mirror of
https://github.com/dlang/phobos.git
synced 2025-04-27 13:40:20 +03:00
2551 lines
65 KiB
D
2551 lines
65 KiB
D
/**
|
|
* This module provides an `Array` type with deterministic memory usage not
|
|
* reliant on the GC, as an alternative to the built-in arrays.
|
|
*
|
|
* This module is a submodule of $(MREF std, container).
|
|
*
|
|
* Source: $(PHOBOSSRC std/container/array.d)
|
|
*
|
|
* Copyright: 2010- Andrei Alexandrescu. All rights reserved by the respective holders.
|
|
*
|
|
* License: Distributed under the Boost Software License, Version 1.0.
|
|
* (See accompanying file LICENSE_1_0.txt or copy at $(HTTP
|
|
* boost.org/LICENSE_1_0.txt)).
|
|
*
|
|
* Authors: $(HTTP erdani.com, Andrei Alexandrescu)
|
|
*
|
|
* $(SCRIPT inhibitQuickIndex = 1;)
|
|
*/
|
|
module std.container.array;
|
|
|
|
import core.exception : RangeError;
|
|
import std.range.primitives;
|
|
import std.traits;
|
|
|
|
public import std.container.util;
|
|
|
|
///
|
|
pure @system unittest
|
|
{
|
|
auto arr = Array!int(0, 2, 3);
|
|
assert(arr[0] == 0);
|
|
assert(arr.front == 0);
|
|
assert(arr.back == 3);
|
|
|
|
// reserve space
|
|
arr.reserve(1000);
|
|
assert(arr.length == 3);
|
|
assert(arr.capacity >= 1000);
|
|
|
|
// insertion
|
|
arr.insertBefore(arr[1..$], 1);
|
|
assert(arr.front == 0);
|
|
assert(arr.length == 4);
|
|
|
|
arr.insertBack(4);
|
|
assert(arr.back == 4);
|
|
assert(arr.length == 5);
|
|
|
|
// set elements
|
|
arr[1] *= 42;
|
|
assert(arr[1] == 42);
|
|
}
|
|
|
|
///
|
|
pure @system unittest
|
|
{
|
|
import std.algorithm.comparison : equal;
|
|
auto arr = Array!int(1, 2, 3);
|
|
|
|
// concat
|
|
auto b = Array!int(11, 12, 13);
|
|
arr ~= b;
|
|
assert(arr.length == 6);
|
|
|
|
// slicing
|
|
assert(arr[1 .. 3].equal([2, 3]));
|
|
|
|
// remove
|
|
arr.linearRemove(arr[1 .. 3]);
|
|
assert(arr[0 .. 2].equal([1, 11]));
|
|
}
|
|
|
|
/// `Array!bool` packs together values efficiently by allocating one bit per element
|
|
pure @system unittest
|
|
{
|
|
Array!bool arr;
|
|
arr.insert([true, true, false, true, false]);
|
|
assert(arr.length == 5);
|
|
}
|
|
|
|
private struct RangeT(A)
|
|
{
|
|
/* Workaround for https://issues.dlang.org/show_bug.cgi?id=13629
|
|
See also: http://forum.dlang.org/post/vbmwhzvawhnkoxrhbnyb@forum.dlang.org
|
|
*/
|
|
private A[1] _outer_;
|
|
private @property ref inout(A) _outer() inout { return _outer_[0]; }
|
|
|
|
private size_t _a, _b;
|
|
|
|
/* E is different from T when A is more restrictively qualified than T:
|
|
immutable(Array!int) => T == int, E = immutable(int) */
|
|
alias E = typeof(_outer_[0]._data._payload[0]);
|
|
|
|
private this(ref A data, size_t a, size_t b)
|
|
{
|
|
_outer_ = data;
|
|
_a = a;
|
|
_b = b;
|
|
}
|
|
|
|
@property RangeT save()
|
|
{
|
|
return this;
|
|
}
|
|
|
|
@property bool empty() @safe pure nothrow const
|
|
{
|
|
return _a >= _b;
|
|
}
|
|
|
|
@property size_t length() @safe pure nothrow const
|
|
{
|
|
return _b - _a;
|
|
}
|
|
alias opDollar = length;
|
|
|
|
@property ref inout(E) front() inout
|
|
{
|
|
assert(!empty, "Attempting to access the front of an empty Array");
|
|
return _outer[_a];
|
|
}
|
|
@property ref inout(E) back() inout
|
|
{
|
|
assert(!empty, "Attempting to access the back of an empty Array");
|
|
return _outer[_b - 1];
|
|
}
|
|
|
|
void popFront() @safe @nogc pure nothrow
|
|
{
|
|
assert(!empty, "Attempting to popFront an empty Array");
|
|
++_a;
|
|
}
|
|
|
|
void popBack() @safe @nogc pure nothrow
|
|
{
|
|
assert(!empty, "Attempting to popBack an empty Array");
|
|
--_b;
|
|
}
|
|
|
|
static if (isMutable!A)
|
|
{
|
|
import std.algorithm.mutation : move;
|
|
|
|
E moveFront()
|
|
{
|
|
assert(!empty, "Attempting to moveFront an empty Array");
|
|
assert(_a < _outer.length,
|
|
"Attempting to moveFront using an out of bounds low index on an Array");
|
|
return move(_outer._data._payload[_a]);
|
|
}
|
|
|
|
E moveBack()
|
|
{
|
|
assert(!empty, "Attempting to moveBack an empty Array");
|
|
assert(_a <= _outer.length,
|
|
"Attempting to moveBack using an out of bounds high index on an Array");
|
|
return move(_outer._data._payload[_b - 1]);
|
|
}
|
|
|
|
E moveAt(size_t i)
|
|
{
|
|
assert(_a + i < _b,
|
|
"Attempting to moveAt using an out of bounds index on an Array");
|
|
assert(_a + i < _outer.length,
|
|
"Cannot move past the end of the array");
|
|
return move(_outer._data._payload[_a + i]);
|
|
}
|
|
}
|
|
|
|
ref inout(E) opIndex(size_t i) inout
|
|
{
|
|
assert(_a + i < _b,
|
|
"Attempting to fetch using an out of bounds index on an Array");
|
|
return _outer[_a + i];
|
|
}
|
|
|
|
RangeT opSlice()
|
|
{
|
|
return typeof(return)(_outer, _a, _b);
|
|
}
|
|
|
|
RangeT opSlice(size_t i, size_t j)
|
|
{
|
|
assert(i <= j && _a + j <= _b,
|
|
"Attempting to slice using an out of bounds indices on an Array");
|
|
return typeof(return)(_outer, _a + i, _a + j);
|
|
}
|
|
|
|
RangeT!(const(A)) opSlice() const
|
|
{
|
|
return typeof(return)(_outer, _a, _b);
|
|
}
|
|
|
|
RangeT!(const(A)) opSlice(size_t i, size_t j) const
|
|
{
|
|
assert(i <= j && _a + j <= _b,
|
|
"Attempting to slice using an out of bounds indices on an Array");
|
|
return typeof(return)(_outer, _a + i, _a + j);
|
|
}
|
|
|
|
static if (isMutable!A)
|
|
{
|
|
void opSliceAssign(E value)
|
|
{
|
|
assert(_b <= _outer.length,
|
|
"Attempting to assign using an out of bounds indices on an Array");
|
|
_outer[_a .. _b] = value;
|
|
}
|
|
|
|
void opSliceAssign(E value, size_t i, size_t j)
|
|
{
|
|
assert(_a + j <= _b,
|
|
"Attempting to slice assign using an out of bounds indices on an Array");
|
|
_outer[_a + i .. _a + j] = value;
|
|
}
|
|
|
|
void opSliceUnary(string op)()
|
|
if (op == "++" || op == "--")
|
|
{
|
|
assert(_b <= _outer.length,
|
|
"Attempting to slice using an out of bounds indices on an Array");
|
|
mixin(op~"_outer[_a .. _b];");
|
|
}
|
|
|
|
void opSliceUnary(string op)(size_t i, size_t j)
|
|
if (op == "++" || op == "--")
|
|
{
|
|
assert(_a + j <= _b,
|
|
"Attempting to slice using an out of bounds indices on an Array");
|
|
mixin(op~"_outer[_a + i .. _a + j];");
|
|
}
|
|
|
|
void opSliceOpAssign(string op)(E value)
|
|
{
|
|
assert(_b <= _outer.length,
|
|
"Attempting to slice using an out of bounds indices on an Array");
|
|
mixin("_outer[_a .. _b] "~op~"= value;");
|
|
}
|
|
|
|
void opSliceOpAssign(string op)(E value, size_t i, size_t j)
|
|
{
|
|
assert(_a + j <= _b,
|
|
"Attempting to slice using an out of bounds indices on an Array");
|
|
mixin("_outer[_a + i .. _a + j] "~op~"= value;");
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* _Array type with deterministic control of memory. The memory allocated
|
|
* for the array is reclaimed as soon as possible; there is no reliance
|
|
* on the garbage collector. `Array` uses `malloc`, `realloc` and `free`
|
|
* for managing its own memory.
|
|
*
|
|
* This means that pointers to elements of an `Array` will become
|
|
* dangling as soon as the element is removed from the `Array`. On the other hand
|
|
* the memory allocated by an `Array` will be scanned by the GC and
|
|
* GC managed objects referenced from an `Array` will be kept alive.
|
|
*
|
|
* Note:
|
|
*
|
|
* When using `Array` with range-based functions like those in `std.algorithm`,
|
|
* `Array` must be sliced to get a range (for example, use `array[].map!`
|
|
* instead of `array.map!`). The container itself is not a range.
|
|
*/
|
|
struct Array(T)
|
|
if (!is(immutable T == immutable bool))
|
|
{
|
|
import core.memory : free = pureFree;
|
|
import std.internal.memory : enforceMalloc, enforceRealloc;
|
|
import core.stdc.string : memcpy, memmove, memset;
|
|
|
|
import core.memory : GC;
|
|
|
|
import std.exception : enforce;
|
|
import std.typecons : RefCounted, RefCountedAutoInitialize;
|
|
|
|
// This structure is not copyable.
|
|
private struct Payload
|
|
{
|
|
size_t _capacity;
|
|
T[] _payload;
|
|
|
|
this(T[] p) { _capacity = p.length; _payload = p; }
|
|
|
|
// Destructor releases array memory
|
|
~this()
|
|
{
|
|
// Warning: destroy would destroy also class instances.
|
|
// The hasElaborateDestructor protects us here.
|
|
static if (hasElaborateDestructor!T)
|
|
foreach (ref e; _payload)
|
|
.destroy(e);
|
|
|
|
static if (hasIndirections!T)
|
|
GC.removeRange(_payload.ptr);
|
|
|
|
free(_payload.ptr);
|
|
}
|
|
|
|
this(this) @disable;
|
|
|
|
void opAssign(Payload rhs) @disable;
|
|
|
|
@property size_t length() const
|
|
{
|
|
return _payload.length;
|
|
}
|
|
|
|
@property void length(size_t newLength)
|
|
{
|
|
import std.algorithm.mutation : initializeAll;
|
|
|
|
if (length >= newLength)
|
|
{
|
|
// shorten
|
|
static if (hasElaborateDestructor!T)
|
|
foreach (ref e; _payload.ptr[newLength .. _payload.length])
|
|
.destroy(e);
|
|
|
|
_payload = _payload.ptr[0 .. newLength];
|
|
return;
|
|
}
|
|
immutable startEmplace = length;
|
|
if (_capacity < newLength)
|
|
{
|
|
// enlarge
|
|
static if (T.sizeof == 1)
|
|
{
|
|
const nbytes = newLength;
|
|
}
|
|
else
|
|
{
|
|
import core.checkedint : mulu;
|
|
|
|
bool overflow;
|
|
const nbytes = mulu(newLength, T.sizeof, overflow);
|
|
if (overflow)
|
|
assert(false, "Overflow");
|
|
}
|
|
|
|
static if (hasIndirections!T)
|
|
{
|
|
auto newPayloadPtr = cast(T*) enforceMalloc(nbytes);
|
|
auto newPayload = newPayloadPtr[0 .. newLength];
|
|
memcpy(newPayload.ptr, _payload.ptr, startEmplace * T.sizeof);
|
|
memset(newPayload.ptr + startEmplace, 0,
|
|
(newLength - startEmplace) * T.sizeof);
|
|
GC.addRange(newPayload.ptr, nbytes);
|
|
GC.removeRange(_payload.ptr);
|
|
free(_payload.ptr);
|
|
_payload = newPayload;
|
|
}
|
|
else
|
|
{
|
|
_payload = (cast(T*) enforceRealloc(_payload.ptr,
|
|
nbytes))[0 .. newLength];
|
|
}
|
|
_capacity = newLength;
|
|
}
|
|
else
|
|
{
|
|
_payload = _payload.ptr[0 .. newLength];
|
|
}
|
|
initializeAll(_payload.ptr[startEmplace .. newLength]);
|
|
}
|
|
|
|
@property size_t capacity() const
|
|
{
|
|
return _capacity;
|
|
}
|
|
|
|
void reserve(size_t elements)
|
|
{
|
|
if (elements <= capacity) return;
|
|
static if (T.sizeof == 1)
|
|
{
|
|
const sz = elements;
|
|
}
|
|
else
|
|
{
|
|
import core.checkedint : mulu;
|
|
bool overflow;
|
|
const sz = mulu(elements, T.sizeof, overflow);
|
|
if (overflow)
|
|
assert(false, "Overflow");
|
|
}
|
|
static if (hasIndirections!T)
|
|
{
|
|
/* Because of the transactional nature of this
|
|
* relative to the garbage collector, ensure no
|
|
* threading bugs by using malloc/copy/free rather
|
|
* than realloc.
|
|
*/
|
|
immutable oldLength = length;
|
|
|
|
auto newPayloadPtr = cast(T*) enforceMalloc(sz);
|
|
auto newPayload = newPayloadPtr[0 .. oldLength];
|
|
|
|
// copy old data over to new array
|
|
memcpy(newPayload.ptr, _payload.ptr, T.sizeof * oldLength);
|
|
// Zero out unused capacity to prevent gc from seeing false pointers
|
|
memset(newPayload.ptr + oldLength,
|
|
0,
|
|
(elements - oldLength) * T.sizeof);
|
|
GC.addRange(newPayload.ptr, sz);
|
|
GC.removeRange(_payload.ptr);
|
|
free(_payload.ptr);
|
|
_payload = newPayload;
|
|
}
|
|
else
|
|
{
|
|
// These can't have pointers, so no need to zero unused region
|
|
auto newPayloadPtr = cast(T*) enforceRealloc(_payload.ptr, sz);
|
|
auto newPayload = newPayloadPtr[0 .. length];
|
|
_payload = newPayload;
|
|
}
|
|
_capacity = elements;
|
|
}
|
|
|
|
// Insert one item
|
|
size_t insertBack(Elem)(Elem elem)
|
|
if (isImplicitlyConvertible!(Elem, T))
|
|
{
|
|
import std.conv : emplace;
|
|
if (_capacity == length)
|
|
{
|
|
reserve(1 + capacity * 3 / 2);
|
|
}
|
|
assert(capacity > length && _payload.ptr,
|
|
"Failed to reserve memory");
|
|
emplace(_payload.ptr + _payload.length, elem);
|
|
_payload = _payload.ptr[0 .. _payload.length + 1];
|
|
return 1;
|
|
}
|
|
|
|
// Insert a range of items
|
|
size_t insertBack(Range)(Range r)
|
|
if (isInputRange!Range && isImplicitlyConvertible!(ElementType!Range, T))
|
|
{
|
|
static if (hasLength!Range)
|
|
{
|
|
immutable oldLength = length;
|
|
reserve(oldLength + r.length);
|
|
}
|
|
size_t result;
|
|
foreach (item; r)
|
|
{
|
|
insertBack(item);
|
|
++result;
|
|
}
|
|
static if (hasLength!Range)
|
|
{
|
|
assert(length == oldLength + r.length,
|
|
"Failed to insertBack range");
|
|
}
|
|
return result;
|
|
}
|
|
}
|
|
private alias Data = RefCounted!(Payload, RefCountedAutoInitialize.no);
|
|
private Data _data;
|
|
|
|
/**
|
|
* Constructor taking a number of items.
|
|
*/
|
|
this(U)(U[] values...)
|
|
if (isImplicitlyConvertible!(U, T))
|
|
{
|
|
import std.conv : emplace;
|
|
|
|
static if (T.sizeof == 1)
|
|
{
|
|
const nbytes = values.length;
|
|
}
|
|
else
|
|
{
|
|
import core.checkedint : mulu;
|
|
bool overflow;
|
|
const nbytes = mulu(values.length, T.sizeof, overflow);
|
|
if (overflow)
|
|
assert(false, "Overflow");
|
|
}
|
|
auto p = cast(T*) enforceMalloc(nbytes);
|
|
// Before it is added to the gc, initialize the newly allocated memory
|
|
foreach (i, e; values)
|
|
{
|
|
emplace(p + i, e);
|
|
}
|
|
static if (hasIndirections!T)
|
|
{
|
|
if (p)
|
|
GC.addRange(p, T.sizeof * values.length);
|
|
}
|
|
_data = Data(p[0 .. values.length]);
|
|
}
|
|
|
|
/**
|
|
* Constructor taking an $(REF_ALTTEXT input range, isInputRange, std,range,primitives)
|
|
*/
|
|
this(Range)(Range r)
|
|
if (isInputRange!Range && isImplicitlyConvertible!(ElementType!Range, T) && !is(Range == T[]))
|
|
{
|
|
insertBack(r);
|
|
}
|
|
|
|
/**
|
|
* Comparison for equality.
|
|
*/
|
|
bool opEquals(const Array rhs) const
|
|
{
|
|
return opEquals(rhs);
|
|
}
|
|
|
|
/// ditto
|
|
bool opEquals(ref const Array rhs) const
|
|
{
|
|
if (empty) return rhs.empty;
|
|
if (rhs.empty) return false;
|
|
return _data._payload == rhs._data._payload;
|
|
}
|
|
|
|
/**
|
|
* Defines the array's primary range, which is a random-access range.
|
|
*
|
|
* `ConstRange` is a variant with `const` elements.
|
|
* `ImmutableRange` is a variant with `immutable` elements.
|
|
*/
|
|
alias Range = RangeT!Array;
|
|
|
|
/// ditto
|
|
alias ConstRange = RangeT!(const Array);
|
|
|
|
/// ditto
|
|
alias ImmutableRange = RangeT!(immutable Array);
|
|
|
|
/**
|
|
* Duplicates the array. The elements themselves are not transitively
|
|
* duplicated.
|
|
*
|
|
* Complexity: $(BIGOH length).
|
|
*/
|
|
@property Array dup()
|
|
{
|
|
if (!_data.refCountedStore.isInitialized) return this;
|
|
return Array(_data._payload);
|
|
}
|
|
|
|
/**
|
|
* Returns: `true` if and only if the array has no elements.
|
|
*
|
|
* Complexity: $(BIGOH 1)
|
|
*/
|
|
@property bool empty() const
|
|
{
|
|
return !_data.refCountedStore.isInitialized || _data._payload.empty;
|
|
}
|
|
|
|
/**
|
|
* Returns: The number of elements in the array.
|
|
*
|
|
* Complexity: $(BIGOH 1).
|
|
*/
|
|
@property size_t length() const
|
|
{
|
|
return _data.refCountedStore.isInitialized ? _data._payload.length : 0;
|
|
}
|
|
|
|
/// ditto
|
|
size_t opDollar() const
|
|
{
|
|
return length;
|
|
}
|
|
|
|
/**
|
|
* Returns: The maximum number of elements the array can store without
|
|
* reallocating memory and invalidating iterators upon insertion.
|
|
*
|
|
* Complexity: $(BIGOH 1)
|
|
*/
|
|
@property size_t capacity()
|
|
{
|
|
return _data.refCountedStore.isInitialized ? _data._capacity : 0;
|
|
}
|
|
|
|
/**
|
|
* Ensures sufficient capacity to accommodate `e` _elements.
|
|
* If `e < capacity`, this method does nothing.
|
|
*
|
|
* Postcondition: `capacity >= e`
|
|
*
|
|
* Note: If the capacity is increased, one should assume that all
|
|
* iterators to the elements are invalidated.
|
|
*
|
|
* Complexity: at most $(BIGOH length) if `e > capacity`, otherwise $(BIGOH 1).
|
|
*/
|
|
void reserve(size_t elements)
|
|
{
|
|
if (!_data.refCountedStore.isInitialized)
|
|
{
|
|
if (!elements) return;
|
|
static if (T.sizeof == 1)
|
|
{
|
|
const sz = elements;
|
|
}
|
|
else
|
|
{
|
|
import core.checkedint : mulu;
|
|
bool overflow;
|
|
const sz = mulu(elements, T.sizeof, overflow);
|
|
if (overflow)
|
|
assert(false, "Overflow");
|
|
}
|
|
auto p = enforceMalloc(sz);
|
|
static if (hasIndirections!T)
|
|
{
|
|
// Zero out unused capacity to prevent gc from seeing false pointers
|
|
memset(p, 0, sz);
|
|
GC.addRange(p, sz);
|
|
}
|
|
_data = Data(cast(T[]) p[0 .. 0]);
|
|
_data._capacity = elements;
|
|
}
|
|
else
|
|
{
|
|
_data.reserve(elements);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns: A range that iterates over elements of the array in
|
|
* forward order.
|
|
*
|
|
* Complexity: $(BIGOH 1)
|
|
*/
|
|
Range opSlice()
|
|
{
|
|
return typeof(return)(this, 0, length);
|
|
}
|
|
|
|
ConstRange opSlice() const
|
|
{
|
|
return typeof(return)(this, 0, length);
|
|
}
|
|
|
|
ImmutableRange opSlice() immutable
|
|
{
|
|
return typeof(return)(this, 0, length);
|
|
}
|
|
|
|
/**
|
|
* Returns: A range that iterates over elements of the array from
|
|
* index `i` up to (excluding) index `j`.
|
|
*
|
|
* Precondition: `i <= j && j <= length`
|
|
*
|
|
* Complexity: $(BIGOH 1)
|
|
*/
|
|
Range opSlice(size_t i, size_t j)
|
|
{
|
|
assert(i <= j && j <= length, "Invalid slice bounds");
|
|
return typeof(return)(this, i, j);
|
|
}
|
|
|
|
ConstRange opSlice(size_t i, size_t j) const
|
|
{
|
|
assert(i <= j && j <= length, "Invalid slice bounds");
|
|
return typeof(return)(this, i, j);
|
|
}
|
|
|
|
ImmutableRange opSlice(size_t i, size_t j) immutable
|
|
{
|
|
assert(i <= j && j <= length, "Invalid slice bounds");
|
|
return typeof(return)(this, i, j);
|
|
}
|
|
|
|
/**
|
|
* Returns: The first element of the array.
|
|
*
|
|
* Precondition: `empty == false`
|
|
*
|
|
* Complexity: $(BIGOH 1)
|
|
*/
|
|
@property ref inout(T) front() inout
|
|
{
|
|
assert(_data.refCountedStore.isInitialized,
|
|
"Cannot get front of empty range");
|
|
return _data._payload[0];
|
|
}
|
|
|
|
/**
|
|
* Returns: The last element of the array.
|
|
*
|
|
* Precondition: `empty == false`
|
|
*
|
|
* Complexity: $(BIGOH 1)
|
|
*/
|
|
@property ref inout(T) back() inout
|
|
{
|
|
assert(_data.refCountedStore.isInitialized,
|
|
"Cannot get back of empty range");
|
|
return _data._payload[$ - 1];
|
|
}
|
|
|
|
/**
|
|
* Returns: The element or a reference to the element at the specified index.
|
|
*
|
|
* Precondition: `i < length`
|
|
*
|
|
* Complexity: $(BIGOH 1)
|
|
*/
|
|
ref inout(T) opIndex(size_t i) inout
|
|
{
|
|
assert(_data.refCountedStore.isInitialized,
|
|
"Cannot index empty range");
|
|
return _data._payload[i];
|
|
}
|
|
|
|
/**
|
|
* Slicing operators executing the specified operation on the entire slice.
|
|
*
|
|
* Precondition: `i < j && j < length`
|
|
*
|
|
* Complexity: $(BIGOH slice.length)
|
|
*/
|
|
void opSliceAssign(T value)
|
|
{
|
|
if (!_data.refCountedStore.isInitialized) return;
|
|
_data._payload[] = value;
|
|
}
|
|
|
|
/// ditto
|
|
void opSliceAssign(T value, size_t i, size_t j)
|
|
{
|
|
auto slice = _data.refCountedStore.isInitialized ?
|
|
_data._payload :
|
|
T[].init;
|
|
slice[i .. j] = value;
|
|
}
|
|
|
|
/// ditto
|
|
void opSliceUnary(string op)()
|
|
if (op == "++" || op == "--")
|
|
{
|
|
if (!_data.refCountedStore.isInitialized) return;
|
|
mixin(op~"_data._payload[];");
|
|
}
|
|
|
|
/// ditto
|
|
void opSliceUnary(string op)(size_t i, size_t j)
|
|
if (op == "++" || op == "--")
|
|
{
|
|
auto slice = _data.refCountedStore.isInitialized ? _data._payload : T[].init;
|
|
mixin(op~"slice[i .. j];");
|
|
}
|
|
|
|
/// ditto
|
|
void opSliceOpAssign(string op)(T value)
|
|
{
|
|
if (!_data.refCountedStore.isInitialized) return;
|
|
mixin("_data._payload[] "~op~"= value;");
|
|
}
|
|
|
|
/// ditto
|
|
void opSliceOpAssign(string op)(T value, size_t i, size_t j)
|
|
{
|
|
auto slice = _data.refCountedStore.isInitialized ? _data._payload : T[].init;
|
|
mixin("slice[i .. j] "~op~"= value;");
|
|
}
|
|
|
|
private enum hasSliceWithLength(T) = is(typeof({ T t = T.init; t[].length; }));
|
|
|
|
/**
|
|
* Returns: A new array which is a concatenation of `this` and its argument.
|
|
*
|
|
* Complexity:
|
|
* $(BIGOH length + m), where `m` is the number of elements in `stuff`.
|
|
*/
|
|
Array opBinary(string op, Stuff)(Stuff stuff)
|
|
if (op == "~")
|
|
{
|
|
Array result;
|
|
|
|
static if (hasLength!Stuff || isNarrowString!Stuff)
|
|
result.reserve(length + stuff.length);
|
|
else static if (hasSliceWithLength!Stuff)
|
|
result.reserve(length + stuff[].length);
|
|
else static if (isImplicitlyConvertible!(Stuff, T))
|
|
result.reserve(length + 1);
|
|
|
|
result.insertBack(this[]);
|
|
result ~= stuff;
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Forwards to `insertBack`.
|
|
*/
|
|
void opOpAssign(string op, Stuff)(auto ref Stuff stuff)
|
|
if (op == "~")
|
|
{
|
|
static if (is(typeof(stuff[])) && isImplicitlyConvertible!(typeof(stuff[0]), T))
|
|
{
|
|
insertBack(stuff[]);
|
|
}
|
|
else
|
|
{
|
|
insertBack(stuff);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Removes all the elements from the array and releases allocated memory.
|
|
*
|
|
* Postcondition: `empty == true && capacity == 0`
|
|
*
|
|
* Complexity: $(BIGOH length)
|
|
*/
|
|
void clear()
|
|
{
|
|
_data = Data.init;
|
|
}
|
|
|
|
/**
|
|
* Sets the number of elements in the array to `newLength`. If `newLength`
|
|
* is greater than `length`, the new elements are added to the end of the
|
|
* array and initialized with `T.init`.
|
|
*
|
|
* Complexity:
|
|
* Guaranteed $(BIGOH abs(length - newLength)) if `capacity >= newLength`.
|
|
* If `capacity < newLength` the worst case is $(BIGOH newLength).
|
|
*
|
|
* Postcondition: `length == newLength`
|
|
*/
|
|
@property void length(size_t newLength)
|
|
{
|
|
_data.refCountedStore.ensureInitialized();
|
|
_data.length = newLength;
|
|
}
|
|
|
|
/**
|
|
* Removes the last element from the array and returns it.
|
|
* Both stable and non-stable versions behave the same and guarantee
|
|
* that ranges iterating over the array are never invalidated.
|
|
*
|
|
* Precondition: `empty == false`
|
|
*
|
|
* Returns: The element removed.
|
|
*
|
|
* Complexity: $(BIGOH 1).
|
|
*
|
|
* Throws: `Exception` if the array is empty.
|
|
*/
|
|
T removeAny()
|
|
{
|
|
auto result = back;
|
|
removeBack();
|
|
return result;
|
|
}
|
|
|
|
/// ditto
|
|
alias stableRemoveAny = removeAny;
|
|
|
|
/**
|
|
* Inserts the specified elements at the back of the array. `stuff` can be
|
|
* a value convertible to `T` or a range of objects convertible to `T`.
|
|
*
|
|
* Returns: The number of elements inserted.
|
|
*
|
|
* Complexity:
|
|
* $(BIGOH length + m) if reallocation takes place, otherwise $(BIGOH m),
|
|
* where `m` is the number of elements in `stuff`.
|
|
*/
|
|
size_t insertBack(Stuff)(Stuff stuff)
|
|
if (isImplicitlyConvertible!(Stuff, T) ||
|
|
isInputRange!Stuff && isImplicitlyConvertible!(ElementType!Stuff, T))
|
|
{
|
|
_data.refCountedStore.ensureInitialized();
|
|
return _data.insertBack(stuff);
|
|
}
|
|
|
|
/// ditto
|
|
alias insert = insertBack;
|
|
|
|
/**
|
|
* Removes the value from the back of the array. Both stable and non-stable
|
|
* versions behave the same and guarantee that ranges iterating over the
|
|
* array are never invalidated.
|
|
*
|
|
* Precondition: `empty == false`
|
|
*
|
|
* Complexity: $(BIGOH 1).
|
|
*
|
|
* Throws: `Exception` if the array is empty.
|
|
*/
|
|
void removeBack()
|
|
{
|
|
enforce(!empty);
|
|
static if (hasElaborateDestructor!T)
|
|
.destroy(_data._payload[$ - 1]);
|
|
|
|
_data._payload = _data._payload[0 .. $ - 1];
|
|
}
|
|
|
|
/// ditto
|
|
alias stableRemoveBack = removeBack;
|
|
|
|
/**
|
|
* Removes `howMany` values from the back of the array.
|
|
* Unlike the unparameterized versions above, these functions
|
|
* do not throw if they could not remove `howMany` elements. Instead,
|
|
* if `howMany > n`, all elements are removed. The returned value is
|
|
* the effective number of elements removed. Both stable and non-stable
|
|
* versions behave the same and guarantee that ranges iterating over
|
|
* the array are never invalidated.
|
|
*
|
|
* Returns: The number of elements removed.
|
|
*
|
|
* Complexity: $(BIGOH howMany).
|
|
*/
|
|
size_t removeBack(size_t howMany)
|
|
{
|
|
if (howMany > length) howMany = length;
|
|
static if (hasElaborateDestructor!T)
|
|
foreach (ref e; _data._payload[$ - howMany .. $])
|
|
.destroy(e);
|
|
|
|
_data._payload = _data._payload[0 .. $ - howMany];
|
|
return howMany;
|
|
}
|
|
|
|
/// ditto
|
|
alias stableRemoveBack = removeBack;
|
|
|
|
/**
|
|
* Inserts `stuff` before, after, or instead range `r`, which must
|
|
* be a valid range previously extracted from this array. `stuff`
|
|
* can be a value convertible to `T` or a range of objects convertible
|
|
* to `T`. Both stable and non-stable version behave the same and
|
|
* guarantee that ranges iterating over the array are never invalidated.
|
|
*
|
|
* Returns: The number of values inserted.
|
|
*
|
|
* Complexity: $(BIGOH length + m), where `m` is the length of `stuff`.
|
|
*
|
|
* Throws: `Exception` if `r` is not a range extracted from this array.
|
|
*/
|
|
size_t insertBefore(Stuff)(Range r, Stuff stuff)
|
|
if (isImplicitlyConvertible!(Stuff, T))
|
|
{
|
|
import std.conv : emplace;
|
|
enforce(r._outer._data is _data && r._a <= length);
|
|
reserve(length + 1);
|
|
assert(_data.refCountedStore.isInitialized,
|
|
"Failed to allocate capacity to insertBefore");
|
|
// Move elements over by one slot
|
|
memmove(_data._payload.ptr + r._a + 1,
|
|
_data._payload.ptr + r._a,
|
|
T.sizeof * (length - r._a));
|
|
emplace(_data._payload.ptr + r._a, stuff);
|
|
_data._payload = _data._payload.ptr[0 .. _data._payload.length + 1];
|
|
return 1;
|
|
}
|
|
|
|
/// ditto
|
|
size_t insertBefore(Stuff)(Range r, Stuff stuff)
|
|
if (isInputRange!Stuff && isImplicitlyConvertible!(ElementType!Stuff, T))
|
|
{
|
|
import std.conv : emplace;
|
|
enforce(r._outer._data is _data && r._a <= length);
|
|
static if (isForwardRange!Stuff)
|
|
{
|
|
// Can find the length in advance
|
|
auto extra = walkLength(stuff);
|
|
if (!extra) return 0;
|
|
reserve(length + extra);
|
|
assert(_data.refCountedStore.isInitialized,
|
|
"Failed to allocate capacity to insertBefore");
|
|
// Move elements over by extra slots
|
|
memmove(_data._payload.ptr + r._a + extra,
|
|
_data._payload.ptr + r._a,
|
|
T.sizeof * (length - r._a));
|
|
foreach (p; _data._payload.ptr + r._a ..
|
|
_data._payload.ptr + r._a + extra)
|
|
{
|
|
emplace(p, stuff.front);
|
|
stuff.popFront();
|
|
}
|
|
_data._payload =
|
|
_data._payload.ptr[0 .. _data._payload.length + extra];
|
|
return extra;
|
|
}
|
|
else
|
|
{
|
|
import std.algorithm.mutation : bringToFront;
|
|
enforce(_data);
|
|
immutable offset = r._a;
|
|
enforce(offset <= length);
|
|
auto result = insertBack(stuff);
|
|
bringToFront(this[offset .. length - result],
|
|
this[length - result .. length]);
|
|
return result;
|
|
}
|
|
}
|
|
|
|
/// ditto
|
|
alias stableInsertBefore = insertBefore;
|
|
|
|
/// ditto
|
|
size_t insertAfter(Stuff)(Range r, Stuff stuff)
|
|
{
|
|
import std.algorithm.mutation : bringToFront;
|
|
enforce(r._outer._data is _data);
|
|
// TODO: optimize
|
|
immutable offset = r._b;
|
|
enforce(offset <= length);
|
|
auto result = insertBack(stuff);
|
|
bringToFront(this[offset .. length - result],
|
|
this[length - result .. length]);
|
|
return result;
|
|
}
|
|
|
|
/// ditto
|
|
size_t replace(Stuff)(Range r, Stuff stuff)
|
|
if (isInputRange!Stuff && isImplicitlyConvertible!(ElementType!Stuff, T))
|
|
{
|
|
enforce(r._outer._data is _data);
|
|
size_t result;
|
|
for (; !stuff.empty; stuff.popFront())
|
|
{
|
|
if (r.empty)
|
|
{
|
|
// insert the rest
|
|
return result + insertBefore(r, stuff);
|
|
}
|
|
r.front = stuff.front;
|
|
r.popFront();
|
|
++result;
|
|
}
|
|
// Remove remaining stuff in r
|
|
linearRemove(r);
|
|
return result;
|
|
}
|
|
|
|
/// ditto
|
|
size_t replace(Stuff)(Range r, Stuff stuff)
|
|
if (isImplicitlyConvertible!(Stuff, T))
|
|
{
|
|
enforce(r._outer._data is _data);
|
|
if (r.empty)
|
|
{
|
|
insertBefore(r, stuff);
|
|
}
|
|
else
|
|
{
|
|
r.front = stuff;
|
|
r.popFront();
|
|
linearRemove(r);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Removes all elements belonging to `r`, which must be a range
|
|
* obtained originally from this array.
|
|
*
|
|
* Returns: A range spanning the remaining elements in the array that
|
|
* initially were right after `r`.
|
|
*
|
|
* Complexity: $(BIGOH length)
|
|
*
|
|
* Throws: `Exception` if `r` is not a valid range extracted from this array.
|
|
*/
|
|
Range linearRemove(Range r)
|
|
{
|
|
import std.algorithm.mutation : copy;
|
|
|
|
enforce(r._outer._data is _data);
|
|
enforce(_data.refCountedStore.isInitialized);
|
|
enforce(r._a <= r._b && r._b <= length);
|
|
immutable offset1 = r._a;
|
|
immutable offset2 = r._b;
|
|
immutable tailLength = length - offset2;
|
|
// Use copy here, not a[] = b[] because the ranges may overlap
|
|
copy(this[offset2 .. length], this[offset1 .. offset1 + tailLength]);
|
|
length = offset1 + tailLength;
|
|
return this[length - tailLength .. length];
|
|
}
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
Array!int a;
|
|
assert(a.empty);
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
Array!int a;
|
|
a.length = 10;
|
|
assert(a.length == 10);
|
|
assert(a.capacity >= a.length);
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
struct Dumb { int x = 5; }
|
|
Array!Dumb a;
|
|
a.length = 10;
|
|
assert(a.length == 10);
|
|
assert(a.capacity >= a.length);
|
|
immutable cap = a.capacity;
|
|
foreach (ref e; a)
|
|
e.x = 10;
|
|
a.length = 5;
|
|
assert(a.length == 5);
|
|
// do not realloc if length decreases
|
|
assert(a.capacity == cap);
|
|
foreach (ref e; a)
|
|
assert(e.x == 10);
|
|
|
|
a.length = 8;
|
|
assert(a.length == 8);
|
|
// do not realloc if capacity sufficient
|
|
assert(a.capacity == cap);
|
|
assert(Dumb.init.x == 5);
|
|
foreach (i; 0 .. 5)
|
|
assert(a[i].x == 10);
|
|
foreach (i; 5 .. a.length)
|
|
assert(a[i].x == Dumb.init.x);
|
|
|
|
// realloc required, check if values properly copied
|
|
a[] = Dumb(1);
|
|
a.length = 20;
|
|
assert(a.capacity >= 20);
|
|
foreach (i; 0 .. 8)
|
|
assert(a[i].x == 1);
|
|
foreach (i; 8 .. a.length)
|
|
assert(a[i].x == Dumb.init.x);
|
|
|
|
// check if overlapping elements properly initialized
|
|
a.length = 1;
|
|
a.length = 20;
|
|
assert(a[0].x == 1);
|
|
foreach (e; a[1 .. $])
|
|
assert(e.x == Dumb.init.x);
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
Array!int a = Array!int(1, 2, 3);
|
|
//a._data._refCountedDebug = true;
|
|
auto b = a.dup;
|
|
assert(b == Array!int(1, 2, 3));
|
|
b.front = 42;
|
|
assert(b == Array!int(42, 2, 3));
|
|
assert(a == Array!int(1, 2, 3));
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
auto a = Array!int(1, 2, 3);
|
|
assert(a.length == 3);
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
const Array!int a = [1, 2];
|
|
|
|
assert(a[0] == 1);
|
|
assert(a.front == 1);
|
|
assert(a.back == 2);
|
|
|
|
static assert(!__traits(compiles, { a[0] = 1; }));
|
|
static assert(!__traits(compiles, { a.front = 1; }));
|
|
static assert(!__traits(compiles, { a.back = 1; }));
|
|
|
|
auto r = a[];
|
|
size_t i;
|
|
foreach (e; r)
|
|
{
|
|
assert(e == i + 1);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
@safe unittest
|
|
{
|
|
// https://issues.dlang.org/show_bug.cgi?id=13621
|
|
import std.container : Array, BinaryHeap;
|
|
alias Heap = BinaryHeap!(Array!int);
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
// https://issues.dlang.org/show_bug.cgi?id=18800
|
|
static struct S { void* p; }
|
|
Array!S a;
|
|
a.length = 10;
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
Array!int a;
|
|
a.reserve(1000);
|
|
assert(a.length == 0);
|
|
assert(a.empty);
|
|
assert(a.capacity >= 1000);
|
|
auto p = a._data._payload.ptr;
|
|
foreach (i; 0 .. 1000)
|
|
{
|
|
a.insertBack(i);
|
|
}
|
|
assert(p == a._data._payload.ptr);
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
auto a = Array!int(1, 2, 3);
|
|
a[1] *= 42;
|
|
assert(a[1] == 84);
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
auto a = Array!int(1, 2, 3);
|
|
auto b = Array!int(11, 12, 13);
|
|
auto c = a ~ b;
|
|
assert(c == Array!int(1, 2, 3, 11, 12, 13));
|
|
assert(a ~ b[] == Array!int(1, 2, 3, 11, 12, 13));
|
|
assert(a ~ [4,5] == Array!int(1,2,3,4,5));
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
auto a = Array!int(1, 2, 3);
|
|
auto b = Array!int(11, 12, 13);
|
|
a ~= b;
|
|
assert(a == Array!int(1, 2, 3, 11, 12, 13));
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
auto a = Array!int(1, 2, 3, 4);
|
|
assert(a.removeAny() == 4);
|
|
assert(a == Array!int(1, 2, 3));
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
auto a = Array!int(1, 2, 3, 4, 5);
|
|
auto r = a[2 .. a.length];
|
|
assert(a.insertBefore(r, 42) == 1);
|
|
assert(a == Array!int(1, 2, 42, 3, 4, 5));
|
|
r = a[2 .. 2];
|
|
assert(a.insertBefore(r, [8, 9]) == 2);
|
|
assert(a == Array!int(1, 2, 8, 9, 42, 3, 4, 5));
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
auto a = Array!int(0, 1, 2, 3, 4, 5, 6, 7, 8);
|
|
a.linearRemove(a[4 .. 6]);
|
|
assert(a == Array!int(0, 1, 2, 3, 6, 7, 8));
|
|
}
|
|
|
|
// Give the Range object some testing.
|
|
@system unittest
|
|
{
|
|
import std.algorithm.comparison : equal;
|
|
import std.range : retro;
|
|
auto a = Array!int(0, 1, 2, 3, 4, 5, 6)[];
|
|
auto b = Array!int(6, 5, 4, 3, 2, 1, 0)[];
|
|
alias A = typeof(a);
|
|
|
|
static assert(isRandomAccessRange!A);
|
|
static assert(hasSlicing!A);
|
|
static assert(hasAssignableElements!A);
|
|
static assert(hasMobileElements!A);
|
|
|
|
assert(equal(retro(b), a));
|
|
assert(a.length == 7);
|
|
assert(equal(a[1 .. 4], [1, 2, 3]));
|
|
}
|
|
|
|
// https://issues.dlang.org/show_bug.cgi?id=5920
|
|
@system unittest
|
|
{
|
|
struct structBug5920
|
|
{
|
|
int order;
|
|
uint* pDestructionMask;
|
|
~this()
|
|
{
|
|
if (pDestructionMask)
|
|
*pDestructionMask += 1 << order;
|
|
}
|
|
}
|
|
|
|
alias S = structBug5920;
|
|
uint dMask;
|
|
|
|
auto arr = Array!S(cast(S[])[]);
|
|
foreach (i; 0 .. 8)
|
|
arr.insertBack(S(i, &dMask));
|
|
// don't check dMask now as S may be copied multiple times (it's ok?)
|
|
{
|
|
assert(arr.length == 8);
|
|
dMask = 0;
|
|
arr.length = 6;
|
|
assert(arr.length == 6); // make sure shrinking calls the d'tor
|
|
assert(dMask == 0b1100_0000);
|
|
arr.removeBack();
|
|
assert(arr.length == 5); // make sure removeBack() calls the d'tor
|
|
assert(dMask == 0b1110_0000);
|
|
arr.removeBack(3);
|
|
assert(arr.length == 2); // ditto
|
|
assert(dMask == 0b1111_1100);
|
|
arr.clear();
|
|
assert(arr.length == 0); // make sure clear() calls the d'tor
|
|
assert(dMask == 0b1111_1111);
|
|
}
|
|
assert(dMask == 0b1111_1111); // make sure the d'tor is called once only.
|
|
}
|
|
|
|
// Test for https://issues.dlang.org/show_bug.cgi?id=5792
|
|
// (mainly just to check if this piece of code is compilable)
|
|
@system unittest
|
|
{
|
|
auto a = Array!(int[])([[1,2],[3,4]]);
|
|
a.reserve(4);
|
|
assert(a.capacity >= 4);
|
|
assert(a.length == 2);
|
|
assert(a[0] == [1,2]);
|
|
assert(a[1] == [3,4]);
|
|
a.reserve(16);
|
|
assert(a.capacity >= 16);
|
|
assert(a.length == 2);
|
|
assert(a[0] == [1,2]);
|
|
assert(a[1] == [3,4]);
|
|
}
|
|
|
|
// test replace!Stuff with range Stuff
|
|
@system unittest
|
|
{
|
|
import std.algorithm.comparison : equal;
|
|
auto a = Array!int([1, 42, 5]);
|
|
a.replace(a[1 .. 2], [2, 3, 4]);
|
|
assert(equal(a[], [1, 2, 3, 4, 5]));
|
|
}
|
|
|
|
// test insertBefore and replace with empty Arrays
|
|
@system unittest
|
|
{
|
|
import std.algorithm.comparison : equal;
|
|
auto a = Array!int();
|
|
a.insertBefore(a[], 1);
|
|
assert(equal(a[], [1]));
|
|
}
|
|
@system unittest
|
|
{
|
|
import std.algorithm.comparison : equal;
|
|
auto a = Array!int();
|
|
a.insertBefore(a[], [1, 2]);
|
|
assert(equal(a[], [1, 2]));
|
|
}
|
|
@system unittest
|
|
{
|
|
import std.algorithm.comparison : equal;
|
|
auto a = Array!int();
|
|
a.replace(a[], [1, 2]);
|
|
assert(equal(a[], [1, 2]));
|
|
}
|
|
@system unittest
|
|
{
|
|
import std.algorithm.comparison : equal;
|
|
auto a = Array!int();
|
|
a.replace(a[], 1);
|
|
assert(equal(a[], [1]));
|
|
}
|
|
// make sure that Array instances refuse ranges that don't belong to them
|
|
@system unittest
|
|
{
|
|
import std.exception : assertThrown;
|
|
|
|
Array!int a = [1, 2, 3];
|
|
auto r = a.dup[];
|
|
assertThrown(a.insertBefore(r, 42));
|
|
assertThrown(a.insertBefore(r, [42]));
|
|
assertThrown(a.insertAfter(r, 42));
|
|
assertThrown(a.replace(r, 42));
|
|
assertThrown(a.replace(r, [42]));
|
|
assertThrown(a.linearRemove(r));
|
|
}
|
|
@system unittest
|
|
{
|
|
auto a = Array!int([1, 1]);
|
|
a[1] = 0; //Check Array.opIndexAssign
|
|
assert(a[1] == 0);
|
|
a[1] += 1; //Check Array.opIndexOpAssign
|
|
assert(a[1] == 1);
|
|
|
|
//Check Array.opIndexUnary
|
|
++a[0];
|
|
//a[0]++ //op++ doesn't return, so this shouldn't work, even with 5044 fixed
|
|
assert(a[0] == 2);
|
|
assert(+a[0] == +2);
|
|
assert(-a[0] == -2);
|
|
assert(~a[0] == ~2);
|
|
|
|
auto r = a[];
|
|
r[1] = 0; //Check Array.Range.opIndexAssign
|
|
assert(r[1] == 0);
|
|
r[1] += 1; //Check Array.Range.opIndexOpAssign
|
|
assert(r[1] == 1);
|
|
|
|
//Check Array.Range.opIndexUnary
|
|
++r[0];
|
|
//r[0]++ //op++ doesn't return, so this shouldn't work, even with 5044 fixed
|
|
assert(r[0] == 3);
|
|
assert(+r[0] == +3);
|
|
assert(-r[0] == -3);
|
|
assert(~r[0] == ~3);
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
import std.algorithm.comparison : equal;
|
|
|
|
//Test "array-wide" operations
|
|
auto a = Array!int([0, 1, 2]); //Array
|
|
a[] += 5;
|
|
assert(a[].equal([5, 6, 7]));
|
|
++a[];
|
|
assert(a[].equal([6, 7, 8]));
|
|
a[1 .. 3] *= 5;
|
|
assert(a[].equal([6, 35, 40]));
|
|
a[0 .. 2] = 0;
|
|
assert(a[].equal([0, 0, 40]));
|
|
|
|
//Test empty array
|
|
auto a2 = Array!int.init;
|
|
++a2[];
|
|
++a2[0 .. 0];
|
|
a2[] = 0;
|
|
a2[0 .. 0] = 0;
|
|
a2[] += 0;
|
|
a2[0 .. 0] += 0;
|
|
|
|
//Test "range-wide" operations
|
|
auto r = Array!int([0, 1, 2])[]; //Array.Range
|
|
r[] += 5;
|
|
assert(r.equal([5, 6, 7]));
|
|
++r[];
|
|
assert(r.equal([6, 7, 8]));
|
|
r[1 .. 3] *= 5;
|
|
assert(r.equal([6, 35, 40]));
|
|
r[0 .. 2] = 0;
|
|
assert(r.equal([0, 0, 40]));
|
|
|
|
//Test empty Range
|
|
auto r2 = Array!int.init[];
|
|
++r2[];
|
|
++r2[0 .. 0];
|
|
r2[] = 0;
|
|
r2[0 .. 0] = 0;
|
|
r2[] += 0;
|
|
r2[0 .. 0] += 0;
|
|
}
|
|
|
|
// Test issue 11194
|
|
@system unittest
|
|
{
|
|
static struct S {
|
|
int i = 1337;
|
|
void* p;
|
|
this(this) { assert(i == 1337); }
|
|
~this() { assert(i == 1337); }
|
|
}
|
|
Array!S arr;
|
|
S s;
|
|
arr ~= s;
|
|
arr ~= s;
|
|
}
|
|
|
|
// https://issues.dlang.org/show_bug.cgi?id=11459
|
|
@safe unittest
|
|
{
|
|
static struct S
|
|
{
|
|
bool b;
|
|
alias b this;
|
|
}
|
|
alias A = Array!S;
|
|
alias B = Array!(shared bool);
|
|
}
|
|
|
|
// https://issues.dlang.org/show_bug.cgi?id=11884
|
|
@system unittest
|
|
{
|
|
import std.algorithm.iteration : filter;
|
|
auto a = Array!int([1, 2, 2].filter!"true"());
|
|
}
|
|
|
|
// https://issues.dlang.org/show_bug.cgi?id=8282
|
|
@safe unittest
|
|
{
|
|
auto arr = new Array!int;
|
|
}
|
|
|
|
// https://issues.dlang.org/show_bug.cgi?id=6998
|
|
@system unittest
|
|
{
|
|
static int i = 0;
|
|
class C
|
|
{
|
|
int dummy = 1;
|
|
this(){++i;}
|
|
~this(){--i;}
|
|
}
|
|
|
|
assert(i == 0);
|
|
auto c = new C();
|
|
assert(i == 1);
|
|
|
|
//scope
|
|
{
|
|
auto arr = Array!C(c);
|
|
assert(i == 1);
|
|
}
|
|
//Array should not have destroyed the class instance
|
|
assert(i == 1);
|
|
|
|
//Just to make sure the GC doesn't collect before the above test.
|
|
assert(c.dummy == 1);
|
|
}
|
|
|
|
//https://issues.dlang.org/show_bug.cgi?id=6998 (2)
|
|
@system unittest
|
|
{
|
|
static class C {int i;}
|
|
auto c = new C;
|
|
c.i = 42;
|
|
Array!C a;
|
|
a ~= c;
|
|
a.clear;
|
|
assert(c.i == 42); //fails
|
|
}
|
|
|
|
@safe unittest
|
|
{
|
|
static assert(is(Array!int.Range));
|
|
static assert(is(Array!int.ConstRange));
|
|
}
|
|
|
|
@system unittest // const/immutable Array and Ranges
|
|
{
|
|
static void test(A, R, E, S)()
|
|
{
|
|
A a;
|
|
R r = a[];
|
|
assert(r.empty);
|
|
assert(r.length == 0);
|
|
static assert(is(typeof(r.front) == E));
|
|
static assert(is(typeof(r.back) == E));
|
|
static assert(is(typeof(r[0]) == E));
|
|
static assert(is(typeof(r[]) == S));
|
|
static assert(is(typeof(r[0 .. 0]) == S));
|
|
}
|
|
|
|
alias A = Array!int;
|
|
|
|
test!(A, A.Range, int, A.Range);
|
|
test!(A, const A.Range, const int, A.ConstRange);
|
|
|
|
test!(const A, A.ConstRange, const int, A.ConstRange);
|
|
test!(const A, const A.ConstRange, const int, A.ConstRange);
|
|
|
|
test!(immutable A, A.ImmutableRange, immutable int, A.ImmutableRange);
|
|
test!(immutable A, const A.ImmutableRange, immutable int, A.ImmutableRange);
|
|
test!(immutable A, immutable A.ImmutableRange, immutable int,
|
|
A.ImmutableRange);
|
|
}
|
|
|
|
// ensure @nogc
|
|
@nogc @system unittest
|
|
{
|
|
Array!int ai;
|
|
ai ~= 1;
|
|
assert(ai.front == 1);
|
|
|
|
ai.reserve(10);
|
|
assert(ai.capacity == 10);
|
|
|
|
static immutable arr = [1, 2, 3];
|
|
ai.insertBack(arr);
|
|
}
|
|
|
|
/**
|
|
* typeof may give wrong result in case of classes defining `opCall` operator
|
|
* https://issues.dlang.org/show_bug.cgi?id=20589
|
|
*
|
|
* destructor std.container.array.Array!(MyClass).Array.~this is @system
|
|
* so the unittest is @system too
|
|
*/
|
|
@system unittest
|
|
{
|
|
class MyClass
|
|
{
|
|
T opCall(T)(T p)
|
|
{
|
|
return p;
|
|
}
|
|
}
|
|
|
|
Array!MyClass arr;
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Array!bool
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/**
|
|
* _Array specialized for `bool`. Packs together values efficiently by
|
|
* allocating one bit per element.
|
|
*/
|
|
struct Array(T)
|
|
if (is(immutable T == immutable bool))
|
|
{
|
|
import std.exception : enforce;
|
|
import std.typecons : RefCounted, RefCountedAutoInitialize;
|
|
|
|
static immutable uint bitsPerWord = size_t.sizeof * 8;
|
|
private static struct Data
|
|
{
|
|
Array!size_t.Payload _backend;
|
|
size_t _length;
|
|
}
|
|
private RefCounted!(Data, RefCountedAutoInitialize.no) _store;
|
|
|
|
private @property ref size_t[] data()
|
|
{
|
|
assert(_store.refCountedStore.isInitialized,
|
|
"Cannot get data of uninitialized Array");
|
|
return _store._backend._payload;
|
|
}
|
|
|
|
/**
|
|
* Defines the array's primary range.
|
|
*/
|
|
struct Range
|
|
{
|
|
private Array _outer;
|
|
private size_t _a, _b;
|
|
/// Range primitives
|
|
@property Range save()
|
|
{
|
|
version (bug4437)
|
|
{
|
|
return this;
|
|
}
|
|
else
|
|
{
|
|
auto copy = this;
|
|
return copy;
|
|
}
|
|
}
|
|
/// Ditto
|
|
@property bool empty()
|
|
{
|
|
return _a >= _b || _outer.length < _b;
|
|
}
|
|
/// Ditto
|
|
@property T front()
|
|
{
|
|
enforce(!empty, "Attempting to access the front of an empty Array");
|
|
return _outer[_a];
|
|
}
|
|
/// Ditto
|
|
@property void front(bool value)
|
|
{
|
|
enforce(!empty, "Attempting to set the front of an empty Array");
|
|
_outer[_a] = value;
|
|
}
|
|
/// Ditto
|
|
T moveFront()
|
|
{
|
|
enforce(!empty, "Attempting to move the front of an empty Array");
|
|
return _outer.moveAt(_a);
|
|
}
|
|
/// Ditto
|
|
void popFront()
|
|
{
|
|
enforce(!empty, "Attempting to popFront an empty Array");
|
|
++_a;
|
|
}
|
|
/// Ditto
|
|
@property T back()
|
|
{
|
|
enforce(!empty, "Attempting to access the back of an empty Array");
|
|
return _outer[_b - 1];
|
|
}
|
|
/// Ditto
|
|
@property void back(bool value)
|
|
{
|
|
enforce(!empty, "Attempting to set the back of an empty Array");
|
|
_outer[_b - 1] = value;
|
|
}
|
|
/// Ditto
|
|
T moveBack()
|
|
{
|
|
enforce(!empty, "Attempting to move the back of an empty Array");
|
|
return _outer.moveAt(_b - 1);
|
|
}
|
|
/// Ditto
|
|
void popBack()
|
|
{
|
|
enforce(!empty, "Attempting to popBack an empty Array");
|
|
--_b;
|
|
}
|
|
/// Ditto
|
|
T opIndex(size_t i)
|
|
{
|
|
return _outer[_a + i];
|
|
}
|
|
/// Ditto
|
|
void opIndexAssign(T value, size_t i)
|
|
{
|
|
_outer[_a + i] = value;
|
|
}
|
|
/// Ditto
|
|
T moveAt(size_t i)
|
|
{
|
|
return _outer.moveAt(_a + i);
|
|
}
|
|
/// Ditto
|
|
@property size_t length() const
|
|
{
|
|
assert(_a <= _b, "Invalid bounds");
|
|
return _b - _a;
|
|
}
|
|
alias opDollar = length;
|
|
/// ditto
|
|
Range opSlice(size_t low, size_t high)
|
|
{
|
|
// Note: indexes start at 0, which is equivalent to _a
|
|
assert(
|
|
low <= high && high <= (_b - _a),
|
|
"Using out of bounds indexes on an Array"
|
|
);
|
|
return Range(_outer, _a + low, _a + high);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Property returning `true` if and only if the array has
|
|
* no elements.
|
|
*
|
|
* Complexity: $(BIGOH 1)
|
|
*/
|
|
@property bool empty()
|
|
{
|
|
return !length;
|
|
}
|
|
|
|
/**
|
|
* Returns: A duplicate of the array.
|
|
*
|
|
* Complexity: $(BIGOH length).
|
|
*/
|
|
@property Array dup()
|
|
{
|
|
Array result;
|
|
result.insertBack(this[]);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Returns the number of elements in the array.
|
|
*
|
|
* Complexity: $(BIGOH 1).
|
|
*/
|
|
@property size_t length() const
|
|
{
|
|
return _store.refCountedStore.isInitialized ? _store._length : 0;
|
|
}
|
|
alias opDollar = length;
|
|
|
|
/**
|
|
* Returns: The maximum number of elements the array can store without
|
|
* reallocating memory and invalidating iterators upon insertion.
|
|
*
|
|
* Complexity: $(BIGOH 1).
|
|
*/
|
|
@property size_t capacity()
|
|
{
|
|
return _store.refCountedStore.isInitialized
|
|
? cast(size_t) bitsPerWord * _store._backend.capacity
|
|
: 0;
|
|
}
|
|
|
|
/**
|
|
* Ensures sufficient capacity to accommodate `e` _elements.
|
|
* If `e < capacity`, this method does nothing.
|
|
*
|
|
* Postcondition: `capacity >= e`
|
|
*
|
|
* Note: If the capacity is increased, one should assume that all
|
|
* iterators to the elements are invalidated.
|
|
*
|
|
* Complexity: at most $(BIGOH length) if `e > capacity`, otherwise $(BIGOH 1).
|
|
*/
|
|
void reserve(size_t e)
|
|
{
|
|
import std.conv : to;
|
|
_store.refCountedStore.ensureInitialized();
|
|
_store._backend.reserve(to!size_t((e + bitsPerWord - 1) / bitsPerWord));
|
|
}
|
|
|
|
/**
|
|
* Returns: A range that iterates over all elements of the array in forward order.
|
|
*
|
|
* Complexity: $(BIGOH 1)
|
|
*/
|
|
Range opSlice()
|
|
{
|
|
return Range(this, 0, length);
|
|
}
|
|
|
|
|
|
/**
|
|
* Returns: A range that iterates the array between two specified positions.
|
|
*
|
|
* Complexity: $(BIGOH 1)
|
|
*/
|
|
Range opSlice(size_t a, size_t b)
|
|
{
|
|
enforce(a <= b && b <= length);
|
|
return Range(this, a, b);
|
|
}
|
|
|
|
/**
|
|
* Returns: The first element of the array.
|
|
*
|
|
* Precondition: `empty == false`
|
|
*
|
|
* Complexity: $(BIGOH 1)
|
|
*
|
|
* Throws: `Exception` if the array is empty.
|
|
*/
|
|
@property bool front()
|
|
{
|
|
enforce(!empty);
|
|
return data.ptr[0] & 1;
|
|
}
|
|
|
|
/// Ditto
|
|
@property void front(bool value)
|
|
{
|
|
enforce(!empty);
|
|
if (value) data.ptr[0] |= 1;
|
|
else data.ptr[0] &= ~cast(size_t) 1;
|
|
}
|
|
|
|
/**
|
|
* Returns: The last element of the array.
|
|
*
|
|
* Precondition: `empty == false`
|
|
*
|
|
* Complexity: $(BIGOH 1)
|
|
*
|
|
* Throws: `Exception` if the array is empty.
|
|
*/
|
|
@property bool back()
|
|
{
|
|
enforce(!empty);
|
|
return cast(bool)(data.back & (cast(size_t) 1 << ((_store._length - 1) % bitsPerWord)));
|
|
}
|
|
|
|
/// Ditto
|
|
@property void back(bool value)
|
|
{
|
|
enforce(!empty);
|
|
if (value)
|
|
{
|
|
data.back |= (cast(size_t) 1 << ((_store._length - 1) % bitsPerWord));
|
|
}
|
|
else
|
|
{
|
|
data.back &=
|
|
~(cast(size_t) 1 << ((_store._length - 1) % bitsPerWord));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Indexing operators yielding or modifyng the value at the specified index.
|
|
*
|
|
* Precondition: `i < length`
|
|
*
|
|
* Complexity: $(BIGOH 1)
|
|
*/
|
|
bool opIndex(size_t i)
|
|
{
|
|
auto div = cast(size_t) (i / bitsPerWord);
|
|
auto rem = i % bitsPerWord;
|
|
enforce(div < data.length);
|
|
return cast(bool)(data.ptr[div] & (cast(size_t) 1 << rem));
|
|
}
|
|
|
|
/// ditto
|
|
void opIndexAssign(bool value, size_t i)
|
|
{
|
|
auto div = cast(size_t) (i / bitsPerWord);
|
|
auto rem = i % bitsPerWord;
|
|
enforce(div < data.length);
|
|
if (value) data.ptr[div] |= (cast(size_t) 1 << rem);
|
|
else data.ptr[div] &= ~(cast(size_t) 1 << rem);
|
|
}
|
|
|
|
/// ditto
|
|
void opIndexOpAssign(string op)(bool value, size_t i)
|
|
{
|
|
auto div = cast(size_t) (i / bitsPerWord);
|
|
auto rem = i % bitsPerWord;
|
|
enforce(div < data.length);
|
|
auto oldValue = cast(bool) (data.ptr[div] & (cast(size_t) 1 << rem));
|
|
// Do the deed
|
|
auto newValue = mixin("oldValue "~op~" value");
|
|
// Write back the value
|
|
if (newValue != oldValue)
|
|
{
|
|
if (newValue) data.ptr[div] |= (cast(size_t) 1 << rem);
|
|
else data.ptr[div] &= ~(cast(size_t) 1 << rem);
|
|
}
|
|
}
|
|
|
|
/// Ditto
|
|
T moveAt(size_t i)
|
|
{
|
|
return this[i];
|
|
}
|
|
|
|
/**
|
|
* Returns: A new array which is a concatenation of `this` and its argument.
|
|
*
|
|
* Complexity:
|
|
* $(BIGOH length + m), where `m` is the number of elements in `stuff`.
|
|
*/
|
|
Array!bool opBinary(string op, Stuff)(Stuff rhs)
|
|
if (op == "~")
|
|
{
|
|
Array!bool result;
|
|
|
|
static if (hasLength!Stuff)
|
|
result.reserve(length + rhs.length);
|
|
else static if (is(typeof(rhs[])) && hasLength!(typeof(rhs[])))
|
|
result.reserve(length + rhs[].length);
|
|
else static if (isImplicitlyConvertible!(Stuff, bool))
|
|
result.reserve(length + 1);
|
|
|
|
result.insertBack(this[]);
|
|
result ~= rhs;
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Forwards to `insertBack`.
|
|
*/
|
|
Array!bool opOpAssign(string op, Stuff)(Stuff stuff)
|
|
if (op == "~")
|
|
{
|
|
static if (is(typeof(stuff[]))) insertBack(stuff[]);
|
|
else insertBack(stuff);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Removes all the elements from the array and releases allocated memory.
|
|
*
|
|
* Postcondition: `empty == true && capacity == 0`
|
|
*
|
|
* Complexity: $(BIGOH length)
|
|
*/
|
|
void clear()
|
|
{
|
|
this = Array();
|
|
}
|
|
|
|
/**
|
|
* Sets the number of elements in the array to `newLength`. If `newLength`
|
|
* is greater than `length`, the new elements are added to the end of the
|
|
* array and initialized with `false`.
|
|
*
|
|
* Complexity:
|
|
* Guaranteed $(BIGOH abs(length - newLength)) if `capacity >= newLength`.
|
|
* If `capacity < newLength` the worst case is $(BIGOH newLength).
|
|
*
|
|
* Postcondition: `length == newLength`
|
|
*/
|
|
@property void length(size_t newLength)
|
|
{
|
|
import std.conv : to;
|
|
_store.refCountedStore.ensureInitialized();
|
|
auto newDataLength =
|
|
to!size_t((newLength + bitsPerWord - 1) / bitsPerWord);
|
|
_store._backend.length = newDataLength;
|
|
_store._length = newLength;
|
|
}
|
|
|
|
/**
|
|
* Removes the last element from the array and returns it.
|
|
* Both stable and non-stable versions behave the same and guarantee
|
|
* that ranges iterating over the array are never invalidated.
|
|
*
|
|
* Precondition: `empty == false`
|
|
*
|
|
* Returns: The element removed.
|
|
*
|
|
* Complexity: $(BIGOH 1).
|
|
*
|
|
* Throws: `Exception` if the array is empty.
|
|
*/
|
|
T removeAny()
|
|
{
|
|
auto result = back;
|
|
removeBack();
|
|
return result;
|
|
}
|
|
|
|
/// ditto
|
|
alias stableRemoveAny = removeAny;
|
|
|
|
/**
|
|
* Inserts the specified elements at the back of the array. `stuff` can be
|
|
* a value convertible to `bool` or a range of objects convertible to `bool`.
|
|
*
|
|
* Returns: The number of elements inserted.
|
|
*
|
|
* Complexity:
|
|
* $(BIGOH length + m) if reallocation takes place, otherwise $(BIGOH m),
|
|
* where `m` is the number of elements in `stuff`.
|
|
*/
|
|
size_t insertBack(Stuff)(Stuff stuff)
|
|
if (is(Stuff : bool))
|
|
{
|
|
_store.refCountedStore.ensureInitialized();
|
|
auto rem = _store._length % bitsPerWord;
|
|
if (rem)
|
|
{
|
|
// Fits within the current array
|
|
if (stuff)
|
|
{
|
|
data[$ - 1] |= (cast(size_t) 1 << rem);
|
|
}
|
|
else
|
|
{
|
|
data[$ - 1] &= ~(cast(size_t) 1 << rem);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Need to add more data
|
|
_store._backend.insertBack(stuff);
|
|
}
|
|
++_store._length;
|
|
return 1;
|
|
}
|
|
|
|
/// ditto
|
|
size_t insertBack(Stuff)(Stuff stuff)
|
|
if (isInputRange!Stuff && is(ElementType!Stuff : bool))
|
|
{
|
|
static if (!hasLength!Stuff) size_t result;
|
|
for (; !stuff.empty; stuff.popFront())
|
|
{
|
|
insertBack(stuff.front);
|
|
static if (!hasLength!Stuff) ++result;
|
|
}
|
|
static if (!hasLength!Stuff) return result;
|
|
else return stuff.length;
|
|
}
|
|
|
|
/// ditto
|
|
alias stableInsertBack = insertBack;
|
|
|
|
/// ditto
|
|
alias insert = insertBack;
|
|
|
|
/// ditto
|
|
alias stableInsert = insertBack;
|
|
|
|
/// ditto
|
|
alias linearInsert = insertBack;
|
|
|
|
/// ditto
|
|
alias stableLinearInsert = insertBack;
|
|
|
|
/**
|
|
* Removes the value from the back of the array. Both stable and non-stable
|
|
* versions behave the same and guarantee that ranges iterating over the
|
|
* array are never invalidated.
|
|
*
|
|
* Precondition: `empty == false`
|
|
*
|
|
* Complexity: $(BIGOH 1).
|
|
*
|
|
* Throws: `Exception` if the array is empty.
|
|
*/
|
|
void removeBack()
|
|
{
|
|
enforce(_store._length);
|
|
if (_store._length % bitsPerWord)
|
|
{
|
|
// Cool, just decrease the length
|
|
--_store._length;
|
|
}
|
|
else
|
|
{
|
|
// Reduce the allocated space
|
|
--_store._length;
|
|
_store._backend.length = _store._backend.length - 1;
|
|
}
|
|
}
|
|
|
|
/// ditto
|
|
alias stableRemoveBack = removeBack;
|
|
|
|
/**
|
|
* Removes `howMany` values from the back of the array. Unlike the
|
|
* unparameterized versions above, these functions do not throw if
|
|
* they could not remove `howMany` elements. Instead, if `howMany > n`,
|
|
* all elements are removed. The returned value is the effective number
|
|
* of elements removed. Both stable and non-stable versions behave the same
|
|
* and guarantee that ranges iterating over the array are never invalidated.
|
|
*
|
|
* Returns: The number of elements removed.
|
|
*
|
|
* Complexity: $(BIGOH howMany).
|
|
*/
|
|
size_t removeBack(size_t howMany)
|
|
{
|
|
if (howMany >= length)
|
|
{
|
|
howMany = length;
|
|
clear();
|
|
}
|
|
else
|
|
{
|
|
length = length - howMany;
|
|
}
|
|
return howMany;
|
|
}
|
|
|
|
/// ditto
|
|
alias stableRemoveBack = removeBack;
|
|
|
|
/**
|
|
* Inserts `stuff` before, after, or instead range `r`, which must
|
|
* be a valid range previously extracted from this array. `stuff`
|
|
* can be a value convertible to `bool` or a range of objects convertible
|
|
* to `bool`. Both stable and non-stable version behave the same and
|
|
* guarantee that ranges iterating over the array are never invalidated.
|
|
*
|
|
* Returns: The number of values inserted.
|
|
*
|
|
* Complexity: $(BIGOH length + m), where `m` is the length of `stuff`.
|
|
*/
|
|
size_t insertBefore(Stuff)(Range r, Stuff stuff)
|
|
{
|
|
import std.algorithm.mutation : bringToFront;
|
|
// TODO: make this faster, it moves one bit at a time
|
|
immutable inserted = stableInsertBack(stuff);
|
|
immutable tailLength = length - inserted;
|
|
bringToFront(
|
|
this[r._a .. tailLength],
|
|
this[tailLength .. length]);
|
|
return inserted;
|
|
}
|
|
|
|
/// ditto
|
|
alias stableInsertBefore = insertBefore;
|
|
|
|
/// ditto
|
|
size_t insertAfter(Stuff)(Range r, Stuff stuff)
|
|
{
|
|
import std.algorithm.mutation : bringToFront;
|
|
// TODO: make this faster, it moves one bit at a time
|
|
immutable inserted = stableInsertBack(stuff);
|
|
immutable tailLength = length - inserted;
|
|
bringToFront(
|
|
this[r._b .. tailLength],
|
|
this[tailLength .. length]);
|
|
return inserted;
|
|
}
|
|
|
|
/// ditto
|
|
alias stableInsertAfter = insertAfter;
|
|
|
|
/// ditto
|
|
size_t replace(Stuff)(Range r, Stuff stuff)
|
|
if (is(Stuff : bool))
|
|
{
|
|
if (!r.empty)
|
|
{
|
|
// There is room
|
|
r.front = stuff;
|
|
r.popFront();
|
|
linearRemove(r);
|
|
}
|
|
else
|
|
{
|
|
// No room, must insert
|
|
insertBefore(r, stuff);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/// ditto
|
|
alias stableReplace = replace;
|
|
|
|
/**
|
|
* Removes all elements belonging to `r`, which must be a range
|
|
* obtained originally from this array.
|
|
*
|
|
* Returns: A range spanning the remaining elements in the array that
|
|
* initially were right after `r`.
|
|
*
|
|
* Complexity: $(BIGOH length)
|
|
*/
|
|
Range linearRemove(Range r)
|
|
{
|
|
import std.algorithm.mutation : copy;
|
|
copy(this[r._b .. length], this[r._a .. length]);
|
|
length = length - r.length;
|
|
return this[r._a .. length];
|
|
}
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
Array!bool a;
|
|
assert(a.empty);
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
Array!bool arr;
|
|
arr.insert([false, false, false, false]);
|
|
assert(arr.front == false);
|
|
assert(arr.back == false);
|
|
assert(arr[1] == false);
|
|
auto slice = arr[];
|
|
slice = arr[0 .. $];
|
|
slice = slice[1 .. $];
|
|
slice.front = true;
|
|
slice.back = true;
|
|
slice[1] = true;
|
|
slice = slice[0 .. $]; // https://issues.dlang.org/show_bug.cgi?id=19171
|
|
assert(slice.front == true);
|
|
assert(slice.back == true);
|
|
assert(slice[1] == true);
|
|
assert(slice.moveFront == true);
|
|
assert(slice.moveBack == true);
|
|
assert(slice.moveAt(1) == true);
|
|
}
|
|
|
|
// uncomparable values are valid values for an array
|
|
// https://issues.dlang.org/show_bug.cgi?id=16331
|
|
@system unittest
|
|
{
|
|
double[] values = [double.nan, double.nan];
|
|
auto arr = Array!double(values);
|
|
}
|
|
|
|
@nogc @system unittest
|
|
{
|
|
auto a = Array!int(0, 1, 2);
|
|
int[3] b = [3, 4, 5];
|
|
short[3] ci = [0, 1, 0];
|
|
auto c = Array!short(ci);
|
|
assert(Array!int(0, 1, 2, 0, 1, 2) == a ~ a);
|
|
assert(Array!int(0, 1, 2, 3, 4, 5) == a ~ b);
|
|
assert(Array!int(0, 1, 2, 3) == a ~ 3);
|
|
assert(Array!int(0, 1, 2, 0, 1, 0) == a ~ c);
|
|
}
|
|
|
|
@nogc @system unittest
|
|
{
|
|
auto a = Array!char('a', 'b');
|
|
assert(Array!char("abc") == a ~ 'c');
|
|
import std.utf : byCodeUnit;
|
|
assert(Array!char("abcd") == a ~ "cd".byCodeUnit);
|
|
}
|
|
|
|
@nogc @system unittest
|
|
{
|
|
auto a = Array!dchar("ąćę"d);
|
|
assert(Array!dchar("ąćęϢϖ"d) == a ~ "Ϣϖ"d);
|
|
wchar x = 'Ϣ';
|
|
assert(Array!dchar("ąćęϢz"d) == a ~ x ~ 'z');
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
Array!bool a;
|
|
assert(a.empty);
|
|
a.insertBack(false);
|
|
assert(!a.empty);
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
Array!bool a;
|
|
assert(a.empty);
|
|
auto b = a.dup;
|
|
assert(b.empty);
|
|
a.insertBack(true);
|
|
assert(b.empty);
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
import std.conv : to;
|
|
Array!bool a;
|
|
assert(a.length == 0);
|
|
a.insert(true);
|
|
assert(a.length == 1, to!string(a.length));
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
import std.conv : to;
|
|
Array!bool a;
|
|
assert(a.capacity == 0);
|
|
foreach (i; 0 .. 100)
|
|
{
|
|
a.insert(true);
|
|
assert(a.capacity >= a.length, to!string(a.capacity));
|
|
}
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
Array!bool a;
|
|
assert(a.capacity == 0);
|
|
a.reserve(15657);
|
|
assert(a.capacity >= 15657);
|
|
a.reserve(100);
|
|
assert(a.capacity >= 15657);
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
Array!bool a;
|
|
a.insertBack([true, false, true, true]);
|
|
assert(a[0 .. 2].length == 2);
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
Array!bool a;
|
|
a.insertBack([true, false, true, true]);
|
|
assert(a[].length == 4);
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
Array!bool a;
|
|
a.insertBack([true, false, true, true]);
|
|
assert(a.front);
|
|
a.front = false;
|
|
assert(!a.front);
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
Array!bool a;
|
|
a.insertBack([true, false, true, true]);
|
|
assert(a[].length == 4);
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
Array!bool a;
|
|
a.insertBack([true, false, true, true]);
|
|
assert(a.back);
|
|
a.back = false;
|
|
assert(!a.back);
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
Array!bool a;
|
|
a.insertBack([true, false, true, true]);
|
|
assert(a[0] && !a[1]);
|
|
a[0] &= a[1];
|
|
assert(!a[0]);
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
import std.algorithm.comparison : equal;
|
|
Array!bool a;
|
|
a.insertBack([true, false, true, true]);
|
|
Array!bool b;
|
|
b.insertBack([true, true, false, true]);
|
|
assert(equal((a ~ b)[],
|
|
[true, false, true, true, true, true, false, true]));
|
|
assert((a ~ [true, false])[].equal([true, false, true, true, true, false]));
|
|
Array!bool c;
|
|
c.insertBack(true);
|
|
assert((c ~ false)[].equal([true, false]));
|
|
}
|
|
@system unittest
|
|
{
|
|
import std.algorithm.comparison : equal;
|
|
Array!bool a;
|
|
a.insertBack([true, false, true, true]);
|
|
Array!bool b;
|
|
a.insertBack([false, true, false, true, true]);
|
|
a ~= b;
|
|
assert(equal(
|
|
a[],
|
|
[true, false, true, true, false, true, false, true, true]));
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
Array!bool a;
|
|
a.insertBack([true, false, true, true]);
|
|
a.clear();
|
|
assert(a.capacity == 0);
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
Array!bool a;
|
|
a.length = 1057;
|
|
assert(a.length == 1057);
|
|
assert(a.capacity >= a.length);
|
|
foreach (e; a)
|
|
{
|
|
assert(!e);
|
|
}
|
|
immutable cap = a.capacity;
|
|
a.length = 100;
|
|
assert(a.length == 100);
|
|
// do not realloc if length decreases
|
|
assert(a.capacity == cap);
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
Array!bool a;
|
|
a.length = 1057;
|
|
assert(!a.removeAny());
|
|
assert(a.length == 1056);
|
|
foreach (e; a)
|
|
{
|
|
assert(!e);
|
|
}
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
Array!bool a;
|
|
for (int i = 0; i < 100; ++i)
|
|
a.insertBack(true);
|
|
foreach (e; a)
|
|
assert(e);
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
Array!bool a;
|
|
a.length = 1057;
|
|
assert(a.removeBack(1000) == 1000);
|
|
assert(a.length == 57);
|
|
foreach (e; a)
|
|
{
|
|
assert(!e);
|
|
}
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
import std.conv : to;
|
|
Array!bool a;
|
|
version (bugxxxx)
|
|
{
|
|
a._store.refCountedDebug = true;
|
|
}
|
|
a.insertBefore(a[], true);
|
|
assert(a.length == 1, to!string(a.length));
|
|
a.insertBefore(a[], false);
|
|
assert(a.length == 2, to!string(a.length));
|
|
a.insertBefore(a[1 .. $], true);
|
|
import std.algorithm.comparison : equal;
|
|
assert(a[].equal([false, true, true]));
|
|
}
|
|
|
|
@system unittest
|
|
{
|
|
import std.conv : to;
|
|
Array!bool a;
|
|
a.length = 10;
|
|
a.insertAfter(a[0 .. 5], true);
|
|
assert(a.length == 11, to!string(a.length));
|
|
assert(a[5]);
|
|
}
|
|
@system unittest
|
|
{
|
|
alias V3 = int[3];
|
|
V3 v = [1, 2, 3];
|
|
Array!V3 arr;
|
|
arr ~= v;
|
|
assert(arr[0] == [1, 2, 3]);
|
|
}
|
|
@system unittest
|
|
{
|
|
alias V3 = int[3];
|
|
V3[2] v = [[1, 2, 3], [4, 5, 6]];
|
|
Array!V3 arr;
|
|
arr ~= v;
|
|
assert(arr[0] == [1, 2, 3]);
|
|
assert(arr[1] == [4, 5, 6]);
|
|
}
|
|
|
|
// Change of length reallocates without calling GC.
|
|
// https://issues.dlang.org/show_bug.cgi?id=13642
|
|
@system unittest
|
|
{
|
|
import core.memory;
|
|
class ABC { void func() { int x = 5; } }
|
|
|
|
Array!ABC arr;
|
|
// Length only allocates if capacity is too low.
|
|
arr.reserve(4);
|
|
assert(arr.capacity == 4);
|
|
|
|
void func() @nogc
|
|
{
|
|
arr.length = 5;
|
|
}
|
|
func();
|
|
|
|
foreach (ref b; arr) b = new ABC;
|
|
GC.collect();
|
|
arr[1].func();
|
|
}
|