phobos/std/math/package.d
2022-07-13 00:16:51 +00:00

495 lines
16 KiB
D
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Written in the D programming language.
/**
* Contains the elementary mathematical functions (powers, roots,
* and trigonometric functions), and low-level floating-point operations.
* Mathematical special functions are available in `std.mathspecial`.
*
$(SCRIPT inhibitQuickIndex = 1;)
$(DIVC quickindex,
$(BOOKTABLE ,
$(TR $(TH Category) $(TH Members) )
$(TR $(TDNW $(SUBMODULE Constants, constants)) $(TD
$(SUBREF constants, E)
$(SUBREF constants, PI)
$(SUBREF constants, PI_2)
$(SUBREF constants, PI_4)
$(SUBREF constants, M_1_PI)
$(SUBREF constants, M_2_PI)
$(SUBREF constants, M_2_SQRTPI)
$(SUBREF constants, LN10)
$(SUBREF constants, LN2)
$(SUBREF constants, LOG2)
$(SUBREF constants, LOG2E)
$(SUBREF constants, LOG2T)
$(SUBREF constants, LOG10E)
$(SUBREF constants, SQRT2)
$(SUBREF constants, SQRT1_2)
))
$(TR $(TDNW $(SUBMODULE Algebraic, algebraic)) $(TD
$(SUBREF algebraic, abs)
$(SUBREF algebraic, fabs)
$(SUBREF algebraic, sqrt)
$(SUBREF algebraic, cbrt)
$(SUBREF algebraic, hypot)
$(SUBREF algebraic, poly)
$(SUBREF algebraic, nextPow2)
$(SUBREF algebraic, truncPow2)
))
$(TR $(TDNW $(SUBMODULE Trigonometry, trigonometry)) $(TD
$(SUBREF trigonometry, sin)
$(SUBREF trigonometry, cos)
$(SUBREF trigonometry, tan)
$(SUBREF trigonometry, asin)
$(SUBREF trigonometry, acos)
$(SUBREF trigonometry, atan)
$(SUBREF trigonometry, atan2)
$(SUBREF trigonometry, sinh)
$(SUBREF trigonometry, cosh)
$(SUBREF trigonometry, tanh)
$(SUBREF trigonometry, asinh)
$(SUBREF trigonometry, acosh)
$(SUBREF trigonometry, atanh)
))
$(TR $(TDNW $(SUBMODULE Rounding, rounding)) $(TD
$(SUBREF rounding, ceil)
$(SUBREF rounding, floor)
$(SUBREF rounding, round)
$(SUBREF rounding, lround)
$(SUBREF rounding, trunc)
$(SUBREF rounding, rint)
$(SUBREF rounding, lrint)
$(SUBREF rounding, nearbyint)
$(SUBREF rounding, rndtol)
$(SUBREF rounding, quantize)
))
$(TR $(TDNW $(SUBMODULE Exponentiation & Logarithms, exponential)) $(TD
$(SUBREF exponential, pow)
$(SUBREF exponential, powmod)
$(SUBREF exponential, exp)
$(SUBREF exponential, exp2)
$(SUBREF exponential, expm1)
$(SUBREF exponential, ldexp)
$(SUBREF exponential, frexp)
$(SUBREF exponential, log)
$(SUBREF exponential, log2)
$(SUBREF exponential, log10)
$(SUBREF exponential, logb)
$(SUBREF exponential, ilogb)
$(SUBREF exponential, log1p)
$(SUBREF exponential, scalbn)
))
$(TR $(TDNW $(SUBMODULE Remainder, remainder)) $(TD
$(SUBREF remainder, fmod)
$(SUBREF remainder, modf)
$(SUBREF remainder, remainder)
$(SUBREF remainder, remquo)
))
$(TR $(TDNW $(SUBMODULE Floating-point operations, operations)) $(TD
$(SUBREF operations, approxEqual)
$(SUBREF operations, feqrel)
$(SUBREF operations, fdim)
$(SUBREF operations, fmax)
$(SUBREF operations, fmin)
$(SUBREF operations, fma)
$(SUBREF operations, isClose)
$(SUBREF operations, nextDown)
$(SUBREF operations, nextUp)
$(SUBREF operations, nextafter)
$(SUBREF operations, NaN)
$(SUBREF operations, getNaNPayload)
$(SUBREF operations, cmp)
))
$(TR $(TDNW $(SUBMODULE Introspection, traits)) $(TD
$(SUBREF traits, isFinite)
$(SUBREF traits, isIdentical)
$(SUBREF traits, isInfinity)
$(SUBREF traits, isNaN)
$(SUBREF traits, isNormal)
$(SUBREF traits, isSubnormal)
$(SUBREF traits, signbit)
$(SUBREF traits, sgn)
$(SUBREF traits, copysign)
$(SUBREF traits, isPowerOf2)
))
$(TR $(TDNW $(SUBMODULE Hardware Control, hardware)) $(TD
$(SUBREF hardware, IeeeFlags)
$(SUBREF hardware, ieeeFlags)
$(SUBREF hardware, resetIeeeFlags)
$(SUBREF hardware, FloatingPointControl)
))
)
)
* The functionality closely follows the IEEE754-2008 standard for
* floating-point arithmetic, including the use of camelCase names rather
* than C99-style lower case names. All of these functions behave correctly
* when presented with an infinity or NaN.
*
* The following IEEE 'real' formats are currently supported:
* $(UL
* $(LI 64 bit Big-endian 'double' (eg PowerPC))
* $(LI 128 bit Big-endian 'quadruple' (eg SPARC))
* $(LI 64 bit Little-endian 'double' (eg x86-SSE2))
* $(LI 80 bit Little-endian, with implied bit 'real80' (eg x87, Itanium))
* $(LI 128 bit Little-endian 'quadruple' (not implemented on any known processor!))
* $(LI Non-IEEE 128 bit Big-endian 'doubledouble' (eg PowerPC) has partial support)
* )
* Unlike C, there is no global 'errno' variable. Consequently, almost all of
* these functions are pure nothrow.
*
* Macros:
* SUBMODULE = $(MREF_ALTTEXT $1, std, math, $2)
* SUBREF = $(REF_ALTTEXT $(TT $2), $2, std, math, $1)$(NBSP)
*
* Copyright: Copyright The D Language Foundation 2000 - 2011.
* D implementations of tan, atan, atan2, exp, expm1, exp2, log, log10, log1p,
* log2, floor, ceil and lrint functions are based on the CEPHES math library,
* which is Copyright (C) 2001 Stephen L. Moshier $(LT)steve@moshier.net$(GT)
* and are incorporated herein by permission of the author. The author
* reserves the right to distribute this material elsewhere under different
* copying permissions. These modifications are distributed here under
* the following terms:
* License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
* Authors: $(HTTP digitalmars.com, Walter Bright), Don Clugston,
* Conversion of CEPHES math library to D by Iain Buclaw and David Nadlinger
* Source: $(PHOBOSSRC std/math/package.d)
*/
module std.math;
public import std.math.algebraic;
public import std.math.constants;
public import std.math.exponential;
public import std.math.operations;
public import std.math.hardware;
public import std.math.remainder;
public import std.math.rounding;
public import std.math.traits;
public import std.math.trigonometry;
// @@@DEPRECATED_2.102@@@
// Note: Exposed accidentally, should be deprecated / removed
deprecated("std.meta.AliasSeq was unintentionally available from std.math "
~ "and will be removed after 2.102. Please import std.meta instead")
public import std.meta : AliasSeq;
package(std): // Not public yet
/* Return the value that lies halfway between x and y on the IEEE number line.
*
* Formally, the result is the arithmetic mean of the binary significands of x
* and y, multiplied by the geometric mean of the binary exponents of x and y.
* x and y must have the same sign, and must not be NaN.
* Note: this function is useful for ensuring O(log n) behaviour in algorithms
* involving a 'binary chop'.
*
* Special cases:
* If x and y are within a factor of 2, (ie, feqrel(x, y) > 0), the return value
* is the arithmetic mean (x + y) / 2.
* If x and y are even powers of 2, the return value is the geometric mean,
* ieeeMean(x, y) = sqrt(x * y).
*
*/
T ieeeMean(T)(const T x, const T y) @trusted pure nothrow @nogc
in
{
// both x and y must have the same sign, and must not be NaN.
assert(signbit(x) == signbit(y));
assert(x == x && y == y);
}
do
{
// Runtime behaviour for contract violation:
// If signs are opposite, or one is a NaN, return 0.
if (!((x >= 0 && y >= 0) || (x <= 0 && y <= 0))) return 0.0;
// The implementation is simple: cast x and y to integers,
// average them (avoiding overflow), and cast the result back to a floating-point number.
alias F = floatTraits!(T);
T u;
static if (F.realFormat == RealFormat.ieeeExtended ||
F.realFormat == RealFormat.ieeeExtended53)
{
// There's slight additional complexity because they are actually
// 79-bit reals...
ushort *ue = cast(ushort *)&u;
ulong *ul = cast(ulong *)&u;
ushort *xe = cast(ushort *)&x;
ulong *xl = cast(ulong *)&x;
ushort *ye = cast(ushort *)&y;
ulong *yl = cast(ulong *)&y;
// Ignore the useless implicit bit. (Bonus: this prevents overflows)
ulong m = ((*xl) & 0x7FFF_FFFF_FFFF_FFFFL) + ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL);
// @@@ BUG? @@@
// Cast shouldn't be here
ushort e = cast(ushort) ((xe[F.EXPPOS_SHORT] & F.EXPMASK)
+ (ye[F.EXPPOS_SHORT] & F.EXPMASK));
if (m & 0x8000_0000_0000_0000L)
{
++e;
m &= 0x7FFF_FFFF_FFFF_FFFFL;
}
// Now do a multi-byte right shift
const uint c = e & 1; // carry
e >>= 1;
m >>>= 1;
if (c)
m |= 0x4000_0000_0000_0000L; // shift carry into significand
if (e)
*ul = m | 0x8000_0000_0000_0000L; // set implicit bit...
else
*ul = m; // ... unless exponent is 0 (subnormal or zero).
ue[4]= e | (xe[F.EXPPOS_SHORT]& 0x8000); // restore sign bit
}
else static if (F.realFormat == RealFormat.ieeeQuadruple)
{
// This would be trivial if 'ucent' were implemented...
ulong *ul = cast(ulong *)&u;
ulong *xl = cast(ulong *)&x;
ulong *yl = cast(ulong *)&y;
// Multi-byte add, then multi-byte right shift.
import core.checkedint : addu;
bool carry;
ulong ml = addu(xl[MANTISSA_LSB], yl[MANTISSA_LSB], carry);
ulong mh = carry + (xl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL) +
(yl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL);
ul[MANTISSA_MSB] = (mh >>> 1) | (xl[MANTISSA_MSB] & 0x8000_0000_0000_0000);
ul[MANTISSA_LSB] = (ml >>> 1) | (mh & 1) << 63;
}
else static if (F.realFormat == RealFormat.ieeeDouble)
{
ulong *ul = cast(ulong *)&u;
ulong *xl = cast(ulong *)&x;
ulong *yl = cast(ulong *)&y;
ulong m = (((*xl) & 0x7FFF_FFFF_FFFF_FFFFL)
+ ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL)) >>> 1;
m |= ((*xl) & 0x8000_0000_0000_0000L);
*ul = m;
}
else static if (F.realFormat == RealFormat.ieeeSingle)
{
uint *ul = cast(uint *)&u;
uint *xl = cast(uint *)&x;
uint *yl = cast(uint *)&y;
uint m = (((*xl) & 0x7FFF_FFFF) + ((*yl) & 0x7FFF_FFFF)) >>> 1;
m |= ((*xl) & 0x8000_0000);
*ul = m;
}
else
{
assert(0, "Not implemented");
}
return u;
}
@safe pure nothrow @nogc unittest
{
assert(ieeeMean(-0.0,-1e-20)<0);
assert(ieeeMean(0.0,1e-20)>0);
assert(ieeeMean(1.0L,4.0L)==2L);
assert(ieeeMean(2.0*1.013,8.0*1.013)==4*1.013);
assert(ieeeMean(-1.0L,-4.0L)==-2L);
assert(ieeeMean(-1.0,-4.0)==-2);
assert(ieeeMean(-1.0f,-4.0f)==-2f);
assert(ieeeMean(-1.0,-2.0)==-1.5);
assert(ieeeMean(-1*(1+8*real.epsilon),-2*(1+8*real.epsilon))
==-1.5*(1+5*real.epsilon));
assert(ieeeMean(0x1p60,0x1p-10)==0x1p25);
static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended)
{
assert(ieeeMean(1.0L,real.infinity)==0x1p8192L);
assert(ieeeMean(0.0L,real.infinity)==1.5);
}
assert(ieeeMean(0.5*real.min_normal*(1-4*real.epsilon),0.5*real.min_normal)
== 0.5*real.min_normal*(1-2*real.epsilon));
}
// The following IEEE 'real' formats are currently supported.
version (LittleEndian)
{
static assert(real.mant_dig == 53 || real.mant_dig == 64
|| real.mant_dig == 113,
"Only 64-bit, 80-bit, and 128-bit reals"~
" are supported for LittleEndian CPUs");
}
else
{
static assert(real.mant_dig == 53 || real.mant_dig == 113,
"Only 64-bit and 128-bit reals are supported for BigEndian CPUs.");
}
// Underlying format exposed through floatTraits
enum RealFormat
{
ieeeHalf,
ieeeSingle,
ieeeDouble,
ieeeExtended, // x87 80-bit real
ieeeExtended53, // x87 real rounded to precision of double.
ibmExtended, // IBM 128-bit extended
ieeeQuadruple,
}
// Constants used for extracting the components of the representation.
// They supplement the built-in floating point properties.
template floatTraits(T)
{
import std.traits : Unqual;
// EXPMASK is a ushort mask to select the exponent portion (without sign)
// EXPSHIFT is the number of bits the exponent is left-shifted by in its ushort
// EXPBIAS is the exponent bias - 1 (exp == EXPBIAS yields ×2^-1).
// EXPPOS_SHORT is the index of the exponent when represented as a ushort array.
// SIGNPOS_BYTE is the index of the sign when represented as a ubyte array.
// RECIP_EPSILON is the value such that (smallest_subnormal) * RECIP_EPSILON == T.min_normal
enum Unqual!T RECIP_EPSILON = (1/T.epsilon);
static if (T.mant_dig == 24)
{
// Single precision float
enum ushort EXPMASK = 0x7F80;
enum ushort EXPSHIFT = 7;
enum ushort EXPBIAS = 0x3F00;
enum uint EXPMASK_INT = 0x7F80_0000;
enum uint MANTISSAMASK_INT = 0x007F_FFFF;
enum realFormat = RealFormat.ieeeSingle;
version (LittleEndian)
{
enum EXPPOS_SHORT = 1;
enum SIGNPOS_BYTE = 3;
}
else
{
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
}
else static if (T.mant_dig == 53)
{
static if (T.sizeof == 8)
{
// Double precision float, or real == double
enum ushort EXPMASK = 0x7FF0;
enum ushort EXPSHIFT = 4;
enum ushort EXPBIAS = 0x3FE0;
enum uint EXPMASK_INT = 0x7FF0_0000;
enum uint MANTISSAMASK_INT = 0x000F_FFFF; // for the MSB only
enum ulong MANTISSAMASK_LONG = 0x000F_FFFF_FFFF_FFFF;
enum realFormat = RealFormat.ieeeDouble;
version (LittleEndian)
{
enum EXPPOS_SHORT = 3;
enum SIGNPOS_BYTE = 7;
}
else
{
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
}
else static if (T.sizeof == 12)
{
// Intel extended real80 rounded to double
enum ushort EXPMASK = 0x7FFF;
enum ushort EXPSHIFT = 0;
enum ushort EXPBIAS = 0x3FFE;
enum realFormat = RealFormat.ieeeExtended53;
version (LittleEndian)
{
enum EXPPOS_SHORT = 4;
enum SIGNPOS_BYTE = 9;
}
else
{
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
}
else
static assert(false, "No traits support for " ~ T.stringof);
}
else static if (T.mant_dig == 64)
{
// Intel extended real80
enum ushort EXPMASK = 0x7FFF;
enum ushort EXPSHIFT = 0;
enum ushort EXPBIAS = 0x3FFE;
enum realFormat = RealFormat.ieeeExtended;
version (LittleEndian)
{
enum EXPPOS_SHORT = 4;
enum SIGNPOS_BYTE = 9;
}
else
{
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
}
else static if (T.mant_dig == 113)
{
// Quadruple precision float
enum ushort EXPMASK = 0x7FFF;
enum ushort EXPSHIFT = 0;
enum ushort EXPBIAS = 0x3FFE;
enum realFormat = RealFormat.ieeeQuadruple;
version (LittleEndian)
{
enum EXPPOS_SHORT = 7;
enum SIGNPOS_BYTE = 15;
}
else
{
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
}
else static if (T.mant_dig == 106)
{
// IBM Extended doubledouble
enum ushort EXPMASK = 0x7FF0;
enum ushort EXPSHIFT = 4;
enum realFormat = RealFormat.ibmExtended;
// For IBM doubledouble the larger magnitude double comes first.
// It's really a double[2] and arrays don't index differently
// between little and big-endian targets.
enum DOUBLEPAIR_MSB = 0;
enum DOUBLEPAIR_LSB = 1;
// The exponent/sign byte is for most significant part.
version (LittleEndian)
{
enum EXPPOS_SHORT = 3;
enum SIGNPOS_BYTE = 7;
}
else
{
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
}
else
static assert(false, "No traits support for " ~ T.stringof);
}
// These apply to all floating-point types
version (LittleEndian)
{
enum MANTISSA_LSB = 0;
enum MANTISSA_MSB = 1;
}
else
{
enum MANTISSA_LSB = 1;
enum MANTISSA_MSB = 0;
}