,p1.x,p2.x,sl); }
inline void Refill(const mglDataA &xdat, const mglDataA &ydat, const mglDataA &vdat, mglPoint p1, mglPoint p2,long sl=-1)
{ mgl_datac_refill_xy(this,&xdat,&ydat,&vdat,p1.x,p2.x,p1.y,p2.y,sl); }
inline void Refill(const mglDataA &xdat, const mglDataA &ydat, const mglDataA &zdat, const mglDataA &vdat, mglPoint p1, mglPoint p2)
{ mgl_datac_refill_xyz(this,&xdat,&ydat,&zdat,&vdat,p1.x,p2.x,p1.y,p2.y,p1.z,p2.z); }
/// Fill the data by interpolated values of vdat parametrically depended on xdat,ydat,zdat for x,y,z in axis range of gr
inline void Refill(HMGL gr, const mglDataA &xdat, const mglDataA &vdat, long sl=-1, const char *opt="")
{ mgl_datac_refill_gr(gr,this,&xdat,0,0,&vdat,sl,opt); }
inline void Refill(HMGL gr, const mglDataA &xdat, const mglDataA &ydat, const mglDataA &vdat, long sl=-1, const char *opt="")
{ mgl_datac_refill_gr(gr,this,&xdat,&ydat,0,&vdat,sl,opt); }
inline void Refill(HMGL gr, const mglDataA &xdat, const mglDataA &ydat, const mglDataA &zdat, const mglDataA &vdat, const char *opt="")
{ mgl_datac_refill_gr(gr,this,&xdat,&ydat,&zdat,&vdat,-1,opt); }
/// Put value to data element(s)
inline void Put(dual val, long i=-1, long j=-1, long k=-1)
{ mgl_datac_put_val(this,val,i,j,k); }
/// Put array to data element(s)
inline void Put(const mglDataA &dat, long i=-1, long j=-1, long k=-1)
{ mgl_datac_put_dat(this,&dat,i,j,k); }
/// Set names for columns (slices)
inline void SetColumnId(const char *ids)
{ mgl_datac_set_id(this,ids); }
/// Make new id
inline void NewId() { id.clear(); }
/// Read data from tab-separated text file with auto determining size
inline bool Read(const char *fname)
{ return mgl_datac_read(this,fname); }
/// Read data from text file with specifeid size
inline bool Read(const char *fname,long mx,long my=1,long mz=1)
{ return mgl_datac_read_dim(this,fname,mx,my,mz); }
/// Save whole data array (for ns=-1) or only ns-th slice to text file
void Save(const char *fname,long ns=-1) const
{ mgl_datac_save(this,fname,ns); }
/// Get whole data array (for ns=-1) or only ns-th slice to string
std::string Get(long ns=-1) const
{ return mgl_datac_to_string(this,ns); }
/// Read data from tab-separated text files with auto determining size which filenames are result of sprintf(fname,templ,t) where t=from:step:to
inline bool ReadRange(const char *templ, double from, double to, double step=1, bool as_slice=false)
{ return mgl_datac_read_range(this,templ,from,to,step,as_slice); }
/// Read data from tab-separated text files with auto determining size which filenames are satisfied to template (like "t_*.dat")
inline bool ReadAll(const char *templ, bool as_slice=false)
{ return mgl_datac_read_all(this, templ, as_slice); }
/// Read data from text file with size specified at beginning of the file
inline bool ReadMat(const char *fname, long dim=2)
{ return mgl_datac_read_mat(this,fname,dim); }
/// Read data array from HDF file (parse HDF4 and HDF5 files)
inline int ReadHDF(const char *fname,const char *data)
{ return mgl_datac_read_hdf(this,fname,data); }
/// Save data to HDF file
void SaveHDF(const char *fname,const char *data,bool rewrite=false) const
{ mgl_datac_save_hdf(this,fname,data,rewrite); }
/// Get real part of data values
inline mglData Real() const
{ return mglData(true,mgl_datac_real(this)); }
/// Get imaginary part of data values
inline mglData Imag() const
{ return mglData(true,mgl_datac_imag(this)); }
/// Get absolute value of data values, i.e. |u|
inline mglData Abs() const
{ return mglData(true,mgl_datac_abs(this)); }
/// Get square of absolute value of data values, i.e. |u|^2
inline mglData Norm() const
{ return mglData(true,mgl_datac_norm(this)); }
/// Get argument of data values
inline mglData Arg() const
{ return mglData(true,mgl_datac_arg(this)); }
/// Get column (or slice) of the data filled by formulas of named columns
inline mglDataC Column(const char *eq) const
{ return mglDataC(true,mgl_datac_column(this,eq)); }
/// Get momentum (1D-array) of data along direction 'dir'. String looks like "x1" for median in x-direction, "x2" for width in x-dir and so on.
inline mglDataC Momentum(char dir, const char *how) const
{ return mglDataC(true,mgl_datac_momentum(this,dir,how)); }
/// Get sub-array of the data with given fixed indexes
inline mglDataC SubData(long xx,long yy=-1,long zz=-1) const
{ return mglDataC(true,mgl_datac_subdata(this,xx,yy,zz)); }
inline mglDataC SubData(const mglDataA &xx, const mglDataA &yy, const mglDataA &zz) const
{ return mglDataC(true,mgl_datac_subdata_ext(this,&xx,&yy,&zz)); }
inline mglDataC SubData(const mglDataA &xx, const mglDataA &yy) const
{ return mglDataC(true,mgl_datac_subdata_ext(this,&xx,&yy,0)); }
inline mglDataC SubData(const mglDataA &xx) const
{ return mglDataC(true,mgl_datac_subdata_ext(this,&xx,0,0)); }
/// Get trace of the data array
inline mglDataC Trace() const
{ return mglDataC(true,mgl_datac_trace(this)); }
/// Get array which is result of summation in given direction or directions
inline mglDataC Sum(const char *dir) const
{ return mglDataC(true,mgl_datac_sum(this,dir)); }
/// Get the data which is direct multiplication (like, d[i,j] = this[i]*a[j] and so on)
inline mglDataC Combine(const mglDataA &dat) const
{ return mglDataC(true,mgl_datac_combine(this,&dat)); }
/// Resize the data to new size of box [x1,x2]*[y1,y2]*[z1,z2]
inline mglDataC Resize(long mx,long my=1,long mz=1, mreal x1=0,mreal x2=1, mreal y1=0,mreal y2=1, mreal z1=0,mreal z2=1) const
{ return mglDataC(true,mgl_datac_resize_box(this,mx,my,mz,x1,x2,y1,y2,z1,z2)); }
/// Get array which values is result of interpolation this for coordinates from other arrays
inline mglDataC Evaluate(const mglData &idat, bool norm=true) const
{ return mglDataC(true,mgl_datac_evaluate(this,&idat,0,0,norm)); }
inline mglDataC Evaluate(const mglData &idat, const mglData &jdat, bool norm=true) const
{ return mglDataC(true,mgl_datac_evaluate(this,&idat,&jdat,0,norm)); }
inline mglDataC Evaluate(const mglData &idat, const mglData &jdat, const mglData &kdat, bool norm=true) const
{ return mglDataC(true,mgl_datac_evaluate(this,&idat,&jdat,&kdat,norm)); }
/// Find correlation with another data arrays
inline mglDataC Correl(const mglData &dat, const char *dir) const
{ return mglDataC(true,mgl_datac_correl(this,&dat,dir)); }
/// Find auto correlation function
inline mglDataC AutoCorrel(const char *dir) const
{ return mglDataC(true,mgl_datac_correl(this,this,dir)); }
/// Create n-th points distribution of this data values in range [v1, v2]
inline mglData Hist(long n,mreal v1=0,mreal v2=1, long nsub=0) const
{ return mglData(true,mgl_data_hist(this,n,v1,v2,nsub)); }
/// Create n-th points distribution of this data values in range [v1, v2] with weight w
inline mglData Hist(const mglDataA &w, long n,mreal v1=0,mreal v2=1, long nsub=0) const
{ return mglData(true,mgl_data_hist_w(this,&w,n,v1,v2,nsub)); }
/// Get array which is result of maximal values in given direction or directions
inline mglData Max(const char *dir) const
{ return mglData(true,mgl_data_max_dir(this,dir)); }
/// Get array which is result of minimal values in given direction or directions
inline mglData Min(const char *dir) const
{ return mglData(true,mgl_data_min_dir(this,dir)); }
/// Cumulative summation the data in given direction or directions
inline void CumSum(const char *dir) { mgl_datac_cumsum(this,dir); }
/// Integrate (cumulative summation) the data in given direction or directions
inline void Integral(const char *dir) { mgl_datac_integral(this,dir); }
/// Differentiate the data in given direction or directions
inline void Diff(const char *dir) { mgl_datac_diff(this,dir); }
/// Double-differentiate (like laplace operator) the data in given direction
inline void Diff2(const char *dir) { mgl_datac_diff2(this,dir); }
/// Swap left and right part of the data in given direction (useful for fourier spectrums)
inline void Swap(const char *dir) { mgl_datac_swap(this,dir); }
/// Roll data along direction dir by num slices
inline void Roll(char dir, long num) { mgl_datac_roll(this,dir,num); }
/// Mirror the data in given direction (useful for fourier spectrums)
inline void Mirror(const char *dir) { mgl_datac_mirror(this,dir); }
/// Smooth the data on specified direction or directions
/** String \a dir may contain:
* x, y, z for 1st, 2nd or 3d dimension;
* dN for linear averaging over N points;
* 3 for linear averaging over 3 points;
* 5 for linear averaging over 5 points.
* By default quadratic averaging over 5 points is used. */
inline void Smooth(const char *dirs="xyz",mreal delta=0)
{ mgl_datac_smooth(this,dirs,delta); }
/// Limit the data to be inside [-v,v], keeping the original sign
inline void Limit(mreal v)
{ mgl_datac_limit(this, v); }
/// Hankel transform
inline void Hankel(const char *dir) { mgl_datac_hankel(this,dir); }
/// Fourier transform
inline void FFT(const char *dir) { mgl_datac_fft(this,dir); }
/// Calculate one step of diffraction by finite-difference method with parameter q
inline void Diffraction(const char *how, mreal q) { mgl_datac_diffr(this,how,q); }
/// Interpolate by cubic spline the data to given point x=[0...nx-1], y=[0...ny-1], z=[0...nz-1]
inline dual Spline(mreal x,mreal y=0,mreal z=0) const
{ return mgl_datac_spline(this, x,y,z); }
/// Interpolate by cubic spline the data to given point x,\a y,\a z which normalized in range [0, 1]
inline dual Spline1(mreal x,mreal y=0,mreal z=0) const
{ return mgl_datac_spline(this, x*(nx-1),y*(ny-1),z*(nz-1)); }
/// Interpolate by linear function the data to given point x=[0...nx-1], y=[0...ny-1], z=[0...nz-1]
inline dual Linear(mreal x,mreal y=0,mreal z=0) const
{ return mgl_datac_linear_ext(this,x,y,z,0,0,0); }
/// Interpolate by line the data to given point x,\a y,\a z which normalized in range [0, 1]
inline dual Linear1(mreal x,mreal y=0,mreal z=0) const
{ return mgl_datac_linear_ext(this,x*(nx-1),y*(ny-1),z*(nz-1),0,0,0); }
/// Interpolate by linear function the data and return its derivatives at given point x=[0...nx-1], y=[0...ny-1], z=[0...nz-1]
inline dual Linear(mglPoint &dif, mreal x,mreal y=0,mreal z=0) const
{
dual val,dx,dy,dz;
val = mgl_datac_linear_ext(this,x,y,z, &dx, &dy, &dz);
dif.Set(dx.real(),dy.real(),dz.real()); return val;
}
/// Interpolate by line the data and return its derivatives at given point x,\a y,\a z which normalized in range [0, 1]
inline dual Linear1(mglPoint &dif, mreal x,mreal y=0,mreal z=0) const
{
dual val,dx,dy,dz;
val = mgl_datac_linear_ext(this,x,y,z, &dx, &dy, &dz);
dif.Set(dx.real(),dy.real(),dz.real());
dif.x/=nx>1?nx-1:1; dif.y/=ny>1?ny-1:1; dif.z/=nz>1?nz-1:1;
return val;
}
/// Return an approximated x-value (root) when dat(x) = val
inline mreal Solve(mreal val, bool use_spline=true, long i0=0) const
{ return mgl_data_solve_1d(this, val, use_spline, i0); }
/// Return an approximated value (root) when dat(x) = val
inline mglData Solve(mreal val, char dir, bool norm=true) const
{ return mglData(true,mgl_data_solve(this, val, dir, 0, norm)); }
inline mglData Solve(mreal val, char dir, const mglData &i0, bool norm=true) const
{ return mglData(true,mgl_data_solve(this, val, dir, &i0, norm)); }
/// Copy data from other mglDataA variable
inline const mglDataA &operator=(const mglDataA &d)
{ if(this!=&d) Set(&d); return d; }
inline const mglDataC &operator=(const mglDataC &d)
{ if(this!=&d) Set(&d); return d; }
inline dual operator=(dual val)
{
#pragma omp parallel for
for(long i=0;i<nx*ny*nz;i++) a[i]=val; return val; }
inline dual operator=(mreal val)
{
#pragma omp parallel for
for(long i=0;i<nx*ny*nz;i++) a[i]=val; return val; }
/// Multiply the data by other one for each element
inline void operator*=(const mglDataA &d) { mgl_datac_mul_dat(this,&d); }
/// Divide the data by other one for each element
inline void operator/=(const mglDataA &d) { mgl_datac_div_dat(this,&d); }
/// Add the other data
inline void operator+=(const mglDataA &d) { mgl_datac_add_dat(this,&d); }
/// Subtract the other data
inline void operator-=(const mglDataA &d) { mgl_datac_sub_dat(this,&d); }
/// Multiply each element by the number
inline void operator*=(dual d) { mgl_datac_mul_num(this,d); }
/// Divide each element by the number
inline void operator/=(dual d) { mgl_datac_div_num(this,d); }
/// Add the number
inline void operator+=(dual d) { mgl_datac_add_num(this,d); }
/// Subtract the number
inline void operator-=(dual d) { mgl_datac_sub_num(this,d); }
#ifndef SWIG
/// Direct access to the data cell
inline dual &operator[](long i) { return a[i]; }
#endif
#ifndef DEBUG
/// Get the value in given cell of the data
mreal v(long i,long j=0,long k=0) const { return abs(a[i+nx*(j+ny*k)]); }
/// Set the value in given cell of the data
void set_v(mreal val, long i,long j=0,long k=0) { a[i+nx*(j+ny*k)]=val; }
#else
/// Get the value in given cell of the data with border checking
mreal v(long i,long j=0,long k=0) const { return mgl_abs(mgl_datac_get_value(this,i,j,k)); }
/// Set the value in given cell of the data
void set_v(mreal val, long i,long j=0,long k=0) { mgl_datac_set_value(this,val,i,j,k); }
#endif
/// Get the complex value in given cell of the data
dual vc(long i,long j=0,long k=0) const { return a[i+nx*(j+ny*k)]; }
dual vcthr(long i) const { return a[i]; }
/// Get the interpolated value and its derivatives in given data cell without border checking
mreal valueD(mreal x,mreal y=0,mreal z=0,mreal *dx=0,mreal *dy=0,mreal *dz=0) const
{ dual aa,ax,ay,az; mreal res;
aa = mglSpline3C(a,nx,ny,nz,x,y,z,&ax,&ay,&az); res = abs(aa);
if(dx) *dx = res?(real(aa)*real(ax)+imag(aa)*imag(ax))/res:0;
if(dy) *dy = res?(real(aa)*real(ay)+imag(aa)*imag(ay))/res:0;
if(dz) *dz = res?(real(aa)*real(az)+imag(aa)*imag(az))/res:0; return res; }
/// Get the interpolated value in given data cell without border checking
mreal value(mreal x,mreal y=0,mreal z=0) const
{ return abs(mglSpline3Cs(a,nx,ny,nz,x,y,z)); }
mreal vthr(long i) const { return abs(a[i]); }
// add for speeding up !!!
mreal dvx(long i,long j=0,long k=0) const
{ register long i0=i+nx*(j+ny*k);
return i>0? abs(i<nx-1? (a[i0+1]-a[i0-1])/mreal(2):a[i0]-a[i0-1]) : abs(a[i0+1]-a[i0]); }
mreal dvy(long i,long j=0,long k=0) const
{ register long i0=i+nx*(j+ny*k);
return j>0? abs(j<ny-1? (a[i0+nx]-a[i0-nx])/mreal(2):a[i0]-a[i0-nx]) : abs(a[i0+nx]-a[i0]);}
mreal dvz(long i,long j=0,long k=0) const
{ register long i0=i+nx*(j+ny*k), n=nx*ny;
return k>0? abs(k<nz-1? (a[i0+n]-a[i0-n])/mreal(2):a[i0]-a[i0-n]) : abs(a[i0+n]-a[i0]); }
};
//-----------------------------------------------------------------------------
/// Saves result of PDE solving (|u|^2) for "Hamiltonian" ham with initial conditions ini
inline mglDataC mglPDEc(mglBase *gr, const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, mreal dz=0.1, mreal k0=100,const char *opt="")
{ return mglDataC(true, mgl_pde_solve_c(gr,ham, &ini_re, &ini_im, dz, k0,opt)); }
/// Saves result of PDE solving for "Hamiltonian" ham with initial conditions ini along a curve ray (must have nx>=7 - x,y,z,px,py,pz,tau or nx=5 - x,y,px,py,tau)
inline mglDataC mglQO2dc(const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, const mglDataA &ray, mreal r=1, mreal k0=100)
{ return mglDataC(true, mgl_qo2d_solve_c(ham, &ini_re, &ini_im, &ray, r, k0, 0, 0)); }
inline mglDataC mglQO2dc(const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, const mglDataA &ray, mglData &xx, mglData &yy, mreal r=1, mreal k0=100)
{ return mglDataC(true, mgl_qo2d_solve_c(ham, &ini_re, &ini_im, &ray, r, k0, &xx, &yy)); }
/// Saves result of PDE solving for "Hamiltonian" ham with initial conditions ini along a curve ray (must have nx>=7 - x,y,z,px,py,pz,tau or nx=5 - x,y,px,py,tau)
inline mglDataC mglQO3dc(const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, const mglDataA &ray, mreal r=1, mreal k0=100)
{ return mglDataC(true, mgl_qo3d_solve_c(ham, &ini_re, &ini_im, &ray, r, k0, 0, 0, 0)); }
inline mglDataC mglQO3dc(const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, const mglDataA &ray, mglData &xx, mglData &yy, mglData &zz, mreal r=1, mreal k0=100)
{ return mglDataC(true, mgl_qo3d_solve_c(ham, &ini_re, &ini_im, &ray, r, k0, &xx, &yy, &zz)); }
//-----------------------------------------------------------------------------
/// Get array as solution of tridiagonal system of equations a[i]*x[i-1]+b[i]*x[i]+c[i]*x[i+1]=d[i]
/** String \a how may contain:
* 'x', 'y', 'z' for solving along x-,y-,z-directions, or
* 'h' for solving along hexagonal direction at x-y plain (need nx=ny),
* 'c' for using periodical boundary conditions,
* 'd' for diffraction/diffuse calculation. */
inline mglDataC mglTridMatC(const mglDataA &A, const mglDataA &B, const mglDataA &C, const mglDataC &D, const char *how)
{ return mglDataC(true, mgl_datac_tridmat(&A, &B, &C, &D, how)); }
//-----------------------------------------------------------------------------
/// Get sub-array of the data with given fixed indexes
inline mglDataC mglSubDataC(const mglDataA &dat, long xx, long yy=-1, long zz=-1)
{ return mglDataC(true,mgl_datac_subdata(&dat,xx,yy,zz)); }
inline mglDataC mglSubDataC(const mglDataA &dat, const mglDataA &xx, const mglDataA &yy, const mglDataA &zz)
{ return mglDataC(true,mgl_datac_subdata_ext(&dat,&xx,&yy,&zz)); }
inline mglDataC mglSubDataC(const mglDataA &dat, const mglDataA &xx, const mglDataA &yy)
{ return mglDataC(true,mgl_datac_subdata_ext(&dat,&xx,&yy,0)); }
inline mglDataC mglSubDataC(const mglDataA &dat, const mglDataA &xx)
{ return mglDataC(true,mgl_datac_subdata_ext(&dat,&xx,0,0)); }
//-----------------------------------------------------------------------------
/// Prepare coefficients for global spline interpolation
inline mglDataC mglGSplineCInit(const mglDataA &xdat, const mglDataA &ydat)
{ return mglDataC(true,mgl_gsplinec_init(&xdat, &ydat)); }
/// Evaluate global spline (and its derivatives d1, d2 if not NULL) using prepared coefficients \a coef
inline dual mglGSplineC(const mglDataA &coef, mreal dx, dual *d1=0, dual *d2=0)
{ return mgl_gsplinec(&coef, dx, d1,d2); }
//-----------------------------------------------------------------------------
#define _DN_(a) ((mglDataC *)*(a))
#define _DC_ ((mglDataC *)*d)
//-----------------------------------------------------------------------------
#ifndef SWIG
/// Wrapper class for complex expression evaluating
class MGL_EXPORT mglExprC
{
HAEX ex;
mglExprC(const mglExprC &){} // copying is not allowed
const mglExprC &operator=(const mglExprC &t){return t;} // copying is not allowed
public:
mglExprC(const char *expr) { ex = mgl_create_cexpr(expr); }
~mglExprC() { mgl_delete_cexpr(ex); }
/// Return value of expression for given x,y,z variables
inline dual Eval(dual x, dual y=0, dual z=0)
{ return mgl_cexpr_eval(ex,x,y,z); }
/// Return value of expression for given x,y,z,u,v,w variables
inline dual Eval(dual x, dual y, dual z, dual u, dual v, dual w)
{
dual var[26];
var['x'-'a']=x; var['y'-'a']=y; var['z'-'a']=z;
var['u'-'a']=u; var['v'-'a']=v; var['w'-'a']=w;
return mgl_cexpr_eval_v(ex,var); }
/// Return value of expression for given variables
inline dual Eval(dual var[26])
{ return mgl_cexpr_eval_v(ex,var); }
};
#endif
//-----------------------------------------------------------------------------
#endif
#endif