mirror of
https://github.com/dlang/phobos.git
synced 2025-04-27 21:51:40 +03:00

When forward was moved to core.lifetime, a wrapper template was left in std.functional for the sake of documentation. Since that wrapper template is now undocumented, it no longer serves any purpose, and can be removed.
1849 lines
52 KiB
D
1849 lines
52 KiB
D
// Written in the D programming language.
|
|
|
|
/**
|
|
Functions that manipulate other functions.
|
|
|
|
This module provides functions for compile time function composition. These
|
|
functions are helpful when constructing predicates for the algorithms in
|
|
$(MREF std, algorithm) or $(MREF std, range).
|
|
|
|
$(SCRIPT inhibitQuickIndex = 1;)
|
|
$(DIVC quickindex,
|
|
$(BOOKTABLE ,
|
|
$(TR $(TH Function Name) $(TH Description)
|
|
)
|
|
$(TR $(TD $(LREF adjoin))
|
|
$(TD Joins a couple of functions into one that executes the original
|
|
functions independently and returns a tuple with all the results.
|
|
))
|
|
$(TR $(TD $(LREF compose), $(LREF pipe))
|
|
$(TD Join a couple of functions into one that executes the original
|
|
functions one after the other, using one function's result for the next
|
|
function's argument.
|
|
))
|
|
$(TR $(TD $(LREF lessThan), $(LREF greaterThan), $(LREF equalTo))
|
|
$(TD Ready-made predicate functions to compare two values.
|
|
))
|
|
$(TR $(TD $(LREF memoize))
|
|
$(TD Creates a function that caches its result for fast re-evaluation.
|
|
))
|
|
$(TR $(TD $(LREF not))
|
|
$(TD Creates a function that negates another.
|
|
))
|
|
$(TR $(TD $(LREF partial))
|
|
$(TD Creates a function that binds the first argument of a given function
|
|
to a given value.
|
|
))
|
|
$(TR $(TD $(LREF curry))
|
|
$(TD Converts a multi-argument function into a series of single-argument
|
|
functions. f(x, y) == curry(f)(x)(y)
|
|
))
|
|
$(TR $(TD $(LREF reverseArgs))
|
|
$(TD Predicate that reverses the order of its arguments.
|
|
))
|
|
$(TR $(TD $(LREF toDelegate))
|
|
$(TD Converts a callable to a delegate.
|
|
))
|
|
$(TR $(TD $(LREF unaryFun), $(LREF binaryFun))
|
|
$(TD Create a unary or binary function from a string. Most often
|
|
used when defining algorithms on ranges.
|
|
))
|
|
))
|
|
|
|
Copyright: Copyright Andrei Alexandrescu 2008 - 2009.
|
|
License: $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0).
|
|
Authors: $(HTTP erdani.org, Andrei Alexandrescu)
|
|
Source: $(PHOBOSSRC std/functional.d)
|
|
*/
|
|
/*
|
|
Copyright Andrei Alexandrescu 2008 - 2009.
|
|
Distributed under the Boost Software License, Version 1.0.
|
|
(See accompanying file LICENSE_1_0.txt or copy at
|
|
http://www.boost.org/LICENSE_1_0.txt)
|
|
*/
|
|
module std.functional;
|
|
|
|
import std.meta : AliasSeq, Reverse;
|
|
import std.traits : isCallable, Parameters;
|
|
|
|
import std.internal.attributes : betterC;
|
|
|
|
public import core.lifetime : forward;
|
|
|
|
private template needOpCallAlias(alias fun)
|
|
{
|
|
/* Determine whether or not unaryFun and binaryFun need to alias to fun or
|
|
* fun.opCall. Basically, fun is a function object if fun(...) compiles. We
|
|
* want is(unaryFun!fun) (resp., is(binaryFun!fun)) to be true if fun is
|
|
* any function object. There are 4 possible cases:
|
|
*
|
|
* 1) fun is the type of a function object with static opCall;
|
|
* 2) fun is an instance of a function object with static opCall;
|
|
* 3) fun is the type of a function object with non-static opCall;
|
|
* 4) fun is an instance of a function object with non-static opCall.
|
|
*
|
|
* In case (1), is(unaryFun!fun) should compile, but does not if unaryFun
|
|
* aliases itself to fun, because typeof(fun) is an error when fun itself
|
|
* is a type. So it must be aliased to fun.opCall instead. All other cases
|
|
* should be aliased to fun directly.
|
|
*/
|
|
static if (is(typeof(fun.opCall) == function))
|
|
{
|
|
enum needOpCallAlias = !is(typeof(fun)) && __traits(compiles, () {
|
|
return fun(Parameters!fun.init);
|
|
});
|
|
}
|
|
else
|
|
enum needOpCallAlias = false;
|
|
}
|
|
|
|
/**
|
|
Transforms a `string` representing an expression into a unary
|
|
function. The `string` must either use symbol name `a` as
|
|
the parameter or provide the symbol via the `parmName` argument.
|
|
|
|
Params:
|
|
fun = a `string` or a callable
|
|
parmName = the name of the parameter if `fun` is a string. Defaults
|
|
to `"a"`.
|
|
Returns:
|
|
If `fun` is a `string`, a new single parameter function
|
|
|
|
If `fun` is not a `string`, an alias to `fun`.
|
|
*/
|
|
template unaryFun(alias fun, string parmName = "a")
|
|
{
|
|
static if (is(typeof(fun) : string))
|
|
{
|
|
static if (!fun._ctfeMatchUnary(parmName))
|
|
{
|
|
import std.algorithm, std.conv, std.exception, std.math, std.range, std.string;
|
|
import std.meta, std.traits, std.typecons;
|
|
}
|
|
auto unaryFun(ElementType)(auto ref ElementType __a)
|
|
{
|
|
mixin("alias " ~ parmName ~ " = __a ;");
|
|
return mixin(fun);
|
|
}
|
|
}
|
|
else static if (needOpCallAlias!fun)
|
|
{
|
|
// https://issues.dlang.org/show_bug.cgi?id=9906
|
|
alias unaryFun = fun.opCall;
|
|
}
|
|
else
|
|
{
|
|
alias unaryFun = fun;
|
|
}
|
|
}
|
|
|
|
///
|
|
@safe unittest
|
|
{
|
|
// Strings are compiled into functions:
|
|
alias isEven = unaryFun!("(a & 1) == 0");
|
|
assert(isEven(2) && !isEven(1));
|
|
}
|
|
|
|
@safe unittest
|
|
{
|
|
static int f1(int a) { return a + 1; }
|
|
static assert(is(typeof(unaryFun!(f1)(1)) == int));
|
|
assert(unaryFun!(f1)(41) == 42);
|
|
int f2(int a) { return a + 1; }
|
|
static assert(is(typeof(unaryFun!(f2)(1)) == int));
|
|
assert(unaryFun!(f2)(41) == 42);
|
|
assert(unaryFun!("a + 1")(41) == 42);
|
|
//assert(unaryFun!("return a + 1;")(41) == 42);
|
|
|
|
int num = 41;
|
|
assert(unaryFun!"a + 1"(num) == 42);
|
|
|
|
// https://issues.dlang.org/show_bug.cgi?id=9906
|
|
struct Seen
|
|
{
|
|
static bool opCall(int n) { return true; }
|
|
}
|
|
static assert(needOpCallAlias!Seen);
|
|
static assert(is(typeof(unaryFun!Seen(1))));
|
|
assert(unaryFun!Seen(1));
|
|
|
|
Seen s;
|
|
static assert(!needOpCallAlias!s);
|
|
static assert(is(typeof(unaryFun!s(1))));
|
|
assert(unaryFun!s(1));
|
|
|
|
struct FuncObj
|
|
{
|
|
bool opCall(int n) { return true; }
|
|
}
|
|
FuncObj fo;
|
|
static assert(!needOpCallAlias!fo);
|
|
static assert(is(typeof(unaryFun!fo)));
|
|
assert(unaryFun!fo(1));
|
|
|
|
// Function object with non-static opCall can only be called with an
|
|
// instance, not with merely the type.
|
|
static assert(!is(typeof(unaryFun!FuncObj)));
|
|
}
|
|
|
|
/**
|
|
Transforms a `string` representing an expression into a binary function. The
|
|
`string` must either use symbol names `a` and `b` as the parameters or
|
|
provide the symbols via the `parm1Name` and `parm2Name` arguments.
|
|
|
|
Params:
|
|
fun = a `string` or a callable
|
|
parm1Name = the name of the first parameter if `fun` is a string.
|
|
Defaults to `"a"`.
|
|
parm2Name = the name of the second parameter if `fun` is a string.
|
|
Defaults to `"b"`.
|
|
Returns:
|
|
If `fun` is not a string, `binaryFun` aliases itself away to
|
|
`fun`.
|
|
*/
|
|
template binaryFun(alias fun, string parm1Name = "a",
|
|
string parm2Name = "b")
|
|
{
|
|
static if (is(typeof(fun) : string))
|
|
{
|
|
static if (!fun._ctfeMatchBinary(parm1Name, parm2Name))
|
|
{
|
|
import std.algorithm, std.conv, std.exception, std.math, std.range, std.string;
|
|
import std.meta, std.traits, std.typecons;
|
|
}
|
|
auto binaryFun(ElementType1, ElementType2)
|
|
(auto ref ElementType1 __a, auto ref ElementType2 __b)
|
|
{
|
|
mixin("alias "~parm1Name~" = __a ;");
|
|
mixin("alias "~parm2Name~" = __b ;");
|
|
return mixin(fun);
|
|
}
|
|
}
|
|
else static if (needOpCallAlias!fun)
|
|
{
|
|
// https://issues.dlang.org/show_bug.cgi?id=9906
|
|
alias binaryFun = fun.opCall;
|
|
}
|
|
else
|
|
{
|
|
alias binaryFun = fun;
|
|
}
|
|
}
|
|
|
|
///
|
|
@safe unittest
|
|
{
|
|
alias less = binaryFun!("a < b");
|
|
assert(less(1, 2) && !less(2, 1));
|
|
alias greater = binaryFun!("a > b");
|
|
assert(!greater("1", "2") && greater("2", "1"));
|
|
}
|
|
|
|
@safe unittest
|
|
{
|
|
static int f1(int a, string b) { return a + 1; }
|
|
static assert(is(typeof(binaryFun!(f1)(1, "2")) == int));
|
|
assert(binaryFun!(f1)(41, "a") == 42);
|
|
string f2(int a, string b) { return b ~ "2"; }
|
|
static assert(is(typeof(binaryFun!(f2)(1, "1")) == string));
|
|
assert(binaryFun!(f2)(1, "4") == "42");
|
|
assert(binaryFun!("a + b")(41, 1) == 42);
|
|
//@@BUG
|
|
//assert(binaryFun!("return a + b;")(41, 1) == 42);
|
|
|
|
// https://issues.dlang.org/show_bug.cgi?id=9906
|
|
struct Seen
|
|
{
|
|
static bool opCall(int x, int y) { return true; }
|
|
}
|
|
static assert(is(typeof(binaryFun!Seen)));
|
|
assert(binaryFun!Seen(1,1));
|
|
|
|
struct FuncObj
|
|
{
|
|
bool opCall(int x, int y) { return true; }
|
|
}
|
|
FuncObj fo;
|
|
static assert(!needOpCallAlias!fo);
|
|
static assert(is(typeof(binaryFun!fo)));
|
|
assert(unaryFun!fo(1,1));
|
|
|
|
// Function object with non-static opCall can only be called with an
|
|
// instance, not with merely the type.
|
|
static assert(!is(typeof(binaryFun!FuncObj)));
|
|
}
|
|
|
|
// skip all ASCII chars except a .. z, A .. Z, 0 .. 9, '_' and '.'.
|
|
private uint _ctfeSkipOp(ref string op)
|
|
{
|
|
if (!__ctfe) assert(false);
|
|
import std.ascii : isASCII, isAlphaNum;
|
|
immutable oldLength = op.length;
|
|
while (op.length)
|
|
{
|
|
immutable front = op[0];
|
|
if (front.isASCII() && !(front.isAlphaNum() || front == '_' || front == '.'))
|
|
op = op[1..$];
|
|
else
|
|
break;
|
|
}
|
|
return oldLength != op.length;
|
|
}
|
|
|
|
// skip all digits
|
|
private uint _ctfeSkipInteger(ref string op)
|
|
{
|
|
if (!__ctfe) assert(false);
|
|
import std.ascii : isDigit;
|
|
immutable oldLength = op.length;
|
|
while (op.length)
|
|
{
|
|
immutable front = op[0];
|
|
if (front.isDigit())
|
|
op = op[1..$];
|
|
else
|
|
break;
|
|
}
|
|
return oldLength != op.length;
|
|
}
|
|
|
|
// skip name
|
|
private uint _ctfeSkipName(ref string op, string name)
|
|
{
|
|
if (!__ctfe) assert(false);
|
|
if (op.length >= name.length && op[0 .. name.length] == name)
|
|
{
|
|
op = op[name.length..$];
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// returns 1 if `fun` is trivial unary function
|
|
private uint _ctfeMatchUnary(string fun, string name)
|
|
{
|
|
if (!__ctfe) assert(false);
|
|
fun._ctfeSkipOp();
|
|
for (;;)
|
|
{
|
|
immutable h = fun._ctfeSkipName(name) + fun._ctfeSkipInteger();
|
|
if (h == 0)
|
|
{
|
|
fun._ctfeSkipOp();
|
|
break;
|
|
}
|
|
else if (h == 1)
|
|
{
|
|
if (!fun._ctfeSkipOp())
|
|
break;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
return fun.length == 0;
|
|
}
|
|
|
|
@safe unittest
|
|
{
|
|
static assert(!_ctfeMatchUnary("sqrt(ё)", "ё"));
|
|
static assert(!_ctfeMatchUnary("ё.sqrt", "ё"));
|
|
static assert(!_ctfeMatchUnary(".ё+ё", "ё"));
|
|
static assert(!_ctfeMatchUnary("_ё+ё", "ё"));
|
|
static assert(!_ctfeMatchUnary("ёё", "ё"));
|
|
static assert(_ctfeMatchUnary("a+a", "a"));
|
|
static assert(_ctfeMatchUnary("a + 10", "a"));
|
|
static assert(_ctfeMatchUnary("4 == a", "a"));
|
|
static assert(_ctfeMatchUnary("2 == a", "a"));
|
|
static assert(_ctfeMatchUnary("1 != a", "a"));
|
|
static assert(_ctfeMatchUnary("a != 4", "a"));
|
|
static assert(_ctfeMatchUnary("a< 1", "a"));
|
|
static assert(_ctfeMatchUnary("434 < a", "a"));
|
|
static assert(_ctfeMatchUnary("132 > a", "a"));
|
|
static assert(_ctfeMatchUnary("123 >a", "a"));
|
|
static assert(_ctfeMatchUnary("a>82", "a"));
|
|
static assert(_ctfeMatchUnary("ё>82", "ё"));
|
|
static assert(_ctfeMatchUnary("ё[ё(ё)]", "ё"));
|
|
static assert(_ctfeMatchUnary("ё[21]", "ё"));
|
|
}
|
|
|
|
// returns 1 if `fun` is trivial binary function
|
|
private uint _ctfeMatchBinary(string fun, string name1, string name2)
|
|
{
|
|
if (!__ctfe) assert(false);
|
|
fun._ctfeSkipOp();
|
|
for (;;)
|
|
{
|
|
immutable h = fun._ctfeSkipName(name1) + fun._ctfeSkipName(name2) + fun._ctfeSkipInteger();
|
|
if (h == 0)
|
|
{
|
|
fun._ctfeSkipOp();
|
|
break;
|
|
}
|
|
else if (h == 1)
|
|
{
|
|
if (!fun._ctfeSkipOp())
|
|
break;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
return fun.length == 0;
|
|
}
|
|
|
|
@safe unittest
|
|
{
|
|
|
|
static assert(!_ctfeMatchBinary("sqrt(ё)", "ё", "b"));
|
|
static assert(!_ctfeMatchBinary("ё.sqrt", "ё", "b"));
|
|
static assert(!_ctfeMatchBinary(".ё+ё", "ё", "b"));
|
|
static assert(!_ctfeMatchBinary("_ё+ё", "ё", "b"));
|
|
static assert(!_ctfeMatchBinary("ёё", "ё", "b"));
|
|
static assert(_ctfeMatchBinary("a+a", "a", "b"));
|
|
static assert(_ctfeMatchBinary("a + 10", "a", "b"));
|
|
static assert(_ctfeMatchBinary("4 == a", "a", "b"));
|
|
static assert(_ctfeMatchBinary("2 == a", "a", "b"));
|
|
static assert(_ctfeMatchBinary("1 != a", "a", "b"));
|
|
static assert(_ctfeMatchBinary("a != 4", "a", "b"));
|
|
static assert(_ctfeMatchBinary("a< 1", "a", "b"));
|
|
static assert(_ctfeMatchBinary("434 < a", "a", "b"));
|
|
static assert(_ctfeMatchBinary("132 > a", "a", "b"));
|
|
static assert(_ctfeMatchBinary("123 >a", "a", "b"));
|
|
static assert(_ctfeMatchBinary("a>82", "a", "b"));
|
|
static assert(_ctfeMatchBinary("ё>82", "ё", "q"));
|
|
static assert(_ctfeMatchBinary("ё[ё(10)]", "ё", "q"));
|
|
static assert(_ctfeMatchBinary("ё[21]", "ё", "q"));
|
|
|
|
static assert(!_ctfeMatchBinary("sqrt(ё)+b", "b", "ё"));
|
|
static assert(!_ctfeMatchBinary("ё.sqrt-b", "b", "ё"));
|
|
static assert(!_ctfeMatchBinary(".ё+b", "b", "ё"));
|
|
static assert(!_ctfeMatchBinary("_b+ё", "b", "ё"));
|
|
static assert(!_ctfeMatchBinary("ba", "b", "a"));
|
|
static assert(_ctfeMatchBinary("a+b", "b", "a"));
|
|
static assert(_ctfeMatchBinary("a + b", "b", "a"));
|
|
static assert(_ctfeMatchBinary("b == a", "b", "a"));
|
|
static assert(_ctfeMatchBinary("b == a", "b", "a"));
|
|
static assert(_ctfeMatchBinary("b != a", "b", "a"));
|
|
static assert(_ctfeMatchBinary("a != b", "b", "a"));
|
|
static assert(_ctfeMatchBinary("a< b", "b", "a"));
|
|
static assert(_ctfeMatchBinary("b < a", "b", "a"));
|
|
static assert(_ctfeMatchBinary("b > a", "b", "a"));
|
|
static assert(_ctfeMatchBinary("b >a", "b", "a"));
|
|
static assert(_ctfeMatchBinary("a>b", "b", "a"));
|
|
static assert(_ctfeMatchBinary("ё>b", "b", "ё"));
|
|
static assert(_ctfeMatchBinary("b[ё(-1)]", "b", "ё"));
|
|
static assert(_ctfeMatchBinary("ё[-21]", "b", "ё"));
|
|
}
|
|
|
|
//undocumented
|
|
template safeOp(string S)
|
|
if (S=="<"||S==">"||S=="<="||S==">="||S=="=="||S=="!=")
|
|
{
|
|
import std.traits : isIntegral;
|
|
private bool unsafeOp(ElementType1, ElementType2)(ElementType1 a, ElementType2 b) pure
|
|
if (isIntegral!ElementType1 && isIntegral!ElementType2)
|
|
{
|
|
import std.traits : CommonType;
|
|
alias T = CommonType!(ElementType1, ElementType2);
|
|
return mixin("cast(T)a "~S~" cast(T) b");
|
|
}
|
|
|
|
bool safeOp(T0, T1)(auto ref T0 a, auto ref T1 b)
|
|
{
|
|
import std.traits : mostNegative;
|
|
static if (isIntegral!T0 && isIntegral!T1 &&
|
|
(mostNegative!T0 < 0) != (mostNegative!T1 < 0))
|
|
{
|
|
static if (S == "<=" || S == "<")
|
|
{
|
|
static if (mostNegative!T0 < 0)
|
|
immutable result = a < 0 || unsafeOp(a, b);
|
|
else
|
|
immutable result = b >= 0 && unsafeOp(a, b);
|
|
}
|
|
else
|
|
{
|
|
static if (mostNegative!T0 < 0)
|
|
immutable result = a >= 0 && unsafeOp(a, b);
|
|
else
|
|
immutable result = b < 0 || unsafeOp(a, b);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
static assert(is(typeof(mixin("a "~S~" b"))),
|
|
"Invalid arguments: Cannot compare types " ~ T0.stringof ~ " and " ~ T1.stringof ~ ".");
|
|
|
|
immutable result = mixin("a "~S~" b");
|
|
}
|
|
return result;
|
|
}
|
|
}
|
|
|
|
@safe unittest //check user defined types
|
|
{
|
|
import std.algorithm.comparison : equal;
|
|
struct Foo
|
|
{
|
|
int a;
|
|
auto opEquals(Foo foo)
|
|
{
|
|
return a == foo.a;
|
|
}
|
|
}
|
|
assert(safeOp!"!="(Foo(1), Foo(2)));
|
|
}
|
|
|
|
/**
|
|
Predicate that returns $(D_PARAM a < b).
|
|
Correctly compares signed and unsigned integers, ie. -1 < 2U.
|
|
*/
|
|
alias lessThan = safeOp!"<";
|
|
|
|
///
|
|
pure @safe @nogc nothrow unittest
|
|
{
|
|
assert(lessThan(2, 3));
|
|
assert(lessThan(2U, 3U));
|
|
assert(lessThan(2, 3.0));
|
|
assert(lessThan(-2, 3U));
|
|
assert(lessThan(2, 3U));
|
|
assert(!lessThan(3U, -2));
|
|
assert(!lessThan(3U, 2));
|
|
assert(!lessThan(0, 0));
|
|
assert(!lessThan(0U, 0));
|
|
assert(!lessThan(0, 0U));
|
|
}
|
|
|
|
/**
|
|
Predicate that returns $(D_PARAM a > b).
|
|
Correctly compares signed and unsigned integers, ie. 2U > -1.
|
|
*/
|
|
alias greaterThan = safeOp!">";
|
|
|
|
///
|
|
@safe unittest
|
|
{
|
|
assert(!greaterThan(2, 3));
|
|
assert(!greaterThan(2U, 3U));
|
|
assert(!greaterThan(2, 3.0));
|
|
assert(!greaterThan(-2, 3U));
|
|
assert(!greaterThan(2, 3U));
|
|
assert(greaterThan(3U, -2));
|
|
assert(greaterThan(3U, 2));
|
|
assert(!greaterThan(0, 0));
|
|
assert(!greaterThan(0U, 0));
|
|
assert(!greaterThan(0, 0U));
|
|
}
|
|
|
|
/**
|
|
Predicate that returns $(D_PARAM a == b).
|
|
Correctly compares signed and unsigned integers, ie. !(-1 == ~0U).
|
|
*/
|
|
alias equalTo = safeOp!"==";
|
|
|
|
///
|
|
@safe unittest
|
|
{
|
|
assert(equalTo(0U, 0));
|
|
assert(equalTo(0, 0U));
|
|
assert(!equalTo(-1, ~0U));
|
|
}
|
|
/**
|
|
N-ary predicate that reverses the order of arguments, e.g., given
|
|
$(D pred(a, b, c)), returns $(D pred(c, b, a)).
|
|
|
|
Params:
|
|
pred = A callable
|
|
Returns:
|
|
A function which calls `pred` after reversing the given parameters
|
|
*/
|
|
template reverseArgs(alias pred)
|
|
{
|
|
auto reverseArgs(Args...)(auto ref Args args)
|
|
if (is(typeof(pred(Reverse!args))))
|
|
{
|
|
return pred(Reverse!args);
|
|
}
|
|
}
|
|
|
|
///
|
|
@safe unittest
|
|
{
|
|
alias gt = reverseArgs!(binaryFun!("a < b"));
|
|
assert(gt(2, 1) && !gt(1, 1));
|
|
}
|
|
|
|
///
|
|
@safe unittest
|
|
{
|
|
int x = 42;
|
|
bool xyz(int a, int b) { return a * x < b / x; }
|
|
auto foo = &xyz;
|
|
foo(4, 5);
|
|
alias zyx = reverseArgs!(foo);
|
|
assert(zyx(5, 4) == foo(4, 5));
|
|
}
|
|
|
|
///
|
|
@safe unittest
|
|
{
|
|
alias gt = reverseArgs!(binaryFun!("a < b"));
|
|
assert(gt(2, 1) && !gt(1, 1));
|
|
int x = 42;
|
|
bool xyz(int a, int b) { return a * x < b / x; }
|
|
auto foo = &xyz;
|
|
foo(4, 5);
|
|
alias zyx = reverseArgs!(foo);
|
|
assert(zyx(5, 4) == foo(4, 5));
|
|
}
|
|
|
|
///
|
|
@safe unittest
|
|
{
|
|
int abc(int a, int b, int c) { return a * b + c; }
|
|
alias cba = reverseArgs!abc;
|
|
assert(abc(91, 17, 32) == cba(32, 17, 91));
|
|
}
|
|
|
|
///
|
|
@safe unittest
|
|
{
|
|
int a(int a) { return a * 2; }
|
|
alias _a = reverseArgs!a;
|
|
assert(a(2) == _a(2));
|
|
}
|
|
|
|
///
|
|
@safe unittest
|
|
{
|
|
int b() { return 4; }
|
|
alias _b = reverseArgs!b;
|
|
assert(b() == _b());
|
|
}
|
|
|
|
/**
|
|
Negates predicate `pred`.
|
|
|
|
Params:
|
|
pred = A string or a callable
|
|
Returns:
|
|
A function which calls `pred` and returns the logical negation of its
|
|
return value.
|
|
*/
|
|
template not(alias pred)
|
|
{
|
|
auto not(T...)(auto ref T args)
|
|
{
|
|
static if (is(typeof(!pred(args))))
|
|
return !pred(args);
|
|
else static if (T.length == 1)
|
|
return !unaryFun!pred(args);
|
|
else static if (T.length == 2)
|
|
return !binaryFun!pred(args);
|
|
else
|
|
static assert(0);
|
|
}
|
|
}
|
|
|
|
///
|
|
@safe unittest
|
|
{
|
|
import std.algorithm.searching : find;
|
|
import std.uni : isWhite;
|
|
string a = " Hello, world!";
|
|
assert(find!(not!isWhite)(a) == "Hello, world!");
|
|
}
|
|
|
|
@safe unittest
|
|
{
|
|
assert(not!"a != 5"(5));
|
|
assert(not!"a != b"(5, 5));
|
|
|
|
assert(not!(() => false)());
|
|
assert(not!(a => a != 5)(5));
|
|
assert(not!((a, b) => a != b)(5, 5));
|
|
assert(not!((a, b, c) => a * b * c != 125 )(5, 5, 5));
|
|
}
|
|
|
|
/**
|
|
$(LINK2 http://en.wikipedia.org/wiki/Partial_application, Partially
|
|
applies) $(D_PARAM fun) by tying its first argument to $(D_PARAM arg).
|
|
|
|
Params:
|
|
fun = A callable
|
|
arg = The first argument to apply to `fun`
|
|
Returns:
|
|
A new function which calls `fun` with `arg` plus the passed parameters.
|
|
*/
|
|
template partial(alias fun, alias arg)
|
|
{
|
|
import std.traits : isCallable;
|
|
// Check whether fun is a user defined type which implements opCall or a template.
|
|
// As opCall itself can be templated, std.traits.isCallable does not work here.
|
|
enum isSomeFunctor = (is(typeof(fun) == struct) || is(typeof(fun) == class)) && __traits(hasMember, fun, "opCall");
|
|
static if (isSomeFunctor || __traits(isTemplate, fun))
|
|
{
|
|
auto partial(Ts...)(Ts args2)
|
|
{
|
|
static if (is(typeof(fun(arg, args2))))
|
|
{
|
|
return fun(arg, args2);
|
|
}
|
|
else
|
|
{
|
|
static string errormsg()
|
|
{
|
|
string msg = "Cannot call '" ~ fun.stringof ~ "' with arguments " ~
|
|
"(" ~ arg.stringof;
|
|
foreach (T; Ts)
|
|
msg ~= ", " ~ T.stringof;
|
|
msg ~= ").";
|
|
return msg;
|
|
}
|
|
static assert(0, errormsg());
|
|
}
|
|
}
|
|
}
|
|
else static if (!isCallable!fun)
|
|
{
|
|
static assert(false, "Cannot apply partial to a non-callable '" ~ fun.stringof ~ "'.");
|
|
}
|
|
else
|
|
{
|
|
import std.meta : Filter;
|
|
|
|
static if (__traits(compiles, __traits(getOverloads,
|
|
__traits(parent, fun), __traits(identifier, fun))))
|
|
alias overloads = __traits(getOverloads, __traits(parent, fun),
|
|
__traits(identifier, fun));
|
|
else
|
|
alias overloads = AliasSeq!(fun);
|
|
|
|
enum isCallableWithArg(alias fun) = Parameters!fun.length > 0 &&
|
|
is(typeof(arg) : Parameters!fun[0]);
|
|
alias candidates = Filter!(isCallableWithArg, overloads);
|
|
|
|
static if (overloads.length == 1 && Parameters!fun.length == 0)
|
|
{
|
|
static assert(0, "Cannot partially apply '" ~ fun.stringof ~ "'." ~
|
|
"'" ~ fun.stringof ~ "' has 0 arguments.");
|
|
}
|
|
else static if (candidates.length == 0)
|
|
{
|
|
import std.meta : NoDuplicates, staticMap;
|
|
|
|
enum hasParameters(alias fun) = Parameters!fun.length > 0;
|
|
alias firstParameter(alias fun) = Parameters!fun[0];
|
|
alias firstParameters = NoDuplicates!(
|
|
staticMap!(firstParameter, Filter!(hasParameters, overloads)));
|
|
|
|
string errorMsg()
|
|
{
|
|
string msg = "Argument mismatch for '" ~ fun.stringof ~
|
|
"': expected " ~ firstParameters[0].stringof;
|
|
static foreach (firstParam; firstParameters[1 .. $])
|
|
msg ~= " or " ~ firstParam.stringof;
|
|
msg ~= ", but got " ~ typeof(arg).stringof ~ ".";
|
|
|
|
return msg;
|
|
}
|
|
static assert(0, errorMsg());
|
|
}
|
|
else
|
|
{
|
|
import std.traits : ReturnType;
|
|
static foreach (candidate; candidates)
|
|
ReturnType!candidate partial(Parameters!candidate[1..$] args2)
|
|
{
|
|
return candidate(arg, args2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
///
|
|
@safe unittest
|
|
{
|
|
int fun(int a, int b) { return a + b; }
|
|
alias fun5 = partial!(fun, 5);
|
|
assert(fun5(6) == 11);
|
|
// Note that in most cases you'd use an alias instead of a value
|
|
// assignment. Using an alias allows you to partially evaluate template
|
|
// functions without committing to a particular type of the function.
|
|
}
|
|
|
|
// https://issues.dlang.org/show_bug.cgi?id=21457
|
|
///
|
|
@safe unittest
|
|
{
|
|
// Overloads are resolved when the partially applied function is called
|
|
// with the remaining arguments.
|
|
struct S
|
|
{
|
|
static char fun(int i, string s) { return s[i]; }
|
|
static int fun(int a, int b) { return a * b; }
|
|
}
|
|
alias fun3 = partial!(S.fun, 3);
|
|
assert(fun3("hello") == 'l');
|
|
assert(fun3(10) == 30);
|
|
}
|
|
|
|
// tests for partially evaluating callables
|
|
@safe unittest
|
|
{
|
|
static int f1(int a, int b) { return a + b; }
|
|
assert(partial!(f1, 5)(6) == 11);
|
|
|
|
int f2(int a, int b) { return a + b; }
|
|
int x = 5;
|
|
assert(partial!(f2, x)(6) == 11);
|
|
x = 7;
|
|
assert(partial!(f2, x)(6) == 13);
|
|
static assert(partial!(f2, 5)(6) == 11);
|
|
|
|
auto dg = &f2;
|
|
auto f3 = &partial!(dg, x);
|
|
assert(f3(6) == 13);
|
|
|
|
static int funOneArg(int a) { return a; }
|
|
assert(partial!(funOneArg, 1)() == 1);
|
|
|
|
static int funThreeArgs(int a, int b, int c) { return a + b + c; }
|
|
alias funThreeArgs1 = partial!(funThreeArgs, 1);
|
|
assert(funThreeArgs1(2, 3) == 6);
|
|
static assert(!is(typeof(funThreeArgs1(2))));
|
|
|
|
enum xe = 5;
|
|
alias fe = partial!(f2, xe);
|
|
static assert(fe(6) == 11);
|
|
}
|
|
|
|
// tests for partially evaluating templated/overloaded callables
|
|
@safe unittest
|
|
{
|
|
static auto add(A, B)(A x, B y)
|
|
{
|
|
return x + y;
|
|
}
|
|
|
|
alias add5 = partial!(add, 5);
|
|
assert(add5(6) == 11);
|
|
static assert(!is(typeof(add5())));
|
|
static assert(!is(typeof(add5(6, 7))));
|
|
|
|
// taking address of templated partial evaluation needs explicit type
|
|
auto dg = &add5!(int);
|
|
assert(dg(6) == 11);
|
|
|
|
int x = 5;
|
|
alias addX = partial!(add, x);
|
|
assert(addX(6) == 11);
|
|
|
|
static struct Callable
|
|
{
|
|
static string opCall(string a, string b) { return a ~ b; }
|
|
int opCall(int a, int b) { return a * b; }
|
|
double opCall(double a, double b) { return a + b; }
|
|
}
|
|
Callable callable;
|
|
assert(partial!(Callable, "5")("6") == "56");
|
|
assert(partial!(callable, 5)(6) == 30);
|
|
assert(partial!(callable, 7.0)(3.0) == 7.0 + 3.0);
|
|
|
|
static struct TCallable
|
|
{
|
|
auto opCall(A, B)(A a, B b)
|
|
{
|
|
return a + b;
|
|
}
|
|
}
|
|
TCallable tcallable;
|
|
assert(partial!(tcallable, 5)(6) == 11);
|
|
static assert(!is(typeof(partial!(tcallable, "5")(6))));
|
|
|
|
static struct NonCallable{}
|
|
static assert(!__traits(compiles, partial!(NonCallable, 5)), "Partial should not work on non-callable structs.");
|
|
static assert(!__traits(compiles, partial!(NonCallable.init, 5)),
|
|
"Partial should not work on instances of non-callable structs.");
|
|
|
|
static A funOneArg(A)(A a) { return a; }
|
|
alias funOneArg1 = partial!(funOneArg, 1);
|
|
assert(funOneArg1() == 1);
|
|
|
|
static auto funThreeArgs(A, B, C)(A a, B b, C c) { return a + b + c; }
|
|
alias funThreeArgs1 = partial!(funThreeArgs, 1);
|
|
assert(funThreeArgs1(2, 3) == 6);
|
|
static assert(!is(typeof(funThreeArgs1(1))));
|
|
|
|
auto dg2 = &funOneArg1!();
|
|
assert(dg2() == 1);
|
|
}
|
|
|
|
// Fix https://issues.dlang.org/show_bug.cgi?id=15732
|
|
@safe unittest
|
|
{
|
|
// Test whether it works with functions.
|
|
auto partialFunction(){
|
|
auto fullFunction = (float a, float b, float c) => a + b / c;
|
|
alias apply1 = partial!(fullFunction, 1);
|
|
return &apply1;
|
|
}
|
|
auto result = partialFunction()(2, 4);
|
|
assert(result == 1.5f);
|
|
|
|
// And with delegates.
|
|
auto partialDelegate(float c){
|
|
auto fullDelegate = (float a, float b) => a + b / c;
|
|
alias apply1 = partial!(fullDelegate, 1);
|
|
return &apply1;
|
|
}
|
|
auto result2 = partialDelegate(4)(2);
|
|
assert(result2 == 1.5f);
|
|
}
|
|
|
|
/**
|
|
Takes a function of (potentially) many arguments, and returns a function taking
|
|
one argument and returns a callable taking the rest. f(x, y) == curry(f)(x)(y)
|
|
|
|
Params:
|
|
F = a function taking at least one argument
|
|
t = a callable object whose opCall takes at least 1 object
|
|
Returns:
|
|
A single parameter callable object
|
|
*/
|
|
template curry(alias F)
|
|
if (isCallable!F && Parameters!F.length)
|
|
{
|
|
//inspired from the implementation from Artur Skawina here:
|
|
//https://forum.dlang.org/post/mailman.1626.1340110492.24740.digitalmars-d@puremagic.com
|
|
//This implementation stores a copy of all filled in arguments with each curried result
|
|
//this way, the curried functions are independent and don't share any references
|
|
//eg: auto fc = curry!f; auto fc1 = fc(1); auto fc2 = fc(2); fc1(3) != fc2(3)
|
|
struct CurryImpl(size_t N)
|
|
{
|
|
alias FParams = Parameters!F;
|
|
FParams[0 .. N] storedArguments;
|
|
static if (N > 0)
|
|
{
|
|
this(U : FParams[N - 1])(ref CurryImpl!(N - 1) prev, ref U arg)
|
|
{
|
|
storedArguments[0 .. N - 1] = prev.storedArguments[];
|
|
storedArguments[N-1] = arg;
|
|
}
|
|
}
|
|
|
|
auto opCall(U : FParams[N])(auto ref U arg) return scope
|
|
{
|
|
static if (N == FParams.length - 1)
|
|
{
|
|
return F(storedArguments, arg);
|
|
}
|
|
else
|
|
{
|
|
return CurryImpl!(N + 1)(this, arg);
|
|
}
|
|
}
|
|
}
|
|
|
|
auto curry()
|
|
{
|
|
CurryImpl!0 res;
|
|
return res; // return CurryImpl!0.init segfaults for delegates on Windows
|
|
}
|
|
}
|
|
|
|
///
|
|
pure @safe @nogc nothrow unittest
|
|
{
|
|
int f(int x, int y, int z)
|
|
{
|
|
return x + y + z;
|
|
}
|
|
auto cf = curry!f;
|
|
auto cf1 = cf(1);
|
|
auto cf2 = cf(2);
|
|
|
|
assert(cf1(2)(3) == f(1, 2, 3));
|
|
assert(cf2(2)(3) == f(2, 2, 3));
|
|
}
|
|
|
|
///ditto
|
|
auto curry(T)(T t)
|
|
if (isCallable!T && Parameters!T.length)
|
|
{
|
|
static auto fun(ref T inst, ref Parameters!T args)
|
|
{
|
|
return inst(args);
|
|
}
|
|
|
|
return curry!fun()(t);
|
|
}
|
|
|
|
///
|
|
pure @safe @nogc nothrow unittest
|
|
{
|
|
//works with callable structs too
|
|
struct S
|
|
{
|
|
int w;
|
|
int opCall(int x, int y, int z)
|
|
{
|
|
return w + x + y + z;
|
|
}
|
|
}
|
|
|
|
S s;
|
|
s.w = 5;
|
|
|
|
auto cs = curry(s);
|
|
auto cs1 = cs(1);
|
|
auto cs2 = cs(2);
|
|
|
|
assert(cs1(2)(3) == s(1, 2, 3));
|
|
assert(cs1(2)(3) == (1 + 2 + 3 + 5));
|
|
assert(cs2(2)(3) ==s(2, 2, 3));
|
|
}
|
|
|
|
|
|
@safe pure @nogc nothrow unittest
|
|
{
|
|
//currying a single argument function does nothing
|
|
int pork(int a){ return a*2;}
|
|
auto curryPork = curry!pork;
|
|
assert(curryPork(0) == pork(0));
|
|
assert(curryPork(1) == pork(1));
|
|
assert(curryPork(-1) == pork(-1));
|
|
assert(curryPork(1000) == pork(1000));
|
|
|
|
//test 2 argument function
|
|
double mixedVeggies(double a, int b, bool)
|
|
{
|
|
return a + b;
|
|
}
|
|
|
|
auto mixedCurry = curry!mixedVeggies;
|
|
assert(mixedCurry(10)(20)(false) == mixedVeggies(10, 20, false));
|
|
assert(mixedCurry(100)(200)(true) == mixedVeggies(100, 200, true));
|
|
|
|
// struct with opCall
|
|
struct S
|
|
{
|
|
double opCall(int x, double y, short z) const pure nothrow @nogc
|
|
{
|
|
return x*y*z;
|
|
}
|
|
}
|
|
|
|
S s;
|
|
auto curriedStruct = curry(s);
|
|
assert(curriedStruct(1)(2)(short(3)) == s(1, 2, short(3)));
|
|
assert(curriedStruct(300)(20)(short(10)) == s(300, 20, short(10)));
|
|
}
|
|
|
|
pure @safe nothrow unittest
|
|
{
|
|
auto cfl = curry!((double a, int b) => a + b);
|
|
assert(cfl(13)(2) == 15);
|
|
|
|
int c = 42;
|
|
auto cdg = curry!((double a, int b) => a + b + c);
|
|
assert(cdg(13)(2) == 57);
|
|
|
|
static class C
|
|
{
|
|
int opCall(int mult, int add) pure @safe nothrow @nogc scope
|
|
{
|
|
return mult * 42 + add;
|
|
}
|
|
}
|
|
|
|
scope C ci = new C();
|
|
scope cc = curry(ci);
|
|
assert(cc(2)(4) == ci(2, 4));
|
|
}
|
|
|
|
// Disallows callables without parameters
|
|
pure @safe @nogc nothrow unittest
|
|
{
|
|
static void noargs() {}
|
|
static assert(!__traits(compiles, curry!noargs()));
|
|
|
|
static struct NoArgs
|
|
{
|
|
void opCall() {}
|
|
}
|
|
|
|
static assert(!__traits(compiles, curry(NoArgs.init)));
|
|
}
|
|
|
|
private template Iota(size_t n)
|
|
{
|
|
static if (n == 0)
|
|
alias Iota = AliasSeq!();
|
|
else
|
|
alias Iota = AliasSeq!(Iota!(n - 1), n - 1);
|
|
}
|
|
|
|
/**
|
|
Takes multiple functions and adjoins them together.
|
|
|
|
Params:
|
|
F = the call-able(s) to adjoin
|
|
Returns:
|
|
A new function which returns a $(REF Tuple, std,typecons). Each of the
|
|
elements of the tuple will be the return values of `F`.
|
|
|
|
Note: In the special case where only a single function is provided
|
|
($(D F.length == 1)), adjoin simply aliases to the single passed function
|
|
(`F[0]`).
|
|
*/
|
|
template adjoin(F...)
|
|
if (F.length >= 1)
|
|
{
|
|
static if (F.length == 1)
|
|
alias adjoin = F[0];
|
|
else
|
|
auto adjoin(V...)(auto ref V a)
|
|
{
|
|
import std.typecons : tuple;
|
|
import std.meta : staticMap;
|
|
|
|
auto resultElement(size_t i)()
|
|
{
|
|
return F[i](a);
|
|
}
|
|
|
|
return tuple(staticMap!(resultElement, Iota!(F.length)));
|
|
}
|
|
}
|
|
|
|
///
|
|
@safe unittest
|
|
{
|
|
import std.typecons : Tuple;
|
|
static bool f1(int a) { return a != 0; }
|
|
static int f2(int a) { return a / 2; }
|
|
auto x = adjoin!(f1, f2)(5);
|
|
assert(is(typeof(x) == Tuple!(bool, int)));
|
|
assert(x[0] == true && x[1] == 2);
|
|
}
|
|
|
|
@safe unittest
|
|
{
|
|
import std.typecons : Tuple;
|
|
static bool F1(int a) { return a != 0; }
|
|
auto x1 = adjoin!(F1)(5);
|
|
static int F2(int a) { return a / 2; }
|
|
auto x2 = adjoin!(F1, F2)(5);
|
|
assert(is(typeof(x2) == Tuple!(bool, int)));
|
|
assert(x2[0] && x2[1] == 2);
|
|
auto x3 = adjoin!(F1, F2, F2)(5);
|
|
assert(is(typeof(x3) == Tuple!(bool, int, int)));
|
|
assert(x3[0] && x3[1] == 2 && x3[2] == 2);
|
|
|
|
bool F4(int a) { return a != x1; }
|
|
alias eff4 = adjoin!(F4);
|
|
static struct S
|
|
{
|
|
bool delegate(int) @safe store;
|
|
int fun() { return 42 + store(5); }
|
|
}
|
|
S s;
|
|
s.store = (int a) { return eff4(a); };
|
|
auto x4 = s.fun();
|
|
assert(x4 == 43);
|
|
}
|
|
|
|
@safe unittest
|
|
{
|
|
import std.meta : staticMap;
|
|
import std.typecons : Tuple, tuple;
|
|
alias funs = staticMap!(unaryFun, "a", "a * 2", "a * 3", "a * a", "-a");
|
|
alias afun = adjoin!funs;
|
|
assert(afun(5) == tuple(5, 10, 15, 25, -5));
|
|
|
|
static class C{}
|
|
alias IC = immutable(C);
|
|
IC foo(){return typeof(return).init;}
|
|
Tuple!(IC, IC, IC, IC) ret1 = adjoin!(foo, foo, foo, foo)();
|
|
|
|
static struct S{int* p;}
|
|
alias IS = immutable(S);
|
|
IS bar(){return typeof(return).init;}
|
|
enum Tuple!(IS, IS, IS, IS) ret2 = adjoin!(bar, bar, bar, bar)();
|
|
}
|
|
|
|
// https://issues.dlang.org/show_bug.cgi?id=21347
|
|
@safe @betterC unittest
|
|
{
|
|
alias f = (int n) => n + 1;
|
|
alias g = (int n) => n + 2;
|
|
alias h = (int n) => n + 3;
|
|
alias i = (int n) => n + 4;
|
|
|
|
auto result = adjoin!(f, g, h, i)(0);
|
|
|
|
assert(result[0] == 1);
|
|
assert(result[1] == 2);
|
|
assert(result[2] == 3);
|
|
assert(result[3] == 4);
|
|
}
|
|
|
|
/**
|
|
Composes passed-in functions $(D fun[0], fun[1], ...).
|
|
|
|
Params:
|
|
fun = the call-able(s) or `string`(s) to compose into one function
|
|
Returns:
|
|
A new function `f(x)` that in turn returns `fun[0](fun[1](...(x)))...`.
|
|
|
|
See_Also: $(LREF pipe)
|
|
*/
|
|
template compose(fun...)
|
|
if (fun.length > 0)
|
|
{
|
|
static if (fun.length == 1)
|
|
{
|
|
alias compose = unaryFun!(fun[0]);
|
|
}
|
|
else
|
|
{
|
|
alias fun0 = unaryFun!(fun[0]);
|
|
alias rest = compose!(fun[1 .. $]);
|
|
|
|
auto compose(Args...)(Args args)
|
|
{
|
|
return fun0(rest(args));
|
|
}
|
|
}
|
|
}
|
|
|
|
///
|
|
@safe unittest
|
|
{
|
|
import std.algorithm.comparison : equal;
|
|
import std.algorithm.iteration : map;
|
|
import std.array : split;
|
|
import std.conv : to;
|
|
|
|
// First split a string in whitespace-separated tokens and then
|
|
// convert each token into an integer
|
|
assert(compose!(map!(to!(int)), split)("1 2 3").equal([1, 2, 3]));
|
|
}
|
|
|
|
// https://issues.dlang.org/show_bug.cgi?id=6484
|
|
@safe unittest
|
|
{
|
|
int f(int a) { return a; }
|
|
int g(int a) { return a; }
|
|
int h(int a,int b,int c) { return a * b * c; }
|
|
|
|
alias F = compose!(f,g,h);
|
|
assert(F(1,2,3) == f(g(h(1,2,3))));
|
|
}
|
|
|
|
/**
|
|
Pipes functions in sequence. Offers the same functionality as $(D
|
|
compose), but with functions specified in reverse order. This may
|
|
lead to more readable code in some situation because the order of
|
|
execution is the same as lexical order.
|
|
|
|
Params:
|
|
fun = the call-able(s) or `string`(s) to compose into one function
|
|
Returns:
|
|
A new function `f(x)` that in turn returns `fun[$-1](...fun[1](fun[0](x)))...`.
|
|
|
|
Example:
|
|
|
|
----
|
|
// Read an entire text file, split the resulting string in
|
|
// whitespace-separated tokens, and then convert each token into an
|
|
// integer
|
|
int[] a = pipe!(readText, split, map!(to!(int)))("file.txt");
|
|
----
|
|
|
|
See_Also: $(LREF compose)
|
|
*/
|
|
alias pipe(fun...) = compose!(Reverse!(fun));
|
|
|
|
///
|
|
@safe unittest
|
|
{
|
|
import std.conv : to;
|
|
string foo(int a) { return to!(string)(a); }
|
|
int bar(string a) { return to!(int)(a) + 1; }
|
|
double baz(int a) { return a + 0.5; }
|
|
assert(compose!(baz, bar, foo)(1) == 2.5);
|
|
assert(pipe!(foo, bar, baz)(1) == 2.5);
|
|
|
|
assert(compose!(baz, `to!(int)(a) + 1`, foo)(1) == 2.5);
|
|
assert(compose!(baz, bar)("1"[]) == 2.5);
|
|
|
|
assert(compose!(baz, bar)("1") == 2.5);
|
|
|
|
assert(compose!(`a + 0.5`, `to!(int)(a) + 1`, foo)(1) == 2.5);
|
|
}
|
|
|
|
/**
|
|
* $(LINK2 https://en.wikipedia.org/wiki/Memoization, Memoizes) a function so as
|
|
* to avoid repeated computation. The memoization structure is a hash table keyed by a
|
|
* tuple of the function's arguments. There is a speed gain if the
|
|
* function is repeatedly called with the same arguments and is more
|
|
* expensive than a hash table lookup. For more information on memoization, refer to $(HTTP docs.google.com/viewer?url=http%3A%2F%2Fhop.perl.plover.com%2Fbook%2Fpdf%2F03CachingAndMemoization.pdf, this book chapter).
|
|
|
|
Example:
|
|
----
|
|
double transmogrify(int a, string b)
|
|
{
|
|
... expensive computation ...
|
|
}
|
|
alias fastTransmogrify = memoize!transmogrify;
|
|
unittest
|
|
{
|
|
auto slow = transmogrify(2, "hello");
|
|
auto fast = fastTransmogrify(2, "hello");
|
|
assert(slow == fast);
|
|
}
|
|
----
|
|
|
|
Params:
|
|
fun = the call-able to memozie
|
|
maxSize = The maximum size of the GC buffer to hold the return values
|
|
Returns:
|
|
A new function which calls `fun` and caches its return values.
|
|
|
|
Note:
|
|
Technically the memoized function should be pure because `memoize` assumes it will
|
|
always return the same result for a given tuple of arguments. However, `memoize` does not
|
|
enforce that because sometimes it is useful to memoize an impure function, too.
|
|
*/
|
|
template memoize(alias fun)
|
|
{
|
|
import std.traits : ReturnType;
|
|
// https://issues.dlang.org/show_bug.cgi?id=13580
|
|
// alias Args = Parameters!fun;
|
|
|
|
ReturnType!fun memoize(Parameters!fun args)
|
|
{
|
|
alias Args = Parameters!fun;
|
|
import std.typecons : Tuple;
|
|
import std.traits : Unqual;
|
|
|
|
static Unqual!(ReturnType!fun)[Tuple!Args] memo;
|
|
auto t = Tuple!Args(args);
|
|
if (auto p = t in memo)
|
|
return *p;
|
|
auto r = fun(args);
|
|
memo[t] = r;
|
|
return r;
|
|
}
|
|
}
|
|
|
|
/// ditto
|
|
template memoize(alias fun, uint maxSize)
|
|
{
|
|
import std.traits : ReturnType;
|
|
// https://issues.dlang.org/show_bug.cgi?id=13580
|
|
// alias Args = Parameters!fun;
|
|
ReturnType!fun memoize(Parameters!fun args)
|
|
{
|
|
import std.meta : staticMap;
|
|
import std.traits : hasIndirections, Unqual;
|
|
import std.typecons : tuple;
|
|
static struct Value { staticMap!(Unqual, Parameters!fun) args; Unqual!(ReturnType!fun) res; }
|
|
static Value[] memo;
|
|
static size_t[] initialized;
|
|
|
|
if (!memo.length)
|
|
{
|
|
import core.memory : GC;
|
|
|
|
// Ensure no allocation overflows
|
|
static assert(maxSize < size_t.max / Value.sizeof);
|
|
static assert(maxSize < size_t.max - (8 * size_t.sizeof - 1));
|
|
|
|
enum attr = GC.BlkAttr.NO_INTERIOR | (hasIndirections!Value ? 0 : GC.BlkAttr.NO_SCAN);
|
|
memo = (cast(Value*) GC.malloc(Value.sizeof * maxSize, attr))[0 .. maxSize];
|
|
enum nwords = (maxSize + 8 * size_t.sizeof - 1) / (8 * size_t.sizeof);
|
|
initialized = (cast(size_t*) GC.calloc(nwords * size_t.sizeof, attr | GC.BlkAttr.NO_SCAN))[0 .. nwords];
|
|
}
|
|
|
|
import core.bitop : bt, bts;
|
|
import core.lifetime : emplace;
|
|
|
|
size_t hash;
|
|
foreach (ref arg; args)
|
|
hash = hashOf(arg, hash);
|
|
// cuckoo hashing
|
|
immutable idx1 = hash % maxSize;
|
|
if (!bt(initialized.ptr, idx1))
|
|
{
|
|
emplace(&memo[idx1], args, fun(args));
|
|
// only set to initialized after setting args and value
|
|
// https://issues.dlang.org/show_bug.cgi?id=14025
|
|
bts(initialized.ptr, idx1);
|
|
return memo[idx1].res;
|
|
}
|
|
else if (memo[idx1].args == args)
|
|
return memo[idx1].res;
|
|
// FNV prime
|
|
immutable idx2 = (hash * 16_777_619) % maxSize;
|
|
if (!bt(initialized.ptr, idx2))
|
|
{
|
|
emplace(&memo[idx2], memo[idx1]);
|
|
bts(initialized.ptr, idx2);
|
|
}
|
|
else if (memo[idx2].args == args)
|
|
return memo[idx2].res;
|
|
else if (idx1 != idx2)
|
|
memo[idx2] = memo[idx1];
|
|
|
|
memo[idx1] = Value(args, fun(args));
|
|
return memo[idx1].res;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* To _memoize a recursive function, simply insert the memoized call in lieu of the plain recursive call.
|
|
* For example, to transform the exponential-time Fibonacci implementation into a linear-time computation:
|
|
*/
|
|
@safe nothrow
|
|
unittest
|
|
{
|
|
ulong fib(ulong n) @safe nothrow
|
|
{
|
|
return n < 2 ? n : memoize!fib(n - 2) + memoize!fib(n - 1);
|
|
}
|
|
assert(fib(10) == 55);
|
|
}
|
|
|
|
/**
|
|
* To improve the speed of the factorial function,
|
|
*/
|
|
@safe unittest
|
|
{
|
|
ulong fact(ulong n) @safe
|
|
{
|
|
return n < 2 ? 1 : n * memoize!fact(n - 1);
|
|
}
|
|
assert(fact(10) == 3628800);
|
|
}
|
|
|
|
/**
|
|
* This memoizes all values of `fact` up to the largest argument. To only cache the final
|
|
* result, move `memoize` outside the function as shown below.
|
|
*/
|
|
@safe unittest
|
|
{
|
|
ulong factImpl(ulong n) @safe
|
|
{
|
|
return n < 2 ? 1 : n * factImpl(n - 1);
|
|
}
|
|
alias fact = memoize!factImpl;
|
|
assert(fact(10) == 3628800);
|
|
}
|
|
|
|
/**
|
|
* When the `maxSize` parameter is specified, memoize will used
|
|
* a fixed size hash table to limit the number of cached entries.
|
|
*/
|
|
@system unittest // not @safe due to memoize
|
|
{
|
|
ulong fact(ulong n)
|
|
{
|
|
// Memoize no more than 8 values
|
|
return n < 2 ? 1 : n * memoize!(fact, 8)(n - 1);
|
|
}
|
|
assert(fact(8) == 40320);
|
|
// using more entries than maxSize will overwrite existing entries
|
|
assert(fact(10) == 3628800);
|
|
}
|
|
|
|
@system unittest // not @safe due to memoize
|
|
{
|
|
import core.math : sqrt;
|
|
alias msqrt = memoize!(function double(double x) { return sqrt(x); });
|
|
auto y = msqrt(2.0);
|
|
assert(y == msqrt(2.0));
|
|
y = msqrt(4.0);
|
|
assert(y == sqrt(4.0));
|
|
|
|
// alias mrgb2cmyk = memoize!rgb2cmyk;
|
|
// auto z = mrgb2cmyk([43, 56, 76]);
|
|
// assert(z == mrgb2cmyk([43, 56, 76]));
|
|
|
|
//alias mfib = memoize!fib;
|
|
|
|
static ulong fib(ulong n) @safe
|
|
{
|
|
alias mfib = memoize!fib;
|
|
return n < 2 ? 1 : mfib(n - 2) + mfib(n - 1);
|
|
}
|
|
|
|
auto z = fib(10);
|
|
assert(z == 89);
|
|
|
|
static ulong fact(ulong n) @safe
|
|
{
|
|
alias mfact = memoize!fact;
|
|
return n < 2 ? 1 : n * mfact(n - 1);
|
|
}
|
|
assert(fact(10) == 3628800);
|
|
|
|
// https://issues.dlang.org/show_bug.cgi?id=12568
|
|
static uint len2(const string s) { // Error
|
|
alias mLen2 = memoize!len2;
|
|
if (s.length == 0)
|
|
return 0;
|
|
else
|
|
return 1 + mLen2(s[1 .. $]);
|
|
}
|
|
|
|
int _func(int x) @safe { return 1; }
|
|
alias func = memoize!(_func, 10);
|
|
assert(func(int.init) == 1);
|
|
assert(func(int.init) == 1);
|
|
}
|
|
|
|
// https://issues.dlang.org/show_bug.cgi?id=16079
|
|
// memoize should work with arrays
|
|
@system unittest // not @safe with -dip1000 due to memoize
|
|
{
|
|
int executed = 0;
|
|
T median(T)(const T[] nums) {
|
|
import std.algorithm.sorting : sort;
|
|
executed++;
|
|
auto arr = nums.dup;
|
|
arr.sort();
|
|
if (arr.length % 2)
|
|
return arr[$ / 2];
|
|
else
|
|
return (arr[$ / 2 - 1]
|
|
+ arr[$ / 2]) / 2;
|
|
}
|
|
|
|
alias fastMedian = memoize!(median!int);
|
|
|
|
assert(fastMedian([7, 5, 3]) == 5);
|
|
assert(fastMedian([7, 5, 3]) == 5);
|
|
|
|
assert(executed == 1);
|
|
}
|
|
|
|
// https://issues.dlang.org/show_bug.cgi?id=16079: memoize should work with structs
|
|
@safe unittest
|
|
{
|
|
int executed = 0;
|
|
T pickFirst(T)(T first)
|
|
{
|
|
executed++;
|
|
return first;
|
|
}
|
|
|
|
struct Foo { int k; }
|
|
Foo A = Foo(3);
|
|
|
|
alias first = memoize!(pickFirst!Foo);
|
|
assert(first(Foo(3)) == A);
|
|
assert(first(Foo(3)) == A);
|
|
assert(executed == 1);
|
|
}
|
|
|
|
// https://issues.dlang.org/show_bug.cgi?id=20439 memoize should work with void opAssign
|
|
@safe unittest
|
|
{
|
|
static struct S
|
|
{
|
|
void opAssign(S) {}
|
|
}
|
|
|
|
assert(memoize!(() => S()) == S());
|
|
}
|
|
|
|
// https://issues.dlang.org/show_bug.cgi?id=16079: memoize should work with classes
|
|
@system unittest // not @safe with -dip1000 due to memoize
|
|
{
|
|
int executed = 0;
|
|
T pickFirst(T)(T first)
|
|
{
|
|
executed++;
|
|
return first;
|
|
}
|
|
|
|
class Bar
|
|
{
|
|
size_t k;
|
|
this(size_t k)
|
|
{
|
|
this.k = k;
|
|
}
|
|
override size_t toHash()
|
|
{
|
|
return k;
|
|
}
|
|
override bool opEquals(Object o)
|
|
{
|
|
auto b = cast(Bar) o;
|
|
return b && k == b.k;
|
|
}
|
|
}
|
|
|
|
alias firstClass = memoize!(pickFirst!Bar);
|
|
assert(firstClass(new Bar(3)).k == 3);
|
|
assert(firstClass(new Bar(3)).k == 3);
|
|
assert(executed == 1);
|
|
}
|
|
|
|
// https://issues.dlang.org/show_bug.cgi?id=20302
|
|
@system unittest
|
|
{
|
|
version (none) // TODO change `none` to `all` and fix remaining limitations
|
|
struct S { const int len; }
|
|
else
|
|
struct S { int len; }
|
|
|
|
static string fun000( string str, S s) { return str[0 .. s.len] ~ "123"; }
|
|
static string fun001( string str, const S s) { return str[0 .. s.len] ~ "123"; }
|
|
static string fun010(const string str, S s) { return str[0 .. s.len] ~ "123"; }
|
|
static string fun011(const string str, const S s) { return str[0 .. s.len] ~ "123"; }
|
|
static const(string) fun100( string str, S s) { return str[0 .. s.len] ~ "123"; }
|
|
static const(string) fun101( string str, const S s) { return str[0 .. s.len] ~ "123"; }
|
|
static const(string) fun110(const string str, S s) { return str[0 .. s.len] ~ "123"; }
|
|
static const(string) fun111(const string str, const S s) { return str[0 .. s.len] ~ "123"; }
|
|
|
|
static foreach (fun; AliasSeq!(fun000, fun001, fun010, fun011, fun100, fun101, fun110, fun111))
|
|
{{
|
|
alias mfun = memoize!fun;
|
|
assert(mfun("abcdefgh", S(3)) == "abc123");
|
|
|
|
alias mfun2 = memoize!(fun, 42);
|
|
assert(mfun2("asd", S(3)) == "asd123");
|
|
}}
|
|
}
|
|
|
|
private struct DelegateFaker(F)
|
|
{
|
|
import std.typecons : FuncInfo, MemberFunctionGenerator;
|
|
|
|
// for @safe
|
|
static F castToF(THIS)(THIS x) @trusted
|
|
{
|
|
return cast(F) x;
|
|
}
|
|
|
|
/*
|
|
* What all the stuff below does is this:
|
|
*--------------------
|
|
* struct DelegateFaker(F) {
|
|
* extern(linkage)
|
|
* [ref] ReturnType!F doIt(Parameters!F args) [@attributes]
|
|
* {
|
|
* auto fp = cast(F) &this;
|
|
* return fp(args);
|
|
* }
|
|
* }
|
|
*--------------------
|
|
*/
|
|
|
|
// We will use MemberFunctionGenerator in std.typecons. This is a policy
|
|
// configuration for generating the doIt().
|
|
template GeneratingPolicy()
|
|
{
|
|
// Inform the genereator that we only have type information.
|
|
enum WITHOUT_SYMBOL = true;
|
|
|
|
// Generate the function body of doIt().
|
|
template generateFunctionBody(unused...)
|
|
{
|
|
enum generateFunctionBody =
|
|
// [ref] ReturnType doIt(Parameters args) @attributes
|
|
q{
|
|
// When this function gets called, the this pointer isn't
|
|
// really a this pointer (no instance even really exists), but
|
|
// a function pointer that points to the function to be called.
|
|
// Cast it to the correct type and call it.
|
|
|
|
auto fp = castToF(&this);
|
|
return fp(args);
|
|
};
|
|
}
|
|
}
|
|
// Type information used by the generated code.
|
|
alias FuncInfo_doIt = FuncInfo!(F);
|
|
|
|
// Generate the member function doIt().
|
|
mixin( MemberFunctionGenerator!(GeneratingPolicy!())
|
|
.generateFunction!("FuncInfo_doIt", "doIt", F) );
|
|
}
|
|
|
|
/**
|
|
* Convert a callable to a delegate with the same parameter list and
|
|
* return type, avoiding heap allocations and use of auxiliary storage.
|
|
*
|
|
* Params:
|
|
* fp = a function pointer or an aggregate type with `opCall` defined.
|
|
* Returns:
|
|
* A delegate with the context pointer pointing to nothing.
|
|
*
|
|
* Example:
|
|
* ----
|
|
* void doStuff() {
|
|
* writeln("Hello, world.");
|
|
* }
|
|
*
|
|
* void runDelegate(void delegate() myDelegate) {
|
|
* myDelegate();
|
|
* }
|
|
*
|
|
* auto delegateToPass = toDelegate(&doStuff);
|
|
* runDelegate(delegateToPass); // Calls doStuff, prints "Hello, world."
|
|
* ----
|
|
*
|
|
* BUGS:
|
|
* $(UL
|
|
* $(LI Does not work with `@safe` functions.)
|
|
* $(LI Ignores C-style / D-style variadic arguments.)
|
|
* )
|
|
*/
|
|
auto toDelegate(F)(auto ref F fp)
|
|
if (isCallable!(F))
|
|
{
|
|
static if (is(F == delegate))
|
|
{
|
|
return fp;
|
|
}
|
|
else static if (is(typeof(&F.opCall) == delegate)
|
|
|| (is(typeof(&F.opCall) V : V*) && is(V == function)))
|
|
{
|
|
return toDelegate(&fp.opCall);
|
|
}
|
|
else
|
|
{
|
|
alias DelType = typeof(&(new DelegateFaker!(F)).doIt);
|
|
|
|
static struct DelegateFields {
|
|
union {
|
|
DelType del;
|
|
//pragma(msg, typeof(del));
|
|
|
|
struct {
|
|
void* contextPtr;
|
|
void* funcPtr;
|
|
}
|
|
}
|
|
}
|
|
|
|
// fp is stored in the returned delegate's context pointer.
|
|
// The returned delegate's function pointer points to
|
|
// DelegateFaker.doIt.
|
|
DelegateFields df;
|
|
|
|
df.contextPtr = cast(void*) fp;
|
|
|
|
DelegateFaker!(F) dummy;
|
|
auto dummyDel = &dummy.doIt;
|
|
df.funcPtr = dummyDel.funcptr;
|
|
|
|
return df.del;
|
|
}
|
|
}
|
|
|
|
///
|
|
@system unittest
|
|
{
|
|
static int inc(ref uint num) {
|
|
num++;
|
|
return 8675309;
|
|
}
|
|
|
|
uint myNum = 0;
|
|
auto incMyNumDel = toDelegate(&inc);
|
|
auto returnVal = incMyNumDel(myNum);
|
|
assert(myNum == 1);
|
|
}
|
|
|
|
@system unittest // not @safe due to toDelegate
|
|
{
|
|
static int inc(ref uint num) {
|
|
num++;
|
|
return 8675309;
|
|
}
|
|
|
|
uint myNum = 0;
|
|
auto incMyNumDel = toDelegate(&inc);
|
|
int delegate(ref uint) dg = incMyNumDel;
|
|
auto returnVal = incMyNumDel(myNum);
|
|
assert(myNum == 1);
|
|
|
|
interface I { int opCall(); }
|
|
class C: I { int opCall() { inc(myNum); return myNum;} }
|
|
auto c = new C;
|
|
auto i = cast(I) c;
|
|
|
|
auto getvalc = toDelegate(c);
|
|
assert(getvalc() == 2);
|
|
|
|
auto getvali = toDelegate(i);
|
|
assert(getvali() == 3);
|
|
|
|
struct S1 { int opCall() { inc(myNum); return myNum; } }
|
|
static assert(!is(typeof(&s1.opCall) == delegate));
|
|
S1 s1;
|
|
auto getvals1 = toDelegate(s1);
|
|
assert(getvals1() == 4);
|
|
|
|
struct S2 { static int opCall() { return 123456; } }
|
|
static assert(!is(typeof(&S2.opCall) == delegate));
|
|
S2 s2;
|
|
auto getvals2 =&S2.opCall;
|
|
assert(getvals2() == 123456);
|
|
|
|
/* test for attributes */
|
|
{
|
|
static int refvar = 0xDeadFace;
|
|
|
|
static ref int func_ref() { return refvar; }
|
|
static int func_pure() pure { return 1; }
|
|
static int func_nothrow() nothrow { return 2; }
|
|
static int func_property() @property { return 3; }
|
|
static int func_safe() @safe { return 4; }
|
|
static int func_trusted() @trusted { return 5; }
|
|
static int func_system() @system { return 6; }
|
|
static int func_pure_nothrow() pure nothrow { return 7; }
|
|
static int func_pure_nothrow_safe() pure nothrow @safe { return 8; }
|
|
|
|
auto dg_ref = toDelegate(&func_ref);
|
|
int delegate() pure dg_pure = toDelegate(&func_pure);
|
|
int delegate() nothrow dg_nothrow = toDelegate(&func_nothrow);
|
|
int delegate() @property dg_property = toDelegate(&func_property);
|
|
int delegate() @safe dg_safe = toDelegate(&func_safe);
|
|
int delegate() @trusted dg_trusted = toDelegate(&func_trusted);
|
|
int delegate() @system dg_system = toDelegate(&func_system);
|
|
int delegate() pure nothrow dg_pure_nothrow = toDelegate(&func_pure_nothrow);
|
|
int delegate() @safe pure nothrow dg_pure_nothrow_safe = toDelegate(&func_pure_nothrow_safe);
|
|
|
|
//static assert(is(typeof(dg_ref) == ref int delegate())); // [BUG@DMD]
|
|
|
|
assert(dg_ref() == refvar);
|
|
assert(dg_pure() == 1);
|
|
assert(dg_nothrow() == 2);
|
|
assert(dg_property() == 3);
|
|
assert(dg_safe() == 4);
|
|
assert(dg_trusted() == 5);
|
|
assert(dg_system() == 6);
|
|
assert(dg_pure_nothrow() == 7);
|
|
assert(dg_pure_nothrow_safe() == 8);
|
|
}
|
|
/* test for linkage */
|
|
{
|
|
struct S
|
|
{
|
|
extern(C) static void xtrnC() {}
|
|
extern(D) static void xtrnD() {}
|
|
}
|
|
auto dg_xtrnC = toDelegate(&S.xtrnC);
|
|
auto dg_xtrnD = toDelegate(&S.xtrnD);
|
|
static assert(! is(typeof(dg_xtrnC) == typeof(dg_xtrnD)));
|
|
}
|
|
}
|