phobos/internal/arrayint.d
2010-05-22 21:04:09 +00:00

2428 lines
63 KiB
D

/***************************
* D programming language http://www.digitalmars.com/d/
* Runtime support for byte array operations.
* Based on code originally written by Burton Radons.
* Placed in public domain.
*/
/* Contains MMX versions of certain operations for dchar, int,
* and uint ('w', 'i' and 'k' suffixes).
*/
import std.cpuid;
version (Unittest)
{
/* This is so unit tests will test every CPU variant
*/
int cpuid;
const int CPUID_MAX = 4;
bool mmx() { return cpuid == 1 && std.cpuid.mmx(); }
bool sse() { return cpuid == 2 && std.cpuid.sse(); }
bool sse2() { return cpuid == 3 && std.cpuid.sse2(); }
bool amd3dnow() { return cpuid == 4 && std.cpuid.amd3dnow(); }
}
else
{
alias std.cpuid.mmx mmx;
alias std.cpuid.sse sse;
alias std.cpuid.sse2 sse2;
alias std.cpuid.amd3dnow amd3dnow;
}
//version = log;
bool disjoint(T)(T[] a, T[] b)
{
return (a.ptr + a.length <= b.ptr || b.ptr + b.length <= a.ptr);
}
alias int T;
extern (C):
/* ======================================================================== */
/***********************
* Computes:
* a[] = b[] + value
*/
T[] _arraySliceExpAddSliceAssign_w(T[] a, T value, T[] b)
{
return _arraySliceExpAddSliceAssign_i(a, value, b);
}
T[] _arraySliceExpAddSliceAssign_k(T[] a, T value, T[] b)
{
return _arraySliceExpAddSliceAssign_i(a, value, b);
}
T[] _arraySliceExpAddSliceAssign_i(T[] a, T value, T[] b)
in
{
assert(a.length == b.length);
assert(disjoint(a, b));
}
body
{
//printf("_arraySliceExpAddSliceAssign_i()\n");
auto aptr = a.ptr;
auto aend = aptr + a.length;
auto bptr = b.ptr;
version (D_InlineAsm_X86)
{
// SSE2 aligned version is 380% faster
if (sse2() && a.length >= 8)
{
auto n = aptr + (a.length & ~7);
uint l = value;
if (((cast(uint) aptr | cast(uint) bptr) & 15) != 0)
{
asm // unaligned case
{
mov ESI, aptr;
mov EDI, n;
mov EAX, bptr;
movd XMM2, l;
pshufd XMM2, XMM2, 0;
align 4;
startaddsse2u:
add ESI, 32;
movdqu XMM0, [EAX];
movdqu XMM1, [EAX+16];
add EAX, 32;
paddd XMM0, XMM2;
paddd XMM1, XMM2;
movdqu [ESI -32], XMM0;
movdqu [ESI+16-32], XMM1;
cmp ESI, EDI;
jb startaddsse2u;
mov aptr, ESI;
mov bptr, EAX;
}
}
else
{
asm // aligned case
{
mov ESI, aptr;
mov EDI, n;
mov EAX, bptr;
movd XMM2, l;
pshufd XMM2, XMM2, 0;
align 4;
startaddsse2a:
add ESI, 32;
movdqa XMM0, [EAX];
movdqa XMM1, [EAX+16];
add EAX, 32;
paddd XMM0, XMM2;
paddd XMM1, XMM2;
movdqa [ESI -32], XMM0;
movdqa [ESI+16-32], XMM1;
cmp ESI, EDI;
jb startaddsse2a;
mov aptr, ESI;
mov bptr, EAX;
}
}
}
else
// MMX version is 298% faster
if (mmx() && a.length >= 4)
{
auto n = aptr + (a.length & ~3);
ulong l = cast(uint) value | (cast(ulong)cast(uint) value << 32);
asm
{
mov ESI, aptr;
mov EDI, n;
mov EAX, bptr;
movq MM2, l;
align 4;
startmmx:
add ESI, 16;
movq MM0, [EAX];
movq MM1, [EAX+8];
add EAX, 16;
paddd MM0, MM2;
paddd MM1, MM2;
movq [ESI -16], MM0;
movq [ESI+8-16], MM1;
cmp ESI, EDI;
jb startmmx;
emms;
mov aptr, ESI;
mov bptr, EAX;
}
}
else
if (a.length >= 2)
{
auto n = aptr + (a.length & ~1);
asm
{
mov ESI, aptr;
mov EDI, n;
mov EAX, bptr;
mov EDX, value;
align 4;
start386:
add ESI, 8;
mov EBX, [EAX];
mov ECX, [EAX+4];
add EAX, 8;
add EBX, EDX;
add ECX, EDX;
mov [ESI -8], EBX;
mov [ESI+4-8], ECX;
cmp ESI, EDI;
jb start386;
mov aptr, ESI;
mov bptr, EAX;
}
}
}
while (aptr < aend)
*aptr++ = *bptr++ + value;
return a;
}
unittest
{
printf("_arraySliceExpAddSliceAssign_i unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
c[] = a[] + 6;
for (int i = 0; i < dim; i++)
{
if (c[i] != cast(T)(a[i] + 6))
{
printf("[%d]: %d != %d + 6\n", i, c[i], a[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/***********************
* Computes:
* a[] = b[] + c[]
*/
T[] _arraySliceSliceAddSliceAssign_w(T[] a, T[] c, T[] b)
{
return _arraySliceSliceAddSliceAssign_i(a, c, b);
}
T[] _arraySliceSliceAddSliceAssign_k(T[] a, T[] c, T[] b)
{
return _arraySliceSliceAddSliceAssign_i(a, c, b);
}
T[] _arraySliceSliceAddSliceAssign_i(T[] a, T[] c, T[] b)
in
{
assert(a.length == b.length && b.length == c.length);
assert(disjoint(a, b));
assert(disjoint(a, c));
assert(disjoint(b, c));
}
body
{
//printf("_arraySliceSliceAddSliceAssign_i()\n");
auto aptr = a.ptr;
auto aend = aptr + a.length;
auto bptr = b.ptr;
auto cptr = c.ptr;
version (D_InlineAsm_X86)
{
// SSE2 aligned version is 1710% faster
if (sse2() && a.length >= 8)
{
auto n = aptr + (a.length & ~7);
if (((cast(uint) aptr | cast(uint) bptr | cast(uint) cptr) & 15) != 0)
{
asm // unaligned case
{
mov ESI, aptr;
mov EDI, n;
mov EAX, bptr;
mov ECX, cptr;
align 4;
startsse2u:
add ESI, 32;
movdqu XMM0, [EAX];
movdqu XMM2, [ECX];
movdqu XMM1, [EAX+16];
movdqu XMM3, [ECX+16];
add EAX, 32;
add ECX, 32;
paddd XMM0, XMM2;
paddd XMM1, XMM3;
movdqu [ESI -32], XMM0;
movdqu [ESI+16-32], XMM1;
cmp ESI, EDI;
jb startsse2u;
mov aptr, ESI;
mov bptr, EAX;
mov cptr, ECX;
}
}
else
{
asm // aligned case
{
mov ESI, aptr;
mov EDI, n;
mov EAX, bptr;
mov ECX, cptr;
align 4;
startsse2a:
add ESI, 32;
movdqa XMM0, [EAX];
movdqa XMM2, [ECX];
movdqa XMM1, [EAX+16];
movdqa XMM3, [ECX+16];
add EAX, 32;
add ECX, 32;
paddd XMM0, XMM2;
paddd XMM1, XMM3;
movdqa [ESI -32], XMM0;
movdqa [ESI+16-32], XMM1;
cmp ESI, EDI;
jb startsse2a;
mov aptr, ESI;
mov bptr, EAX;
mov cptr, ECX;
}
}
}
else
// MMX version is 995% faster
if (mmx() && a.length >= 4)
{
auto n = aptr + (a.length & ~3);
asm
{
mov ESI, aptr;
mov EDI, n;
mov EAX, bptr;
mov ECX, cptr;
align 4;
startmmx:
add ESI, 16;
movq MM0, [EAX];
movq MM2, [ECX];
movq MM1, [EAX+8];
movq MM3, [ECX+8];
add EAX, 16;
add ECX, 16;
paddd MM0, MM2;
paddd MM1, MM3;
movq [ESI -16], MM0;
movq [ESI+8-16], MM1;
cmp ESI, EDI;
jb startmmx;
emms;
mov aptr, ESI;
mov bptr, EAX;
mov cptr, ECX;
}
}
}
normal:
while (aptr < aend)
*aptr++ = *bptr++ + *cptr++;
return a;
}
unittest
{
printf("_arraySliceSliceAddSliceAssign_i unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
c[] = a[] + b[];
for (int i = 0; i < dim; i++)
{
if (c[i] != cast(T)(a[i] + b[i]))
{
printf("[%d]: %d != %d + %d\n", i, c[i], a[i], b[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/***********************
* Computes:
* a[] += value
*/
T[] _arrayExpSliceAddass_w(T[] a, T value)
{
return _arrayExpSliceAddass_i(a, value);
}
T[] _arrayExpSliceAddass_k(T[] a, T value)
{
return _arrayExpSliceAddass_i(a, value);
}
T[] _arrayExpSliceAddass_i(T[] a, T value)
{
//printf("_arrayExpSliceAddass_i(a.length = %d, value = %Lg)\n", a.length, cast(real)value);
auto aptr = a.ptr;
auto aend = aptr + a.length;
version (D_InlineAsm_X86)
{
// SSE2 aligned version is 83% faster
if (sse2() && a.length >= 8)
{
auto n = aptr + (a.length & ~7);
uint l = value;
if (((cast(uint) aptr) & 15) != 0)
{
asm // unaligned case
{
mov ESI, aptr;
mov EDI, n;
movd XMM2, l;
pshufd XMM2, XMM2, 0;
align 4;
startaddsse2u:
movdqu XMM0, [ESI];
movdqu XMM1, [ESI+16];
add ESI, 32;
paddd XMM0, XMM2;
paddd XMM1, XMM2;
movdqu [ESI -32], XMM0;
movdqu [ESI+16-32], XMM1;
cmp ESI, EDI;
jb startaddsse2u;
mov aptr, ESI;
}
}
else
{
asm // aligned case
{
mov ESI, aptr;
mov EDI, n;
movd XMM2, l;
pshufd XMM2, XMM2, 0;
align 4;
startaddsse2a:
movdqa XMM0, [ESI];
movdqa XMM1, [ESI+16];
add ESI, 32;
paddd XMM0, XMM2;
paddd XMM1, XMM2;
movdqa [ESI -32], XMM0;
movdqa [ESI+16-32], XMM1;
cmp ESI, EDI;
jb startaddsse2a;
mov aptr, ESI;
}
}
}
else
// MMX version is 81% faster
if (mmx() && a.length >= 4)
{
auto n = aptr + (a.length & ~3);
ulong l = cast(uint) value | (cast(ulong)cast(uint) value << 32);
asm
{
mov ESI, aptr;
mov EDI, n;
movq MM2, l;
align 4;
startmmx:
movq MM0, [ESI];
movq MM1, [ESI+8];
add ESI, 16;
paddd MM0, MM2;
paddd MM1, MM2;
movq [ESI -16], MM0;
movq [ESI+8-16], MM1;
cmp ESI, EDI;
jb startmmx;
emms;
mov aptr, ESI;
}
}
else
if (a.length >= 2)
{
auto n = aptr + (a.length & ~1);
asm
{
mov ESI, aptr;
mov EDI, n;
mov EDX, value;
align 4;
start386:
mov EBX, [ESI];
mov ECX, [ESI+4];
add ESI, 8;
add EBX, EDX;
add ECX, EDX;
mov [ESI -8], EBX;
mov [ESI+4-8], ECX;
cmp ESI, EDI;
jb start386;
mov aptr, ESI;
}
}
}
while (aptr < aend)
*aptr++ += value;
return a;
}
unittest
{
printf("_arrayExpSliceAddass_i unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
a[] = c[];
a[] += 6;
for (int i = 0; i < dim; i++)
{
if (a[i] != cast(T)(c[i] + 6))
{
printf("[%d]: %d != %d + 6\n", i, a[i], c[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/***********************
* Computes:
* a[] += b[]
*/
T[] _arraySliceSliceAddass_w(T[] a, T[] b)
{
return _arraySliceSliceAddass_i(a, b);
}
T[] _arraySliceSliceAddass_k(T[] a, T[] b)
{
return _arraySliceSliceAddass_i(a, b);
}
T[] _arraySliceSliceAddass_i(T[] a, T[] b)
in
{
assert (a.length == b.length);
assert (disjoint(a, b));
}
body
{
//printf("_arraySliceSliceAddass_i()\n");
auto aptr = a.ptr;
auto aend = aptr + a.length;
auto bptr = b.ptr;
version (D_InlineAsm_X86)
{
// SSE2 aligned version is 695% faster
if (sse2() && a.length >= 8)
{
auto n = aptr + (a.length & ~7);
if (((cast(uint) aptr | cast(uint) bptr) & 15) != 0)
{
asm // unaligned case
{
mov ESI, aptr;
mov EDI, n;
mov ECX, bptr;
align 4;
startsse2u:
movdqu XMM0, [ESI];
movdqu XMM2, [ECX];
movdqu XMM1, [ESI+16];
movdqu XMM3, [ECX+16];
add ESI, 32;
add ECX, 32;
paddd XMM0, XMM2;
paddd XMM1, XMM3;
movdqu [ESI -32], XMM0;
movdqu [ESI+16-32], XMM1;
cmp ESI, EDI;
jb startsse2u;
mov aptr, ESI;
mov bptr, ECX;
}
}
else
{
asm // aligned case
{
mov ESI, aptr;
mov EDI, n;
mov ECX, bptr;
align 4;
startsse2a:
movdqa XMM0, [ESI];
movdqa XMM2, [ECX];
movdqa XMM1, [ESI+16];
movdqa XMM3, [ECX+16];
add ESI, 32;
add ECX, 32;
paddd XMM0, XMM2;
paddd XMM1, XMM3;
movdqa [ESI -32], XMM0;
movdqa [ESI+16-32], XMM1;
cmp ESI, EDI;
jb startsse2a;
mov aptr, ESI;
mov bptr, ECX;
}
}
}
else
// MMX version is 471% faster
if (mmx() && a.length >= 4)
{
auto n = aptr + (a.length & ~3);
asm
{
mov ESI, aptr;
mov EDI, n;
mov ECX, bptr;
align 4;
startmmx:
movq MM0, [ESI];
movq MM2, [ECX];
movq MM1, [ESI+8];
movq MM3, [ECX+8];
add ESI, 16;
add ECX, 16;
paddd MM0, MM2;
paddd MM1, MM3;
movq [ESI -16], MM0;
movq [ESI+8-16], MM1;
cmp ESI, EDI;
jb startmmx;
emms;
mov aptr, ESI;
mov bptr, ECX;
}
}
}
normal:
while (aptr < aend)
*aptr++ += *bptr++;
return a;
}
unittest
{
printf("_arraySliceSliceAddass_i unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
b[] = c[];
c[] += a[];
for (int i = 0; i < dim; i++)
{
if (c[i] != cast(T)(b[i] + a[i]))
{
printf("[%d]: %d != %d + %d\n", i, c[i], b[i], a[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/***********************
* Computes:
* a[] = b[] - value
*/
T[] _arraySliceExpMinSliceAssign_w(T[] a, T value, T[] b)
{
return _arraySliceExpMinSliceAssign_i(a, value, b);
}
T[] _arraySliceExpMinSliceAssign_k(T[] a, T value, T[] b)
{
return _arraySliceExpMinSliceAssign_i(a, value, b);
}
T[] _arraySliceExpMinSliceAssign_i(T[] a, T value, T[] b)
in
{
assert(a.length == b.length);
assert(disjoint(a, b));
}
body
{
//printf("_arraySliceExpMinSliceAssign_i()\n");
auto aptr = a.ptr;
auto aend = aptr + a.length;
auto bptr = b.ptr;
version (D_InlineAsm_X86)
{
// SSE2 aligned version is 400% faster
if (sse2() && a.length >= 8)
{
auto n = aptr + (a.length & ~7);
uint l = value;
if (((cast(uint) aptr | cast(uint) bptr) & 15) != 0)
{
asm // unaligned case
{
mov ESI, aptr;
mov EDI, n;
mov EAX, bptr;
movd XMM2, l;
pshufd XMM2, XMM2, 0;
align 4;
startaddsse2u:
add ESI, 32;
movdqu XMM0, [EAX];
movdqu XMM1, [EAX+16];
add EAX, 32;
psubd XMM0, XMM2;
psubd XMM1, XMM2;
movdqu [ESI -32], XMM0;
movdqu [ESI+16-32], XMM1;
cmp ESI, EDI;
jb startaddsse2u;
mov aptr, ESI;
mov bptr, EAX;
}
}
else
{
asm // aligned case
{
mov ESI, aptr;
mov EDI, n;
mov EAX, bptr;
movd XMM2, l;
pshufd XMM2, XMM2, 0;
align 4;
startaddsse2a:
add ESI, 32;
movdqa XMM0, [EAX];
movdqa XMM1, [EAX+16];
add EAX, 32;
psubd XMM0, XMM2;
psubd XMM1, XMM2;
movdqa [ESI -32], XMM0;
movdqa [ESI+16-32], XMM1;
cmp ESI, EDI;
jb startaddsse2a;
mov aptr, ESI;
mov bptr, EAX;
}
}
}
else
// MMX version is 315% faster
if (mmx() && a.length >= 4)
{
auto n = aptr + (a.length & ~3);
ulong l = cast(uint) value | (cast(ulong)cast(uint) value << 32);
asm
{
mov ESI, aptr;
mov EDI, n;
mov EAX, bptr;
movq MM2, l;
align 4;
startmmx:
add ESI, 16;
movq MM0, [EAX];
movq MM1, [EAX+8];
add EAX, 16;
psubd MM0, MM2;
psubd MM1, MM2;
movq [ESI -16], MM0;
movq [ESI+8-16], MM1;
cmp ESI, EDI;
jb startmmx;
emms;
mov aptr, ESI;
mov bptr, EAX;
}
}
else
if (a.length >= 2)
{
auto n = aptr + (a.length & ~1);
asm
{
mov ESI, aptr;
mov EDI, n;
mov EAX, bptr;
mov EDX, value;
align 4;
start386:
add ESI, 8;
mov EBX, [EAX];
mov ECX, [EAX+4];
add EAX, 8;
sub EBX, EDX;
sub ECX, EDX;
mov [ESI -8], EBX;
mov [ESI+4-8], ECX;
cmp ESI, EDI;
jb start386;
mov aptr, ESI;
mov bptr, EAX;
}
}
}
while (aptr < aend)
*aptr++ = *bptr++ - value;
return a;
}
unittest
{
printf("_arraySliceExpMinSliceAssign_i unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
c[] = a[] - 6;
for (int i = 0; i < dim; i++)
{
if (c[i] != cast(T)(a[i] - 6))
{
printf("[%d]: %d != %d - 6\n", i, c[i], a[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/***********************
* Computes:
* a[] = value - b[]
*/
T[] _arrayExpSliceMinSliceAssign_w(T[] a, T[] b, T value)
{
return _arrayExpSliceMinSliceAssign_i(a, b, value);
}
T[] _arrayExpSliceMinSliceAssign_k(T[] a, T[] b, T value)
{
return _arrayExpSliceMinSliceAssign_i(a, b, value);
}
T[] _arrayExpSliceMinSliceAssign_i(T[] a, T[] b, T value)
in
{
assert(a.length == b.length);
assert(disjoint(a, b));
}
body
{
//printf("_arrayExpSliceMinSliceAssign_i()\n");
auto aptr = a.ptr;
auto aend = aptr + a.length;
auto bptr = b.ptr;
version (D_InlineAsm_X86)
{
// SSE2 aligned version is 1812% faster
if (sse2() && a.length >= 8)
{
auto n = aptr + (a.length & ~7);
uint l = value;
if (((cast(uint) aptr | cast(uint) bptr) & 15) != 0)
{
asm // unaligned case
{
mov ESI, aptr;
mov EDI, n;
mov EAX, bptr;
movd XMM4, l;
pshufd XMM4, XMM4, 0;
align 4;
startaddsse2u:
add ESI, 32;
movdqu XMM2, [EAX];
movdqu XMM3, [EAX+16];
movdqa XMM0, XMM4;
movdqa XMM1, XMM4;
add EAX, 32;
psubd XMM0, XMM2;
psubd XMM1, XMM3;
movdqu [ESI -32], XMM0;
movdqu [ESI+16-32], XMM1;
cmp ESI, EDI;
jb startaddsse2u;
mov aptr, ESI;
mov bptr, EAX;
}
}
else
{
asm // aligned case
{
mov ESI, aptr;
mov EDI, n;
mov EAX, bptr;
movd XMM4, l;
pshufd XMM4, XMM4, 0;
align 4;
startaddsse2a:
add ESI, 32;
movdqa XMM2, [EAX];
movdqa XMM3, [EAX+16];
movdqa XMM0, XMM4;
movdqa XMM1, XMM4;
add EAX, 32;
psubd XMM0, XMM2;
psubd XMM1, XMM3;
movdqa [ESI -32], XMM0;
movdqa [ESI+16-32], XMM1;
cmp ESI, EDI;
jb startaddsse2a;
mov aptr, ESI;
mov bptr, EAX;
}
}
}
else
// MMX version is 1077% faster
if (mmx() && a.length >= 4)
{
auto n = aptr + (a.length & ~3);
ulong l = cast(uint) value | (cast(ulong)cast(uint) value << 32);
asm
{
mov ESI, aptr;
mov EDI, n;
mov EAX, bptr;
movq MM4, l;
align 4;
startmmx:
add ESI, 16;
movq MM2, [EAX];
movq MM3, [EAX+8];
movq MM0, MM4;
movq MM1, MM4;
add EAX, 16;
psubd MM0, MM2;
psubd MM1, MM3;
movq [ESI -16], MM0;
movq [ESI+8-16], MM1;
cmp ESI, EDI;
jb startmmx;
emms;
mov aptr, ESI;
mov bptr, EAX;
}
}
}
while (aptr < aend)
*aptr++ = value - *bptr++;
return a;
}
unittest
{
printf("_arrayExpSliceMinSliceAssign_i unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
c[] = 6 - a[];
for (int i = 0; i < dim; i++)
{
if (c[i] != cast(T)(6 - a[i]))
{
printf("[%d]: %d != 6 - %d\n", i, c[i], a[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/***********************
* Computes:
* a[] = b[] - c[]
*/
T[] _arraySliceSliceMinSliceAssign_w(T[] a, T[] c, T[] b)
{
return _arraySliceSliceMinSliceAssign_i(a, c, b);
}
T[] _arraySliceSliceMinSliceAssign_k(T[] a, T[] c, T[] b)
{
return _arraySliceSliceMinSliceAssign_i(a, c, b);
}
T[] _arraySliceSliceMinSliceAssign_i(T[] a, T[] c, T[] b)
in
{
assert(a.length == b.length && b.length == c.length);
assert(disjoint(a, b));
assert(disjoint(a, c));
assert(disjoint(b, c));
}
body
{
auto aptr = a.ptr;
auto aend = aptr + a.length;
auto bptr = b.ptr;
auto cptr = c.ptr;
version (D_InlineAsm_X86)
{
// SSE2 aligned version is 1721% faster
if (sse2() && a.length >= 8)
{
auto n = aptr + (a.length & ~7);
if (((cast(uint) aptr | cast(uint) bptr | cast(uint) cptr) & 15) != 0)
{
asm // unaligned case
{
mov ESI, aptr;
mov EDI, n;
mov EAX, bptr;
mov ECX, cptr;
align 4;
startsse2u:
add ESI, 32;
movdqu XMM0, [EAX];
movdqu XMM2, [ECX];
movdqu XMM1, [EAX+16];
movdqu XMM3, [ECX+16];
add EAX, 32;
add ECX, 32;
psubd XMM0, XMM2;
psubd XMM1, XMM3;
movdqu [ESI -32], XMM0;
movdqu [ESI+16-32], XMM1;
cmp ESI, EDI;
jb startsse2u;
mov aptr, ESI;
mov bptr, EAX;
mov cptr, ECX;
}
}
else
{
asm // aligned case
{
mov ESI, aptr;
mov EDI, n;
mov EAX, bptr;
mov ECX, cptr;
align 4;
startsse2a:
add ESI, 32;
movdqa XMM0, [EAX];
movdqa XMM2, [ECX];
movdqa XMM1, [EAX+16];
movdqa XMM3, [ECX+16];
add EAX, 32;
add ECX, 32;
psubd XMM0, XMM2;
psubd XMM1, XMM3;
movdqa [ESI -32], XMM0;
movdqa [ESI+16-32], XMM1;
cmp ESI, EDI;
jb startsse2a;
mov aptr, ESI;
mov bptr, EAX;
mov cptr, ECX;
}
}
}
else
// MMX version is 1002% faster
if (mmx() && a.length >= 4)
{
auto n = aptr + (a.length & ~3);
asm
{
mov ESI, aptr;
mov EDI, n;
mov EAX, bptr;
mov ECX, cptr;
align 4;
startmmx:
add ESI, 16;
movq MM0, [EAX];
movq MM2, [ECX];
movq MM1, [EAX+8];
movq MM3, [ECX+8];
add EAX, 16;
add ECX, 16;
psubd MM0, MM2;
psubd MM1, MM3;
movq [ESI -16], MM0;
movq [ESI+8-16], MM1;
cmp ESI, EDI;
jb startmmx;
emms;
mov aptr, ESI;
mov bptr, EAX;
mov cptr, ECX;
}
}
}
while (aptr < aend)
*aptr++ = *bptr++ - *cptr++;
return a;
}
unittest
{
printf("_arraySliceSliceMinSliceAssign_i unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
c[] = a[] - b[];
for (int i = 0; i < dim; i++)
{
if (c[i] != cast(T)(a[i] - b[i]))
{
printf("[%d]: %d != %d - %d\n", i, c[i], a[i], b[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/***********************
* Computes:
* a[] -= value
*/
T[] _arrayExpSliceMinass_w(T[] a, T value)
{
return _arrayExpSliceMinass_i(a, value);
}
T[] _arrayExpSliceMinass_k(T[] a, T value)
{
return _arrayExpSliceMinass_i(a, value);
}
T[] _arrayExpSliceMinass_i(T[] a, T value)
{
//printf("_arrayExpSliceMinass_i(a.length = %d, value = %Lg)\n", a.length, cast(real)value);
auto aptr = a.ptr;
auto aend = aptr + a.length;
version (D_InlineAsm_X86)
{
// SSE2 aligned version is 81% faster
if (sse2() && a.length >= 8)
{
auto n = aptr + (a.length & ~7);
uint l = value;
if (((cast(uint) aptr) & 15) != 0)
{
asm // unaligned case
{
mov ESI, aptr;
mov EDI, n;
movd XMM2, l;
pshufd XMM2, XMM2, 0;
align 4;
startaddsse2u:
movdqu XMM0, [ESI];
movdqu XMM1, [ESI+16];
add ESI, 32;
psubd XMM0, XMM2;
psubd XMM1, XMM2;
movdqu [ESI -32], XMM0;
movdqu [ESI+16-32], XMM1;
cmp ESI, EDI;
jb startaddsse2u;
mov aptr, ESI;
}
}
else
{
asm // aligned case
{
mov ESI, aptr;
mov EDI, n;
movd XMM2, l;
pshufd XMM2, XMM2, 0;
align 4;
startaddsse2a:
movdqa XMM0, [ESI];
movdqa XMM1, [ESI+16];
add ESI, 32;
psubd XMM0, XMM2;
psubd XMM1, XMM2;
movdqa [ESI -32], XMM0;
movdqa [ESI+16-32], XMM1;
cmp ESI, EDI;
jb startaddsse2a;
mov aptr, ESI;
}
}
}
else
// MMX version is 81% faster
if (mmx() && a.length >= 4)
{
auto n = aptr + (a.length & ~3);
ulong l = cast(uint) value | (cast(ulong)cast(uint) value << 32);
asm
{
mov ESI, aptr;
mov EDI, n;
movq MM2, l;
align 4;
startmmx:
movq MM0, [ESI];
movq MM1, [ESI+8];
add ESI, 16;
psubd MM0, MM2;
psubd MM1, MM2;
movq [ESI -16], MM0;
movq [ESI+8-16], MM1;
cmp ESI, EDI;
jb startmmx;
emms;
mov aptr, ESI;
}
}
else
if (a.length >= 2)
{
auto n = aptr + (a.length & ~1);
asm
{
mov ESI, aptr;
mov EDI, n;
mov EDX, value;
align 4;
start386:
mov EBX, [ESI];
mov ECX, [ESI+4];
add ESI, 8;
sub EBX, EDX;
sub ECX, EDX;
mov [ESI -8], EBX;
mov [ESI+4-8], ECX;
cmp ESI, EDI;
jb start386;
mov aptr, ESI;
}
}
}
while (aptr < aend)
*aptr++ -= value;
return a;
}
unittest
{
printf("_arrayExpSliceMinass_i unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
a[] = c[];
a[] -= 6;
for (int i = 0; i < dim; i++)
{
if (a[i] != cast(T)(c[i] - 6))
{
printf("[%d]: %d != %d - 6\n", i, a[i], c[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/***********************
* Computes:
* a[] -= b[]
*/
T[] _arraySliceSliceMinass_w(T[] a, T[] b)
{
return _arraySliceSliceMinass_i(a, b);
}
T[] _arraySliceSliceMinass_k(T[] a, T[] b)
{
return _arraySliceSliceMinass_i(a, b);
}
T[] _arraySliceSliceMinass_i(T[] a, T[] b)
in
{
assert (a.length == b.length);
assert (disjoint(a, b));
}
body
{
//printf("_arraySliceSliceMinass_i()\n");
auto aptr = a.ptr;
auto aend = aptr + a.length;
auto bptr = b.ptr;
version (D_InlineAsm_X86)
{
// SSE2 aligned version is 731% faster
if (sse2() && a.length >= 8)
{
auto n = aptr + (a.length & ~7);
if (((cast(uint) aptr | cast(uint) bptr) & 15) != 0)
{
asm // unaligned case
{
mov ESI, aptr;
mov EDI, n;
mov ECX, bptr;
align 4;
startsse2u:
movdqu XMM0, [ESI];
movdqu XMM2, [ECX];
movdqu XMM1, [ESI+16];
movdqu XMM3, [ECX+16];
add ESI, 32;
add ECX, 32;
psubd XMM0, XMM2;
psubd XMM1, XMM3;
movdqu [ESI -32], XMM0;
movdqu [ESI+16-32], XMM1;
cmp ESI, EDI;
jb startsse2u;
mov aptr, ESI;
mov bptr, ECX;
}
}
else
{
asm // aligned case
{
mov ESI, aptr;
mov EDI, n;
mov ECX, bptr;
align 4;
startsse2a:
movdqa XMM0, [ESI];
movdqa XMM2, [ECX];
movdqa XMM1, [ESI+16];
movdqa XMM3, [ECX+16];
add ESI, 32;
add ECX, 32;
psubd XMM0, XMM2;
psubd XMM1, XMM3;
movdqa [ESI -32], XMM0;
movdqa [ESI+16-32], XMM1;
cmp ESI, EDI;
jb startsse2a;
mov aptr, ESI;
mov bptr, ECX;
}
}
}
else
// MMX version is 441% faster
if (mmx() && a.length >= 4)
{
auto n = aptr + (a.length & ~3);
asm
{
mov ESI, aptr;
mov EDI, n;
mov ECX, bptr;
align 4;
startmmx:
movq MM0, [ESI];
movq MM2, [ECX];
movq MM1, [ESI+8];
movq MM3, [ECX+8];
add ESI, 16;
add ECX, 16;
psubd MM0, MM2;
psubd MM1, MM3;
movq [ESI -16], MM0;
movq [ESI+8-16], MM1;
cmp ESI, EDI;
jb startmmx;
emms;
mov aptr, ESI;
mov bptr, ECX;
}
}
}
while (aptr < aend)
*aptr++ -= *bptr++;
return a;
}
unittest
{
printf("_arraySliceSliceMinass_i unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
b[] = c[];
c[] -= a[];
for (int i = 0; i < dim; i++)
{
if (c[i] != cast(T)(b[i] - a[i]))
{
printf("[%d]: %d != %d - %d\n", i, c[i], b[i], a[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/***********************
* Computes:
* a[] = b[] * value
*/
T[] _arraySliceExpMulSliceAssign_w(T[] a, T value, T[] b)
{
return _arraySliceExpMulSliceAssign_i(a, value, b);
}
T[] _arraySliceExpMulSliceAssign_k(T[] a, T value, T[] b)
{
return _arraySliceExpMulSliceAssign_i(a, value, b);
}
T[] _arraySliceExpMulSliceAssign_i(T[] a, T value, T[] b)
in
{
assert(a.length == b.length);
assert(disjoint(a, b));
}
body
{
//printf("_arraySliceExpMulSliceAssign_i()\n");
auto aptr = a.ptr;
auto aend = aptr + a.length;
auto bptr = b.ptr;
version (none) // multiplying a pair is not supported by MMX
{
version (D_InlineAsm_X86)
{
// SSE2 aligned version is 1380% faster
if (sse2() && a.length >= 8)
{
auto n = aptr + (a.length & ~7);
uint l = value;
if (((cast(uint) aptr | cast(uint) bptr) & 15) != 0)
{
asm
{
mov ESI, aptr;
mov EDI, n;
mov EAX, bptr;
movd XMM2, l;
pshufd XMM2, XMM2, 0;
align 4;
startsse2u:
add ESI, 32;
movdqu XMM0, [EAX];
movdqu XMM1, [EAX+16];
add EAX, 32;
pmuludq XMM0, XMM2;
pmuludq XMM1, XMM2;
movdqu [ESI -32], XMM0;
movdqu [ESI+16-32], XMM1;
cmp ESI, EDI;
jb startsse2u;
mov aptr, ESI;
mov bptr, EAX;
}
}
else
{
asm
{
mov ESI, aptr;
mov EDI, n;
mov EAX, bptr;
movd XMM2, l;
pshufd XMM2, XMM2, 0;
align 4;
startsse2a:
add ESI, 32;
movdqa XMM0, [EAX];
movdqa XMM1, [EAX+16];
add EAX, 32;
pmuludq XMM0, XMM2;
pmuludq XMM1, XMM2;
movdqa [ESI -32], XMM0;
movdqa [ESI+16-32], XMM1;
cmp ESI, EDI;
jb startsse2a;
mov aptr, ESI;
mov bptr, EAX;
}
}
}
else
{
// MMX version is 1380% faster
if (mmx() && a.length >= 4)
{
auto n = aptr + (a.length & ~3);
ulong l = cast(uint) value | (cast(ulong)cast(uint) value << 32);
asm
{
mov ESI, aptr;
mov EDI, n;
mov EAX, bptr;
movq MM2, l;
align 4;
startmmx:
add ESI, 16;
movq MM0, [EAX];
movq MM1, [EAX+8];
add EAX, 16;
pmuludq MM0, MM2; // only multiplies low 32 bits
pmuludq MM1, MM2;
movq [ESI -16], MM0;
movq [ESI+8-16], MM1;
cmp ESI, EDI;
jb startmmx;
emms;
mov aptr, ESI;
mov bptr, EAX;
}
}
}
}
}
while (aptr < aend)
*aptr++ = *bptr++ * value;
return a;
}
unittest
{
printf("_arraySliceExpMulSliceAssign_s unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
c[] = a[] * 6;
for (int i = 0; i < dim; i++)
{
//printf("[%d]: %d ?= %d * 6\n", i, c[i], a[i]);
if (c[i] != cast(T)(a[i] * 6))
{
printf("[%d]: %d != %d * 6\n", i, c[i], a[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/***********************
* Computes:
* a[] = b[] * c[]
*/
T[] _arraySliceSliceMulSliceAssign_w(T[] a, T[] c, T[] b)
{
return _arraySliceSliceMulSliceAssign_i(a, c, b);
}
T[] _arraySliceSliceMulSliceAssign_k(T[] a, T[] c, T[] b)
{
return _arraySliceSliceMulSliceAssign_i(a, c, b);
}
T[] _arraySliceSliceMulSliceAssign_i(T[] a, T[] c, T[] b)
in
{
assert(a.length == b.length && b.length == c.length);
assert(disjoint(a, b));
assert(disjoint(a, c));
assert(disjoint(b, c));
}
body
{
//printf("_arraySliceSliceMulSliceAssign_i()\n");
auto aptr = a.ptr;
auto aend = aptr + a.length;
auto bptr = b.ptr;
auto cptr = c.ptr;
version (none)
{
version (D_InlineAsm_X86)
{
// SSE2 aligned version is 1407% faster
if (sse2() && a.length >= 8)
{
auto n = aptr + (a.length & ~7);
if (((cast(uint) aptr | cast(uint) bptr | cast(uint) cptr) & 15) != 0)
{
asm
{
mov ESI, aptr;
mov EDI, n;
mov EAX, bptr;
mov ECX, cptr;
align 4;
startsse2u:
add ESI, 32;
movdqu XMM0, [EAX];
movdqu XMM2, [ECX];
movdqu XMM1, [EAX+16];
movdqu XMM3, [ECX+16];
add EAX, 32;
add ECX, 32;
pmuludq XMM0, XMM2;
pmuludq XMM1, XMM3;
movdqu [ESI -32], XMM0;
movdqu [ESI+16-32], XMM1;
cmp ESI, EDI;
jb startsse2u;
mov aptr, ESI;
mov bptr, EAX;
mov cptr, ECX;
}
}
else
{
asm
{
mov ESI, aptr;
mov EDI, n;
mov EAX, bptr;
mov ECX, cptr;
align 4;
startsse2a:
add ESI, 32;
movdqa XMM0, [EAX];
movdqa XMM2, [ECX];
movdqa XMM1, [EAX+16];
movdqa XMM3, [ECX+16];
add EAX, 32;
add ECX, 32;
pmuludq XMM0, XMM2;
pmuludq XMM1, XMM3;
movdqa [ESI -32], XMM0;
movdqa [ESI+16-32], XMM1;
cmp ESI, EDI;
jb startsse2a;
mov aptr, ESI;
mov bptr, EAX;
mov cptr, ECX;
}
}
}
else
// MMX version is 1029% faster
if (mmx() && a.length >= 4)
{
auto n = aptr + (a.length & ~3);
asm
{
mov ESI, aptr;
mov EDI, n;
mov EAX, bptr;
mov ECX, cptr;
align 4;
startmmx:
add ESI, 16;
movq MM0, [EAX];
movq MM2, [ECX];
movq MM1, [EAX+8];
movq MM3, [ECX+8];
add EAX, 16;
add ECX, 16;
pmuludq MM0, MM2;
pmuludq MM1, MM3;
movq [ESI -16], MM0;
movq [ESI+8-16], MM1;
cmp ESI, EDI;
jb startmmx;
emms;
mov aptr, ESI;
mov bptr, EAX;
mov cptr, ECX;
}
}
}
}
while (aptr < aend)
*aptr++ = *bptr++ * *cptr++;
return a;
}
unittest
{
printf("_arraySliceSliceMulSliceAssign_i unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
c[] = a[] * b[];
for (int i = 0; i < dim; i++)
{
if (c[i] != cast(T)(a[i] * b[i]))
{
printf("[%d]: %d != %d * %d\n", i, c[i], a[i], b[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/***********************
* Computes:
* a[] *= value
*/
T[] _arrayExpSliceMulass_w(T[] a, T value)
{
return _arrayExpSliceMulass_i(a, value);
}
T[] _arrayExpSliceMulass_k(T[] a, T value)
{
return _arrayExpSliceMulass_i(a, value);
}
T[] _arrayExpSliceMulass_i(T[] a, T value)
{
//printf("_arrayExpSliceMulass_i(a.length = %d, value = %Lg)\n", a.length, cast(real)value);
auto aptr = a.ptr;
auto aend = aptr + a.length;
version (none)
{
version (D_InlineAsm_X86)
{
// SSE2 aligned version is 400% faster
if (sse2() && a.length >= 8)
{
auto n = aptr + (a.length & ~7);
uint l = value;
if (((cast(uint) aptr) & 15) != 0)
{
asm
{
mov ESI, aptr;
mov EDI, n;
movd XMM2, l;
pshufd XMM2, XMM2, 0;
align 4;
startsse2u:
movdqu XMM0, [ESI];
movdqu XMM1, [ESI+16];
add ESI, 32;
pmuludq XMM0, XMM2;
pmuludq XMM1, XMM2;
movdqu [ESI -32], XMM0;
movdqu [ESI+16-32], XMM1;
cmp ESI, EDI;
jb startsse2u;
mov aptr, ESI;
}
}
else
{
asm
{
mov ESI, aptr;
mov EDI, n;
movd XMM2, l;
pshufd XMM2, XMM2, 0;
align 4;
startsse2a:
movdqa XMM0, [ESI];
movdqa XMM1, [ESI+16];
add ESI, 32;
pmuludq XMM0, XMM2;
pmuludq XMM1, XMM2;
movdqa [ESI -32], XMM0;
movdqa [ESI+16-32], XMM1;
cmp ESI, EDI;
jb startsse2a;
mov aptr, ESI;
}
}
}
else
// MMX version is 402% faster
if (mmx() && a.length >= 4)
{
auto n = aptr + (a.length & ~3);
ulong l = cast(uint) value | (cast(ulong)cast(uint) value << 32);
asm
{
mov ESI, aptr;
mov EDI, n;
movq MM2, l;
align 4;
startmmx:
movq MM0, [ESI];
movq MM1, [ESI+8];
add ESI, 16;
pmuludq MM0, MM2;
pmuludq MM1, MM2;
movq [ESI -16], MM0;
movq [ESI+8-16], MM1;
cmp ESI, EDI;
jb startmmx;
emms;
mov aptr, ESI;
}
}
}
}
while (aptr < aend)
*aptr++ *= value;
return a;
}
unittest
{
printf("_arrayExpSliceMulass_i unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
b[] = a[];
a[] *= 6;
for (int i = 0; i < dim; i++)
{
if (a[i] != cast(T)(b[i] * 6))
{
printf("[%d]: %d != %d * 6\n", i, a[i], b[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/***********************
* Computes:
* a[] *= b[]
*/
T[] _arraySliceSliceMulass_w(T[] a, T[] b)
{
return _arraySliceSliceMulass_i(a, b);
}
T[] _arraySliceSliceMulass_k(T[] a, T[] b)
{
return _arraySliceSliceMulass_i(a, b);
}
T[] _arraySliceSliceMulass_i(T[] a, T[] b)
in
{
assert (a.length == b.length);
assert (disjoint(a, b));
}
body
{
//printf("_arraySliceSliceMulass_i()\n");
auto aptr = a.ptr;
auto aend = aptr + a.length;
auto bptr = b.ptr;
version (none)
{
version (D_InlineAsm_X86)
{
// SSE2 aligned version is 873% faster
if (sse2() && a.length >= 8)
{
auto n = aptr + (a.length & ~7);
if (((cast(uint) aptr | cast(uint) bptr) & 15) != 0)
{
asm
{
mov ESI, aptr;
mov EDI, n;
mov ECX, bptr;
align 4;
startsse2u:
movdqu XMM0, [ESI];
movdqu XMM2, [ECX];
movdqu XMM1, [ESI+16];
movdqu XMM3, [ECX+16];
add ESI, 32;
add ECX, 32;
pmuludq XMM0, XMM2;
pmuludq XMM1, XMM3;
movdqu [ESI -32], XMM0;
movdqu [ESI+16-32], XMM1;
cmp ESI, EDI;
jb startsse2u;
mov aptr, ESI;
mov bptr, ECX;
}
}
else
{
asm
{
mov ESI, aptr;
mov EDI, n;
mov ECX, bptr;
align 4;
startsse2a:
movdqa XMM0, [ESI];
movdqa XMM2, [ECX];
movdqa XMM1, [ESI+16];
movdqa XMM3, [ECX+16];
add ESI, 32;
add ECX, 32;
pmuludq XMM0, XMM2;
pmuludq XMM1, XMM3;
movdqa [ESI -32], XMM0;
movdqa [ESI+16-32], XMM1;
cmp ESI, EDI;
jb startsse2a;
mov aptr, ESI;
mov bptr, ECX;
}
}
}
/+ BUG: comment out this section until we figure out what is going
wrong with the invalid pshufd instructions.
else
// MMX version is 573% faster
if (mmx() && a.length >= 4)
{
auto n = aptr + (a.length & ~3);
asm
{
mov ESI, aptr;
mov EDI, n;
mov ECX, bptr;
align 4;
startmmx:
movq MM0, [ESI];
movq MM2, [ECX];
movq MM1, [ESI+8];
movq MM3, [ECX+8];
pxor MM4, MM4;
pxor MM5, MM5;
punpckldq MM4, MM0;
punpckldq MM5, MM2;
add ESI, 16;
add ECX, 16;
pmuludq MM4, MM5;
pshufd MM4, MM4, 8; // ?
movq [ESI -16], MM4;
pxor MM4, MM4;
pxor MM5, MM5;
punpckldq MM4, MM1;
punpckldq MM5, MM3;
pmuludq MM4, MM5;
pshufd MM4, MM4, 8; // ?
movq [ESI+8-16], MM4;
cmp ESI, EDI;
jb startmmx;
emms;
mov aptr, ESI;
mov bptr, ECX;
}
}
+/
}
}
while (aptr < aend)
*aptr++ *= *bptr++;
return a;
}
unittest
{
printf("_arraySliceSliceMulass_i unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
b[] = a[];
a[] *= c[];
for (int i = 0; i < dim; i++)
{
if (a[i] != cast(T)(b[i] * c[i]))
{
printf("[%d]: %d != %d * %d\n", i, a[i], b[i], c[i]);
assert(0);
}
}
}
}
}