phobos/internal/arrayfloat.d

1434 lines
38 KiB
D

/**
* Contains SSE2 and MMX versions of certain operations for float.
*
* Copyright: Copyright Digital Mars 2008 - 2009.
* License: <a href="http://www.boost.org/LICENSE_1_0.txt">Boost License 1.0</a>.
* Authors: Walter Bright, based on code originally written by Burton Radons
*
* Copyright Digital Mars 2008 - 2010.
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*/
import std.cpuid;
version (Unittest)
{
/* This is so unit tests will test every CPU variant
*/
int cpuid;
const int CPUID_MAX = 5;
bool mmx() { return cpuid == 1 && std.cpuid.mmx(); }
bool sse() { return cpuid == 2 && std.cpuid.sse(); }
bool sse2() { return cpuid == 3 && std.cpuid.sse2(); }
bool amd3dnow() { return cpuid == 4 && std.cpuid.amd3dnow(); }
}
else
{
import std.cpuid;
alias std.cpuid.mmx mmx;
alias std.cpuid.sse sse;
alias std.cpuid.sse2 sse2;
alias std.cpuid.amd3dnow amd3dnow;
}
//version = log;
bool disjoint(T)(T[] a, T[] b)
{
return (a.ptr + a.length <= b.ptr || b.ptr + b.length <= a.ptr);
}
alias float T;
extern (C):
/* ======================================================================== */
/* ======================================================================== */
/* template for the case
* a[] = b[] ? c[]
* with some binary operator ?
*/
private template CodeGenSliceSliceOp(string opD, string opSSE, string op3DNow)
{
const CodeGenSliceSliceOp = `
auto aptr = a.ptr;
auto aend = aptr + a.length;
auto bptr = b.ptr;
auto cptr = c.ptr;
version (D_InlineAsm_X86)
{
// SSE version is 834% faster
if (sse() && b.length >= 16)
{
auto n = aptr + (b.length & ~15);
// Unaligned case
asm
{
mov EAX, bptr; // left operand
mov ECX, cptr; // right operand
mov ESI, aptr; // destination operand
mov EDI, n; // end comparison
align 8;
startsseloopb:
movups XMM0, [EAX];
movups XMM1, [EAX+16];
movups XMM2, [EAX+32];
movups XMM3, [EAX+48];
add EAX, 64;
movups XMM4, [ECX];
movups XMM5, [ECX+16];
movups XMM6, [ECX+32];
movups XMM7, [ECX+48];
add ESI, 64;
` ~ opSSE ~ ` XMM0, XMM4;
` ~ opSSE ~ ` XMM1, XMM5;
` ~ opSSE ~ ` XMM2, XMM6;
` ~ opSSE ~ ` XMM3, XMM7;
add ECX, 64;
movups [ESI+ 0-64], XMM0;
movups [ESI+16-64], XMM1;
movups [ESI+32-64], XMM2;
movups [ESI+48-64], XMM3;
cmp ESI, EDI;
jb startsseloopb;
mov aptr, ESI;
mov bptr, EAX;
mov cptr, ECX;
}
}
else
// 3DNow! version is only 13% faster
if (amd3dnow() && b.length >= 8)
{
auto n = aptr + (b.length & ~7);
asm
{
mov ESI, aptr; // destination operand
mov EDI, n; // end comparison
mov EAX, bptr; // left operand
mov ECX, cptr; // right operand
align 4;
start3dnow:
movq MM0, [EAX];
movq MM1, [EAX+8];
movq MM2, [EAX+16];
movq MM3, [EAX+24];
` ~ op3DNow ~ ` MM0, [ECX];
` ~ op3DNow ~ ` MM1, [ECX+8];
` ~ op3DNow ~ ` MM2, [ECX+16];
` ~ op3DNow ~ ` MM3, [ECX+24];
movq [ESI], MM0;
movq [ESI+8], MM1;
movq [ESI+16], MM2;
movq [ESI+24], MM3;
add ECX, 32;
add ESI, 32;
add EAX, 32;
cmp ESI, EDI;
jb start3dnow;
emms;
mov aptr, ESI;
mov bptr, EAX;
mov cptr, ECX;
}
}
}
// Handle remainder
while (aptr < aend)
*aptr++ = *bptr++ ` ~ opD ~ ` *cptr++;
return a;`;
}
/* ======================================================================== */
/***********************
* Computes:
* a[] = b[] + c[]
*/
T[] _arraySliceSliceAddSliceAssign_f(T[] a, T[] c, T[] b)
in
{
assert(a.length == b.length && b.length == c.length);
assert(disjoint(a, b));
assert(disjoint(a, c));
assert(disjoint(b, c));
}
body
{
mixin(CodeGenSliceSliceOp!("+", "addps", "pfadd"));
}
unittest
{
printf("_arraySliceSliceAddSliceAssign_f unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
c[] = a[] + b[];
for (int i = 0; i < dim; i++)
{
if (c[i] != cast(T)(a[i] + b[i]))
{
printf("[%d]: %g != %g + %g\n", i, c[i], a[i], b[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/***********************
* Computes:
* a[] = b[] - c[]
*/
T[] _arraySliceSliceMinSliceAssign_f(T[] a, T[] c, T[] b)
in
{
assert(a.length == b.length && b.length == c.length);
assert(disjoint(a, b));
assert(disjoint(a, c));
assert(disjoint(b, c));
}
body
{
mixin(CodeGenSliceSliceOp!("-", "subps", "pfsub"));
}
unittest
{
printf("_arraySliceSliceMinSliceAssign_f unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
c[] = a[] - b[];
for (int i = 0; i < dim; i++)
{
if (c[i] != cast(T)(a[i] - b[i]))
{
printf("[%d]: %g != %gd - %g\n", i, c[i], a[i], b[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/***********************
* Computes:
* a[] = b[] * c[]
*/
T[] _arraySliceSliceMulSliceAssign_f(T[] a, T[] c, T[] b)
in
{
assert(a.length == b.length && b.length == c.length);
assert(disjoint(a, b));
assert(disjoint(a, c));
assert(disjoint(b, c));
}
body
{
mixin(CodeGenSliceSliceOp!("*", "mulps", "pfmul"));
}
unittest
{
printf("_arraySliceSliceMulSliceAssign_f unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
c[] = a[] * b[];
for (int i = 0; i < dim; i++)
{
if (c[i] != cast(T)(a[i] * b[i]))
{
printf("[%d]: %g != %g * %g\n", i, c[i], a[i], b[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/* template for the case
* a[] ?= value
* with some binary operator ?
*/
private template CodeGenExpSliceOpAssign(string opD, string opSSE, string op3DNow)
{
const CodeGenExpSliceOpAssign = `
auto aptr = a.ptr;
auto aend = aptr + a.length;
version (D_InlineAsm_X86)
{
if (sse() && a.length >= 16)
{
auto aabeg = cast(T*)((cast(uint)aptr + 15) & ~15); // beginning of paragraph-aligned slice of a
auto aaend = cast(T*)((cast(uint)aend) & ~15); // end of paragraph-aligned slice of a
int numAligned = cast(int)(aaend - aabeg); // how many floats are in the aligned slice?
// are there at least 16 floats in the paragraph-aligned slice?
// otherwise we can't do anything with SSE.
if (numAligned >= 16)
{
aaend = aabeg + (numAligned & ~15); // make sure the slice is actually a multiple of 16 floats long
// process values up to aligned slice one by one
while (aptr < aabeg)
*aptr++ ` ~ opD ~ ` value;
// process aligned slice with fast SSE operations
asm
{
mov ESI, aabeg;
mov EDI, aaend;
movss XMM4, value;
shufps XMM4, XMM4, 0;
align 8;
startsseloopa:
movaps XMM0, [ESI];
movaps XMM1, [ESI+16];
movaps XMM2, [ESI+32];
movaps XMM3, [ESI+48];
add ESI, 64;
` ~ opSSE ~ ` XMM0, XMM4;
` ~ opSSE ~ ` XMM1, XMM4;
` ~ opSSE ~ ` XMM2, XMM4;
` ~ opSSE ~ ` XMM3, XMM4;
movaps [ESI+ 0-64], XMM0;
movaps [ESI+16-64], XMM1;
movaps [ESI+32-64], XMM2;
movaps [ESI+48-64], XMM3;
cmp ESI, EDI;
jb startsseloopa;
}
aptr = aaend;
}
}
else
// 3DNow! version is 63% faster
if (amd3dnow() && a.length >= 8)
{
auto n = aptr + (a.length & ~7);
ulong w = *cast(uint *) &value;
ulong v = w | (w << 32L);
asm
{
mov ESI, dword ptr [aptr];
mov EDI, dword ptr [n];
movq MM4, qword ptr [v];
align 8;
start:
movq MM0, [ESI];
movq MM1, [ESI+8];
movq MM2, [ESI+16];
movq MM3, [ESI+24];
` ~ op3DNow ~ ` MM0, MM4;
` ~ op3DNow ~ ` MM1, MM4;
` ~ op3DNow ~ ` MM2, MM4;
` ~ op3DNow ~ ` MM3, MM4;
movq [ESI], MM0;
movq [ESI+8], MM1;
movq [ESI+16], MM2;
movq [ESI+24], MM3;
add ESI, 32;
cmp ESI, EDI;
jb start;
emms;
mov dword ptr [aptr], ESI;
}
}
}
while (aptr < aend)
*aptr++ ` ~ opD ~ ` value;
return a;`;
}
/* ======================================================================== */
/***********************
* Computes:
* a[] += value
*/
T[] _arrayExpSliceAddass_f(T[] a, T value)
{
mixin(CodeGenExpSliceOpAssign!("+=", "addps", "pfadd"));
}
unittest
{
printf("_arrayExpSliceAddass_f unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
a[] = c[];
c[] += 6;
for (int i = 0; i < dim; i++)
{
if (c[i] != cast(T)(a[i] + 6))
{
printf("[%d]: %g != %g + 6\n", i, c[i], a[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/***********************
* Computes:
* a[] -= value
*/
T[] _arrayExpSliceMinass_f(T[] a, T value)
{
mixin(CodeGenExpSliceOpAssign!("-=", "subps", "pfsub"));
}
unittest
{
printf("_arrayExpSliceminass_f unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
a[] = c[];
c[] -= 6;
for (int i = 0; i < dim; i++)
{
if (c[i] != cast(T)(a[i] - 6))
{
printf("[%d]: %g != %g - 6\n", i, c[i], a[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/***********************
* Computes:
* a[] *= value
*/
T[] _arrayExpSliceMulass_f(T[] a, T value)
{
mixin(CodeGenExpSliceOpAssign!("*=", "mulps", "pfmul"));
}
unittest
{
printf("_arrayExpSliceMulass_f unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
a[] = c[];
c[] *= 6;
for (int i = 0; i < dim; i++)
{
if (c[i] != cast(T)(a[i] * 6))
{
printf("[%d]: %g != %g * 6\n", i, c[i], a[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/***********************
* Computes:
* a[] /= value
*/
T[] _arrayExpSliceDivass_f(T[] a, T value)
{
return _arrayExpSliceMulass_f(a, 1f / value);
}
unittest
{
printf("_arrayExpSliceDivass_f unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
a[] = c[];
c[] /= 8;
for (int i = 0; i < dim; i++)
{
if (c[i] != cast(T)(a[i] / 8))
{
printf("[%d]: %g != %g / 8\n", i, c[i], a[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/* ======================================================================== */
/* template for the case
* a[] = b[] ? value
* with some binary operator ?
*/
private template CodeGenSliceExpOp(string opD, string opSSE, string op3DNow)
{
const CodeGenSliceExpOp = `
auto aptr = a.ptr;
auto aend = aptr + a.length;
auto bptr = b.ptr;
version (D_InlineAsm_X86)
{
// SSE version is 665% faster
if (sse() && a.length >= 16)
{
auto n = aptr + (a.length & ~15);
// Unaligned case
asm
{
mov EAX, bptr;
mov ESI, aptr;
mov EDI, n;
movss XMM4, value;
shufps XMM4, XMM4, 0;
align 8;
startsseloop:
add ESI, 64;
movups XMM0, [EAX];
movups XMM1, [EAX+16];
movups XMM2, [EAX+32];
movups XMM3, [EAX+48];
add EAX, 64;
` ~ opSSE ~ ` XMM0, XMM4;
` ~ opSSE ~ ` XMM1, XMM4;
` ~ opSSE ~ ` XMM2, XMM4;
` ~ opSSE ~ ` XMM3, XMM4;
movups [ESI+ 0-64], XMM0;
movups [ESI+16-64], XMM1;
movups [ESI+32-64], XMM2;
movups [ESI+48-64], XMM3;
cmp ESI, EDI;
jb startsseloop;
mov aptr, ESI;
mov bptr, EAX;
}
}
else
// 3DNow! version is 69% faster
if (amd3dnow() && a.length >= 8)
{
auto n = aptr + (a.length & ~7);
ulong w = *cast(uint *) &value;
ulong v = w | (w << 32L);
asm
{
mov ESI, aptr;
mov EDI, n;
mov EAX, bptr;
movq MM4, qword ptr [v];
align 8;
start3dnow:
movq MM0, [EAX];
movq MM1, [EAX+8];
movq MM2, [EAX+16];
movq MM3, [EAX+24];
` ~ op3DNow ~ ` MM0, MM4;
` ~ op3DNow ~ ` MM1, MM4;
` ~ op3DNow ~ ` MM2, MM4;
` ~ op3DNow ~ ` MM3, MM4;
movq [ESI], MM0;
movq [ESI+8], MM1;
movq [ESI+16], MM2;
movq [ESI+24], MM3;
add ESI, 32;
add EAX, 32;
cmp ESI, EDI;
jb start3dnow;
emms;
mov aptr, ESI;
mov bptr, EAX;
}
}
}
while (aptr < aend)
*aptr++ = *bptr++ ` ~ opD ~ ` value;
return a;`;
}
/* ======================================================================== */
/***********************
* Computes:
* a[] = b[] + value
*/
T[] _arraySliceExpAddSliceAssign_f(T[] a, T value, T[] b)
in
{
assert(a.length == b.length);
assert(disjoint(a, b));
}
body
{
mixin(CodeGenSliceExpOp!("+", "addps", "pfadd"));
}
unittest
{
printf("_arraySliceExpAddSliceAssign_f unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
c[] = a[] + 6;
for (int i = 0; i < dim; i++)
{
if (c[i] != cast(T)(a[i] + 6))
{
printf("[%d]: %g != %g + 6\n", i, c[i], a[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/***********************
* Computes:
* a[] = b[] - value
*/
T[] _arraySliceExpMinSliceAssign_f(T[] a, T value, T[] b)
in
{
assert (a.length == b.length);
assert (disjoint(a, b));
}
body
{
mixin(CodeGenSliceExpOp!("-", "subps", "pfsub"));
}
unittest
{
printf("_arraySliceExpMinSliceAssign_f unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
c[] = a[] - 6;
for (int i = 0; i < dim; i++)
{
if (c[i] != cast(T)(a[i] - 6))
{
printf("[%d]: %g != %g - 6\n", i, c[i], a[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/***********************
* Computes:
* a[] = b[] * value
*/
T[] _arraySliceExpMulSliceAssign_f(T[] a, T value, T[] b)
in
{
assert(a.length == b.length);
assert(disjoint(a, b));
}
body
{
mixin(CodeGenSliceExpOp!("*", "mulps", "pfmul"));
}
unittest
{
printf("_arraySliceExpMulSliceAssign_f unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
c[] = a[] * 6;
for (int i = 0; i < dim; i++)
{
if (c[i] != cast(T)(a[i] * 6))
{
printf("[%d]: %g != %g * 6\n", i, c[i], a[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/***********************
* Computes:
* a[] = b[] / value
*/
T[] _arraySliceExpDivSliceAssign_f(T[] a, T value, T[] b)
{
return _arraySliceExpMulSliceAssign_f(a, 1f/value, b);
}
unittest
{
printf("_arraySliceExpDivSliceAssign_f unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
c[] = a[] / 8;
for (int i = 0; i < dim; i++)
{
if (c[i] != cast(T)(a[i] / 8))
{
printf("[%d]: %g != %g / 8\n", i, c[i], a[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/* ======================================================================== */
private template CodeGenSliceOpAssign(string opD, string opSSE, string op3DNow)
{
const CodeGenSliceOpAssign = `
auto aptr = a.ptr;
auto aend = aptr + a.length;
auto bptr = b.ptr;
version (D_InlineAsm_X86)
{
// SSE version is 468% faster
if (sse() && a.length >= 16)
{
auto n = aptr + (a.length & ~15);
// Unaligned case
asm
{
mov ECX, bptr; // right operand
mov ESI, aptr; // destination operand
mov EDI, n; // end comparison
align 8;
startsseloopb:
movups XMM0, [ESI];
movups XMM1, [ESI+16];
movups XMM2, [ESI+32];
movups XMM3, [ESI+48];
add ESI, 64;
movups XMM4, [ECX];
movups XMM5, [ECX+16];
movups XMM6, [ECX+32];
movups XMM7, [ECX+48];
add ECX, 64;
` ~ opSSE ~ ` XMM0, XMM4;
` ~ opSSE ~ ` XMM1, XMM5;
` ~ opSSE ~ ` XMM2, XMM6;
` ~ opSSE ~ ` XMM3, XMM7;
movups [ESI+ 0-64], XMM0;
movups [ESI+16-64], XMM1;
movups [ESI+32-64], XMM2;
movups [ESI+48-64], XMM3;
cmp ESI, EDI;
jb startsseloopb;
mov aptr, ESI;
mov bptr, ECX;
}
}
else
// 3DNow! version is 57% faster
if (amd3dnow() && a.length >= 8)
{
auto n = aptr + (a.length & ~7);
asm
{
mov ESI, dword ptr [aptr]; // destination operand
mov EDI, dword ptr [n]; // end comparison
mov ECX, dword ptr [bptr]; // right operand
align 4;
start3dnow:
movq MM0, [ESI];
movq MM1, [ESI+8];
movq MM2, [ESI+16];
movq MM3, [ESI+24];
` ~ op3DNow ~ ` MM0, [ECX];
` ~ op3DNow ~ ` MM1, [ECX+8];
` ~ op3DNow ~ ` MM2, [ECX+16];
` ~ op3DNow ~ ` MM3, [ECX+24];
movq [ESI], MM0;
movq [ESI+8], MM1;
movq [ESI+16], MM2;
movq [ESI+24], MM3;
add ESI, 32;
add ECX, 32;
cmp ESI, EDI;
jb start3dnow;
emms;
mov dword ptr [aptr], ESI;
mov dword ptr [bptr], ECX;
}
}
}
while (aptr < aend)
*aptr++ ` ~ opD ~ ` *bptr++;
return a;`;
}
/* ======================================================================== */
/***********************
* Computes:
* a[] += b[]
*/
T[] _arraySliceSliceAddass_f(T[] a, T[] b)
in
{
assert (a.length == b.length);
assert (disjoint(a, b));
}
body
{
mixin(CodeGenSliceOpAssign!("+=", "addps", "pfadd"));
}
unittest
{
printf("_arraySliceSliceAddass_f unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
a[] = c[];
c[] += b[];
for (int i = 0; i < dim; i++)
{
if (c[i] != cast(T)(a[i] + b[i]))
{
printf("[%d]: %g != %g + %g\n", i, c[i], a[i], b[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/***********************
* Computes:
* a[] -= b[]
*/
T[] _arraySliceSliceMinass_f(T[] a, T[] b)
in
{
assert (a.length == b.length);
assert (disjoint(a, b));
}
body
{
mixin(CodeGenSliceOpAssign!("-=", "subps", "pfsub"));
}
unittest
{
printf("_arrayExpSliceMinass_f unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
a[] = c[];
c[] -= 6;
for (int i = 0; i < dim; i++)
{
if (c[i] != cast(T)(a[i] - 6))
{
printf("[%d]: %g != %g - 6\n", i, c[i], a[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/***********************
* Computes:
* a[] *= b[]
*/
T[] _arraySliceSliceMulass_f(T[] a, T[] b)
in
{
assert (a.length == b.length);
assert (disjoint(a, b));
}
body
{
mixin(CodeGenSliceOpAssign!("*=", "mulps", "pfmul"));
}
unittest
{
printf("_arrayExpSliceMulass_f unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
a[] = c[];
c[] *= 6;
for (int i = 0; i < dim; i++)
{
if (c[i] != cast(T)(a[i] * 6))
{
printf("[%d]: %g != %g * 6\n", i, c[i], a[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/* ======================================================================== */
/***********************
* Computes:
* a[] = value - b[]
*/
T[] _arrayExpSliceMinSliceAssign_f(T[] a, T[] b, T value)
in
{
assert (a.length == b.length);
assert (disjoint(a, b));
}
body
{
//printf("_arrayExpSliceMinSliceAssign_f()\n");
auto aptr = a.ptr;
auto aend = aptr + a.length;
auto bptr = b.ptr;
version (D_InlineAsm_X86)
{
// SSE version is 690% faster
if (sse() && a.length >= 16)
{
auto n = aptr + (a.length & ~15);
// Unaligned case
asm
{
mov EAX, bptr;
mov ESI, aptr;
mov EDI, n;
movss XMM4, value;
shufps XMM4, XMM4, 0;
align 8;
startsseloop:
add ESI, 64;
movaps XMM5, XMM4;
movaps XMM6, XMM4;
movups XMM0, [EAX];
movups XMM1, [EAX+16];
movups XMM2, [EAX+32];
movups XMM3, [EAX+48];
add EAX, 64;
subps XMM5, XMM0;
subps XMM6, XMM1;
movups [ESI+ 0-64], XMM5;
movups [ESI+16-64], XMM6;
movaps XMM5, XMM4;
movaps XMM6, XMM4;
subps XMM5, XMM2;
subps XMM6, XMM3;
movups [ESI+32-64], XMM5;
movups [ESI+48-64], XMM6;
cmp ESI, EDI;
jb startsseloop;
mov aptr, ESI;
mov bptr, EAX;
}
}
else
// 3DNow! version is 67% faster
if (amd3dnow() && a.length >= 8)
{
auto n = aptr + (a.length & ~7);
ulong w = *cast(uint *) &value;
ulong v = w | (w << 32L);
asm
{
mov ESI, aptr;
mov EDI, n;
mov EAX, bptr;
movq MM4, qword ptr [v];
align 8;
start3dnow:
movq MM0, [EAX];
movq MM1, [EAX+8];
movq MM2, [EAX+16];
movq MM3, [EAX+24];
pfsubr MM0, MM4;
pfsubr MM1, MM4;
pfsubr MM2, MM4;
pfsubr MM3, MM4;
movq [ESI], MM0;
movq [ESI+8], MM1;
movq [ESI+16], MM2;
movq [ESI+24], MM3;
add ESI, 32;
add EAX, 32;
cmp ESI, EDI;
jb start3dnow;
emms;
mov aptr, ESI;
mov bptr, EAX;
}
}
}
while (aptr < aend)
*aptr++ = value - *bptr++;
return a;
}
unittest
{
printf("_arrayExpSliceMinSliceAssign_f unittest\n");
for (cpuid = 0; cpuid < CPUID_MAX; cpuid++)
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 2; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
c[] = 6 - a[];
for (int i = 0; i < dim; i++)
{
if (c[i] != cast(T)(6 - a[i]))
{
printf("[%d]: %g != 6 - %g\n", i, c[i], a[i]);
assert(0);
}
}
}
}
}
/* ======================================================================== */
/***********************
* Computes:
* a[] -= b[] * value
*/
T[] _arraySliceExpMulSliceMinass_f(T[] a, T value, T[] b)
{
return _arraySliceExpMulSliceAddass_f(a, -value, b);
}
/***********************
* Computes:
* a[] += b[] * value
*/
T[] _arraySliceExpMulSliceAddass_f(T[] a, T value, T[] b)
in
{
assert(a.length == b.length);
assert(disjoint(a, b));
}
body
{
auto aptr = a.ptr;
auto aend = aptr + a.length;
auto bptr = b.ptr;
// Handle remainder
while (aptr < aend)
*aptr++ += *bptr++ * value;
return a;
}
unittest
{
printf("_arraySliceExpMulSliceAddass_f unittest\n");
cpuid = 1;
{
version (log) printf(" cpuid %d\n", cpuid);
for (int j = 0; j < 1; j++)
{
const int dim = 67;
T[] a = new T[dim + j]; // aligned on 16 byte boundary
a = a[j .. dim + j]; // misalign for second iteration
T[] b = new T[dim + j];
b = b[j .. dim + j];
T[] c = new T[dim + j];
c = c[j .. dim + j];
for (int i = 0; i < dim; i++)
{ a[i] = cast(T)i;
b[i] = cast(T)(i + 7);
c[i] = cast(T)(i * 2);
}
b[] = c[];
c[] += a[] * 6;
for (int i = 0; i < dim; i++)
{
//printf("[%d]: %g ?= %g + %g * 6\n", i, c[i], b[i], a[i]);
if (c[i] != cast(T)(b[i] + a[i] * 6))
{
printf("[%d]: %g ?= %g + %g * 6\n", i, c[i], b[i], a[i]);
assert(0);
}
}
}
}
}