phobos/std/traits.d
Daniel Murphy 1590a5cc38 Issue 6572 - Deprecate typedef
Remove use of deprecated typedef from phobos.  This mostly consists of changing typedef to alias, and disabling unittests that require typedef.  One change to std.registry is needed to work around a bug in typedef (6571).
2011-08-30 13:22:10 +10:00

3643 lines
104 KiB
D

// Written in the D programming language.
/**
* Templates with which to extract information about types and symbols at
* compile time.
*
* Macros:
* WIKI = Phobos/StdTraits
*
* Copyright: Copyright Digital Mars 2005 - 2009.
* License: <a href="http://www.boost.org/LICENSE_1_0.txt">Boost License 1.0</a>.
* Authors: $(WEB digitalmars.com, Walter Bright),
* Tomasz Stachowiak ($(D isExpressionTuple)),
* $(WEB erdani.org, Andrei Alexandrescu),
* Shin Fujishiro
* Source: $(PHOBOSSRC std/_traits.d)
*/
/* Copyright Digital Mars 2005 - 2009.
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*/
module std.traits;
import std.typetuple;
import std.typecons;
import core.vararg;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
// Functions
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
// Petit demangler
// (this or similar thing will eventually go to std.demangle if necessary
// ctfe stuffs are available)
private
{
struct Demangle(T)
{
T value; // extracted information
string rest;
}
/* Demangles mstr as the storage class part of Argument. */
Demangle!uint demangleParameterStorageClass(string mstr)
{
uint pstc = 0; // parameter storage class
// Argument --> Argument2 | M Argument2
if (mstr.length > 0 && mstr[0] == 'M')
{
pstc |= ParameterStorageClass.scope_;
mstr = mstr[1 .. $];
}
// Argument2 --> Type | J Type | K Type | L Type
ParameterStorageClass stc2;
switch (mstr.length ? mstr[0] : char.init)
{
case 'J': stc2 = ParameterStorageClass.out_; break;
case 'K': stc2 = ParameterStorageClass.ref_; break;
case 'L': stc2 = ParameterStorageClass.lazy_; break;
default : break;
}
if (stc2 != ParameterStorageClass.init)
{
pstc |= stc2;
mstr = mstr[1 .. $];
}
return Demangle!uint(pstc, mstr);
}
/* Demangles mstr as FuncAttrs. */
Demangle!uint demangleFunctionAttributes(string mstr)
{
enum LOOKUP_ATTRIBUTE =
[
'a': FunctionAttribute.pure_,
'b': FunctionAttribute.nothrow_,
'c': FunctionAttribute.ref_,
'd': FunctionAttribute.property,
'e': FunctionAttribute.trusted,
'f': FunctionAttribute.safe
];
uint atts = 0;
// FuncAttrs --> FuncAttr | FuncAttr FuncAttrs
// FuncAttr --> empty | Na | Nb | Nc | Nd | Ne | Nf
while (mstr.length >= 2 && mstr[0] == 'N')
{
if (FunctionAttribute att = LOOKUP_ATTRIBUTE[ mstr[1] ])
{
atts |= att;
mstr = mstr[2 .. $];
}
else assert(0);
}
return Demangle!uint(atts, mstr);
}
}
// workaround @@@BUG4333@@@
private template staticLength(tuple...)
{
enum size_t staticLength = tuple.length;
}
/***
* Get the type of the return value from a function,
* a pointer to function, a delegate, a struct
* with an opCall, a pointer to a struct with an opCall,
* or a class with an opCall.
* Example:
* ---
* import std.traits;
* int foo();
* ReturnType!(foo) x; // x is declared as int
* ---
*/
template ReturnType(/+@@@BUG4217@@@+/func...)
if (/+@@@BUG4333@@@+/staticLength!(func) == 1)
{
static if (is(FunctionTypeOf!(func) R == return))
alias R ReturnType;
else
static assert(0, "argument has no return type");
}
unittest
{
struct G
{
int opCall (int i) { return 1;}
}
alias ReturnType!(G) ShouldBeInt;
static assert(is(ShouldBeInt == int));
G g;
static assert(is(ReturnType!(g) == int));
G* p;
alias ReturnType!(p) pg;
static assert(is(pg == int));
class C
{
int opCall (int i) { return 1;}
}
static assert(is(ReturnType!(C) == int));
C c;
static assert(is(ReturnType!(c) == int));
class Test
{
int prop() @property { return 0; }
}
alias ReturnType!(Test.prop) R_Test_prop;
static assert(is(R_Test_prop == int));
alias ReturnType!((int a) { return a; }) R_dglit;
static assert(is(R_dglit == int));
}
/***
Get, as a tuple, the types of the parameters to a function, a pointer
to function, a delegate, a struct with an $(D opCall), a pointer to a
struct with an $(D opCall), or a class with an $(D opCall).
Example:
---
import std.traits;
int foo(int, long);
void bar(ParameterTypeTuple!(foo)); // declares void bar(int, long);
void abc(ParameterTypeTuple!(foo)[1]); // declares void abc(long);
---
*/
template ParameterTypeTuple(/+@@@BUG4217@@@+/dg...)
if (/+@@@BUG4333@@@+/staticLength!(dg) == 1)
{
static if (is(FunctionTypeOf!(dg) P == function))
alias P ParameterTypeTuple;
else
static assert(0, "argument has no parameters");
}
unittest
{
int foo(int i, bool b) { return 0; }
static assert (is(ParameterTypeTuple!(foo) == TypeTuple!(int, bool)));
static assert (is(ParameterTypeTuple!(typeof(&foo))
== TypeTuple!(int, bool)));
struct S { real opCall(real r, int i) { return 0.0; } }
S s;
static assert (is(ParameterTypeTuple!(S) == TypeTuple!(real, int)));
static assert (is(ParameterTypeTuple!(S*) == TypeTuple!(real, int)));
static assert (is(ParameterTypeTuple!(s) == TypeTuple!(real, int)));
class Test
{
int prop() @property { return 0; }
}
alias ParameterTypeTuple!(Test.prop) P_Test_prop;
static assert(P_Test_prop.length == 0);
alias ParameterTypeTuple!((int a){}) P_dglit;
static assert(P_dglit.length == 1);
static assert(is(P_dglit[0] == int));
}
/**
Returns a tuple consisting of the storage classes of the parameters of a
function $(D func).
Example:
--------------------
alias ParameterStorageClass STC; // shorten the enum name
void func(ref int ctx, out real result, real param)
{
}
alias ParameterStorageClassTuple!(func) pstc;
static assert(pstc.length == 3); // three parameters
static assert(pstc[0] == STC.ref_);
static assert(pstc[1] == STC.out_);
static assert(pstc[2] == STC.none);
--------------------
*/
enum ParameterStorageClass : uint
{
/**
* These flags can be bitwise OR-ed together to represent complex storage
* class.
*/
none = 0, /// ditto
scope_ = 0b000_1, /// ditto
out_ = 0b001_0, /// ditto
ref_ = 0b010_0, /// ditto
lazy_ = 0b100_0, /// ditto
}
/// ditto
template ParameterStorageClassTuple(/+@@@BUG4217@@@+/func...)
if (/+@@@BUG4333@@@+/staticLength!(func) == 1)
{
static if (is(FunctionTypeOf!(func) F))
alias ParameterStorageClassTupleImpl!(Unqual!(F)).Result
ParameterStorageClassTuple;
else
static assert(0, "argument has no parameters");
}
private template ParameterStorageClassTupleImpl(Func)
{
/*
* TypeFuncion:
* CallConvention FuncAttrs Arguments ArgClose Type
*/
alias ParameterTypeTuple!(Func) Params;
// chop off CallConvention and FuncAttrs
enum margs = demangleFunctionAttributes(mangledName!(Func)[1 .. $]).rest;
// demangle Arguments and store parameter storage classes in a tuple
template demangleNextParameter(string margs, size_t i = 0)
{
static if (i < Params.length)
{
enum demang = demangleParameterStorageClass(margs);
enum skip = mangledName!(Params[i]).length; // for bypassing Type
enum rest = demang.rest;
alias TypeTuple!(
demang.value + 0, // workaround: "not evaluatable at ..."
demangleNextParameter!(rest[skip .. $], i + 1).Result
) Result;
}
else // went thru all the parameters
{
alias TypeTuple!() Result;
}
}
alias demangleNextParameter!(margs).Result Result;
}
unittest
{
alias ParameterStorageClass STC;
void noparam() {}
static assert(ParameterStorageClassTuple!(noparam).length == 0);
void test(scope int, ref int, out int, lazy int, int) { }
alias ParameterStorageClassTuple!(test) test_pstc;
static assert(test_pstc.length == 5);
static assert(test_pstc[0] == STC.scope_);
static assert(test_pstc[1] == STC.ref_);
static assert(test_pstc[2] == STC.out_);
static assert(test_pstc[3] == STC.lazy_);
static assert(test_pstc[4] == STC.none);
interface Test
{
void test_const(int) const;
void test_sharedconst(int) shared const;
}
Test testi;
alias ParameterStorageClassTuple!(Test.test_const) test_const_pstc;
static assert(test_const_pstc.length == 1);
static assert(test_const_pstc[0] == STC.none);
alias ParameterStorageClassTuple!(testi.test_sharedconst) test_sharedconst_pstc;
static assert(test_sharedconst_pstc.length == 1);
static assert(test_sharedconst_pstc[0] == STC.none);
alias ParameterStorageClassTuple!((ref int a) {}) dglit_pstc;
static assert(dglit_pstc.length == 1);
static assert(dglit_pstc[0] == STC.ref_);
}
/**
Returns the attributes attached to a function $(D func).
Example:
--------------------
alias FunctionAttribute FA; // shorten the enum name
real func(real x) pure nothrow @safe
{
return x;
}
static assert(functionAttributes!(func) & FA.pure_);
static assert(functionAttributes!(func) & FA.safe);
static assert(!(functionAttributes!(func) & FA.trusted)); // not @trusted
--------------------
*/
enum FunctionAttribute : uint
{
/**
* These flags can be bitwise OR-ed together to represent complex attribute.
*/
none = 0, /// ditto
pure_ = 0b00000001, /// ditto
nothrow_ = 0b00000010, /// ditto
ref_ = 0b00000100, /// ditto
property = 0b00001000, /// ditto
trusted = 0b00010000, /// ditto
safe = 0b00100000, /// ditto
}
/// ditto
template functionAttributes(/+@@@BUG4217@@@+/func...)
if (/+@@@BUG4333@@@+/staticLength!(func) == 1)
{
static if (is(FunctionTypeOf!(func) F))
enum uint functionAttributes = demangleFunctionAttributes(
mangledName!(Unqual!(F))[1 .. $] ).value;
else
static assert(0, "argument is not a function");
}
unittest
{
alias FunctionAttribute FA;
interface Set
{
int pureF() pure;
int nothrowF() nothrow;
ref int refF();
int propertyF() @property;
int trustedF() @trusted;
int safeF() @safe;
}
static assert(functionAttributes!(Set.pureF) == FA.pure_);
static assert(functionAttributes!(Set.nothrowF) == FA.nothrow_);
static assert(functionAttributes!(Set.refF) == FA.ref_);
static assert(functionAttributes!(Set.propertyF) == FA.property);
static assert(functionAttributes!(Set.trustedF) == FA.trusted);
static assert(functionAttributes!(Set.safeF) == FA.safe);
static assert(!(functionAttributes!(Set.safeF) & FA.trusted));
int pure_nothrow() pure nothrow { return 0; }
static assert(functionAttributes!(pure_nothrow) == (FA.pure_ | FA.nothrow_));
//ref int ref_property() @property { return *(new int); } // @@@BUG2509@@@
//static assert(functionAttributes!(ref_property) == (FA.ref_ | FA.property));
void safe_nothrow() @safe nothrow { }
static assert(functionAttributes!(safe_nothrow) == (FA.safe | FA.nothrow_));
interface Test2
{
int pure_const() pure const;
int pure_sharedconst() pure shared const;
}
static assert(functionAttributes!(Test2.pure_const) == FA.pure_);
static assert(functionAttributes!(Test2.pure_sharedconst) == FA.pure_);
static assert(functionAttributes!((int a) {}) == FA.none);
}
private @safe void dummySafeFunc(alias func)()
{
alias ParameterTypeTuple!func Params;
static if (Params.length)
{
Params args;
func(args);
}
else
{
func();
}
}
/**
Checks the func that is @safe or @trusted
Example:
--------------------
@system int add(int a, int b) {return a+b;}
@safe int sub(int a, int b) {return a-b;}
@trusted int mul(int a, int b) {return a*b;}
bool a = isSafe!(add);
assert(a == false);
bool b = isSafe!(sub);
assert(b == true);
bool c = isSafe!(mul);
assert(c == true);
--------------------
*/
template isSafe(alias func)
{
static if (is(typeof(func) == function))
{
enum isSafe = (functionAttributes!(func) == FunctionAttribute.safe
|| functionAttributes!(func) == FunctionAttribute.trusted);
}
else
{
enum isSafe = is(typeof({dummySafeFunc!func();}()));
}
}
@safe
unittest
{
interface Set
{
int systemF() @system;
int trustedF() @trusted;
int safeF() @safe;
}
static assert(isSafe!((int a){}));
static assert(isSafe!(Set.safeF));
static assert(isSafe!(Set.trustedF));
static assert(!isSafe!(Set.systemF));
}
/**
Checks the all functions are @safe or @trusted
Example:
--------------------
@system int add(int a, int b) {return a+b;}
@safe int sub(int a, int b) {return a-b;}
@trusted int mul(int a, int b) {return a*b;}
bool a = areAllSafe!(add, sub);
assert(a == false);
bool b = areAllSafe!(sub, mul);
assert(b == true);
--------------------
*/
template areAllSafe(funcs...)
if (funcs.length > 0)
{
static if (funcs.length == 1)
{
enum areAllSafe = isSafe!(funcs[0]);
}
else static if (isSafe!(funcs[0]))
{
enum areAllSafe = areAllSafe!(funcs[1..$]);
}
else
{
enum areAllSafe = false;
}
}
@safe
unittest
{
interface Set
{
int systemF() @system;
int trustedF() @trusted;
int safeF() @safe;
}
static assert(areAllSafe!((int a){}, Set.safeF));
static assert(!areAllSafe!(Set.trustedF, Set.systemF));
}
/**
Checks the func that is @system
Example:
--------------------
@system int add(int a, int b) {return a+b;}
@safe int sub(int a, int b) {return a-b;}
@trusted int mul(int a, int b) {return a*b;}
bool a = isUnsafe!(add);
assert(a == true);
bool b = isUnsafe!(sub);
assert(b == false);
bool c = isUnsafe!(mul);
assert(c == false);
--------------------
*/
template isUnsafe(alias func)
{
enum isUnsafe = !isSafe!func;
}
@safe
unittest
{
interface Set
{
int systemF() @system;
int trustedF() @trusted;
int safeF() @safe;
}
static assert(!isUnsafe!((int a){}));
static assert(!isUnsafe!(Set.safeF));
static assert(!isUnsafe!(Set.trustedF));
static assert(isUnsafe!(Set.systemF));
}
/**
Returns the calling convention of function as a string.
Example:
--------------------
string a = functionLinkage!(writeln!(string, int));
assert(a == "D"); // extern(D)
auto fp = &printf;
string b = functionLinkage!(fp);
assert(b == "C"); // extern(C)
--------------------
*/
template functionLinkage(/+@@@BUG4217@@@+/func...)
if (/+@@@BUG4333@@@+/staticLength!(func) == 1)
{
static if (is(FunctionTypeOf!(func) F))
enum string functionLinkage =
LOOKUP_LINKAGE[ mangledName!(Unqual!(F))[0] ];
else
static assert(0, "argument is not a function");
}
private enum LOOKUP_LINKAGE =
[
'F': "D",
'U': "C",
'W': "Windows",
'V': "Pascal",
'R': "C++"
];
unittest
{
extern(D) void Dfunc() {}
extern(C) void Cfunc() {}
static assert(functionLinkage!(Dfunc) == "D");
static assert(functionLinkage!(Cfunc) == "C");
interface Test
{
void const_func() const;
void sharedconst_func() shared const;
}
static assert(functionLinkage!(Test.const_func) == "D");
static assert(functionLinkage!(Test.sharedconst_func) == "D");
static assert(functionLinkage!((int a){}) == "D");
}
/**
Determines what kind of variadic parameters function has.
Example:
--------------------
void func() {}
static assert(variadicFunctionStyle!(func) == Variadic.no);
extern(C) int printf(in char*, ...);
static assert(variadicFunctionStyle!(printf) == Variadic.c);
--------------------
*/
enum Variadic
{
no, /// Function is not variadic.
c, /// Function is a _C-style variadic function.
/// Function is a _D-style variadic function, which uses
d, /// __argptr and __arguments.
typesafe, /// Function is a typesafe variadic function.
}
/// ditto
template variadicFunctionStyle(/+@@@BUG4217@@@+/func...)
if (/+@@@BUG4333@@@+/staticLength!(func) == 1)
{
static if (is(FunctionTypeOf!(func) F))
enum Variadic variadicFunctionStyle =
determineVariadicity!(Unqual!(F))();
else
static assert(0, "argument is not a function");
}
private Variadic determineVariadicity(Func)()
{
// TypeFuncion --> CallConvention FuncAttrs Arguments ArgClose Type
immutable callconv = functionLinkage!(Func);
immutable mfunc = mangledName!(Func);
immutable mtype = mangledName!(ReturnType!(Func));
debug assert(mfunc[$ - mtype.length .. $] == mtype, mfunc ~ "|" ~ mtype);
immutable argclose = mfunc[$ - mtype.length - 1];
final switch (argclose)
{
case 'X': return Variadic.typesafe;
case 'Y': return (callconv == "C") ? Variadic.c : Variadic.d;
case 'Z': return Variadic.no;
}
}
unittest
{
extern(D) void novar() {};
extern(C) void cstyle(int, ...) {};
extern(D) void dstyle(...) {};
extern(D) void typesafe(int[]...) {};
static assert(variadicFunctionStyle!(novar) == Variadic.no);
static assert(variadicFunctionStyle!(cstyle) == Variadic.c);
static assert(variadicFunctionStyle!(dstyle) == Variadic.d);
static assert(variadicFunctionStyle!(typesafe) == Variadic.typesafe);
static assert(variadicFunctionStyle!((int[] a...) {}) == Variadic.typesafe);
}
/**
Get the function type from a callable object $(D func).
Using builtin $(D typeof) on a property function yields the types of the
property value, not of the property function itself. Still,
$(D FunctionTypeOf) is able to obtain function types of properties.
--------------------
class C {
int value() @property;
}
static assert(is( typeof(C.value) == int ));
static assert(is( FunctionTypeOf!(C.value) == function ));
--------------------
Note:
Do not confuse function types with function pointer types; function types are
usually used for compile-time reflection purposes.
*/
template FunctionTypeOf(/+@@@BUG4217@@@+/func...)
if (/+@@@BUG4333@@@+/staticLength!(func) == 1)
{
alias FunctionTypeOf_bug4333!(func).FunctionTypeOf FunctionTypeOf;
}
private template FunctionTypeOf_bug4333(func...)
{
/+@@@BUG4333@@@+/enum dummy__ = func.length;
static if (is(typeof(& func[0]) Fsym : Fsym*) && is(Fsym == function))
{
alias Fsym FunctionTypeOf; // HIT: function symbol
}
else static if (is(typeof(& func[0].opCall) Fobj == delegate))
{
alias Fobj FunctionTypeOf; // HIT: callable object
}
else static if (is(typeof(& func[0].opCall) Ftyp : Ftyp*) && is(Ftyp == function))
{
alias Ftyp FunctionTypeOf; // HIT: callable type
}
else static if (is(func[0] T) || is(typeof(func[0]) T))
{
static if (is(T == function))
alias T FunctionTypeOf; // HIT: function
else static if (is(T Fptr : Fptr*) && is(Fptr == function))
alias Fptr FunctionTypeOf; // HIT: function pointer
else static if (is(T Fdlg == delegate))
alias Fdlg FunctionTypeOf; // HIT: delegate
}
else static assert(0, "argument is not a callable object");
}
unittest
{
int test(int a) { return 0; }
int function(int) test_fp;
int delegate(int) test_dg;
static assert(is( typeof(test) == FunctionTypeOf!(typeof(test)) ));
static assert(is( typeof(test) == FunctionTypeOf!(test) ));
static assert(is( typeof(test) == FunctionTypeOf!(test_fp) ));
static assert(is( typeof(test) == FunctionTypeOf!(test_dg) ));
interface Prop { int prop() @property; }
Prop prop;
static assert(is( FunctionTypeOf!(Prop.prop) == function ));
static assert(is( FunctionTypeOf!(prop.prop) == function ));
class Callable { int opCall(int) { return 0; } }
auto call = new Callable;
static assert(is( FunctionTypeOf!(call) == typeof(test) ));
struct StaticCallable { static int opCall(int) { return 0; } }
StaticCallable stcall_val;
StaticCallable* stcall_ptr;
static assert(is( FunctionTypeOf!(stcall_val) == typeof(test) ));
static assert(is( FunctionTypeOf!(stcall_ptr) == typeof(test) ));
interface Overloads {
void test(string);
real test(real);
int test();
int test() @property;
}
alias TypeTuple!(__traits(getVirtualFunctions, Overloads, "test")) ov;
alias FunctionTypeOf!(ov[0]) F_ov0;
alias FunctionTypeOf!(ov[1]) F_ov1;
alias FunctionTypeOf!(ov[2]) F_ov2;
alias FunctionTypeOf!(ov[3]) F_ov3;
static assert(is(F_ov0* == void function(string)));
static assert(is(F_ov1* == real function(real)));
static assert(is(F_ov2* == int function()));
static assert(is(F_ov3* == int function() @property));
alias FunctionTypeOf!((int a){ return a; }) F_dglit;
static assert(is(F_dglit* : int function(int)));
}
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
// Aggregate Types
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
/***
* Get the types of the fields of a struct or class.
* This consists of the fields that take up memory space,
* excluding the hidden fields like the virtual function
* table pointer.
*/
template FieldTypeTuple(S)
{
static if (is(S == struct) || is(S == class) || is(S == union))
alias typeof(S.tupleof) FieldTypeTuple;
else
alias TypeTuple!(S) FieldTypeTuple;
//static assert(0, "argument is not struct or class");
}
// // FieldOffsetsTuple
// private template FieldOffsetsTupleImpl(size_t n, T...)
// {
// static if (T.length == 0)
// {
// alias TypeTuple!() Result;
// }
// else
// {
// //private alias FieldTypeTuple!(T[0]) Types;
// private enum size_t myOffset =
// ((n + T[0].alignof - 1) / T[0].alignof) * T[0].alignof;
// static if (is(T[0] == struct))
// {
// alias FieldTypeTuple!(T[0]) MyRep;
// alias FieldOffsetsTupleImpl!(myOffset, MyRep, T[1 .. $]).Result
// Result;
// }
// else
// {
// private enum size_t mySize = T[0].sizeof;
// alias TypeTuple!(myOffset) Head;
// static if (is(T == union))
// {
// alias FieldOffsetsTupleImpl!(myOffset, T[1 .. $]).Result
// Tail;
// }
// else
// {
// alias FieldOffsetsTupleImpl!(myOffset + mySize,
// T[1 .. $]).Result
// Tail;
// }
// alias TypeTuple!(Head, Tail) Result;
// }
// }
// }
// template FieldOffsetsTuple(T...)
// {
// alias FieldOffsetsTupleImpl!(0, T).Result FieldOffsetsTuple;
// }
// unittest
// {
// alias FieldOffsetsTuple!(int) T1;
// assert(T1.length == 1 && T1[0] == 0);
// //
// struct S2 { char a; int b; char c; double d; char e, f; }
// alias FieldOffsetsTuple!(S2) T2;
// //pragma(msg, T2);
// static assert(T2.length == 6
// && T2[0] == 0 && T2[1] == 4 && T2[2] == 8 && T2[3] == 16
// && T2[4] == 24&& T2[5] == 25);
// //
// class C { int a, b, c, d; }
// struct S3 { char a; C b; char c; }
// alias FieldOffsetsTuple!(S3) T3;
// //pragma(msg, T2);
// static assert(T3.length == 3
// && T3[0] == 0 && T3[1] == 4 && T3[2] == 8);
// //
// struct S4 { char a; union { int b; char c; } int d; }
// alias FieldOffsetsTuple!(S4) T4;
// //pragma(msg, FieldTypeTuple!(S4));
// static assert(T4.length == 4
// && T4[0] == 0 && T4[1] == 4 && T4[2] == 8);
// }
// /***
// Get the offsets of the fields of a struct or class.
// */
// template FieldOffsetsTuple(S)
// {
// static if (is(S == struct) || is(S == class))
// alias typeof(S.tupleof) FieldTypeTuple;
// else
// static assert(0, "argument is not struct or class");
// }
/***
Get the primitive types of the fields of a struct or class, in
topological order.
Example:
----
struct S1 { int a; float b; }
struct S2 { char[] a; union { S1 b; S1 * c; } }
alias RepresentationTypeTuple!(S2) R;
assert(R.length == 4
&& is(R[0] == char[]) && is(R[1] == int)
&& is(R[2] == float) && is(R[3] == S1*));
----
*/
template RepresentationTypeTuple(T)
{
static if (is(T == struct) || is(T == union) || is(T == class))
{
alias RepresentationTypeTupleImpl!(FieldTypeTuple!T)
RepresentationTypeTuple;
}
else static if (is(T U == typedef))
{
alias RepresentationTypeTuple!U RepresentationTypeTuple;
}
else
{
alias RepresentationTypeTupleImpl!T
RepresentationTypeTuple;
}
}
private template RepresentationTypeTupleImpl(T...)
{
static if (T.length == 0)
{
alias TypeTuple!() RepresentationTypeTupleImpl;
}
else
{
static if (is(T[0] == struct) || is(T[0] == union))
// @@@BUG@@@ this should work
// alias .RepresentationTypes!(T[0].tupleof)
// RepresentationTypes;
alias .RepresentationTypeTupleImpl!(FieldTypeTuple!(T[0]),
T[1 .. $])
RepresentationTypeTupleImpl;
else static if (is(T[0] U == typedef))
{
alias .RepresentationTypeTupleImpl!(FieldTypeTuple!(U),
T[1 .. $])
RepresentationTypeTupleImpl;
}
else
{
alias TypeTuple!(T[0], RepresentationTypeTupleImpl!(T[1 .. $]))
RepresentationTypeTupleImpl;
}
}
}
unittest
{
alias RepresentationTypeTuple!(int) S1;
static assert(is(S1 == TypeTuple!(int)));
struct S2 { int a; }
static assert(is(RepresentationTypeTuple!(S2) == TypeTuple!(int)));
struct S3 { int a; char b; }
static assert(is(RepresentationTypeTuple!(S3) == TypeTuple!(int, char)));
struct S4 { S1 a; int b; S3 c; }
static assert(is(RepresentationTypeTuple!(S4) ==
TypeTuple!(int, int, int, char)));
struct S11 { int a; float b; }
struct S21 { char[] a; union { S11 b; S11 * c; } }
alias RepresentationTypeTuple!(S21) R;
assert(R.length == 4
&& is(R[0] == char[]) && is(R[1] == int)
&& is(R[2] == float) && is(R[3] == S11*));
class C { int a; float b; }
alias RepresentationTypeTuple!C R1;
static assert(R1.length == 2 && is(R1[0] == int) && is(R1[1] == float));
}
/*
RepresentationOffsets
*/
// private template Repeat(size_t n, T...)
// {
// static if (n == 0) alias TypeTuple!() Repeat;
// else alias TypeTuple!(T, Repeat!(n - 1, T)) Repeat;
// }
// template RepresentationOffsetsImpl(size_t n, T...)
// {
// static if (T.length == 0)
// {
// alias TypeTuple!() Result;
// }
// else
// {
// private enum size_t myOffset =
// ((n + T[0].alignof - 1) / T[0].alignof) * T[0].alignof;
// static if (!is(T[0] == union))
// {
// alias Repeat!(n, FieldTypeTuple!(T[0])).Result
// Head;
// }
// static if (is(T[0] == struct))
// {
// alias .RepresentationOffsetsImpl!(n, FieldTypeTuple!(T[0])).Result
// Head;
// }
// else
// {
// alias TypeTuple!(myOffset) Head;
// }
// alias TypeTuple!(Head,
// RepresentationOffsetsImpl!(
// myOffset + T[0].sizeof, T[1 .. $]).Result)
// Result;
// }
// }
// template RepresentationOffsets(T)
// {
// alias RepresentationOffsetsImpl!(0, T).Result
// RepresentationOffsets;
// }
// unittest
// {
// struct S1 { char c; int i; }
// alias RepresentationOffsets!(S1) Offsets;
// static assert(Offsets[0] == 0);
// //pragma(msg, Offsets[1]);
// static assert(Offsets[1] == 4);
// }
// hasRawAliasing
private template hasRawPointerImpl(T...)
{
static if (T.length == 0)
{
enum result = false;
}
else
{
static if (is(T[0] foo : U*, U) && !isFunctionPointer!(T[0]))
enum hasRawAliasing = !is(U == immutable);
else static if (is(T[0] foo : U[], U) && !isStaticArray!(T[0]))
enum hasRawAliasing = !is(U == immutable);
else static if (isAssociativeArray!(T[0]))
enum hasRawAliasing = !is(T[0] == immutable);
else
enum hasRawAliasing = false;
enum result = hasRawAliasing || hasRawPointerImpl!(T[1 .. $]).result;
}
}
private template HasRawLocalPointerImpl(T...)
{
static if (T.length == 0)
{
enum result = false;
}
else
{
static if (is(T[0] foo : U*, U) && !isFunctionPointer!(T[0]))
enum hasRawLocalAliasing = !is(U == immutable) && !is(U == shared);
else static if (is(T[0] foo : U[], U) && !isStaticArray!(T[0]))
enum hasRawLocalAliasing = !is(U == immutable) && !is(U == shared);
else static if (isAssociativeArray!(T[0]))
enum hasRawLocalAliasing = !is(T[0] == immutable) && !is(T[0] == shared);
else
enum hasRawLocalAliasing = false;
enum result = hasRawLocalAliasing || HasRawLocalPointerImpl!(T[1 .. $]).result;
}
}
/*
Statically evaluates to $(D true) if and only if $(D T)'s
representation contains at least one field of pointer or array type.
Members of class types are not considered raw pointers. Pointers to
immutable objects are not considered raw aliasing.
Example:
---
// simple types
static assert(!hasRawAliasing!(int));
static assert(hasRawAliasing!(char*));
// references aren't raw pointers
static assert(!hasRawAliasing!(Object));
// built-in arrays do contain raw pointers
static assert(hasRawAliasing!(int[]));
// aggregate of simple types
struct S1 { int a; double b; }
static assert(!hasRawAliasing!(S1));
// indirect aggregation
struct S2 { S1 a; double b; }
static assert(!hasRawAliasing!(S2));
// struct with a pointer member
struct S3 { int a; double * b; }
static assert(hasRawAliasing!(S3));
// struct with an indirect pointer member
struct S4 { S3 a; double b; }
static assert(hasRawAliasing!(S4));
----
*/
private template hasRawAliasing(T...)
{
enum hasRawAliasing
= hasRawPointerImpl!(RepresentationTypeTuple!T).result;
}
unittest
{
// simple types
static assert(!hasRawAliasing!(int));
static assert(hasRawAliasing!(char*));
// references aren't raw pointers
static assert(!hasRawAliasing!(Object));
static assert(!hasRawAliasing!(int));
struct S1 { int z; }
static assert(!hasRawAliasing!(S1));
struct S2 { int* z; }
static assert(hasRawAliasing!(S2));
struct S3 { int a; int* z; int c; }
static assert(hasRawAliasing!(S3));
struct S4 { int a; int z; int c; }
static assert(!hasRawAliasing!(S4));
struct S5 { int a; Object z; int c; }
static assert(!hasRawAliasing!(S5));
union S6 { int a; int b; }
static assert(!hasRawAliasing!(S6));
union S7 { int a; int * b; }
static assert(hasRawAliasing!(S7));
//typedef int* S8;
//static assert(hasRawAliasing!(S8));
enum S9 { a };
static assert(!hasRawAliasing!(S9));
// indirect members
struct S10 { S7 a; int b; }
static assert(hasRawAliasing!(S10));
struct S11 { S6 a; int b; }
static assert(!hasRawAliasing!(S11));
static assert(hasRawAliasing!(int[string]));
static assert(!hasRawAliasing!(immutable(int[string])));
}
/*
Statically evaluates to $(D true) if and only if $(D T)'s
representation contains at least one non-shared field of pointer or
array type. Members of class types are not considered raw pointers.
Pointers to immutable objects are not considered raw aliasing.
Example:
---
// simple types
static assert(!hasRawLocalAliasing!(int));
static assert(hasRawLocalAliasing!(char*));
static assert(!hasRawLocalAliasing!(shared char*));
// references aren't raw pointers
static assert(!hasRawLocalAliasing!(Object));
// built-in arrays do contain raw pointers
static assert(hasRawLocalAliasing!(int[]));
static assert(!hasRawLocalAliasing!(shared int[]));
// aggregate of simple types
struct S1 { int a; double b; }
static assert(!hasRawLocalAliasing!(S1));
// indirect aggregation
struct S2 { S1 a; double b; }
static assert(!hasRawLocalAliasing!(S2));
// struct with a pointer member
struct S3 { int a; double * b; }
static assert(hasRawLocalAliasing!(S3));
struct S4 { int a; shared double * b; }
static assert(hasRawLocalAliasing!(S4));
// struct with an indirect pointer member
struct S5 { S3 a; double b; }
static assert(hasRawLocalAliasing!(S5));
struct S6 { S4 a; double b; }
static assert(!hasRawLocalAliasing!(S6));
----
*/
private template hasRawUnsharedAliasing(T...)
{
enum hasRawUnsharedAliasing
= HasRawLocalPointerImpl!(RepresentationTypeTuple!(T)).result;
}
unittest
{
// simple types
static assert(!hasRawUnsharedAliasing!(int));
static assert(hasRawUnsharedAliasing!(char*));
static assert(!hasRawUnsharedAliasing!(shared char*));
// references aren't raw pointers
static assert(!hasRawUnsharedAliasing!(Object));
static assert(!hasRawUnsharedAliasing!(int));
struct S1 { int z; }
static assert(!hasRawUnsharedAliasing!(S1));
struct S2 { int* z; }
static assert(hasRawUnsharedAliasing!(S2));
struct S3 { shared int* z; }
static assert(!hasRawUnsharedAliasing!(S3));
struct S4 { int a; int* z; int c; }
static assert(hasRawUnsharedAliasing!(S4));
struct S5 { int a; shared int* z; int c; }
static assert(!hasRawUnsharedAliasing!(S5));
struct S6 { int a; int z; int c; }
static assert(!hasRawUnsharedAliasing!(S6));
struct S7 { int a; Object z; int c; }
static assert(!hasRawUnsharedAliasing!(S7));
union S8 { int a; int b; }
static assert(!hasRawUnsharedAliasing!(S8));
union S9 { int a; int * b; }
static assert(hasRawUnsharedAliasing!(S9));
union S10 { int a; shared int * b; }
static assert(!hasRawUnsharedAliasing!(S10));
//typedef int* S11;
//static assert(hasRawUnsharedAliasing!(S11));
//typedef shared int* S12;
//static assert(hasRawUnsharedAliasing!(S12));
enum S13 { a };
static assert(!hasRawUnsharedAliasing!(S13));
// indirect members
struct S14 { S9 a; int b; }
static assert(hasRawUnsharedAliasing!(S14));
struct S15 { S10 a; int b; }
static assert(!hasRawUnsharedAliasing!(S15));
struct S16 { S6 a; int b; }
static assert(!hasRawUnsharedAliasing!(S16));
static assert(hasRawUnsharedAliasing!(int[string]));
static assert(!hasRawUnsharedAliasing!(shared(int[string])));
static assert(!hasRawUnsharedAliasing!(immutable(int[string])));
}
/*
Statically evaluates to $(D true) if and only if $(D T)'s
representation includes at least one non-immutable object reference.
*/
private template hasObjects(T...)
{
static if (T.length == 0)
{
enum hasObjects = false;
}
else static if (is(T[0] U == typedef))
{
enum hasObjects = hasObjects!(U, T[1 .. $]);
}
else static if (is(T[0] == struct))
{
enum hasObjects = hasObjects!(
RepresentationTypeTuple!(T[0]), T[1 .. $]);
}
else
{
enum hasObjects = ((is(T[0] == class) || is(T[0] == interface))
&& !is(T[0] == immutable)) || hasObjects!(T[1 .. $]);
}
}
/*
Statically evaluates to $(D true) if and only if $(D T)'s
representation includes at least one non-immutable non-shared object
reference.
*/
private template hasUnsharedObjects(T...)
{
static if (T.length == 0)
{
enum hasUnsharedObjects = false;
}
else static if (is(T[0] U == typedef))
{
enum hasUnsharedObjects = hasUnsharedObjects!(U, T[1 .. $]);
}
else static if (is(T[0] == struct))
{
enum hasUnsharedObjects = hasUnsharedObjects!(
RepresentationTypeTuple!(T[0]), T[1 .. $]);
}
else
{
enum hasUnsharedObjects = ((is(T[0] == class) || is(T[0] == interface)) &&
!is(T[0] == immutable) && !is(T[0] == shared)) ||
hasUnsharedObjects!(T[1 .. $]);
}
}
/**
Returns $(D true) if and only if $(D T)'s representation includes at
least one of the following: $(OL $(LI a raw pointer $(D U*) and $(D U)
is not immutable;) $(LI an array $(D U[]) and $(D U) is not
immutable;) $(LI a reference to a class or interface type $(D C) and $(D C) is
not immutable.) $(LI an associative array that is not immutable.)
$(LI a delegate.))
*/
template hasAliasing(T...)
{
enum hasAliasing = hasRawAliasing!(T) || hasObjects!(T) ||
anySatisfy!(isDelegate, T);
}
// Specialization to special-case std.typecons.Rebindable.
template hasAliasing(R : Rebindable!R)
{
enum hasAliasing = hasAliasing!R;
}
unittest
{
struct S1 { int a; Object b; }
static assert(hasAliasing!(S1));
struct S2 { string a; }
static assert(!hasAliasing!(S2));
struct S3 { int a; immutable Object b; }
static assert(!hasAliasing!(S3));
struct X { float[3] vals; }
static assert(!hasAliasing!X);
static assert(hasAliasing!(uint[uint]));
static assert(!hasAliasing!(immutable(uint[uint])));
static assert(hasAliasing!(void delegate()));
static assert(!hasAliasing!(void function()));
interface I;
static assert(hasAliasing!I);
static assert(hasAliasing!(Rebindable!(const Object)));
static assert(!hasAliasing!(Rebindable!(immutable Object)));
static assert(hasAliasing!(Rebindable!(shared Object)));
static assert(hasAliasing!(Rebindable!(Object)));
}
/**
Returns $(D true) if and only if $(D T)'s representation includes at
least one of the following: $(OL $(LI a raw pointer $(D U*);) $(LI an
array $(D U[]);) $(LI a reference to a class type $(D C).)
$(LI an associative array.) $(LI a delegate.))
*/
template hasIndirections(T)
{
enum hasIndirections = hasIndirectionsImpl!(RepresentationTypeTuple!T);
}
template hasIndirectionsImpl(T...)
{
static if (!T.length)
{
enum hasIndirectionsImpl = false;
}
else static if(isFunctionPointer!(T[0]))
{
enum hasIndirectionsImpl = hasIndirectionsImpl!(T[1 .. $]);
}
else static if(isStaticArray!(T[0]))
{
enum hasIndirectionsImpl = hasIndirectionsImpl!(T[1 .. $]) ||
hasIndirectionsImpl!(RepresentationTypeTuple!(typeof(T[0].init[0])));
}
else
{
enum hasIndirectionsImpl = isPointer!(T[0]) || isDynamicArray!(T[0]) ||
is (T[0] : const(Object)) || isAssociativeArray!(T[0]) ||
isDelegate!(T[0]) || is(T[0] == interface)
|| hasIndirectionsImpl!(T[1 .. $]);
}
}
unittest
{
struct S1 { int a; Object b; }
static assert(hasIndirections!(S1));
struct S2 { string a; }
static assert(hasIndirections!(S2));
struct S3 { int a; immutable Object b; }
static assert(hasIndirections!(S3));
static assert(hasIndirections!(int[string]));
static assert(hasIndirections!(void delegate()));
interface I;
static assert(hasIndirections!I);
static assert(!hasIndirections!(void function()));
static assert(hasIndirections!(void*[1]));
static assert(!hasIndirections!(byte[1]));
}
// These are for backwards compatibility, are intentionally lacking ddoc,
// and should eventually be deprecated.
alias hasUnsharedAliasing hasLocalAliasing;
alias hasRawUnsharedAliasing hasRawLocalAliasing;
alias hasUnsharedObjects hasLocalObjects;
/**
Returns $(D true) if and only if $(D T)'s representation includes at
least one of the following: $(OL $(LI a raw pointer $(D U*) and $(D U)
is not immutable or shared;) $(LI an array $(D U[]) and $(D U) is not
immutable or shared;) $(LI a reference to a class type $(D C) and
$(D C) is not immutable or shared.) $(LI an associative array that is not
immutable or shared.) $(LI a delegate that is not shared.))
*/
template hasUnsharedAliasing(T...)
{
enum hasUnsharedAliasing = hasRawUnsharedAliasing!(T) ||
anySatisfy!(unsharedDelegate, T) || hasUnsharedObjects!(T);
}
// Specialization to special-case std.typecons.Rebindable.
template hasUnsharedAliasing(R : Rebindable!R)
{
enum hasUnsharedAliasing = hasUnsharedAliasing!R;
}
private template unsharedDelegate(T)
{
enum bool unsharedDelegate = isDelegate!T && !is(T == shared);
}
unittest
{
struct S1 { int a; Object b; }
static assert(hasUnsharedAliasing!(S1));
struct S2 { string a; }
static assert(!hasUnsharedAliasing!(S2));
struct S3 { int a; immutable Object b; }
static assert(!hasUnsharedAliasing!(S3));
struct S4 { int a; shared Object b; }
static assert(!hasUnsharedAliasing!(S4));
struct S5 { char[] a; }
static assert(hasUnsharedAliasing!(S5));
struct S6 { shared char[] b; }
static assert(!hasUnsharedAliasing!(S6));
struct S7 { float[3] vals; }
static assert(!hasUnsharedAliasing!(S7));
static assert(hasUnsharedAliasing!(uint[uint]));
static assert(hasUnsharedAliasing!(void delegate()));
static assert(!hasUnsharedAliasing!(shared(void delegate())));
static assert(!hasUnsharedAliasing!(void function()));
interface I {}
static assert(hasUnsharedAliasing!I);
static assert(hasUnsharedAliasing!(Rebindable!(const Object)));
static assert(!hasUnsharedAliasing!(Rebindable!(immutable Object)));
static assert(!hasUnsharedAliasing!(Rebindable!(shared Object)));
static assert(hasUnsharedAliasing!(Rebindable!(Object)));
}
/**
True if $(D S) or any type embedded directly in the representation of $(D S)
defines an elaborate copy constructor. Elaborate copy constructors are
introduced by defining $(D this(this)) for a $(D struct). (Non-struct types
never have elaborate copy constructors.)
*/
template hasElaborateCopyConstructor(S)
{
static if(!is(S == struct))
{
enum bool hasElaborateCopyConstructor = false;
}
else
{
enum hasElaborateCopyConstructor = is(typeof({
S s;
return &s.__postblit;
})) || anySatisfy!(.hasElaborateCopyConstructor, typeof(S.tupleof));
}
}
unittest
{
static assert(!hasElaborateCopyConstructor!int);
struct S
{
this(this) {}
}
static assert(hasElaborateCopyConstructor!S);
struct S2
{
uint num;
}
struct S3
{
uint num;
S s;
}
static assert(!hasElaborateCopyConstructor!S2);
static assert(hasElaborateCopyConstructor!S3);
}
/**
True if $(D S) or any type directly embedded in the representation of $(D S)
defines an elaborate assignmentq. Elaborate assignments are introduced by
defining $(D opAssign(typeof(this))) or $(D opAssign(ref typeof(this)))
for a $(D struct). (Non-struct types never have elaborate assignments.)
*/
template hasElaborateAssign(S)
{
static if(!is(S == struct))
{
enum bool hasElaborateAssign = false;
}
else
{
enum hasElaborateAssign = is(typeof(S.init.opAssign(S.init))) ||
is(typeof(S.init.opAssign({ return S.init; }()))) ||
anySatisfy!(.hasElaborateAssign, typeof(S.tupleof));
}
}
unittest
{
static assert(!hasElaborateAssign!int);
struct S { void opAssign(S) {} }
static assert(hasElaborateAssign!S);
struct S1 { void opAssign(ref S1) {} }
static assert(hasElaborateAssign!S1);
struct S2 { void opAssign(S1) {} }
static assert(!hasElaborateAssign!S2);
struct S3 { S s; }
static assert(hasElaborateAssign!S3);
struct S4 {
void opAssign(U)(auto ref U u)
if (!__traits(isRef, u))
{}
}
static assert(hasElaborateAssign!S4);
}
/**
True if $(D S) or any type directly embedded in the representation
of $(D S) defines an elaborate destructor. Elaborate destructors
are introduced by defining $(D ~this()) for a $(D
struct). (Non-struct types never have elaborate destructors, even
though classes may define $(D ~this()).)
*/
template hasElaborateDestructor(S)
{
static if(!is(S == struct))
{
enum bool hasElaborateDestructor = false;
}
else
{
enum hasElaborateDestructor = is(typeof({S s; return &s.__dtor;}))
|| anySatisfy!(.hasElaborateDestructor, typeof(S.tupleof));
}
}
unittest
{
static assert(!hasElaborateDestructor!int);
static struct S1 { }
static assert(!hasElaborateDestructor!S1);
static struct S2 { ~this() {} }
static assert(hasElaborateDestructor!S2);
static struct S3 { S2 field; }
static assert(hasElaborateDestructor!S3);
}
/**
Yields $(D true) if and only if $(D T) is a $(D struct) or a $(D
class) that defines a symbol called $(D name).
*/
template hasMember(T, string name)
{
static if (is(T == struct) || is(T == class))
{
enum bool hasMember =
staticIndexOf!(name, __traits(allMembers, T)) != -1;
}
else
{
enum bool hasMember = false;
}
}
unittest
{
//pragma(msg, __traits(allMembers, void delegate()));
static assert(!hasMember!(int, "blah"));
struct S1 { int blah; }
static assert(hasMember!(S1, "blah"));
struct S2 { int blah(); }
static assert(hasMember!(S2, "blah"));
struct C1 { int blah; }
static assert(hasMember!(C1, "blah"));
struct C2 { int blah(); }
static assert(hasMember!(C2, "blah"));
}
/**
Retrieves the members of an enumerated type $(D enum E).
Params:
E = An enumerated type. $(D E) may have duplicated values.
Returns:
Static tuple composed of the members of the enumerated type $(D E).
The members are arranged in the same order as declared in $(D E).
Note:
Returned values are strictly typed with $(D E). Thus, the following code
does not work without the explicit cast:
--------------------
enum E : int { a, b, c }
int[] abc = cast(int[]) [ EnumMembers!E ];
--------------------
Cast is not necessary if the type of the variable is inferred. See the
example below.
Examples:
Creating an array of enumerated values:
--------------------
enum Sqrts : real
{
one = 1,
two = 1.41421,
three = 1.73205,
}
auto sqrts = [ EnumMembers!Sqrts ];
assert(sqrts == [ Sqrts.one, Sqrts.two, Sqrts.three ]);
--------------------
A generic function $(D rank(v)) in the following example uses this
template for finding a member $(D e) in an enumerated type $(D E).
--------------------
// Returns i if e is the i-th enumerator of E.
size_t rank(E)(E e)
if (is(E == enum))
{
foreach (i, member; EnumMembers!E)
{
if (e == member)
return i;
}
assert(0, "Not an enum member");
}
enum Mode
{
read = 1,
write = 2,
map = 4,
}
assert(rank(Mode.read ) == 0);
assert(rank(Mode.write) == 1);
assert(rank(Mode.map ) == 2);
--------------------
*/
template EnumMembers(E)
if (is(E == enum))
{
alias EnumSpecificMembers!(E, __traits(allMembers, E)) EnumMembers;
}
private template EnumSpecificMembers(Enum, names...)
{
static if (names.length > 0)
{
alias TypeTuple!(
WithIdentifier!(names[0])
.Symbolize!(__traits(getMember, Enum, names[0])),
EnumSpecificMembers!(Enum, names[1 .. $])
) EnumSpecificMembers;
}
else
{
alias TypeTuple!() EnumSpecificMembers;
}
}
unittest
{
enum A { a }
static assert([ EnumMembers!A ] == [ A.a ]);
enum B { a, b, c, d, e }
static assert([ EnumMembers!B ] == [ B.a, B.b, B.c, B.d, B.e ]);
}
unittest // typed enums
{
enum A : string { a = "alpha", b = "beta" }
static assert([ EnumMembers!A ] == [ A.a, A.b ]);
static struct S
{
int value;
int opCmp(S rhs) const nothrow { return value - rhs.value; }
}
enum B : S { a = S(1), b = S(2), c = S(3) }
static assert([ EnumMembers!B ] == [ B.a, B.b, B.c ]);
}
unittest // duplicated values
{
enum A
{
a = 0, b = 0,
c = 1, d = 1, e
}
static assert([ EnumMembers!A ] == [ A.a, A.b, A.c, A.d, A.e ]);
}
// Supply the specified identifier to an constant value.
//
// The identifier of each enum member will be exposed via this template
// once the BUG4732 is fixed.
//
// enum E { member }
// assert(__traits(identifier, EnumMembers!E[0]) == "member");
//
private template WithIdentifier(string ident)
{
static if (ident == "Symbolize")
{
template Symbolize(alias value)
{
enum Symbolize = value;
}
}
else
{
mixin("template Symbolize(alias "~ ident ~")"
~"{"
~"alias "~ ident ~" Symbolize;"
~"}");
}
}
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
// Classes and Interfaces
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
/***
* Get a $(D_PARAM TypeTuple) of the base class and base interfaces of
* this class or interface. $(D_PARAM BaseTypeTuple!(Object)) returns
* the empty type tuple.
*
* Example:
* ---
* import std.traits, std.typetuple, std.stdio;
* interface I { }
* class A { }
* class B : A, I { }
*
* void main()
* {
* alias BaseTypeTuple!(B) TL;
* writeln(typeid(TL)); // prints: (A,I)
* }
* ---
*/
template BaseTypeTuple(A)
{
static if (is(A P == super))
alias P BaseTypeTuple;
else
static assert(0, "argument is not a class or interface");
}
unittest
{
interface I1 { }
interface I2 { }
interface I12 : I1, I2 { }
static assert(is(BaseTypeTuple!I12 == TypeTuple!(I1, I2)));
interface I3 : I1 { }
interface I123 : I1, I2, I3 { }
static assert(is(BaseTypeTuple!I123 == TypeTuple!(I1, I2, I3)));
}
unittest
{
interface I1 { }
interface I2 { }
class A { }
class C : A, I1, I2 { }
alias BaseTypeTuple!(C) TL;
assert(TL.length == 3);
assert(is (TL[0] == A));
assert(is (TL[1] == I1));
assert(is (TL[2] == I2));
assert(BaseTypeTuple!(Object).length == 0);
}
/**
* Get a $(D_PARAM TypeTuple) of $(I all) base classes of this class,
* in decreasing order. Interfaces are not included. $(D_PARAM
* BaseClassesTuple!(Object)) yields the empty type tuple.
*
* Example:
* ---
* import std.traits, std.typetuple, std.stdio;
* interface I { }
* class A { }
* class B : A, I { }
* class C : B { }
*
* void main()
* {
* alias BaseClassesTuple!(C) TL;
* writeln(typeid(TL)); // prints: (B,A,Object)
* }
* ---
*/
template BaseClassesTuple(T)
{
static if (is(T == Object))
{
alias TypeTuple!() BaseClassesTuple;
}
static if (is(BaseTypeTuple!(T)[0] == Object))
{
alias TypeTuple!(Object) BaseClassesTuple;
}
else
{
alias TypeTuple!(BaseTypeTuple!(T)[0],
BaseClassesTuple!(BaseTypeTuple!(T)[0]))
BaseClassesTuple;
}
}
/**
* Get a $(D_PARAM TypeTuple) of $(I all) interfaces directly or
* indirectly inherited by this class or interface. Interfaces do not
* repeat if multiply implemented. $(D_PARAM InterfacesTuple!(Object))
* yields the empty type tuple.
*
* Example:
* ---
* import std.traits, std.typetuple, std.stdio;
* interface I1 { }
* interface I2 { }
* class A : I1, I2 { }
* class B : A, I1 { }
* class C : B { }
*
* void main()
* {
* alias InterfacesTuple!(C) TL;
* writeln(typeid(TL)); // prints: (I1, I2)
* }
* ---
*/
template InterfacesTuple(T)
{
static if (is(T S == super) && S.length)
alias NoDuplicates!(InterfacesTuple_Flatten!(S))
InterfacesTuple;
else
alias TypeTuple!() InterfacesTuple;
}
// internal
private template InterfacesTuple_Flatten(H, T...)
{
static if (T.length)
{
alias TypeTuple!(
InterfacesTuple_Flatten!(H),
InterfacesTuple_Flatten!(T))
InterfacesTuple_Flatten;
}
else
{
static if (is(H == interface))
alias TypeTuple!(H, InterfacesTuple!(H))
InterfacesTuple_Flatten;
else
alias InterfacesTuple!(H) InterfacesTuple_Flatten;
}
}
unittest
{
struct Test1_WorkaroundForBug2986 {
// doc example
interface I1 {}
interface I2 {}
class A : I1, I2 { }
class B : A, I1 { }
class C : B { }
alias InterfacesTuple!(C) TL;
static assert(is(TL[0] == I1) && is(TL[1] == I2));
}
struct Test2_WorkaroundForBug2986 {
interface Iaa {}
interface Iab {}
interface Iba {}
interface Ibb {}
interface Ia : Iaa, Iab {}
interface Ib : Iba, Ibb {}
interface I : Ia, Ib {}
interface J {}
class B : J {}
class C : B, Ia, Ib {}
static assert(is(InterfacesTuple!(I) ==
TypeTuple!(Ia, Iaa, Iab, Ib, Iba, Ibb)));
static assert(is(InterfacesTuple!(C) ==
TypeTuple!(J, Ia, Iaa, Iab, Ib, Iba, Ibb)));
}
}
/**
* Get a $(D_PARAM TypeTuple) of $(I all) base classes of $(D_PARAM
* T), in decreasing order, followed by $(D_PARAM T)'s
* interfaces. $(D_PARAM TransitiveBaseTypeTuple!(Object)) yields the
* empty type tuple.
*
* Example:
* ---
* import std.traits, std.typetuple, std.stdio;
* interface I { }
* class A { }
* class B : A, I { }
* class C : B { }
*
* void main()
* {
* alias TransitiveBaseTypeTuple!(C) TL;
* writeln(typeid(TL)); // prints: (B,A,Object,I)
* }
* ---
*/
template TransitiveBaseTypeTuple(T)
{
static if (is(T == Object))
alias TypeTuple!() TransitiveBaseTypeTuple;
else
alias TypeTuple!(BaseClassesTuple!(T),
InterfacesTuple!(T))
TransitiveBaseTypeTuple;
}
unittest
{
interface J1 {}
interface J2 {}
class B1 {}
class B2 : B1, J1, J2 {}
class B3 : B2, J1 {}
alias TransitiveBaseTypeTuple!(B3) TL;
assert(TL.length == 5);
assert(is (TL[0] == B2));
assert(is (TL[1] == B1));
assert(is (TL[2] == Object));
assert(is (TL[3] == J1));
assert(is (TL[4] == J2));
assert(TransitiveBaseTypeTuple!(Object).length == 0);
}
/**
Returns a tuple of non-static functions with the name $(D name) declared in the
class or interface $(D C). Covariant duplicates are shrunk into the most
derived one.
Example:
--------------------
interface I { I foo(); }
class B
{
real foo(real v) { return v; }
}
class C : B, I
{
override C foo() { return this; } // covariant overriding of I.foo()
}
alias MemberFunctionsTuple!(C, "foo") foos;
static assert(foos.length == 2);
static assert(__traits(isSame, foos[0], C.foo));
static assert(__traits(isSame, foos[1], B.foo));
--------------------
*/
template MemberFunctionsTuple(C, string name)
if (is(C == class) || is(C == interface))
{
static if (__traits(hasMember, C, name))
alias MemberFunctionTupleImpl!(C, name).result MemberFunctionsTuple;
else
alias TypeTuple!() MemberFunctionsTuple;
}
private template MemberFunctionTupleImpl(C, string name)
{
/*
* First, collect all overloads in the class hierarchy.
*/
template CollectOverloads(Node)
{
static if (__traits(hasMember, Node, name))
{
// Get all overloads in sight (not hidden).
alias TypeTuple!(__traits(getVirtualFunctions, Node, name)) inSight;
// And collect all overloads in ancestor classes to reveal hidden
// methods. The result may contain duplicates.
template walkThru(Parents...)
{
static if (Parents.length > 0)
alias TypeTuple!(
CollectOverloads!(Parents[0]).result,
walkThru!(Parents[1 .. $])
) walkThru;
else
alias TypeTuple!() walkThru;
}
static if (is(Node Parents == super))
alias TypeTuple!(inSight, walkThru!(Parents)) result;
else
alias TypeTuple!(inSight) result;
}
else
alias TypeTuple!() result; // no overloads in this hierarchy
}
// duplicates in this tuple will be removed by shrink()
alias CollectOverloads!(C).result overloads;
/*
* Now shrink covariant overloads into one.
*/
template shrink(overloads...)
{
static if (overloads.length > 0)
{
alias shrinkOne!(overloads).result temp;
alias TypeTuple!(temp[0], shrink!(temp[1 .. $]).result) result;
}
else
alias TypeTuple!() result; // done
}
// .result[0] = the most derived one in the covariant siblings of target
// .result[1..$] = non-covariant others
template shrinkOne(/+ alias target, rest... +/ args...)
{
alias args[0 .. 1] target; // prevent property functions from being evaluated
alias args[1 .. $] rest;
static if (rest.length > 0)
{
alias FunctionTypeOf!(target) Target;
alias FunctionTypeOf!(rest[0]) Rest0;
static if (isCovariantWith!(Target, Rest0))
// target overrides rest[0] -- erase rest[0].
alias shrinkOne!(target, rest[1 .. $]).result result;
else static if (isCovariantWith!(Rest0, Target))
// rest[0] overrides target -- erase target.
alias shrinkOne!(rest[0], rest[1 .. $]).result result;
else
// target and rest[0] are distinct.
alias TypeTuple!(
shrinkOne!(target, rest[1 .. $]).result,
rest[0] // keep
) result;
}
else
alias TypeTuple!(target) result; // done
}
// done.
alias shrink!(overloads).result result;
}
unittest
{
interface I { I test(); }
interface J : I { J test(); }
interface K { K test(int); }
class B : I, K
{
K test(int) { return this; }
B test() { return this; }
static void test(string) { }
}
class C : B, J
{
override C test() { return this; }
}
alias MemberFunctionsTuple!(C, "test") test;
static assert(test.length == 2);
static assert(is(FunctionTypeOf!(test[0]) == FunctionTypeOf!(C.test)));
static assert(is(FunctionTypeOf!(test[1]) == FunctionTypeOf!(K.test)));
alias MemberFunctionsTuple!(C, "noexist") noexist;
static assert(noexist.length == 0);
interface L { int prop() @property; }
alias MemberFunctionsTuple!(L, "prop") prop;
static assert(prop.length == 1);
interface Test_I
{
void foo();
void foo(int);
void foo(int, int);
}
interface Test : Test_I {}
alias MemberFunctionsTuple!(Test, "foo") Test_foo;
static assert(Test_foo.length == 3);
static assert(is(typeof(&Test_foo[0]) == void function()));
static assert(is(typeof(&Test_foo[2]) == void function(int)));
static assert(is(typeof(&Test_foo[1]) == void function(int, int)));
}
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
// Type Conversion
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
/**
Get the type that all types can be implicitly converted to. Useful
e.g. in figuring out an array type from a bunch of initializing
values. Returns $(D_PARAM void) if passed an empty list, or if the
types have no common type.
Example:
----
alias CommonType!(int, long, short) X;
assert(is(X == long));
alias CommonType!(int, char[], short) Y;
assert(is(Y == void));
----
*/
template CommonType(T...)
{
static if (!T.length)
alias void CommonType;
else static if (T.length == 1)
{
static if(is(typeof(T[0])))
{
alias typeof(T[0]) CommonType;
}
else
{
alias T[0] CommonType;
}
}
else static if (is(typeof(true ? T[0].init : T[1].init) U))
alias CommonType!(U, T[2 .. $]) CommonType;
else
alias void CommonType;
}
unittest
{
alias CommonType!(int, long, short) X;
static assert(is(X == long));
alias CommonType!(char[], int, long, short) Y;
static assert(is(Y == void), Y.stringof);
static assert(is(CommonType!(3) == int));
static assert(is(CommonType!(double, 4, float) == double));
static assert(is(CommonType!(string, char[]) == const(char)[]));
static assert(is(CommonType!(3, 3U) == uint));
}
/**
* Returns a tuple with all possible target types of an implicit
* conversion of a value of type $(D_PARAM T).
*
* Important note:
*
* The possible targets are computed more conservatively than the D
* 2.005 compiler does, eliminating all dangerous conversions. For
* example, $(D_PARAM ImplicitConversionTargets!(double)) does not
* include $(D_PARAM float).
*/
template ImplicitConversionTargets(T)
{
static if (is(T == bool))
alias TypeTuple!(byte, ubyte, short, ushort, int, uint, long, ulong,
float, double, real, char, wchar, dchar)
ImplicitConversionTargets;
else static if (is(T == byte))
alias TypeTuple!(short, ushort, int, uint, long, ulong,
float, double, real, char, wchar, dchar)
ImplicitConversionTargets;
else static if (is(T == ubyte))
alias TypeTuple!(short, ushort, int, uint, long, ulong,
float, double, real, char, wchar, dchar)
ImplicitConversionTargets;
else static if (is(T == short))
alias TypeTuple!(ushort, int, uint, long, ulong,
float, double, real)
ImplicitConversionTargets;
else static if (is(T == ushort))
alias TypeTuple!(int, uint, long, ulong, float, double, real)
ImplicitConversionTargets;
else static if (is(T == int))
alias TypeTuple!(long, ulong, float, double, real)
ImplicitConversionTargets;
else static if (is(T == uint))
alias TypeTuple!(long, ulong, float, double, real)
ImplicitConversionTargets;
else static if (is(T == long))
alias TypeTuple!(float, double, real)
ImplicitConversionTargets;
else static if (is(T == ulong))
alias TypeTuple!(float, double, real)
ImplicitConversionTargets;
else static if (is(T == float))
alias TypeTuple!(double, real)
ImplicitConversionTargets;
else static if (is(T == double))
alias TypeTuple!(real)
ImplicitConversionTargets;
else static if (is(T == char))
alias TypeTuple!(wchar, dchar, byte, ubyte, short, ushort,
int, uint, long, ulong, float, double, real)
ImplicitConversionTargets;
else static if (is(T == wchar))
alias TypeTuple!(wchar, dchar, short, ushort, int, uint, long, ulong,
float, double, real)
ImplicitConversionTargets;
else static if (is(T == dchar))
alias TypeTuple!(wchar, dchar, int, uint, long, ulong,
float, double, real)
ImplicitConversionTargets;
else static if(is(T : Object))
alias TransitiveBaseTypeTuple!(T) ImplicitConversionTargets;
// @@@BUG@@@ this should work
// else static if (isDynamicArray!T && !is(typeof(T.init[0]) == const))
// alias TypeTuple!(const(typeof(T.init[0]))[]) ImplicitConversionTargets;
else static if (is(T == char[]))
alias TypeTuple!(const(char)[]) ImplicitConversionTargets;
else static if (isDynamicArray!T && !is(typeof(T.init[0]) == const))
alias TypeTuple!(const(typeof(T.init[0]))[]) ImplicitConversionTargets;
else static if (is(T : void*))
alias TypeTuple!(void*) ImplicitConversionTargets;
else
alias TypeTuple!() ImplicitConversionTargets;
}
unittest
{
assert(is(ImplicitConversionTargets!(double)[0] == real));
}
/**
Is $(D From) implicitly convertible to $(D To)?
*/
template isImplicitlyConvertible(From, To)
{
enum bool isImplicitlyConvertible = is(typeof({
void fun(ref From v) {
void gun(To) {}
gun(v);
}
}()));
}
unittest
{
static assert(isImplicitlyConvertible!(immutable(char), char));
static assert(isImplicitlyConvertible!(const(char), char));
static assert(isImplicitlyConvertible!(char, wchar));
static assert(!isImplicitlyConvertible!(wchar, char));
// bug6197
static assert(!isImplicitlyConvertible!(const(ushort), ubyte));
static assert(!isImplicitlyConvertible!(const(uint), ubyte));
static assert(!isImplicitlyConvertible!(const(ulong), ubyte));
// from std.conv.implicitlyConverts
assert(!isImplicitlyConvertible!(const(char)[], string));
assert(isImplicitlyConvertible!(string, const(char)[]));
}
/**
Returns $(D true) iff a value of type $(D Rhs) can be assigned to a variable of
type $(D Lhs).
Examples:
---
static assert(isAssignable!(long, int));
static assert(!isAssignable!(int, long));
static assert(isAssignable!(const(char)[], string));
static assert(!isAssignable!(string, char[]));
---
*/
template isAssignable(Lhs, Rhs) {
enum bool isAssignable = is(typeof({
Lhs l;
Rhs r;
l = r;
return l;
}));
}
unittest {
static assert(isAssignable!(long, int));
static assert(!isAssignable!(int, long));
static assert(isAssignable!(const(char)[], string));
static assert(!isAssignable!(string, char[]));
}
/*
Works like $(D isImplicitlyConvertible), except this cares only about storage
classes of the arguments.
*/
private template isStorageClassImplicitlyConvertible(From, To)
{
enum isStorageClassImplicitlyConvertible = isImplicitlyConvertible!(
ModifyTypePreservingSTC!(Pointify, From),
ModifyTypePreservingSTC!(Pointify, To) );
}
private template Pointify(T) { alias void* Pointify; }
unittest
{
static assert(isStorageClassImplicitlyConvertible!( int, const int));
static assert(isStorageClassImplicitlyConvertible!(immutable int, const int));
static assert(! isStorageClassImplicitlyConvertible!(const int, int));
static assert(! isStorageClassImplicitlyConvertible!(const int, immutable int));
static assert(! isStorageClassImplicitlyConvertible!(int, shared int));
static assert(! isStorageClassImplicitlyConvertible!(shared int, int));
}
/**
Determines whether the function type $(D F) is covariant with $(D G), i.e.,
functions of the type $(D F) can override ones of the type $(D G).
Example:
--------------------
interface I { I clone(); }
interface J { J clone(); }
class C : I
{
override C clone() // covariant overriding of I.clone()
{
return new C;
}
}
// C.clone() can override I.clone(), indeed.
static assert(isCovariantWith!(typeof(C.clone), typeof(I.clone)));
// C.clone() can't override J.clone(); the return type C is not implicitly
// convertible to J.
static assert(isCovariantWith!(typeof(C.clone), typeof(J.clone)));
--------------------
*/
template isCovariantWith(F, G)
if (is(F == function) && is(G == function))
{
static if (is(F : G))
enum isCovariantWith = true;
else
enum isCovariantWith = isCovariantWithImpl!(F, G).yes;
}
private template isCovariantWithImpl(Upr, Lwr)
{
/*
* Check for calling convention: require exact match.
*/
template checkLinkage()
{
enum ok = functionLinkage!(Upr) == functionLinkage!(Lwr);
}
/*
* Check for variadic parameter: require exact match.
*/
template checkVariadicity()
{
enum ok = variadicFunctionStyle!(Upr) == variadicFunctionStyle!(Lwr);
}
/*
* Check for function storage class:
* - overrider can have narrower storage class than base
*/
template checkSTC()
{
// Note the order of arguments. The convertion order Lwr -> Upr is
// correct since Upr should be semantically 'narrower' than Lwr.
enum ok = isStorageClassImplicitlyConvertible!(Lwr, Upr);
}
/*
* Check for function attributes:
* - require exact match for ref and @property
* - overrider can add pure and nothrow, but can't remove them
* - @safe and @trusted are covariant with each other, unremovable
*/
template checkAttributes()
{
alias FunctionAttribute FA;
enum uprAtts = functionAttributes!(Upr);
enum lwrAtts = functionAttributes!(Lwr);
//
enum wantExact = FA.ref_ | FA.property;
enum safety = FA.safe | FA.trusted;
enum ok =
( (uprAtts & wantExact) == (lwrAtts & wantExact)) &&
( (uprAtts & FA.pure_ ) >= (lwrAtts & FA.pure_ )) &&
( (uprAtts & FA.nothrow_) >= (lwrAtts & FA.nothrow_)) &&
(!!(uprAtts & safety ) >= !!(lwrAtts & safety )) ;
}
/*
* Check for return type: usual implicit convertion.
*/
template checkReturnType()
{
enum ok = is(ReturnType!(Upr) : ReturnType!(Lwr));
}
/*
* Check for parameters:
* - require exact match for types (cf. bugzilla 3075)
* - require exact match for in, out, ref and lazy
* - overrider can add scope, but can't remove
*/
template checkParameters()
{
alias ParameterStorageClass STC;
alias ParameterTypeTuple!(Upr) UprParams;
alias ParameterTypeTuple!(Lwr) LwrParams;
alias ParameterStorageClassTuple!(Upr) UprPSTCs;
alias ParameterStorageClassTuple!(Lwr) LwrPSTCs;
//
template checkNext(size_t i)
{
static if (i < UprParams.length)
{
enum uprStc = UprPSTCs[i];
enum lwrStc = LwrPSTCs[i];
//
enum wantExact = STC.out_ | STC.ref_ | STC.lazy_;
enum ok =
((uprStc & wantExact ) == (lwrStc & wantExact )) &&
((uprStc & STC.scope_) >= (lwrStc & STC.scope_)) &&
checkNext!(i + 1).ok;
}
else
enum ok = true; // done
}
static if (UprParams.length == LwrParams.length)
enum ok = is(UprParams == LwrParams) && checkNext!(0).ok;
else
enum ok = false;
}
/* run all the checks */
enum bool yes =
checkLinkage !().ok &&
checkVariadicity!().ok &&
checkSTC !().ok &&
checkAttributes !().ok &&
checkReturnType !().ok &&
checkParameters !().ok ;
}
version (unittest) private template isCovariantWith(alias f, alias g)
{
enum bool isCovariantWith = isCovariantWith!(typeof(f), typeof(g));
}
unittest
{
// covariant return type
interface I {}
interface J : I {}
interface BaseA { const(I) test(int); }
interface DerivA_1 : BaseA { override const(J) test(int); }
interface DerivA_2 : BaseA { override J test(int); }
static assert(isCovariantWith!(DerivA_1.test, BaseA.test));
static assert(isCovariantWith!(DerivA_2.test, BaseA.test));
static assert(! isCovariantWith!(BaseA.test, DerivA_1.test));
static assert(! isCovariantWith!(BaseA.test, DerivA_2.test));
static assert(isCovariantWith!(BaseA.test, BaseA.test));
static assert(isCovariantWith!(DerivA_1.test, DerivA_1.test));
static assert(isCovariantWith!(DerivA_2.test, DerivA_2.test));
// scope parameter
interface BaseB { void test( int, int); }
interface DerivB_1 : BaseB { override void test(scope int, int); }
interface DerivB_2 : BaseB { override void test( int, scope int); }
interface DerivB_3 : BaseB { override void test(scope int, scope int); }
static assert(isCovariantWith!(DerivB_1.test, BaseB.test));
static assert(isCovariantWith!(DerivB_2.test, BaseB.test));
static assert(isCovariantWith!(DerivB_3.test, BaseB.test));
static assert(! isCovariantWith!(BaseB.test, DerivB_1.test));
static assert(! isCovariantWith!(BaseB.test, DerivB_2.test));
static assert(! isCovariantWith!(BaseB.test, DerivB_3.test));
// function storage class
interface BaseC { void test() ; }
interface DerivC_1 : BaseC { override void test() const; }
static assert(isCovariantWith!(DerivC_1.test, BaseC.test));
static assert(! isCovariantWith!(BaseC.test, DerivC_1.test));
// increasing safety
interface BaseE { void test() ; }
interface DerivE_1 : BaseE { override void test() @safe ; }
interface DerivE_2 : BaseE { override void test() @trusted; }
static assert(isCovariantWith!(DerivE_1.test, BaseE.test));
static assert(isCovariantWith!(DerivE_2.test, BaseE.test));
static assert(! isCovariantWith!(BaseE.test, DerivE_1.test));
static assert(! isCovariantWith!(BaseE.test, DerivE_2.test));
// @safe and @trusted
interface BaseF
{
void test1() @safe;
void test2() @trusted;
}
interface DerivF : BaseF
{
override void test1() @trusted;
override void test2() @safe;
}
static assert(isCovariantWith!(DerivF.test1, BaseF.test1));
static assert(isCovariantWith!(DerivF.test2, BaseF.test2));
}
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
// isSomething
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
/**
* Detect whether T is a built-in integral type. Types $(D bool), $(D
* char), $(D wchar), and $(D dchar) are not considered integral.
*/
template isIntegral(T)
{
enum bool isIntegral = staticIndexOf!(Unqual!(T), byte,
ubyte, short, ushort, int, uint, long, ulong) >= 0;
}
unittest
{
static assert(isIntegral!(byte));
static assert(isIntegral!(const(byte)));
static assert(isIntegral!(immutable(byte)));
static assert(isIntegral!(shared(byte)));
static assert(isIntegral!(shared(const(byte))));
static assert(isIntegral!(ubyte));
static assert(isIntegral!(const(ubyte)));
static assert(isIntegral!(immutable(ubyte)));
static assert(isIntegral!(shared(ubyte)));
static assert(isIntegral!(shared(const(ubyte))));
static assert(isIntegral!(short));
static assert(isIntegral!(const(short)));
static assert(isIntegral!(immutable(short)));
static assert(isIntegral!(shared(short)));
static assert(isIntegral!(shared(const(short))));
static assert(isIntegral!(ushort));
static assert(isIntegral!(const(ushort)));
static assert(isIntegral!(immutable(ushort)));
static assert(isIntegral!(shared(ushort)));
static assert(isIntegral!(shared(const(ushort))));
static assert(isIntegral!(int));
static assert(isIntegral!(const(int)));
static assert(isIntegral!(immutable(int)));
static assert(isIntegral!(shared(int)));
static assert(isIntegral!(shared(const(int))));
static assert(isIntegral!(uint));
static assert(isIntegral!(const(uint)));
static assert(isIntegral!(immutable(uint)));
static assert(isIntegral!(shared(uint)));
static assert(isIntegral!(shared(const(uint))));
static assert(isIntegral!(long));
static assert(isIntegral!(const(long)));
static assert(isIntegral!(immutable(long)));
static assert(isIntegral!(shared(long)));
static assert(isIntegral!(shared(const(long))));
static assert(isIntegral!(ulong));
static assert(isIntegral!(const(ulong)));
static assert(isIntegral!(immutable(ulong)));
static assert(isIntegral!(shared(ulong)));
static assert(isIntegral!(shared(const(ulong))));
static assert(!isIntegral!(float));
}
/**
* Detect whether T is a built-in floating point type.
*/
template isFloatingPoint(T)
{
enum bool isFloatingPoint = staticIndexOf!(Unqual!(T),
float, double, real) >= 0;
}
unittest
{
foreach (F; TypeTuple!(float, double, real))
{
F a = 5.5;
static assert(isFloatingPoint!(typeof(a)));
const F b = 5.5;
static assert(isFloatingPoint!(typeof(b)));
immutable F c = 5.5;
static assert(isFloatingPoint!(typeof(c)));
}
foreach (T; TypeTuple!(int, long, char))
{
T a;
static assert(!isFloatingPoint!(typeof(a)));
const T b = 0;
static assert(!isFloatingPoint!(typeof(b)));
immutable T c = 0;
static assert(!isFloatingPoint!(typeof(c)));
}
}
/**
Detect whether T is a built-in numeric type (integral or floating
point).
*/
template isNumeric(T)
{
enum bool isNumeric = isIntegral!(T) || isFloatingPoint!(T);
}
/**
Detect whether $(D T) is a built-in unsigned numeric type.
*/
template isUnsigned(T)
{
enum bool isUnsigned = staticIndexOf!(Unqual!T,
ubyte, ushort, uint, ulong) >= 0;
}
/**
Detect whether $(D T) is a built-in signed numeric type.
*/
template isSigned(T)
{
enum bool isSigned = staticIndexOf!(Unqual!T,
byte, short, int, long, float, double, real) >= 0;
}
/**
Detect whether T is one of the built-in string types
*/
template isSomeString(T)
{
enum isSomeString = isNarrowString!T || is(T : const(dchar[]));
}
unittest
{
static assert(!isSomeString!(int));
static assert(!isSomeString!(int[]));
static assert(!isSomeString!(byte[]));
static assert(isSomeString!(char[]));
static assert(isSomeString!(dchar[]));
static assert(isSomeString!(string));
static assert(isSomeString!(wstring));
static assert(isSomeString!(dstring));
static assert(isSomeString!(char[4]));
}
template isNarrowString(T)
{
enum isNarrowString = is(T : const(char[])) || is(T : const(wchar[]));
}
unittest
{
static assert(!isNarrowString!(int));
static assert(!isNarrowString!(int[]));
static assert(!isNarrowString!(byte[]));
static assert(isNarrowString!(char[]));
static assert(!isNarrowString!(dchar[]));
static assert(isNarrowString!(string));
static assert(isNarrowString!(wstring));
static assert(!isNarrowString!(dstring));
static assert(isNarrowString!(char[4]));
}
/**
Detect whether T is one of the built-in character types
*/
template isSomeChar(T)
{
enum isSomeChar = staticIndexOf!(Unqual!T, char, wchar, dchar) >= 0;
}
unittest
{
static assert(!isSomeChar!(int));
static assert(!isSomeChar!(int));
static assert(!isSomeChar!(byte));
static assert(isSomeChar!(char));
static assert(isSomeChar!(dchar));
static assert(!isSomeChar!(string));
static assert(!isSomeChar!(wstring));
static assert(!isSomeChar!(dstring));
static assert(!isSomeChar!(char[4]));
static assert(isSomeChar!(immutable(char)));
}
/**
* Detect whether T is an associative array type
*/
template isAssociativeArray(T)
{
enum bool isAssociativeArray = __traits(isAssociativeArray, T);
}
unittest
{
struct Foo {
@property uint[] keys() {
return null;
}
@property uint[] values() {
return null;
}
}
static assert(!isAssociativeArray!(Foo));
static assert(!isAssociativeArray!(int));
static assert(!isAssociativeArray!(int[]));
static assert(isAssociativeArray!(int[int]));
static assert(isAssociativeArray!(int[string]));
static assert(isAssociativeArray!(immutable(char[5])[int]));
}
/**
* Detect whether type T is a static array.
*/
template isStaticArray(T : U[N], U, size_t N)
{
enum bool isStaticArray = true;
}
template isStaticArray(T)
{
enum bool isStaticArray = false;
}
unittest
{
static assert (isStaticArray!(int[51]));
static assert (isStaticArray!(int[][2]));
static assert (isStaticArray!(char[][int][11]));
static assert (!isStaticArray!(const(int)[]));
static assert (!isStaticArray!(immutable(int)[]));
static assert (!isStaticArray!(const(int)[4][]));
static assert (!isStaticArray!(int[]));
static assert (!isStaticArray!(int[char]));
static assert (!isStaticArray!(int[1][]));
static assert (isStaticArray!(immutable char[13u]));
static assert (isStaticArray!(const(real)[1]));
static assert (isStaticArray!(const(real)[1][1]));
static assert (isStaticArray!(void[0]));
static assert (!isStaticArray!(int[int]));
static assert (!isStaticArray!(int));
}
/**
* Detect whether type T is a dynamic array.
*/
template isDynamicArray(T, U = void)
{
enum bool isDynamicArray = false;
}
template isDynamicArray(T : U[], U)
{
enum bool isDynamicArray = !isStaticArray!(T);
}
unittest
{
static assert(isDynamicArray!(int[]));
static assert(!isDynamicArray!(int[5]));
}
/**
* Detect whether type T is an array.
*/
template isArray(T)
{
enum bool isArray = isStaticArray!(T) || isDynamicArray!(T);
}
unittest
{
static assert(isArray!(int[]));
static assert(isArray!(int[5]));
static assert(!isArray!(uint));
static assert(!isArray!(uint[uint]));
static assert(isArray!(void[]));
}
/**
* Detect whether type $(D T) is a pointer.
*/
template isPointer(T)
{
static if (is(T P == U*, U))
{
enum bool isPointer = true;
}
else
{
enum bool isPointer = false;
}
}
unittest
{
static assert(isPointer!(int*));
static assert(!isPointer!(uint));
static assert(!isPointer!(uint[uint]));
static assert(!isPointer!(char[]));
static assert(isPointer!(void*));
}
/**
Returns the target type of a pointer.
*/
template pointerTarget(T : T*) {
alias T pointerTarget;
}
unittest {
static assert(is(pointerTarget!(int*) == int));
static assert(!is(pointerTarget!int));
static assert(is(pointerTarget!(long*) == long));
}
/**
* Returns $(D true) if T can be iterated over using a $(D foreach) loop with
* a single loop variable of automatically inferred type, regardless of how
* the $(D foreach) loop is implemented. This includes ranges, structs/classes
* that define $(D opApply) with a single loop variable, and builtin dynamic,
* static and associative arrays.
*/
template isIterable(T)
{
static if (is(typeof({foreach(elem; T.init) {}}))) {
enum bool isIterable = true;
} else {
enum bool isIterable = false;
}
}
unittest {
struct OpApply
{
int opApply(int delegate(ref uint) dg) { assert(0); }
}
struct Range
{
uint front() { assert(0); }
void popFront() { assert(0); }
enum bool empty = false;
}
static assert(isIterable!(uint[]));
static assert(!isIterable!(uint));
static assert(isIterable!(OpApply));
static assert(isIterable!(uint[string]));
static assert(isIterable!(Range));
}
/*
* Returns true if T is not const or immutable. Note that isMutable is true for
* string, or immutable(char)[], because the 'head' is mutable.
*/
template isMutable(T)
{
enum isMutable = !is(T == const) && !is(T == immutable);
}
unittest
{
static assert(isMutable!int);
static assert(isMutable!string);
static assert(isMutable!(shared int));
static assert(isMutable!(shared const(int)[]));
static assert(!isMutable!(const int));
static assert(!isMutable!(shared(const int)));
static assert(!isMutable!(immutable string));
}
/**
* Tells whether the tuple T is an expression tuple.
*/
template isExpressionTuple(T ...)
{
static if (T.length > 0)
enum bool isExpressionTuple =
!is(T[0]) && __traits(compiles, { auto ex = T[0]; }) &&
isExpressionTuple!(T[1 .. $]);
else
enum bool isExpressionTuple = true; // default
}
unittest
{
void foo();
static int bar() { return 42; }
enum aa = [ 1: -1 ];
alias int myint;
static assert(isExpressionTuple!(42));
static assert(isExpressionTuple!(aa));
static assert(isExpressionTuple!("cattywampus", 2.7, aa));
static assert(isExpressionTuple!(bar()));
static assert(! isExpressionTuple!(isExpressionTuple));
static assert(! isExpressionTuple!(foo));
static assert(! isExpressionTuple!( (a) { } ));
static assert(! isExpressionTuple!(int));
static assert(! isExpressionTuple!(myint));
}
/**
Detect whether tuple $(D T) is a type tuple.
*/
template isTypeTuple(T...)
{
static if (T.length > 0)
enum bool isTypeTuple = is(T[0]) && isTypeTuple!(T[1 .. $]);
else
enum bool isTypeTuple = true; // default
}
unittest
{
class C {}
void func(int) {}
auto c = new C;
enum CONST = 42;
static assert(isTypeTuple!(int));
static assert(isTypeTuple!(string));
static assert(isTypeTuple!(C));
static assert(isTypeTuple!(typeof(func)));
static assert(isTypeTuple!(int, char, double));
static assert(! isTypeTuple!(c));
static assert(! isTypeTuple!(isTypeTuple));
static assert(! isTypeTuple!(CONST));
}
/**
Detect whether symbol or type $(D T) is a function pointer.
*/
template isFunctionPointer(T...)
if (/+@@@BUG4333@@@+/staticLength!(T) == 1)
{
static if (is(T[0] U) || is(typeof(T[0]) U))
{
static if (is(U F : F*) && is(F == function))
enum bool isFunctionPointer = true;
else
enum bool isFunctionPointer = false;
}
else
enum bool isFunctionPointer = false;
}
unittest
{
static void foo() {}
void bar() {}
auto fpfoo = &foo;
static assert(isFunctionPointer!(fpfoo));
static assert(isFunctionPointer!(void function()));
auto dgbar = &bar;
static assert(! isFunctionPointer!(dgbar));
static assert(! isFunctionPointer!(void delegate()));
static assert(! isFunctionPointer!(foo));
static assert(! isFunctionPointer!(bar));
static assert(!isFunctionPointer!((int a) {}));
}
/**
Detect whether $(D T) is a delegate.
*/
template isDelegate(T...)
if(staticLength!T == 1)
{
enum bool isDelegate = is(T[0] == delegate);
}
unittest
{
static assert(isDelegate!(void delegate()));
static assert(isDelegate!(uint delegate(uint)));
static assert(isDelegate!(shared uint delegate(uint)));
static assert(!isDelegate!(uint));
static assert(!isDelegate!(void function()));
}
/**
Detect whether symbol or type $(D T) is a function, a function pointer or a delegate.
*/
template isSomeFunction(/+@@@BUG4217@@@+/T...)
if (/+@@@BUG4333@@@+/staticLength!(T) == 1)
{
enum bool isSomeFunction = isSomeFunction_bug4333!(T).isSomeFunction;
}
private template isSomeFunction_bug4333(T...)
{
/+@@@BUG4333@@@+/enum dummy__ = T.length;
static if (is(typeof(& T[0]) U : U*) && is(U == function))
{
// T is a function symbol.
enum bool isSomeFunction = true;
}
else static if (is(T[0] W) || is(typeof(T[0]) W))
{
// T is an expression or a type. Take the type of it and examine.
static if (is(W F : F*) && is(F == function))
enum bool isSomeFunction = true; // function pointer
else
enum bool isSomeFunction = is(W == function) || is(W == delegate);
}
else
enum bool isSomeFunction = false;
}
unittest
{
static real func(ref int) { return 0; }
class C
{
real method(ref int) { return 0; }
real prop() @property { return 0; }
}
auto c = new C;
auto fp = &func;
auto dg = &c.method;
real val;
static assert(isSomeFunction!(func));
static assert(isSomeFunction!(C.method));
static assert(isSomeFunction!(C.prop));
static assert(isSomeFunction!(c.prop));
static assert(isSomeFunction!(c.prop));
static assert(isSomeFunction!(fp));
static assert(isSomeFunction!(dg));
static assert(isSomeFunction!(typeof(func)));
static assert(isSomeFunction!(real function(ref int)));
static assert(isSomeFunction!(real delegate(ref int)));
static assert(! isSomeFunction!(int));
static assert(! isSomeFunction!(val));
static assert(! isSomeFunction!(isSomeFunction));
static assert(isSomeFunction!((int a) { return a; }));
}
/**
Detect whether $(D T) is a callable object, which can be called with the
function call operator $(D $(LPAREN)...$(RPAREN)).
*/
template isCallable(/+@@@BUG4217@@@+/T...)
if (/+@@@BUG4333@@@+/staticLength!(T) == 1)
{
enum bool isCallable = isCallable_bug4333!(T).isCallable;
}
private template isCallable_bug4333(T...)
{
/+@@@BUG4333@@@+/enum dummy__ = T.length;
static if (is(typeof(& T[0].opCall) == delegate))
// T is a object which has a member function opCall().
enum bool isCallable = true;
else static if (is(typeof(& T[0].opCall) V : V*) && is(V == function))
// T is a type which has a static member function opCall().
enum bool isCallable = true;
else
enum bool isCallable = isSomeFunction!(T);
}
unittest
{
interface I { real value() @property; }
struct S { static int opCall(int) { return 0; } }
class C { int opCall(int) { return 0; } }
auto c = new C;
static assert( isCallable!(c));
static assert( isCallable!(S));
static assert( isCallable!(c.opCall));
static assert( isCallable!(I.value));
static assert(!isCallable!(I));
static assert(isCallable!((int a) { return a; }));
}
/**
Exactly the same as the builtin traits:
$(D ___traits(_isAbstractFunction, method)).
*/
template isAbstractFunction(/+@@@BUG4217@@@+/method...)
if (/+@@@BUG4333@@@+/staticLength!(method) == 1)
{
enum bool isAbstractFunction = __traits(isAbstractFunction, method[0]);
}
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
// General Types
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
/**
Removes all qualifiers, if any, from type $(D T).
Example:
----
static assert(is(Unqual!(int) == int));
static assert(is(Unqual!(const int) == int));
static assert(is(Unqual!(immutable int) == int));
static assert(is(Unqual!(shared int) == int));
static assert(is(Unqual!(shared(const int)) == int));
----
*/
template Unqual(T)
{
version (none) // Error: recursive alias declaration @@@BUG1308@@@
{
static if (is(T U == const U)) alias Unqual!U Unqual;
else static if (is(T U == immutable U)) alias Unqual!U Unqual;
else static if (is(T U == shared U)) alias Unqual!U Unqual;
else alias T Unqual;
}
else // workaround
{
static if (is(T U == shared(const U))) alias U Unqual;
else static if (is(T U == const U )) alias U Unqual;
else static if (is(T U == immutable U )) alias U Unqual;
else static if (is(T U == shared U )) alias U Unqual;
else alias T Unqual;
}
}
unittest
{
static assert(is(Unqual!(int) == int));
static assert(is(Unqual!(const int) == int));
static assert(is(Unqual!(immutable int) == int));
static assert(is(Unqual!(shared int) == int));
static assert(is(Unqual!(shared(const int)) == int));
alias immutable(int[]) ImmIntArr;
static assert(is(Unqual!(ImmIntArr) == immutable(int)[]));
}
// [For internal use]
private template ModifyTypePreservingSTC(alias Modifier, T)
{
static if (is(T U == shared(const U))) alias shared(const Modifier!U) ModifyTypePreservingSTC;
else static if (is(T U == const U )) alias const(Modifier!U) ModifyTypePreservingSTC;
else static if (is(T U == immutable U )) alias immutable(Modifier!U) ModifyTypePreservingSTC;
else static if (is(T U == shared U )) alias shared(Modifier!U) ModifyTypePreservingSTC;
else alias Modifier!T ModifyTypePreservingSTC;
}
unittest
{
static assert(is(ModifyTypePreservingSTC!(Intify, const real) == const int));
static assert(is(ModifyTypePreservingSTC!(Intify, immutable real) == immutable int));
static assert(is(ModifyTypePreservingSTC!(Intify, shared real) == shared int));
static assert(is(ModifyTypePreservingSTC!(Intify, shared(const real)) == shared(const int)));
}
version (unittest) private template Intify(T) { alias int Intify; }
/*
*/
template StringTypeOf(T) if (isSomeString!T)
{
static if (is(T == class) || is(T == struct))
{
static if (is(T : const(char[])))
{
static if (is(T : char[]))
alias char[] StringTypeOf;
else static if (is(T : immutable(char[])))
alias immutable(char)[] StringTypeOf;
else
alias const(char)[] StringTypeOf;
}
else static if (is(T : const(wchar[])))
{
static if (is(T : wchar[]))
alias wchar[] StringTypeOf;
else static if (is(T : immutable(wchar[])))
alias immutable(wchar)[] StringTypeOf;
else
alias const(wchar)[] StringTypeOf;
}
else
{
static if (is(T : dchar[]))
alias dchar[] StringTypeOf;
else static if (is(T : immutable(dchar[])))
alias immutable(dchar)[] StringTypeOf;
else
alias const(dchar)[] StringTypeOf;
}
}
else
{
alias T StringTypeOf;
}
}
unittest
{
class C(Char, int n)
{
static if (n==0) Char[] val;
static if (n==1) const(Char)[] val;
static if (n==2) const(Char[]) val;
static if (n==3) immutable(Char)[] val;
static if (n==4) immutable(Char[]) val;
alias val this;
}
struct S(Char, int n)
{
static if (n==0) Char[] val;
static if (n==1) const(Char)[] val;
static if (n==2) const(Char[]) val;
static if (n==3) immutable(Char)[] val;
static if (n==4) immutable(Char[]) val;
alias val this;
}
foreach (Char; TypeTuple!(char, wchar, dchar))
{
static assert(is(StringTypeOf!(C!(Char, 0)) == Char[]));
static assert(is(StringTypeOf!(C!(Char, 1)) == const(Char)[]));
static assert(is(StringTypeOf!(C!(Char, 2)) == const(Char)[])); // cannot get exact string type
static assert(is(StringTypeOf!(C!(Char, 3)) == immutable(Char)[]));
static assert(is(StringTypeOf!(C!(Char, 4)) == immutable(Char)[])); // cannot get exact string type
static assert(is(StringTypeOf!(S!(Char, 0)) == Char[]));
static assert(is(StringTypeOf!(S!(Char, 1)) == const(Char)[]));
static assert(is(StringTypeOf!(S!(Char, 2)) == const(Char)[])); // cannot get exact string type
static assert(is(StringTypeOf!(S!(Char, 3)) == immutable(Char)[]));
static assert(is(StringTypeOf!(S!(Char, 4)) == immutable(Char)[])); // cannot get exact string type
}
}
/**
Returns the inferred type of the loop variable when a variable of type T
is iterated over using a $(D foreach) loop with a single loop variable and
automatically inferred return type. Note that this may not be the same as
$(D std.range.ElementType!(Range)) in the case of narrow strings, or if T
has both opApply and a range interface.
*/
template ForeachType(T)
{
alias ReturnType!(typeof(
{
foreach(elem; T.init) {
return elem;
}
assert(0);
})) ForeachType;
}
unittest
{
static assert(is(ForeachType!(uint[]) == uint));
static assert(is(ForeachType!(string) == immutable(char)));
static assert(is(ForeachType!(string[string]) == string));
}
/**
Strips off all $(D typedef)s (including $(D enum) ones) from type $(D T).
Example:
--------------------
enum E : int { a }
typedef E F;
typedef const F G;
static assert(is(OriginalType!G == const int));
--------------------
*/
template OriginalType(T)
{
alias ModifyTypePreservingSTC!(OriginalTypeImpl, T) OriginalType;
}
private template OriginalTypeImpl(T)
{
static if (is(T U == typedef)) alias OriginalType!U OriginalTypeImpl;
else static if (is(T U == enum)) alias OriginalType!U OriginalTypeImpl;
else alias T OriginalTypeImpl;
}
unittest
{
//typedef real T;
//typedef T U;
//enum V : U { a }
//static assert(is(OriginalType!T == real));
//static assert(is(OriginalType!U == real));
//static assert(is(OriginalType!V == real));
enum E : real { a }
enum F : E { a = E.a }
//typedef const F G;
static assert(is(OriginalType!E == real));
static assert(is(OriginalType!F == real));
//static assert(is(OriginalType!G == const real));
}
/**
* Returns the corresponding unsigned type for T. T must be a numeric
* integral type, otherwise a compile-time error occurs.
*/
template Unsigned(T)
{
alias ModifyTypePreservingSTC!(UnsignedImpl, OriginalType!T) Unsigned;
}
private template UnsignedImpl(T)
{
static if (isUnsigned!(T)) alias T UnsignedImpl;
else static if (is(T == byte)) alias ubyte UnsignedImpl;
else static if (is(T == short)) alias ushort UnsignedImpl;
else static if (is(T == int)) alias uint UnsignedImpl;
else static if (is(T == long)) alias ulong UnsignedImpl;
else static assert(false, "Type " ~ T.stringof
~ " does not have an Unsigned counterpart");
}
unittest
{
alias Unsigned!(int) U;
assert(is(U == uint));
alias Unsigned!(const(int)) U1;
assert(is(U1 == const(uint)), U1.stringof);
alias Unsigned!(immutable(int)) U2;
assert(is(U2 == immutable(uint)), U2.stringof);
//struct S {}
//alias Unsigned!(S) U2;
//alias Unsigned!(double) U3;
}
/**
Returns the largest type, i.e. T such that T.sizeof is the largest. If more
than one type is of the same size, the leftmost argument of these in will be
returned.
*/
template Largest(T...) if(T.length >= 1) {
static if(T.length == 1) {
alias T[0] Largest;
} static if(T.length == 2) {
static if(T[0].sizeof >= T[1].sizeof) {
alias T[0] Largest;
} else {
alias T[1] Largest;
}
} else {
alias Largest!(Largest!(T[0], T[1]), T[2..$]) Largest;
}
}
unittest {
static assert(is(Largest!(uint, ubyte, ulong, real) == real));
static assert(is(Largest!(ulong, double) == ulong));
static assert(is(Largest!(double, ulong) == double));
static assert(is(Largest!(uint, byte, double, short) == double));
}
/**
Returns the corresponding signed type for T. T must be a numeric integral type,
otherwise a compile-time error occurs.
*/
template Signed(T)
{
alias ModifyTypePreservingSTC!(SignedImpl, OriginalType!T) Signed;
}
private template SignedImpl(T)
{
static if (isSigned!(T)) alias T SignedImpl;
else static if (is(T == ubyte)) alias byte SignedImpl;
else static if (is(T == ushort)) alias short SignedImpl;
else static if (is(T == uint)) alias int SignedImpl;
else static if (is(T == ulong)) alias long SignedImpl;
else static assert(false, "Type " ~ T.stringof
~ " does not have an Signed counterpart");
}
unittest
{
alias Signed!(uint) S;
assert(is(S == int));
alias Signed!(const(uint)) S1;
assert(is(S1 == const(int)), S1.stringof);
alias Signed!(immutable(uint)) S2;
assert(is(S2 == immutable(int)), S2.stringof);
}
/**
* Returns the corresponding unsigned value for $(D x), e.g. if $(D x)
* has type $(D int), returns $(D cast(uint) x). The advantage
* compared to the cast is that you do not need to rewrite the cast if
* $(D x) later changes type to e.g. $(D long).
*/
auto unsigned(T)(T x) if (isIntegral!T)
{
static if (is(Unqual!T == byte)) return cast(ubyte) x;
else static if (is(Unqual!T == short)) return cast(ushort) x;
else static if (is(Unqual!T == int)) return cast(uint) x;
else static if (is(Unqual!T == long)) return cast(ulong) x;
else
{
static assert(T.min == 0, "Bug in either unsigned or isIntegral");
return x;
}
}
unittest
{
static assert(is(typeof(unsigned(1 + 1)) == uint));
}
auto unsigned(T)(T x) if (isSomeChar!T)
{
// All characters are unsigned
static assert(T.min == 0);
return x;
}
/**
Returns the most negative value of the numeric type T.
*/
template mostNegative(T)
{
static if (is(typeof(T.min_normal))) enum mostNegative = -T.max;
else static if (T.min == 0) enum byte mostNegative = 0;
else enum mostNegative = T.min;
}
unittest
{
static assert(mostNegative!(float) == -float.max);
static assert(mostNegative!(uint) == 0);
static assert(mostNegative!(long) == long.min);
}
//:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
// Misc.
//:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
/**
Returns the mangled name of symbol or type $(D sth).
$(D mangledName) is the same as builtin $(D .mangleof) property, except that
the correct names of property functions are obtained.
--------------------
module test;
import std.traits : mangledName;
class C {
int value() @property;
}
pragma(msg, C.value.mangleof); // prints "i"
pragma(msg, mangledName!(C.value)); // prints "_D4test1C5valueMFNdZi"
--------------------
*/
template mangledName(sth...)
if (/+@@@BUG4333@@@+/staticLength!(sth) == 1)
{
enum string mangledName = removeDummyEnvelope(Dummy!(sth).Hook.mangleof);
}
private template Dummy(T...) { struct Hook {} }
private string removeDummyEnvelope(string s)
{
// remove --> S3std6traits ... Z4Hook
s = s[12 .. $ - 6];
// remove --> DIGIT+ __T5Dummy
foreach (i, c; s)
{
if (c < '0' || '9' < c)
{
s = s[i .. $];
break;
}
}
s = s[9 .. $]; // __T5Dummy
// remove --> T | V | S
immutable kind = s[0];
s = s[1 .. $];
if (kind == 'S') // it's a symbol
{
/*
* The mangled symbol name is packed in LName --> Number Name. Here
* we are chopping off the useless preceding Number, which is the
* length of Name in decimal notation.
*
* NOTE: n = m + Log(m) + 1; n = LName.length, m = Name.length.
*/
immutable n = s.length;
size_t m_upb = 10;
foreach (k; 1 .. 5) // k = Log(m_upb)
{
if (n < m_upb + k + 1)
{
// Now m_upb/10 <= m < m_upb; hence k = Log(m) + 1.
s = s[k .. $];
break;
}
m_upb *= 10;
}
}
return s;
}
unittest
{
//typedef int MyInt;
//MyInt test() { return 0; }
class C { int value() @property { return 0; } }
static assert(mangledName!(int) == int.mangleof);
static assert(mangledName!(C) == C.mangleof);
//static assert(mangledName!(MyInt)[$ - 7 .. $] == "T5MyInt"); // XXX depends on bug 4237
//static assert(mangledName!(test)[$ - 7 .. $] == "T5MyInt");
static assert(mangledName!(C.value)[$ - 12 .. $] == "5valueMFNdZi");
static assert(mangledName!(mangledName) == "3std6traits11mangledName");
static assert(mangledName!(removeDummyEnvelope) ==
"_D3std6traits19removeDummyEnvelopeFAyaZAya");
int x;
static assert(mangledName!((int a) { return a+x; })[$ - 5 .. $] == "MFiZi");
}
/*
workaround for @@@BUG2234@@@ "allMembers does not return interface members"
*/
package template traits_allMembers(Agg)
{
static if (is(Agg == class) || is(Agg == interface))
alias NoDuplicates!( __traits(allMembers, Agg),
traits_allMembers_ifaces!(InterfacesTuple!(Agg)) )
traits_allMembers;
else
alias TypeTuple!(__traits(allMembers, Agg)) traits_allMembers;
}
private template traits_allMembers_ifaces(I...)
{
static if (I.length > 0)
alias TypeTuple!( __traits(allMembers, I[0]),
traits_allMembers_ifaces!(I[1 .. $]) )
traits_allMembers_ifaces;
else
alias TypeTuple!() traits_allMembers_ifaces;
}
unittest
{
interface I { void test(); }
interface J : I { }
interface K : J { }
alias traits_allMembers!(K) names;
static assert(names.length == 1);
static assert(names[0] == "test");
}
// XXX Select & select should go to another module. (functional or algorithm?)
/**
Aliases itself to $(D T) if the boolean $(D condition) is $(D true)
and to $(D F) otherwise.
Example:
----
alias Select!(size_t.sizeof == 4, int, long) Int;
----
*/
template Select(bool condition, T, F)
{
static if (condition) alias T Select;
else alias F Select;
}
unittest
{
static assert(is(Select!(true, int, long) == int));
static assert(is(Select!(false, int, long) == long));
}
/**
If $(D cond) is $(D true), returns $(D a) without evaluating $(D
b). Otherwise, returns $(D b) without evaluating $(D a).
*/
A select(bool cond : true, A, B)(A a, lazy B b) { return a; }
/// Ditto
B select(bool cond : false, A, B)(lazy A a, B b) { return b; }
unittest
{
real pleasecallme() { return 0; }
int dontcallme() { assert(0); }
auto a = select!true(pleasecallme(), dontcallme());
auto b = select!false(dontcallme(), pleasecallme());
static assert(is(typeof(a) == real));
static assert(is(typeof(b) == real));
}