mirror of
https://github.com/dlang/phobos.git
synced 2025-04-28 22:21:09 +03:00
853 lines
23 KiB
D
853 lines
23 KiB
D
// Written in the D programming language.
|
|
|
|
/**
|
|
This is a submodule of $(MREF std, math).
|
|
|
|
It contains several functions for introspection on numerical values.
|
|
|
|
Copyright: Copyright The D Language Foundation 2000 - 2011.
|
|
License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
|
|
Authors: $(HTTP digitalmars.com, Walter Bright), Don Clugston,
|
|
Conversion of CEPHES math library to D by Iain Buclaw and David Nadlinger
|
|
Source: $(PHOBOSSRC std/math/traits.d)
|
|
|
|
Macros:
|
|
NAN = $(RED NAN)
|
|
PLUSMN = ±
|
|
INFIN = ∞
|
|
*/
|
|
|
|
module std.math.traits;
|
|
|
|
import std.traits : isFloatingPoint, isIntegral, isNumeric, isSigned;
|
|
|
|
/*********************************
|
|
* Determines if $(D_PARAM x) is NaN.
|
|
* Params:
|
|
* x = a floating point number.
|
|
* Returns:
|
|
* `true` if $(D_PARAM x) is Nan.
|
|
*/
|
|
bool isNaN(X)(X x) @nogc @trusted pure nothrow
|
|
if (isFloatingPoint!(X))
|
|
{
|
|
version (all)
|
|
{
|
|
return x != x;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
Code kept for historical context. At least on Intel, the simple test
|
|
x != x uses one dedicated instruction (ucomiss/ucomisd) that runs in one
|
|
cycle. Code for 80- and 128-bits is larger but still smaller than the
|
|
integrals-based solutions below. Future revisions may enable the code
|
|
below conditionally depending on hardware.
|
|
*/
|
|
alias F = floatTraits!(X);
|
|
static if (F.realFormat == RealFormat.ieeeSingle)
|
|
{
|
|
const uint p = *cast(uint *)&x;
|
|
// Sign bit (MSB) is irrelevant so mask it out.
|
|
// Next 8 bits should be all set.
|
|
// At least one bit among the least significant 23 bits should be set.
|
|
return (p & 0x7FFF_FFFF) > 0x7F80_0000;
|
|
}
|
|
else static if (F.realFormat == RealFormat.ieeeDouble)
|
|
{
|
|
const ulong p = *cast(ulong *)&x;
|
|
// Sign bit (MSB) is irrelevant so mask it out.
|
|
// Next 11 bits should be all set.
|
|
// At least one bit among the least significant 52 bits should be set.
|
|
return (p & 0x7FFF_FFFF_FFFF_FFFF) > 0x7FF0_0000_0000_0000;
|
|
}
|
|
else static if (F.realFormat == RealFormat.ieeeExtended ||
|
|
F.realFormat == RealFormat.ieeeExtended53)
|
|
{
|
|
const ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
|
|
const ulong ps = *cast(ulong *)&x;
|
|
return e == F.EXPMASK &&
|
|
ps & 0x7FFF_FFFF_FFFF_FFFF; // not infinity
|
|
}
|
|
else static if (F.realFormat == RealFormat.ieeeQuadruple)
|
|
{
|
|
const ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
|
|
const ulong psLsb = (cast(ulong *)&x)[MANTISSA_LSB];
|
|
const ulong psMsb = (cast(ulong *)&x)[MANTISSA_MSB];
|
|
return e == F.EXPMASK &&
|
|
(psLsb | (psMsb& 0x0000_FFFF_FFFF_FFFF)) != 0;
|
|
}
|
|
else
|
|
{
|
|
return x != x;
|
|
}
|
|
}
|
|
}
|
|
|
|
///
|
|
@safe pure nothrow @nogc unittest
|
|
{
|
|
assert( isNaN(float.init));
|
|
assert( isNaN(-double.init));
|
|
assert( isNaN(real.nan));
|
|
assert( isNaN(-real.nan));
|
|
assert(!isNaN(cast(float) 53.6));
|
|
assert(!isNaN(cast(real)-53.6));
|
|
}
|
|
|
|
@safe pure nothrow @nogc unittest
|
|
{
|
|
import std.meta : AliasSeq;
|
|
|
|
static foreach (T; AliasSeq!(float, double, real))
|
|
{{
|
|
// CTFE-able tests
|
|
assert(isNaN(T.init));
|
|
assert(isNaN(-T.init));
|
|
assert(isNaN(T.nan));
|
|
assert(isNaN(-T.nan));
|
|
assert(!isNaN(T.infinity));
|
|
assert(!isNaN(-T.infinity));
|
|
assert(!isNaN(cast(T) 53.6));
|
|
assert(!isNaN(cast(T)-53.6));
|
|
|
|
// Runtime tests
|
|
shared T f;
|
|
f = T.init;
|
|
assert(isNaN(f));
|
|
assert(isNaN(-f));
|
|
f = T.nan;
|
|
assert(isNaN(f));
|
|
assert(isNaN(-f));
|
|
f = T.infinity;
|
|
assert(!isNaN(f));
|
|
assert(!isNaN(-f));
|
|
f = cast(T) 53.6;
|
|
assert(!isNaN(f));
|
|
assert(!isNaN(-f));
|
|
}}
|
|
}
|
|
|
|
/*********************************
|
|
* Determines if $(D_PARAM x) is finite.
|
|
* Params:
|
|
* x = a floating point number.
|
|
* Returns:
|
|
* `true` if $(D_PARAM x) is finite.
|
|
*/
|
|
bool isFinite(X)(X x) @trusted pure nothrow @nogc
|
|
{
|
|
import std.math : floatTraits, RealFormat;
|
|
|
|
static if (__traits(isFloating, X))
|
|
if (__ctfe)
|
|
return x == x && x != X.infinity && x != -X.infinity;
|
|
alias F = floatTraits!(X);
|
|
ushort* pe = cast(ushort *)&x;
|
|
return (pe[F.EXPPOS_SHORT] & F.EXPMASK) != F.EXPMASK;
|
|
}
|
|
|
|
///
|
|
@safe pure nothrow @nogc unittest
|
|
{
|
|
assert( isFinite(1.23f));
|
|
assert( isFinite(float.max));
|
|
assert( isFinite(float.min_normal));
|
|
assert(!isFinite(float.nan));
|
|
assert(!isFinite(float.infinity));
|
|
}
|
|
|
|
@safe pure nothrow @nogc unittest
|
|
{
|
|
assert(isFinite(1.23));
|
|
assert(isFinite(double.max));
|
|
assert(isFinite(double.min_normal));
|
|
assert(!isFinite(double.nan));
|
|
assert(!isFinite(double.infinity));
|
|
|
|
assert(isFinite(1.23L));
|
|
assert(isFinite(real.max));
|
|
assert(isFinite(real.min_normal));
|
|
assert(!isFinite(real.nan));
|
|
assert(!isFinite(real.infinity));
|
|
|
|
//CTFE
|
|
static assert(isFinite(1.23));
|
|
static assert(isFinite(double.max));
|
|
static assert(isFinite(double.min_normal));
|
|
static assert(!isFinite(double.nan));
|
|
static assert(!isFinite(double.infinity));
|
|
|
|
static assert(isFinite(1.23L));
|
|
static assert(isFinite(real.max));
|
|
static assert(isFinite(real.min_normal));
|
|
static assert(!isFinite(real.nan));
|
|
static assert(!isFinite(real.infinity));
|
|
}
|
|
|
|
|
|
/*********************************
|
|
* Determines if $(D_PARAM x) is normalized.
|
|
*
|
|
* A normalized number must not be zero, subnormal, infinite nor $(NAN).
|
|
*
|
|
* Params:
|
|
* x = a floating point number.
|
|
* Returns:
|
|
* `true` if $(D_PARAM x) is normalized.
|
|
*/
|
|
|
|
/* Need one for each format because subnormal floats might
|
|
* be converted to normal reals.
|
|
*/
|
|
bool isNormal(X)(X x) @trusted pure nothrow @nogc
|
|
{
|
|
import std.math : floatTraits, RealFormat;
|
|
|
|
static if (__traits(isFloating, X))
|
|
if (__ctfe)
|
|
return (x <= -X.min_normal && x != -X.infinity) || (x >= X.min_normal && x != X.infinity);
|
|
alias F = floatTraits!(X);
|
|
ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
|
|
return (e != F.EXPMASK && e != 0);
|
|
}
|
|
|
|
///
|
|
@safe pure nothrow @nogc unittest
|
|
{
|
|
float f = 3;
|
|
double d = 500;
|
|
real e = 10e+48;
|
|
|
|
assert(isNormal(f));
|
|
assert(isNormal(d));
|
|
assert(isNormal(e));
|
|
f = d = e = 0;
|
|
assert(!isNormal(f));
|
|
assert(!isNormal(d));
|
|
assert(!isNormal(e));
|
|
assert(!isNormal(real.infinity));
|
|
assert(isNormal(-real.max));
|
|
assert(!isNormal(real.min_normal/4));
|
|
|
|
}
|
|
|
|
@safe pure nothrow @nogc unittest
|
|
{
|
|
// CTFE
|
|
enum float f = 3;
|
|
enum double d = 500;
|
|
enum real e = 10e+48;
|
|
|
|
static assert(isNormal(f));
|
|
static assert(isNormal(d));
|
|
static assert(isNormal(e));
|
|
|
|
static assert(!isNormal(0.0f));
|
|
static assert(!isNormal(0.0));
|
|
static assert(!isNormal(0.0L));
|
|
static assert(!isNormal(real.infinity));
|
|
static assert(isNormal(-real.max));
|
|
static assert(!isNormal(real.min_normal/4));
|
|
}
|
|
|
|
/*********************************
|
|
* Determines if $(D_PARAM x) is subnormal.
|
|
*
|
|
* Subnormals (also known as "denormal number"), have a 0 exponent
|
|
* and a 0 most significant mantissa bit.
|
|
*
|
|
* Params:
|
|
* x = a floating point number.
|
|
* Returns:
|
|
* `true` if $(D_PARAM x) is a denormal number.
|
|
*/
|
|
bool isSubnormal(X)(X x) @trusted pure nothrow @nogc
|
|
{
|
|
import std.math : floatTraits, RealFormat, MANTISSA_MSB, MANTISSA_LSB;
|
|
|
|
static if (__traits(isFloating, X))
|
|
if (__ctfe)
|
|
return -X.min_normal < x && x < X.min_normal;
|
|
/*
|
|
Need one for each format because subnormal floats might
|
|
be converted to normal reals.
|
|
*/
|
|
alias F = floatTraits!(X);
|
|
static if (F.realFormat == RealFormat.ieeeSingle)
|
|
{
|
|
uint *p = cast(uint *)&x;
|
|
return (*p & F.EXPMASK_INT) == 0 && *p & F.MANTISSAMASK_INT;
|
|
}
|
|
else static if (F.realFormat == RealFormat.ieeeDouble)
|
|
{
|
|
uint *p = cast(uint *)&x;
|
|
return (p[MANTISSA_MSB] & F.EXPMASK_INT) == 0
|
|
&& (p[MANTISSA_LSB] || p[MANTISSA_MSB] & F.MANTISSAMASK_INT);
|
|
}
|
|
else static if (F.realFormat == RealFormat.ieeeQuadruple)
|
|
{
|
|
ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
|
|
long* ps = cast(long *)&x;
|
|
return (e == 0 &&
|
|
((ps[MANTISSA_LSB]|(ps[MANTISSA_MSB]& 0x0000_FFFF_FFFF_FFFF)) != 0));
|
|
}
|
|
else static if (F.realFormat == RealFormat.ieeeExtended ||
|
|
F.realFormat == RealFormat.ieeeExtended53)
|
|
{
|
|
ushort* pe = cast(ushort *)&x;
|
|
long* ps = cast(long *)&x;
|
|
|
|
return (pe[F.EXPPOS_SHORT] & F.EXPMASK) == 0 && *ps > 0;
|
|
}
|
|
else
|
|
{
|
|
static assert(false, "Not implemented for this architecture");
|
|
}
|
|
}
|
|
|
|
///
|
|
@safe pure nothrow @nogc unittest
|
|
{
|
|
import std.meta : AliasSeq;
|
|
|
|
static foreach (T; AliasSeq!(float, double, real))
|
|
{{
|
|
T f;
|
|
for (f = 1.0; !isSubnormal(f); f /= 2)
|
|
assert(f != 0);
|
|
}}
|
|
}
|
|
|
|
@safe pure nothrow @nogc unittest
|
|
{
|
|
static bool subnormalTest(T)()
|
|
{
|
|
T f;
|
|
for (f = 1.0; !isSubnormal(f); f /= 2)
|
|
if (f == 0)
|
|
return false;
|
|
return true;
|
|
}
|
|
static assert(subnormalTest!float());
|
|
static assert(subnormalTest!double());
|
|
static assert(subnormalTest!real());
|
|
}
|
|
|
|
/*********************************
|
|
* Determines if $(D_PARAM x) is $(PLUSMN)$(INFIN).
|
|
* Params:
|
|
* x = a floating point number.
|
|
* Returns:
|
|
* `true` if $(D_PARAM x) is $(PLUSMN)$(INFIN).
|
|
*/
|
|
bool isInfinity(X)(X x) @nogc @trusted pure nothrow
|
|
if (isFloatingPoint!(X))
|
|
{
|
|
import std.math : floatTraits, RealFormat, MANTISSA_MSB, MANTISSA_LSB;
|
|
|
|
alias F = floatTraits!(X);
|
|
static if (F.realFormat == RealFormat.ieeeSingle)
|
|
{
|
|
return ((*cast(uint *)&x) & 0x7FFF_FFFF) == 0x7F80_0000;
|
|
}
|
|
else static if (F.realFormat == RealFormat.ieeeDouble)
|
|
{
|
|
return ((*cast(ulong *)&x) & 0x7FFF_FFFF_FFFF_FFFF)
|
|
== 0x7FF0_0000_0000_0000;
|
|
}
|
|
else static if (F.realFormat == RealFormat.ieeeExtended ||
|
|
F.realFormat == RealFormat.ieeeExtended53)
|
|
{
|
|
const ushort e = cast(ushort)(F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]);
|
|
const ulong ps = *cast(ulong *)&x;
|
|
|
|
// On Motorola 68K, infinity can have hidden bit = 1 or 0. On x86, it is always 1.
|
|
return e == F.EXPMASK && (ps & 0x7FFF_FFFF_FFFF_FFFF) == 0;
|
|
}
|
|
else static if (F.realFormat == RealFormat.ieeeQuadruple)
|
|
{
|
|
const long psLsb = (cast(long *)&x)[MANTISSA_LSB];
|
|
const long psMsb = (cast(long *)&x)[MANTISSA_MSB];
|
|
return (psLsb == 0)
|
|
&& (psMsb & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_0000_0000_0000;
|
|
}
|
|
else
|
|
{
|
|
return (x < -X.max) || (X.max < x);
|
|
}
|
|
}
|
|
|
|
///
|
|
@nogc @safe pure nothrow unittest
|
|
{
|
|
assert(!isInfinity(float.init));
|
|
assert(!isInfinity(-float.init));
|
|
assert(!isInfinity(float.nan));
|
|
assert(!isInfinity(-float.nan));
|
|
assert(isInfinity(float.infinity));
|
|
assert(isInfinity(-float.infinity));
|
|
assert(isInfinity(-1.0f / 0.0f));
|
|
}
|
|
|
|
@safe pure nothrow @nogc unittest
|
|
{
|
|
// CTFE-able tests
|
|
assert(!isInfinity(double.init));
|
|
assert(!isInfinity(-double.init));
|
|
assert(!isInfinity(double.nan));
|
|
assert(!isInfinity(-double.nan));
|
|
assert(isInfinity(double.infinity));
|
|
assert(isInfinity(-double.infinity));
|
|
assert(isInfinity(-1.0 / 0.0));
|
|
|
|
assert(!isInfinity(real.init));
|
|
assert(!isInfinity(-real.init));
|
|
assert(!isInfinity(real.nan));
|
|
assert(!isInfinity(-real.nan));
|
|
assert(isInfinity(real.infinity));
|
|
assert(isInfinity(-real.infinity));
|
|
assert(isInfinity(-1.0L / 0.0L));
|
|
|
|
// Runtime tests
|
|
shared float f;
|
|
f = float.init;
|
|
assert(!isInfinity(f));
|
|
assert(!isInfinity(-f));
|
|
f = float.nan;
|
|
assert(!isInfinity(f));
|
|
assert(!isInfinity(-f));
|
|
f = float.infinity;
|
|
assert(isInfinity(f));
|
|
assert(isInfinity(-f));
|
|
f = (-1.0f / 0.0f);
|
|
assert(isInfinity(f));
|
|
|
|
shared double d;
|
|
d = double.init;
|
|
assert(!isInfinity(d));
|
|
assert(!isInfinity(-d));
|
|
d = double.nan;
|
|
assert(!isInfinity(d));
|
|
assert(!isInfinity(-d));
|
|
d = double.infinity;
|
|
assert(isInfinity(d));
|
|
assert(isInfinity(-d));
|
|
d = (-1.0 / 0.0);
|
|
assert(isInfinity(d));
|
|
|
|
shared real e;
|
|
e = real.init;
|
|
assert(!isInfinity(e));
|
|
assert(!isInfinity(-e));
|
|
e = real.nan;
|
|
assert(!isInfinity(e));
|
|
assert(!isInfinity(-e));
|
|
e = real.infinity;
|
|
assert(isInfinity(e));
|
|
assert(isInfinity(-e));
|
|
e = (-1.0L / 0.0L);
|
|
assert(isInfinity(e));
|
|
}
|
|
|
|
@nogc @safe pure nothrow unittest
|
|
{
|
|
import std.meta : AliasSeq;
|
|
static bool foo(T)(inout T x) { return isInfinity(x); }
|
|
foreach (T; AliasSeq!(float, double, real))
|
|
{
|
|
assert(!foo(T(3.14f)));
|
|
assert(foo(T.infinity));
|
|
}
|
|
}
|
|
|
|
/*********************************
|
|
* Is the binary representation of x identical to y?
|
|
*/
|
|
bool isIdentical(real x, real y) @trusted pure nothrow @nogc
|
|
{
|
|
import std.math : floatTraits, RealFormat;
|
|
|
|
// We're doing a bitwise comparison so the endianness is irrelevant.
|
|
long* pxs = cast(long *)&x;
|
|
long* pys = cast(long *)&y;
|
|
alias F = floatTraits!(real);
|
|
static if (F.realFormat == RealFormat.ieeeDouble)
|
|
{
|
|
return pxs[0] == pys[0];
|
|
}
|
|
else static if (F.realFormat == RealFormat.ieeeQuadruple)
|
|
{
|
|
return pxs[0] == pys[0] && pxs[1] == pys[1];
|
|
}
|
|
else static if (F.realFormat == RealFormat.ieeeExtended)
|
|
{
|
|
ushort* pxe = cast(ushort *)&x;
|
|
ushort* pye = cast(ushort *)&y;
|
|
return pxe[4] == pye[4] && pxs[0] == pys[0];
|
|
}
|
|
else
|
|
{
|
|
assert(0, "isIdentical not implemented");
|
|
}
|
|
}
|
|
|
|
///
|
|
@safe @nogc pure nothrow unittest
|
|
{
|
|
assert( isIdentical(0.0, 0.0));
|
|
assert( isIdentical(1.0, 1.0));
|
|
assert( isIdentical(real.infinity, real.infinity));
|
|
assert( isIdentical(-real.infinity, -real.infinity));
|
|
|
|
assert(!isIdentical(0.0, -0.0));
|
|
assert(!isIdentical(real.nan, -real.nan));
|
|
assert(!isIdentical(real.infinity, -real.infinity));
|
|
}
|
|
|
|
/*********************************
|
|
* Return 1 if sign bit of e is set, 0 if not.
|
|
*/
|
|
int signbit(X)(X x) @nogc @trusted pure nothrow
|
|
{
|
|
import std.math : floatTraits, RealFormat;
|
|
|
|
if (__ctfe)
|
|
{
|
|
double dval = cast(double) x; // Precision can increase or decrease but sign won't change (even NaN).
|
|
return 0 > *cast(long*) &dval;
|
|
}
|
|
|
|
alias F = floatTraits!(X);
|
|
return ((cast(ubyte *)&x)[F.SIGNPOS_BYTE] & 0x80) != 0;
|
|
}
|
|
|
|
///
|
|
@nogc @safe pure nothrow unittest
|
|
{
|
|
assert(!signbit(float.nan));
|
|
assert(signbit(-float.nan));
|
|
assert(!signbit(168.1234f));
|
|
assert(signbit(-168.1234f));
|
|
assert(!signbit(0.0f));
|
|
assert(signbit(-0.0f));
|
|
assert(signbit(-float.max));
|
|
assert(!signbit(float.max));
|
|
|
|
assert(!signbit(double.nan));
|
|
assert(signbit(-double.nan));
|
|
assert(!signbit(168.1234));
|
|
assert(signbit(-168.1234));
|
|
assert(!signbit(0.0));
|
|
assert(signbit(-0.0));
|
|
assert(signbit(-double.max));
|
|
assert(!signbit(double.max));
|
|
|
|
assert(!signbit(real.nan));
|
|
assert(signbit(-real.nan));
|
|
assert(!signbit(168.1234L));
|
|
assert(signbit(-168.1234L));
|
|
assert(!signbit(0.0L));
|
|
assert(signbit(-0.0L));
|
|
assert(signbit(-real.max));
|
|
assert(!signbit(real.max));
|
|
}
|
|
|
|
@nogc @safe pure nothrow unittest
|
|
{
|
|
// CTFE
|
|
static assert(!signbit(float.nan));
|
|
static assert(signbit(-float.nan));
|
|
static assert(!signbit(168.1234f));
|
|
static assert(signbit(-168.1234f));
|
|
static assert(!signbit(0.0f));
|
|
static assert(signbit(-0.0f));
|
|
static assert(signbit(-float.max));
|
|
static assert(!signbit(float.max));
|
|
|
|
static assert(!signbit(double.nan));
|
|
static assert(signbit(-double.nan));
|
|
static assert(!signbit(168.1234));
|
|
static assert(signbit(-168.1234));
|
|
static assert(!signbit(0.0));
|
|
static assert(signbit(-0.0));
|
|
static assert(signbit(-double.max));
|
|
static assert(!signbit(double.max));
|
|
|
|
static assert(!signbit(real.nan));
|
|
static assert(signbit(-real.nan));
|
|
static assert(!signbit(168.1234L));
|
|
static assert(signbit(-168.1234L));
|
|
static assert(!signbit(0.0L));
|
|
static assert(signbit(-0.0L));
|
|
static assert(signbit(-real.max));
|
|
static assert(!signbit(real.max));
|
|
}
|
|
|
|
/**
|
|
Params:
|
|
to = the numeric value to use
|
|
from = the sign value to use
|
|
Returns:
|
|
a value composed of to with from's sign bit.
|
|
*/
|
|
R copysign(R, X)(R to, X from) @trusted pure nothrow @nogc
|
|
if (isFloatingPoint!(R) && isFloatingPoint!(X))
|
|
{
|
|
import std.math : floatTraits, RealFormat;
|
|
|
|
if (__ctfe)
|
|
{
|
|
return signbit(to) == signbit(from) ? to : -to;
|
|
}
|
|
ubyte* pto = cast(ubyte *)&to;
|
|
const ubyte* pfrom = cast(ubyte *)&from;
|
|
|
|
alias T = floatTraits!(R);
|
|
alias F = floatTraits!(X);
|
|
pto[T.SIGNPOS_BYTE] &= 0x7F;
|
|
pto[T.SIGNPOS_BYTE] |= pfrom[F.SIGNPOS_BYTE] & 0x80;
|
|
return to;
|
|
}
|
|
|
|
/// ditto
|
|
R copysign(R, X)(X to, R from) @trusted pure nothrow @nogc
|
|
if (isIntegral!(X) && isFloatingPoint!(R))
|
|
{
|
|
return copysign(cast(R) to, from);
|
|
}
|
|
|
|
///
|
|
@safe pure nothrow @nogc unittest
|
|
{
|
|
assert(copysign(1.0, 1.0) == 1.0);
|
|
assert(copysign(1.0, -0.0) == -1.0);
|
|
assert(copysign(1UL, -1.0) == -1.0);
|
|
assert(copysign(-1.0, -1.0) == -1.0);
|
|
|
|
assert(copysign(real.infinity, -1.0) == -real.infinity);
|
|
assert(copysign(real.nan, 1.0) is real.nan);
|
|
assert(copysign(-real.nan, 1.0) is real.nan);
|
|
assert(copysign(real.nan, -1.0) is -real.nan);
|
|
}
|
|
|
|
@safe pure nothrow @nogc unittest
|
|
{
|
|
import std.meta : AliasSeq;
|
|
|
|
static foreach (X; AliasSeq!(float, double, real, int, long))
|
|
{
|
|
static foreach (Y; AliasSeq!(float, double, real))
|
|
{{
|
|
X x = 21;
|
|
Y y = 23.8;
|
|
Y e = void;
|
|
|
|
e = copysign(x, y);
|
|
assert(e == 21.0);
|
|
|
|
e = copysign(-x, y);
|
|
assert(e == 21.0);
|
|
|
|
e = copysign(x, -y);
|
|
assert(e == -21.0);
|
|
|
|
e = copysign(-x, -y);
|
|
assert(e == -21.0);
|
|
|
|
static if (isFloatingPoint!X)
|
|
{
|
|
e = copysign(X.nan, y);
|
|
assert(isNaN(e) && !signbit(e));
|
|
|
|
e = copysign(X.nan, -y);
|
|
assert(isNaN(e) && signbit(e));
|
|
}
|
|
}}
|
|
}
|
|
// CTFE
|
|
static foreach (X; AliasSeq!(float, double, real, int, long))
|
|
{
|
|
static foreach (Y; AliasSeq!(float, double, real))
|
|
{{
|
|
enum X x = 21;
|
|
enum Y y = 23.8;
|
|
|
|
assert(21.0 == copysign(x, y));
|
|
assert(21.0 == copysign(-x, y));
|
|
assert(-21.0 == copysign(x, -y));
|
|
assert(-21.0 == copysign(-x, -y));
|
|
|
|
static if (isFloatingPoint!X)
|
|
{
|
|
static assert(isNaN(copysign(X.nan, y)) && !signbit(copysign(X.nan, y)));
|
|
assert(isNaN(copysign(X.nan, -y)) && signbit(copysign(X.nan, -y)));
|
|
}
|
|
}}
|
|
}
|
|
}
|
|
|
|
/*********************************
|
|
Returns `-1` if $(D x < 0), `x` if $(D x == 0), `1` if
|
|
$(D x > 0), and $(NAN) if x==$(NAN).
|
|
*/
|
|
F sgn(F)(F x) @safe pure nothrow @nogc
|
|
if (isFloatingPoint!F || isIntegral!F)
|
|
{
|
|
// @@@TODO@@@: make this faster
|
|
return x > 0 ? 1 : x < 0 ? -1 : x;
|
|
}
|
|
|
|
///
|
|
@safe pure nothrow @nogc unittest
|
|
{
|
|
assert(sgn(168.1234) == 1);
|
|
assert(sgn(-168.1234) == -1);
|
|
assert(sgn(0.0) == 0);
|
|
assert(sgn(-0.0) == 0);
|
|
}
|
|
|
|
/**
|
|
Check whether a number is an integer power of two.
|
|
|
|
Note that only positive numbers can be integer powers of two. This
|
|
function always return `false` if `x` is negative or zero.
|
|
|
|
Params:
|
|
x = the number to test
|
|
|
|
Returns:
|
|
`true` if `x` is an integer power of two.
|
|
*/
|
|
bool isPowerOf2(X)(const X x) pure @safe nothrow @nogc
|
|
if (isNumeric!X)
|
|
{
|
|
import std.math.exponential : frexp;
|
|
|
|
static if (isFloatingPoint!X)
|
|
{
|
|
int exp;
|
|
const X sig = frexp(x, exp);
|
|
|
|
return (exp != int.min) && (sig is cast(X) 0.5L);
|
|
}
|
|
else
|
|
{
|
|
static if (isSigned!X)
|
|
{
|
|
auto y = cast(typeof(x + 0))x;
|
|
return y > 0 && !(y & (y - 1));
|
|
}
|
|
else
|
|
{
|
|
auto y = cast(typeof(x + 0u))x;
|
|
return (y & -y) > (y - 1);
|
|
}
|
|
}
|
|
}
|
|
///
|
|
@safe unittest
|
|
{
|
|
import std.math.exponential : pow;
|
|
|
|
assert( isPowerOf2(1.0L));
|
|
assert( isPowerOf2(2.0L));
|
|
assert( isPowerOf2(0.5L));
|
|
assert( isPowerOf2(pow(2.0L, 96)));
|
|
assert( isPowerOf2(pow(2.0L, -77)));
|
|
|
|
assert(!isPowerOf2(-2.0L));
|
|
assert(!isPowerOf2(-0.5L));
|
|
assert(!isPowerOf2(0.0L));
|
|
assert(!isPowerOf2(4.315));
|
|
assert(!isPowerOf2(1.0L / 3.0L));
|
|
|
|
assert(!isPowerOf2(real.nan));
|
|
assert(!isPowerOf2(real.infinity));
|
|
}
|
|
///
|
|
@safe unittest
|
|
{
|
|
assert( isPowerOf2(1));
|
|
assert( isPowerOf2(2));
|
|
assert( isPowerOf2(1uL << 63));
|
|
|
|
assert(!isPowerOf2(-4));
|
|
assert(!isPowerOf2(0));
|
|
assert(!isPowerOf2(1337u));
|
|
}
|
|
|
|
@safe unittest
|
|
{
|
|
import std.math.exponential : pow;
|
|
import std.meta : AliasSeq;
|
|
|
|
enum smallP2 = pow(2.0L, -62);
|
|
enum bigP2 = pow(2.0L, 50);
|
|
enum smallP7 = pow(7.0L, -35);
|
|
enum bigP7 = pow(7.0L, 30);
|
|
|
|
static foreach (X; AliasSeq!(float, double, real))
|
|
{{
|
|
immutable min_sub = X.min_normal * X.epsilon;
|
|
|
|
foreach (x; [smallP2, min_sub, X.min_normal, .25L, 0.5L, 1.0L,
|
|
2.0L, 8.0L, pow(2.0L, X.max_exp - 1), bigP2])
|
|
{
|
|
assert( isPowerOf2(cast(X) x));
|
|
assert(!isPowerOf2(cast(X)-x));
|
|
}
|
|
|
|
foreach (x; [0.0L, 3 * min_sub, smallP7, 0.1L, 1337.0L, bigP7, X.max, real.nan, real.infinity])
|
|
{
|
|
assert(!isPowerOf2(cast(X) x));
|
|
assert(!isPowerOf2(cast(X)-x));
|
|
}
|
|
}}
|
|
|
|
static foreach (X; AliasSeq!(byte, ubyte, short, ushort, int, uint, long, ulong))
|
|
{{
|
|
foreach (x; [1, 2, 4, 8, (X.max >>> 1) + 1])
|
|
{
|
|
assert( isPowerOf2(cast(X) x));
|
|
static if (isSigned!X)
|
|
assert(!isPowerOf2(cast(X)-x));
|
|
}
|
|
|
|
foreach (x; [0, 3, 5, 13, 77, X.min, X.max])
|
|
assert(!isPowerOf2(cast(X) x));
|
|
}}
|
|
|
|
// CTFE
|
|
static foreach (X; AliasSeq!(float, double, real))
|
|
{{
|
|
enum min_sub = X.min_normal * X.epsilon;
|
|
|
|
static foreach (x; [smallP2, min_sub, X.min_normal, .25L, 0.5L, 1.0L,
|
|
2.0L, 8.0L, pow(2.0L, X.max_exp - 1), bigP2])
|
|
{
|
|
static assert( isPowerOf2(cast(X) x));
|
|
static assert(!isPowerOf2(cast(X)-x));
|
|
}
|
|
|
|
static foreach (x; [0.0L, 3 * min_sub, smallP7, 0.1L, 1337.0L, bigP7, X.max, real.nan, real.infinity])
|
|
{
|
|
static assert(!isPowerOf2(cast(X) x));
|
|
static assert(!isPowerOf2(cast(X)-x));
|
|
}
|
|
}}
|
|
|
|
static foreach (X; AliasSeq!(byte, ubyte, short, ushort, int, uint, long, ulong))
|
|
{{
|
|
static foreach (x; [1, 2, 4, 8, (X.max >>> 1) + 1])
|
|
{
|
|
static assert( isPowerOf2(cast(X) x));
|
|
static if (isSigned!X)
|
|
static assert(!isPowerOf2(cast(X)-x));
|
|
}
|
|
|
|
static foreach (x; [0, 3, 5, 13, 77, X.min, X.max])
|
|
static assert(!isPowerOf2(cast(X) x));
|
|
}}
|
|
}
|
|
|