phobos/std/math/package.d

1695 lines
51 KiB
D
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Written in the D programming language.
/**
* Contains the elementary mathematical functions (powers, roots,
* and trigonometric functions), and low-level floating-point operations.
* Mathematical special functions are available in `std.mathspecial`.
*
$(SCRIPT inhibitQuickIndex = 1;)
$(DIVC quickindex,
$(BOOKTABLE ,
$(TR $(TH Category) $(TH Members) )
$(TR $(TDNW $(SUBMODULE Constants, constants)) $(TD
$(SUBREF constants, E)
$(SUBREF constants, PI)
$(SUBREF constants, PI_2)
$(SUBREF constants, PI_4)
$(SUBREF constants, M_1_PI)
$(SUBREF constants, M_2_PI)
$(SUBREF constants, M_2_SQRTPI)
$(SUBREF constants, LN10)
$(SUBREF constants, LN2)
$(SUBREF constants, LOG2)
$(SUBREF constants, LOG2E)
$(SUBREF constants, LOG2T)
$(SUBREF constants, LOG10E)
$(SUBREF constants, SQRT2)
$(SUBREF constants, SQRT1_2)
))
$(TR $(TDNW $(SUBMODULE Algebraic, algebraic)) $(TD
$(SUBREF algebraic, abs)
$(SUBREF algebraic, fabs)
$(SUBREF algebraic, sqrt)
$(SUBREF algebraic, cbrt)
$(SUBREF algebraic, hypot)
$(SUBREF algebraic, poly)
$(SUBREF algebraic, nextPow2)
$(SUBREF algebraic, truncPow2)
))
$(TR $(TDNW $(SUBMODULE Trigonometry, trigonometry)) $(TD
$(SUBREF trigonometry, sin)
$(SUBREF trigonometry, cos)
$(SUBREF trigonometry, tan)
$(SUBREF trigonometry, asin)
$(SUBREF trigonometry, acos)
$(SUBREF trigonometry, atan)
$(SUBREF trigonometry, atan2)
$(SUBREF trigonometry, sinh)
$(SUBREF trigonometry, cosh)
$(SUBREF trigonometry, tanh)
$(SUBREF trigonometry, asinh)
$(SUBREF trigonometry, acosh)
$(SUBREF trigonometry, atanh)
))
$(TR $(TDNW $(SUBMODULE Rounding, rounding)) $(TD
$(SUBREF rounding, ceil)
$(SUBREF rounding, floor)
$(SUBREF rounding, round)
$(SUBREF rounding, lround)
$(SUBREF rounding, trunc)
$(SUBREF rounding, rint)
$(SUBREF rounding, lrint)
$(SUBREF rounding, nearbyint)
$(SUBREF rounding, rndtol)
$(SUBREF rounding, quantize)
))
$(TR $(TDNW $(SUBMODULE Exponentiation & Logarithms, exponential)) $(TD
$(SUBREF exponential, pow)
$(SUBREF exponential, exp)
$(SUBREF exponential, exp2)
$(SUBREF exponential, expm1)
$(SUBREF exponential, ldexp)
$(SUBREF exponential, frexp)
$(SUBREF exponential, log)
$(SUBREF exponential, log2)
$(SUBREF exponential, log10)
$(SUBREF exponential, logb)
$(SUBREF exponential, ilogb)
$(SUBREF exponential, log1p)
$(SUBREF exponential, scalbn)
))
$(TR $(TDNW $(SUBMODULE Remainder, remainder)) $(TD
$(SUBREF remainder, fmod)
$(SUBREF remainder, modf)
$(SUBREF remainder, remainder)
$(SUBREF remainder, remquo)
))
$(TR $(TDNW $(SUBMODULE Floating-point operations, operations)) $(TD
$(SUBREF operations, approxEqual)
$(SUBREF operations, feqrel)
$(SUBREF operations, fdim)
$(SUBREF operations, fmax)
$(SUBREF operations, fmin)
$(SUBREF operations, fma)
$(SUBREF operations, isClose)
$(SUBREF operations, nextDown)
$(SUBREF operations, nextUp)
$(SUBREF operations, nextafter)
$(SUBREF operations, NaN)
$(SUBREF operations, getNaNPayload)
$(SUBREF operations, cmp)
))
$(TR $(TDNW $(SUBMODULE Introspection, traits)) $(TD
$(SUBREF traits, isFinite)
$(SUBREF traits, isIdentical)
$(SUBREF traits, isInfinity)
$(SUBREF traits, isNaN)
$(SUBREF traits, isNormal)
$(SUBREF traits, isSubnormal)
$(SUBREF traits, signbit)
$(SUBREF traits, sgn)
$(SUBREF traits, copysign)
$(SUBREF traits, isPowerOf2)
))
$(TR $(TDNW Hardware Control) $(TD
$(MYREF IeeeFlags) $(MYREF FloatingPointControl)
))
)
)
* The functionality closely follows the IEEE754-2008 standard for
* floating-point arithmetic, including the use of camelCase names rather
* than C99-style lower case names. All of these functions behave correctly
* when presented with an infinity or NaN.
*
* The following IEEE 'real' formats are currently supported:
* $(UL
* $(LI 64 bit Big-endian 'double' (eg PowerPC))
* $(LI 128 bit Big-endian 'quadruple' (eg SPARC))
* $(LI 64 bit Little-endian 'double' (eg x86-SSE2))
* $(LI 80 bit Little-endian, with implied bit 'real80' (eg x87, Itanium))
* $(LI 128 bit Little-endian 'quadruple' (not implemented on any known processor!))
* $(LI Non-IEEE 128 bit Big-endian 'doubledouble' (eg PowerPC) has partial support)
* )
* Unlike C, there is no global 'errno' variable. Consequently, almost all of
* these functions are pure nothrow.
*
* Macros:
* TABLE_SV = <table border="1" cellpadding="4" cellspacing="0">
* <caption>Special Values</caption>
* $0</table>
* SVH = $(TR $(TH $1) $(TH $2))
* SV = $(TR $(TD $1) $(TD $2))
* TH3 = $(TR $(TH $1) $(TH $2) $(TH $3))
* TD3 = $(TR $(TD $1) $(TD $2) $(TD $3))
* TABLE_DOMRG = <table border="1" cellpadding="4" cellspacing="0">
* $(SVH Domain X, Range Y)
$(SV $1, $2)
* </table>
* DOMAIN=$1
* RANGE=$1
* NAN = $(RED NAN)
* SUP = <span style="vertical-align:super;font-size:smaller">$0</span>
* GAMMA = &#915;
* THETA = &theta;
* INTEGRAL = &#8747;
* INTEGRATE = $(BIG &#8747;<sub>$(SMALL $1)</sub><sup>$2</sup>)
* POWER = $1<sup>$2</sup>
* SUB = $1<sub>$2</sub>
* BIGSUM = $(BIG &Sigma; <sup>$2</sup><sub>$(SMALL $1)</sub>)
* CHOOSE = $(BIG &#40;) <sup>$(SMALL $1)</sup><sub>$(SMALL $2)</sub> $(BIG &#41;)
* PLUSMN = &plusmn;
* INFIN = &infin;
* PLUSMNINF = &plusmn;&infin;
* PI = &pi;
* LT = &lt;
* GT = &gt;
* SQRT = &radic;
* HALF = &frac12;
*
* SUBMODULE = $(MREF_ALTTEXT $1, std, math, $2)
* SUBREF = $(REF_ALTTEXT $(TT $2), $2, std, math, $1)$(NBSP)
*
* Copyright: Copyright The D Language Foundation 2000 - 2011.
* D implementations of tan, atan, atan2, exp, expm1, exp2, log, log10, log1p,
* log2, floor, ceil and lrint functions are based on the CEPHES math library,
* which is Copyright (C) 2001 Stephen L. Moshier $(LT)steve@moshier.net$(GT)
* and are incorporated herein by permission of the author. The author
* reserves the right to distribute this material elsewhere under different
* copying permissions. These modifications are distributed here under
* the following terms:
* License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
* Authors: $(HTTP digitalmars.com, Walter Bright), Don Clugston,
* Conversion of CEPHES math library to D by Iain Buclaw and David Nadlinger
* Source: $(PHOBOSSRC std/math/package.d)
*/
module std.math;
public import std.math.algebraic;
public import std.math.constants;
public import std.math.exponential;
public import std.math.operations;
public import std.math.hardware;
public import std.math.remainder;
public import std.math.rounding;
public import std.math.traits;
public import std.math.trigonometry;
static import core.math;
static import core.stdc.math;
static import core.stdc.fenv;
import std.traits : CommonType, isFloatingPoint, isIntegral, isNumeric,
isSigned, isUnsigned, Largest, Unqual;
// @@@DEPRECATED_2.102@@@
// Note: Exposed accidentally, should be deprecated / removed
deprecated("std.meta.AliasSeq was unintentionally available from std.math "
~ "and will be removed after 2.102. Please import std.meta instead")
public import std.meta : AliasSeq;
version (DigitalMars)
{
version = INLINE_YL2X; // x87 has opcodes for these
}
version (X86) version = X86_Any;
version (X86_64) version = X86_Any;
version (PPC) version = PPC_Any;
version (PPC64) version = PPC_Any;
version (MIPS32) version = MIPS_Any;
version (MIPS64) version = MIPS_Any;
version (AArch64) version = ARM_Any;
version (ARM) version = ARM_Any;
version (S390) version = IBMZ_Any;
version (SPARC) version = SPARC_Any;
version (SPARC64) version = SPARC_Any;
version (SystemZ) version = IBMZ_Any;
version (RISCV32) version = RISCV_Any;
version (RISCV64) version = RISCV_Any;
version (D_InlineAsm_X86) version = InlineAsm_X86_Any;
version (D_InlineAsm_X86_64) version = InlineAsm_X86_Any;
version (InlineAsm_X86_Any) version = InlineAsm_X87;
version (InlineAsm_X87)
{
static assert(real.mant_dig == 64);
version (CRuntime_Microsoft) version = InlineAsm_X87_MSVC;
}
version (X86_64) version = StaticallyHaveSSE;
version (X86) version (OSX) version = StaticallyHaveSSE;
version (StaticallyHaveSSE)
{
private enum bool haveSSE = true;
}
else version (X86)
{
static import core.cpuid;
private alias haveSSE = core.cpuid.sse;
}
version (D_SoftFloat)
{
// Some soft float implementations may support IEEE floating flags.
// The implementation here supports hardware flags only and is so currently
// only available for supported targets.
}
else version (X86_Any) version = IeeeFlagsSupport;
else version (PPC_Any) version = IeeeFlagsSupport;
else version (RISCV_Any) version = IeeeFlagsSupport;
else version (MIPS_Any) version = IeeeFlagsSupport;
else version (ARM_Any) version = IeeeFlagsSupport;
// Struct FloatingPointControl is only available if hardware FP units are available.
version (D_HardFloat)
{
// FloatingPointControl.clearExceptions() depends on version IeeeFlagsSupport
version (IeeeFlagsSupport) version = FloatingPointControlSupport;
}
version (IeeeFlagsSupport)
{
/** IEEE exception status flags ('sticky bits')
These flags indicate that an exceptional floating-point condition has occurred.
They indicate that a NaN or an infinity has been generated, that a result
is inexact, or that a signalling NaN has been encountered. If floating-point
exceptions are enabled (unmasked), a hardware exception will be generated
instead of setting these flags.
*/
struct IeeeFlags
{
nothrow @nogc:
private:
// The x87 FPU status register is 16 bits.
// The Pentium SSE2 status register is 32 bits.
// The ARM and PowerPC FPSCR is a 32-bit register.
// The SPARC FSR is a 32bit register (64 bits for SPARC 7 & 8, but high bits are uninteresting).
// The RISC-V (32 & 64 bit) fcsr is 32-bit register.
uint flags;
version (CRuntime_Microsoft)
{
// Microsoft uses hardware-incompatible custom constants in fenv.h (core.stdc.fenv).
// Applies to both x87 status word (16 bits) and SSE2 status word(32 bits).
enum : int
{
INEXACT_MASK = 0x20,
UNDERFLOW_MASK = 0x10,
OVERFLOW_MASK = 0x08,
DIVBYZERO_MASK = 0x04,
INVALID_MASK = 0x01,
EXCEPTIONS_MASK = 0b11_1111
}
// Don't bother about subnormals, they are not supported on most CPUs.
// SUBNORMAL_MASK = 0x02;
}
else
{
enum : int
{
INEXACT_MASK = core.stdc.fenv.FE_INEXACT,
UNDERFLOW_MASK = core.stdc.fenv.FE_UNDERFLOW,
OVERFLOW_MASK = core.stdc.fenv.FE_OVERFLOW,
DIVBYZERO_MASK = core.stdc.fenv.FE_DIVBYZERO,
INVALID_MASK = core.stdc.fenv.FE_INVALID,
EXCEPTIONS_MASK = core.stdc.fenv.FE_ALL_EXCEPT,
}
}
static uint getIeeeFlags() @trusted pure
{
version (InlineAsm_X86_Any)
{
ushort sw;
asm pure nothrow @nogc { fstsw sw; }
// OR the result with the SSE2 status register (MXCSR).
if (haveSSE)
{
uint mxcsr;
asm pure nothrow @nogc { stmxcsr mxcsr; }
return (sw | mxcsr) & EXCEPTIONS_MASK;
}
else return sw & EXCEPTIONS_MASK;
}
else version (SPARC)
{
/*
int retval;
asm pure nothrow @nogc { st %fsr, retval; }
return retval;
*/
assert(0, "Not yet supported");
}
else version (ARM)
{
assert(false, "Not yet supported.");
}
else version (RISCV_Any)
{
mixin(`
uint result = void;
asm pure nothrow @nogc
{
"frflags %0" : "=r" (result);
}
return result;
`);
}
else
assert(0, "Not yet supported");
}
static void resetIeeeFlags() @trusted
{
version (InlineAsm_X86_Any)
{
asm nothrow @nogc
{
fnclex;
}
// Also clear exception flags in MXCSR, SSE's control register.
if (haveSSE)
{
uint mxcsr;
asm nothrow @nogc { stmxcsr mxcsr; }
mxcsr &= ~EXCEPTIONS_MASK;
asm nothrow @nogc { ldmxcsr mxcsr; }
}
}
else version (RISCV_Any)
{
mixin(`
uint newValues = 0x0;
asm pure nothrow @nogc
{
"fsflags %0" : : "r" (newValues);
}
`);
}
else
{
/* SPARC:
int tmpval;
asm pure nothrow @nogc { st %fsr, tmpval; }
tmpval &=0xFFFF_FC00;
asm pure nothrow @nogc { ld tmpval, %fsr; }
*/
assert(0, "Not yet supported");
}
}
public:
/**
* The result cannot be represented exactly, so rounding occurred.
* Example: `x = sin(0.1);`
*/
@property bool inexact() @safe const { return (flags & INEXACT_MASK) != 0; }
/**
* A zero was generated by underflow
* Example: `x = real.min*real.epsilon/2;`
*/
@property bool underflow() @safe const { return (flags & UNDERFLOW_MASK) != 0; }
/**
* An infinity was generated by overflow
* Example: `x = real.max*2;`
*/
@property bool overflow() @safe const { return (flags & OVERFLOW_MASK) != 0; }
/**
* An infinity was generated by division by zero
* Example: `x = 3/0.0;`
*/
@property bool divByZero() @safe const { return (flags & DIVBYZERO_MASK) != 0; }
/**
* A machine NaN was generated.
* Example: `x = real.infinity * 0.0;`
*/
@property bool invalid() @safe const { return (flags & INVALID_MASK) != 0; }
}
///
@safe unittest
{
static void func() {
int a = 10 * 10;
}
pragma(inline, false) static void blockopt(ref real x) {}
real a = 3.5;
// Set all the flags to zero
resetIeeeFlags();
assert(!ieeeFlags.divByZero);
blockopt(a); // avoid constant propagation by the optimizer
// Perform a division by zero.
a /= 0.0L;
assert(a == real.infinity);
assert(ieeeFlags.divByZero);
blockopt(a); // avoid constant propagation by the optimizer
// Create a NaN
a *= 0.0L;
assert(ieeeFlags.invalid);
assert(isNaN(a));
// Check that calling func() has no effect on the
// status flags.
IeeeFlags f = ieeeFlags;
func();
assert(ieeeFlags == f);
}
@safe unittest
{
import std.meta : AliasSeq;
static struct Test
{
void delegate() @trusted action;
bool function() @trusted ieeeCheck;
}
static foreach (T; AliasSeq!(float, double, real))
{{
T x; /* Needs to be here to trick -O. It would optimize away the
calculations if x were local to the function literals. */
auto tests = [
Test(
() { x = 1; x += 0.1L; },
() => ieeeFlags.inexact
),
Test(
() { x = T.min_normal; x /= T.max; },
() => ieeeFlags.underflow
),
Test(
() { x = T.max; x += T.max; },
() => ieeeFlags.overflow
),
Test(
() { x = 1; x /= 0; },
() => ieeeFlags.divByZero
),
Test(
() { x = 0; x /= 0; },
() => ieeeFlags.invalid
)
];
foreach (test; tests)
{
resetIeeeFlags();
assert(!test.ieeeCheck());
test.action();
assert(test.ieeeCheck());
}
}}
}
/// Set all of the floating-point status flags to false.
void resetIeeeFlags() @trusted nothrow @nogc
{
IeeeFlags.resetIeeeFlags();
}
///
@safe unittest
{
pragma(inline, false) static void blockopt(ref real x) {}
resetIeeeFlags();
real a = 3.5;
blockopt(a); // avoid constant propagation by the optimizer
a /= 0.0L;
blockopt(a); // avoid constant propagation by the optimizer
assert(a == real.infinity);
assert(ieeeFlags.divByZero);
resetIeeeFlags();
assert(!ieeeFlags.divByZero);
}
/// Returns: snapshot of the current state of the floating-point status flags
@property IeeeFlags ieeeFlags() @trusted pure nothrow @nogc
{
return IeeeFlags(IeeeFlags.getIeeeFlags());
}
///
@safe nothrow unittest
{
pragma(inline, false) static void blockopt(ref real x) {}
resetIeeeFlags();
real a = 3.5;
blockopt(a); // avoid constant propagation by the optimizer
a /= 0.0L;
assert(a == real.infinity);
assert(ieeeFlags.divByZero);
blockopt(a); // avoid constant propagation by the optimizer
a *= 0.0L;
assert(isNaN(a));
assert(ieeeFlags.invalid);
}
} // IeeeFlagsSupport
version (FloatingPointControlSupport)
{
/** Control the Floating point hardware
Change the IEEE754 floating-point rounding mode and the floating-point
hardware exceptions.
By default, the rounding mode is roundToNearest and all hardware exceptions
are disabled. For most applications, debugging is easier if the $(I division
by zero), $(I overflow), and $(I invalid operation) exceptions are enabled.
These three are combined into a $(I severeExceptions) value for convenience.
Note in particular that if $(I invalidException) is enabled, a hardware trap
will be generated whenever an uninitialized floating-point variable is used.
All changes are temporary. The previous state is restored at the
end of the scope.
Example:
----
{
FloatingPointControl fpctrl;
// Enable hardware exceptions for division by zero, overflow to infinity,
// invalid operations, and uninitialized floating-point variables.
fpctrl.enableExceptions(FloatingPointControl.severeExceptions);
// This will generate a hardware exception, if x is a
// default-initialized floating point variable:
real x; // Add `= 0` or even `= real.nan` to not throw the exception.
real y = x * 3.0;
// The exception is only thrown for default-uninitialized NaN-s.
// NaN-s with other payload are valid:
real z = y * real.nan; // ok
// The set hardware exceptions and rounding modes will be disabled when
// leaving this scope.
}
----
*/
struct FloatingPointControl
{
nothrow @nogc:
alias RoundingMode = uint; ///
version (StdDdoc)
{
enum : RoundingMode
{
/** IEEE rounding modes.
* The default mode is roundToNearest.
*
* roundingMask = A mask of all rounding modes.
*/
roundToNearest,
roundDown, /// ditto
roundUp, /// ditto
roundToZero, /// ditto
roundingMask, /// ditto
}
}
else version (CRuntime_Microsoft)
{
// Microsoft uses hardware-incompatible custom constants in fenv.h (core.stdc.fenv).
enum : RoundingMode
{
roundToNearest = 0x0000,
roundDown = 0x0400,
roundUp = 0x0800,
roundToZero = 0x0C00,
roundingMask = roundToNearest | roundDown
| roundUp | roundToZero,
}
}
else
{
enum : RoundingMode
{
roundToNearest = core.stdc.fenv.FE_TONEAREST,
roundDown = core.stdc.fenv.FE_DOWNWARD,
roundUp = core.stdc.fenv.FE_UPWARD,
roundToZero = core.stdc.fenv.FE_TOWARDZERO,
roundingMask = roundToNearest | roundDown
| roundUp | roundToZero,
}
}
/***
* Change the floating-point hardware rounding mode
*
* Changing the rounding mode in the middle of a function can interfere
* with optimizations of floating point expressions, as the optimizer assumes
* that the rounding mode does not change.
* It is best to change the rounding mode only at the
* beginning of the function, and keep it until the function returns.
* It is also best to add the line:
* ---
* pragma(inline, false);
* ---
* as the first line of the function so it will not get inlined.
* Params:
* newMode = the new rounding mode
*/
@property void rounding(RoundingMode newMode) @trusted
{
initialize();
setControlState((getControlState() & (-1 - roundingMask)) | (newMode & roundingMask));
}
/// Returns: the currently active rounding mode
@property static RoundingMode rounding() @trusted pure
{
return cast(RoundingMode)(getControlState() & roundingMask);
}
alias ExceptionMask = uint; ///
version (StdDdoc)
{
enum : ExceptionMask
{
/** IEEE hardware exceptions.
* By default, all exceptions are masked (disabled).
*
* severeExceptions = The overflow, division by zero, and invalid
* exceptions.
*/
subnormalException,
inexactException, /// ditto
underflowException, /// ditto
overflowException, /// ditto
divByZeroException, /// ditto
invalidException, /// ditto
severeExceptions, /// ditto
allExceptions, /// ditto
}
}
else version (ARM_Any)
{
enum : ExceptionMask
{
subnormalException = 0x8000,
inexactException = 0x1000,
underflowException = 0x0800,
overflowException = 0x0400,
divByZeroException = 0x0200,
invalidException = 0x0100,
severeExceptions = overflowException | divByZeroException
| invalidException,
allExceptions = severeExceptions | underflowException
| inexactException | subnormalException,
}
}
else version (PPC_Any)
{
enum : ExceptionMask
{
inexactException = 0x0008,
divByZeroException = 0x0010,
underflowException = 0x0020,
overflowException = 0x0040,
invalidException = 0x0080,
severeExceptions = overflowException | divByZeroException
| invalidException,
allExceptions = severeExceptions | underflowException
| inexactException,
}
}
else version (RISCV_Any)
{
enum : ExceptionMask
{
inexactException = 0x01,
divByZeroException = 0x02,
underflowException = 0x04,
overflowException = 0x08,
invalidException = 0x10,
severeExceptions = overflowException | divByZeroException
| invalidException,
allExceptions = severeExceptions | underflowException
| inexactException,
}
}
else version (HPPA)
{
enum : ExceptionMask
{
inexactException = 0x01,
underflowException = 0x02,
overflowException = 0x04,
divByZeroException = 0x08,
invalidException = 0x10,
severeExceptions = overflowException | divByZeroException
| invalidException,
allExceptions = severeExceptions | underflowException
| inexactException,
}
}
else version (MIPS_Any)
{
enum : ExceptionMask
{
inexactException = 0x0080,
divByZeroException = 0x0400,
overflowException = 0x0200,
underflowException = 0x0100,
invalidException = 0x0800,
severeExceptions = overflowException | divByZeroException
| invalidException,
allExceptions = severeExceptions | underflowException
| inexactException,
}
}
else version (SPARC_Any)
{
enum : ExceptionMask
{
inexactException = 0x0800000,
divByZeroException = 0x1000000,
overflowException = 0x4000000,
underflowException = 0x2000000,
invalidException = 0x8000000,
severeExceptions = overflowException | divByZeroException
| invalidException,
allExceptions = severeExceptions | underflowException
| inexactException,
}
}
else version (IBMZ_Any)
{
enum : ExceptionMask
{
inexactException = 0x08000000,
divByZeroException = 0x40000000,
overflowException = 0x20000000,
underflowException = 0x10000000,
invalidException = 0x80000000,
severeExceptions = overflowException | divByZeroException
| invalidException,
allExceptions = severeExceptions | underflowException
| inexactException,
}
}
else version (X86_Any)
{
enum : ExceptionMask
{
inexactException = 0x20,
underflowException = 0x10,
overflowException = 0x08,
divByZeroException = 0x04,
subnormalException = 0x02,
invalidException = 0x01,
severeExceptions = overflowException | divByZeroException
| invalidException,
allExceptions = severeExceptions | underflowException
| inexactException | subnormalException,
}
}
else
static assert(false, "Not implemented for this architecture");
version (ARM_Any)
{
static bool hasExceptionTraps_impl() @safe
{
auto oldState = getControlState();
// If exceptions are not supported, we set the bit but read it back as zero
// https://sourceware.org/ml/libc-ports/2012-06/msg00091.html
setControlState(oldState | divByZeroException);
immutable result = (getControlState() & allExceptions) != 0;
setControlState(oldState);
return result;
}
}
/// Returns: true if the current FPU supports exception trapping
@property static bool hasExceptionTraps() @safe pure
{
version (X86_Any)
return true;
else version (PPC_Any)
return true;
else version (MIPS_Any)
return true;
else version (ARM_Any)
{
// The hasExceptionTraps_impl function is basically pure,
// as it restores all global state
auto fptr = ( () @trusted => cast(bool function() @safe
pure nothrow @nogc)&hasExceptionTraps_impl)();
return fptr();
}
else
assert(0, "Not yet supported");
}
/// Enable (unmask) specific hardware exceptions. Multiple exceptions may be ORed together.
void enableExceptions(ExceptionMask exceptions) @trusted
{
assert(hasExceptionTraps);
initialize();
version (X86_Any)
setControlState(getControlState() & ~(exceptions & allExceptions));
else
setControlState(getControlState() | (exceptions & allExceptions));
}
/// Disable (mask) specific hardware exceptions. Multiple exceptions may be ORed together.
void disableExceptions(ExceptionMask exceptions) @trusted
{
assert(hasExceptionTraps);
initialize();
version (X86_Any)
setControlState(getControlState() | (exceptions & allExceptions));
else
setControlState(getControlState() & ~(exceptions & allExceptions));
}
/// Returns: the exceptions which are currently enabled (unmasked)
@property static ExceptionMask enabledExceptions() @trusted pure
{
assert(hasExceptionTraps);
version (X86_Any)
return (getControlState() & allExceptions) ^ allExceptions;
else
return (getControlState() & allExceptions);
}
/// Clear all pending exceptions, then restore the original exception state and rounding mode.
~this() @trusted
{
clearExceptions();
if (initialized)
setControlState(savedState);
}
private:
ControlState savedState;
bool initialized = false;
version (ARM_Any)
{
alias ControlState = uint;
}
else version (HPPA)
{
alias ControlState = uint;
}
else version (PPC_Any)
{
alias ControlState = uint;
}
else version (RISCV_Any)
{
alias ControlState = uint;
}
else version (MIPS_Any)
{
alias ControlState = uint;
}
else version (SPARC_Any)
{
alias ControlState = ulong;
}
else version (IBMZ_Any)
{
alias ControlState = uint;
}
else version (X86_Any)
{
alias ControlState = ushort;
}
else
static assert(false, "Not implemented for this architecture");
void initialize() @safe
{
// BUG: This works around the absence of this() constructors.
if (initialized) return;
clearExceptions();
savedState = getControlState();
initialized = true;
}
// Clear all pending exceptions
static void clearExceptions() @safe
{
version (IeeeFlagsSupport)
resetIeeeFlags();
else
static assert(false, "Not implemented for this architecture");
}
// Read from the control register
package(std.math) static ControlState getControlState() @trusted pure
{
version (D_InlineAsm_X86)
{
short cont;
asm pure nothrow @nogc
{
xor EAX, EAX;
fstcw cont;
}
return cont;
}
else version (D_InlineAsm_X86_64)
{
short cont;
asm pure nothrow @nogc
{
xor RAX, RAX;
fstcw cont;
}
return cont;
}
else version (RISCV_Any)
{
mixin(`
ControlState cont;
asm pure nothrow @nogc
{
"frcsr %0" : "=r" (cont);
}
return cont;
`);
}
else
assert(0, "Not yet supported");
}
// Set the control register
package(std.math) static void setControlState(ControlState newState) @trusted
{
version (InlineAsm_X86_Any)
{
asm nothrow @nogc
{
fclex;
fldcw newState;
}
// Also update MXCSR, SSE's control register.
if (haveSSE)
{
uint mxcsr;
asm nothrow @nogc { stmxcsr mxcsr; }
/* In the FPU control register, rounding mode is in bits 10 and
11. In MXCSR it's in bits 13 and 14. */
mxcsr &= ~(roundingMask << 3); // delete old rounding mode
mxcsr |= (newState & roundingMask) << 3; // write new rounding mode
/* In the FPU control register, masks are bits 0 through 5.
In MXCSR they're 7 through 12. */
mxcsr &= ~(allExceptions << 7); // delete old masks
mxcsr |= (newState & allExceptions) << 7; // write new exception masks
asm nothrow @nogc { ldmxcsr mxcsr; }
}
}
else version (RISCV_Any)
{
mixin(`
asm pure nothrow @nogc
{
"fscsr %0" : : "r" (newState);
}
`);
}
else
assert(0, "Not yet supported");
}
}
///
@safe unittest
{
FloatingPointControl fpctrl;
fpctrl.rounding = FloatingPointControl.roundDown;
assert(lrint(1.5) == 1.0);
fpctrl.rounding = FloatingPointControl.roundUp;
assert(lrint(1.4) == 2.0);
fpctrl.rounding = FloatingPointControl.roundToNearest;
assert(lrint(1.5) == 2.0);
}
@safe unittest
{
void ensureDefaults()
{
assert(FloatingPointControl.rounding
== FloatingPointControl.roundToNearest);
if (FloatingPointControl.hasExceptionTraps)
assert(FloatingPointControl.enabledExceptions == 0);
}
{
FloatingPointControl ctrl;
}
ensureDefaults();
{
FloatingPointControl ctrl;
ctrl.rounding = FloatingPointControl.roundDown;
assert(FloatingPointControl.rounding == FloatingPointControl.roundDown);
}
ensureDefaults();
if (FloatingPointControl.hasExceptionTraps)
{
FloatingPointControl ctrl;
ctrl.enableExceptions(FloatingPointControl.divByZeroException
| FloatingPointControl.overflowException);
assert(ctrl.enabledExceptions ==
(FloatingPointControl.divByZeroException
| FloatingPointControl.overflowException));
ctrl.rounding = FloatingPointControl.roundUp;
assert(FloatingPointControl.rounding == FloatingPointControl.roundUp);
}
ensureDefaults();
}
@safe unittest // rounding
{
import std.meta : AliasSeq;
static foreach (T; AliasSeq!(float, double, real))
{{
/* Be careful with changing the rounding mode, it interferes
* with common subexpressions. Changing rounding modes should
* be done with separate functions that are not inlined.
*/
{
static T addRound(T)(uint rm)
{
pragma(inline, false) static void blockopt(ref T x) {}
pragma(inline, false);
FloatingPointControl fpctrl;
fpctrl.rounding = rm;
T x = 1;
blockopt(x); // avoid constant propagation by the optimizer
x += 0.1L;
return x;
}
T u = addRound!(T)(FloatingPointControl.roundUp);
T d = addRound!(T)(FloatingPointControl.roundDown);
T z = addRound!(T)(FloatingPointControl.roundToZero);
assert(u > d);
assert(z == d);
}
{
static T subRound(T)(uint rm)
{
pragma(inline, false) static void blockopt(ref T x) {}
pragma(inline, false);
FloatingPointControl fpctrl;
fpctrl.rounding = rm;
T x = -1;
blockopt(x); // avoid constant propagation by the optimizer
x -= 0.1L;
return x;
}
T u = subRound!(T)(FloatingPointControl.roundUp);
T d = subRound!(T)(FloatingPointControl.roundDown);
T z = subRound!(T)(FloatingPointControl.roundToZero);
assert(u > d);
assert(z == u);
}
}}
}
} // FloatingPointControlSupport
/** Computes the value of a positive integer `x`, raised to the power `n`, modulo `m`.
*
* Params:
* x = base
* n = exponent
* m = modulus
*
* Returns:
* `x` to the power `n`, modulo `m`.
* The return type is the largest of `x`'s and `m`'s type.
*
* The function requires that all values have unsigned types.
*/
Unqual!(Largest!(F, H)) powmod(F, G, H)(F x, G n, H m)
if (isUnsigned!F && isUnsigned!G && isUnsigned!H)
{
import std.meta : AliasSeq;
alias T = Unqual!(Largest!(F, H));
static if (T.sizeof <= 4)
{
alias DoubleT = AliasSeq!(void, ushort, uint, void, ulong)[T.sizeof];
}
static T mulmod(T a, T b, T c)
{
static if (T.sizeof == 8)
{
static T addmod(T a, T b, T c)
{
b = c - b;
if (a >= b)
return a - b;
else
return c - b + a;
}
T result = 0, tmp;
b %= c;
while (a > 0)
{
if (a & 1)
result = addmod(result, b, c);
a >>= 1;
b = addmod(b, b, c);
}
return result;
}
else
{
DoubleT result = cast(DoubleT) (cast(DoubleT) a * cast(DoubleT) b);
return result % c;
}
}
T base = x, result = 1, modulus = m;
Unqual!G exponent = n;
while (exponent > 0)
{
if (exponent & 1)
result = mulmod(result, base, modulus);
base = mulmod(base, base, modulus);
exponent >>= 1;
}
return result;
}
///
@safe pure nothrow @nogc unittest
{
assert(powmod(1U, 10U, 3U) == 1);
assert(powmod(3U, 2U, 6U) == 3);
assert(powmod(5U, 5U, 15U) == 5);
assert(powmod(2U, 3U, 5U) == 3);
assert(powmod(2U, 4U, 5U) == 1);
assert(powmod(2U, 5U, 5U) == 2);
}
@safe pure nothrow @nogc unittest
{
ulong a = 18446744073709551615u, b = 20u, c = 18446744073709551610u;
assert(powmod(a, b, c) == 95367431640625u);
a = 100; b = 7919; c = 18446744073709551557u;
assert(powmod(a, b, c) == 18223853583554725198u);
a = 117; b = 7919; c = 18446744073709551557u;
assert(powmod(a, b, c) == 11493139548346411394u);
a = 134; b = 7919; c = 18446744073709551557u;
assert(powmod(a, b, c) == 10979163786734356774u);
a = 151; b = 7919; c = 18446744073709551557u;
assert(powmod(a, b, c) == 7023018419737782840u);
a = 168; b = 7919; c = 18446744073709551557u;
assert(powmod(a, b, c) == 58082701842386811u);
a = 185; b = 7919; c = 18446744073709551557u;
assert(powmod(a, b, c) == 17423478386299876798u);
a = 202; b = 7919; c = 18446744073709551557u;
assert(powmod(a, b, c) == 5522733478579799075u);
a = 219; b = 7919; c = 18446744073709551557u;
assert(powmod(a, b, c) == 15230218982491623487u);
a = 236; b = 7919; c = 18446744073709551557u;
assert(powmod(a, b, c) == 5198328724976436000u);
a = 0; b = 7919; c = 18446744073709551557u;
assert(powmod(a, b, c) == 0);
a = 123; b = 0; c = 18446744073709551557u;
assert(powmod(a, b, c) == 1);
immutable ulong a1 = 253, b1 = 7919, c1 = 18446744073709551557u;
assert(powmod(a1, b1, c1) == 3883707345459248860u);
uint x = 100 ,y = 7919, z = 1844674407u;
assert(powmod(x, y, z) == 1613100340u);
x = 134; y = 7919; z = 1844674407u;
assert(powmod(x, y, z) == 734956622u);
x = 151; y = 7919; z = 1844674407u;
assert(powmod(x, y, z) == 1738696945u);
x = 168; y = 7919; z = 1844674407u;
assert(powmod(x, y, z) == 1247580927u);
x = 185; y = 7919; z = 1844674407u;
assert(powmod(x, y, z) == 1293855176u);
x = 202; y = 7919; z = 1844674407u;
assert(powmod(x, y, z) == 1566963682u);
x = 219; y = 7919; z = 1844674407u;
assert(powmod(x, y, z) == 181227807u);
x = 236; y = 7919; z = 1844674407u;
assert(powmod(x, y, z) == 217988321u);
x = 253; y = 7919; z = 1844674407u;
assert(powmod(x, y, z) == 1588843243u);
x = 0; y = 7919; z = 184467u;
assert(powmod(x, y, z) == 0);
x = 123; y = 0; z = 1844674u;
assert(powmod(x, y, z) == 1);
immutable ubyte x1 = 117;
immutable uint y1 = 7919;
immutable uint z1 = 1844674407u;
auto res = powmod(x1, y1, z1);
assert(is(typeof(res) == uint));
assert(res == 9479781u);
immutable ushort x2 = 123;
immutable uint y2 = 203;
immutable ubyte z2 = 113;
auto res2 = powmod(x2, y2, z2);
assert(is(typeof(res2) == ushort));
assert(res2 == 42u);
}
@safe pure nothrow @nogc unittest
{
float f = sqrt(2.0f);
assert(fabs(f * f - 2.0f) < .00001);
double d = sqrt(2.0);
assert(fabs(d * d - 2.0) < .00001);
real r = sqrt(2.0L);
assert(fabs(r * r - 2.0) < .00001);
}
@safe pure nothrow @nogc unittest
{
float f = fabs(-2.0f);
assert(f == 2);
double d = fabs(-2.0);
assert(d == 2);
real r = fabs(-2.0L);
assert(r == 2);
}
@safe pure nothrow @nogc unittest
{
float f = sin(-2.0f);
assert(fabs(f - -0.909297f) < .00001);
double d = sin(-2.0);
assert(fabs(d - -0.909297f) < .00001);
real r = sin(-2.0L);
assert(fabs(r - -0.909297f) < .00001);
}
@safe pure nothrow @nogc unittest
{
float f = cos(-2.0f);
assert(fabs(f - -0.416147f) < .00001);
double d = cos(-2.0);
assert(fabs(d - -0.416147f) < .00001);
real r = cos(-2.0L);
assert(fabs(r - -0.416147f) < .00001);
}
@safe pure nothrow @nogc unittest
{
float f = tan(-2.0f);
assert(fabs(f - 2.18504f) < .00001);
double d = tan(-2.0);
assert(fabs(d - 2.18504f) < .00001);
real r = tan(-2.0L);
assert(fabs(r - 2.18504f) < .00001);
// Verify correct behavior for large inputs
assert(!isNaN(tan(0x1p63)));
assert(!isNaN(tan(-0x1p63)));
static if (real.mant_dig >= 64)
{
assert(!isNaN(tan(0x1p300L)));
assert(!isNaN(tan(-0x1p300L)));
}
}
package(std): // Not public yet
/* Return the value that lies halfway between x and y on the IEEE number line.
*
* Formally, the result is the arithmetic mean of the binary significands of x
* and y, multiplied by the geometric mean of the binary exponents of x and y.
* x and y must have the same sign, and must not be NaN.
* Note: this function is useful for ensuring O(log n) behaviour in algorithms
* involving a 'binary chop'.
*
* Special cases:
* If x and y are within a factor of 2, (ie, feqrel(x, y) > 0), the return value
* is the arithmetic mean (x + y) / 2.
* If x and y are even powers of 2, the return value is the geometric mean,
* ieeeMean(x, y) = sqrt(x * y).
*
*/
T ieeeMean(T)(const T x, const T y) @trusted pure nothrow @nogc
in
{
// both x and y must have the same sign, and must not be NaN.
assert(signbit(x) == signbit(y));
assert(x == x && y == y);
}
do
{
// Runtime behaviour for contract violation:
// If signs are opposite, or one is a NaN, return 0.
if (!((x >= 0 && y >= 0) || (x <= 0 && y <= 0))) return 0.0;
// The implementation is simple: cast x and y to integers,
// average them (avoiding overflow), and cast the result back to a floating-point number.
alias F = floatTraits!(T);
T u;
static if (F.realFormat == RealFormat.ieeeExtended ||
F.realFormat == RealFormat.ieeeExtended53)
{
// There's slight additional complexity because they are actually
// 79-bit reals...
ushort *ue = cast(ushort *)&u;
ulong *ul = cast(ulong *)&u;
ushort *xe = cast(ushort *)&x;
ulong *xl = cast(ulong *)&x;
ushort *ye = cast(ushort *)&y;
ulong *yl = cast(ulong *)&y;
// Ignore the useless implicit bit. (Bonus: this prevents overflows)
ulong m = ((*xl) & 0x7FFF_FFFF_FFFF_FFFFL) + ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL);
// @@@ BUG? @@@
// Cast shouldn't be here
ushort e = cast(ushort) ((xe[F.EXPPOS_SHORT] & F.EXPMASK)
+ (ye[F.EXPPOS_SHORT] & F.EXPMASK));
if (m & 0x8000_0000_0000_0000L)
{
++e;
m &= 0x7FFF_FFFF_FFFF_FFFFL;
}
// Now do a multi-byte right shift
const uint c = e & 1; // carry
e >>= 1;
m >>>= 1;
if (c)
m |= 0x4000_0000_0000_0000L; // shift carry into significand
if (e)
*ul = m | 0x8000_0000_0000_0000L; // set implicit bit...
else
*ul = m; // ... unless exponent is 0 (subnormal or zero).
ue[4]= e | (xe[F.EXPPOS_SHORT]& 0x8000); // restore sign bit
}
else static if (F.realFormat == RealFormat.ieeeQuadruple)
{
// This would be trivial if 'ucent' were implemented...
ulong *ul = cast(ulong *)&u;
ulong *xl = cast(ulong *)&x;
ulong *yl = cast(ulong *)&y;
// Multi-byte add, then multi-byte right shift.
import core.checkedint : addu;
bool carry;
ulong ml = addu(xl[MANTISSA_LSB], yl[MANTISSA_LSB], carry);
ulong mh = carry + (xl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL) +
(yl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL);
ul[MANTISSA_MSB] = (mh >>> 1) | (xl[MANTISSA_MSB] & 0x8000_0000_0000_0000);
ul[MANTISSA_LSB] = (ml >>> 1) | (mh & 1) << 63;
}
else static if (F.realFormat == RealFormat.ieeeDouble)
{
ulong *ul = cast(ulong *)&u;
ulong *xl = cast(ulong *)&x;
ulong *yl = cast(ulong *)&y;
ulong m = (((*xl) & 0x7FFF_FFFF_FFFF_FFFFL)
+ ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL)) >>> 1;
m |= ((*xl) & 0x8000_0000_0000_0000L);
*ul = m;
}
else static if (F.realFormat == RealFormat.ieeeSingle)
{
uint *ul = cast(uint *)&u;
uint *xl = cast(uint *)&x;
uint *yl = cast(uint *)&y;
uint m = (((*xl) & 0x7FFF_FFFF) + ((*yl) & 0x7FFF_FFFF)) >>> 1;
m |= ((*xl) & 0x8000_0000);
*ul = m;
}
else
{
assert(0, "Not implemented");
}
return u;
}
@safe pure nothrow @nogc unittest
{
assert(ieeeMean(-0.0,-1e-20)<0);
assert(ieeeMean(0.0,1e-20)>0);
assert(ieeeMean(1.0L,4.0L)==2L);
assert(ieeeMean(2.0*1.013,8.0*1.013)==4*1.013);
assert(ieeeMean(-1.0L,-4.0L)==-2L);
assert(ieeeMean(-1.0,-4.0)==-2);
assert(ieeeMean(-1.0f,-4.0f)==-2f);
assert(ieeeMean(-1.0,-2.0)==-1.5);
assert(ieeeMean(-1*(1+8*real.epsilon),-2*(1+8*real.epsilon))
==-1.5*(1+5*real.epsilon));
assert(ieeeMean(0x1p60,0x1p-10)==0x1p25);
static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended)
{
assert(ieeeMean(1.0L,real.infinity)==0x1p8192L);
assert(ieeeMean(0.0L,real.infinity)==1.5);
}
assert(ieeeMean(0.5*real.min_normal*(1-4*real.epsilon),0.5*real.min_normal)
== 0.5*real.min_normal*(1-2*real.epsilon));
}
// The following IEEE 'real' formats are currently supported.
version (LittleEndian)
{
static assert(real.mant_dig == 53 || real.mant_dig == 64
|| real.mant_dig == 113,
"Only 64-bit, 80-bit, and 128-bit reals"~
" are supported for LittleEndian CPUs");
}
else
{
static assert(real.mant_dig == 53 || real.mant_dig == 113,
"Only 64-bit and 128-bit reals are supported for BigEndian CPUs.");
}
// Underlying format exposed through floatTraits
enum RealFormat
{
ieeeHalf,
ieeeSingle,
ieeeDouble,
ieeeExtended, // x87 80-bit real
ieeeExtended53, // x87 real rounded to precision of double.
ibmExtended, // IBM 128-bit extended
ieeeQuadruple,
}
// Constants used for extracting the components of the representation.
// They supplement the built-in floating point properties.
template floatTraits(T)
{
// EXPMASK is a ushort mask to select the exponent portion (without sign)
// EXPSHIFT is the number of bits the exponent is left-shifted by in its ushort
// EXPBIAS is the exponent bias - 1 (exp == EXPBIAS yields ×2^-1).
// EXPPOS_SHORT is the index of the exponent when represented as a ushort array.
// SIGNPOS_BYTE is the index of the sign when represented as a ubyte array.
// RECIP_EPSILON is the value such that (smallest_subnormal) * RECIP_EPSILON == T.min_normal
enum Unqual!T RECIP_EPSILON = (1/T.epsilon);
static if (T.mant_dig == 24)
{
// Single precision float
enum ushort EXPMASK = 0x7F80;
enum ushort EXPSHIFT = 7;
enum ushort EXPBIAS = 0x3F00;
enum uint EXPMASK_INT = 0x7F80_0000;
enum uint MANTISSAMASK_INT = 0x007F_FFFF;
enum realFormat = RealFormat.ieeeSingle;
version (LittleEndian)
{
enum EXPPOS_SHORT = 1;
enum SIGNPOS_BYTE = 3;
}
else
{
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
}
else static if (T.mant_dig == 53)
{
static if (T.sizeof == 8)
{
// Double precision float, or real == double
enum ushort EXPMASK = 0x7FF0;
enum ushort EXPSHIFT = 4;
enum ushort EXPBIAS = 0x3FE0;
enum uint EXPMASK_INT = 0x7FF0_0000;
enum uint MANTISSAMASK_INT = 0x000F_FFFF; // for the MSB only
enum realFormat = RealFormat.ieeeDouble;
version (LittleEndian)
{
enum EXPPOS_SHORT = 3;
enum SIGNPOS_BYTE = 7;
}
else
{
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
}
else static if (T.sizeof == 12)
{
// Intel extended real80 rounded to double
enum ushort EXPMASK = 0x7FFF;
enum ushort EXPSHIFT = 0;
enum ushort EXPBIAS = 0x3FFE;
enum realFormat = RealFormat.ieeeExtended53;
version (LittleEndian)
{
enum EXPPOS_SHORT = 4;
enum SIGNPOS_BYTE = 9;
}
else
{
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
}
else
static assert(false, "No traits support for " ~ T.stringof);
}
else static if (T.mant_dig == 64)
{
// Intel extended real80
enum ushort EXPMASK = 0x7FFF;
enum ushort EXPSHIFT = 0;
enum ushort EXPBIAS = 0x3FFE;
enum realFormat = RealFormat.ieeeExtended;
version (LittleEndian)
{
enum EXPPOS_SHORT = 4;
enum SIGNPOS_BYTE = 9;
}
else
{
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
}
else static if (T.mant_dig == 113)
{
// Quadruple precision float
enum ushort EXPMASK = 0x7FFF;
enum ushort EXPSHIFT = 0;
enum ushort EXPBIAS = 0x3FFE;
enum realFormat = RealFormat.ieeeQuadruple;
version (LittleEndian)
{
enum EXPPOS_SHORT = 7;
enum SIGNPOS_BYTE = 15;
}
else
{
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
}
else static if (T.mant_dig == 106)
{
// IBM Extended doubledouble
enum ushort EXPMASK = 0x7FF0;
enum ushort EXPSHIFT = 4;
enum realFormat = RealFormat.ibmExtended;
// For IBM doubledouble the larger magnitude double comes first.
// It's really a double[2] and arrays don't index differently
// between little and big-endian targets.
enum DOUBLEPAIR_MSB = 0;
enum DOUBLEPAIR_LSB = 1;
// The exponent/sign byte is for most significant part.
version (LittleEndian)
{
enum EXPPOS_SHORT = 3;
enum SIGNPOS_BYTE = 7;
}
else
{
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
}
else
static assert(false, "No traits support for " ~ T.stringof);
}
// These apply to all floating-point types
version (LittleEndian)
{
enum MANTISSA_LSB = 0;
enum MANTISSA_MSB = 1;
}
else
{
enum MANTISSA_LSB = 1;
enum MANTISSA_MSB = 0;
}