phobos/std/internal/math/biguintx86.d
2022-05-29 21:58:04 +04:00

1361 lines
41 KiB
D

/** Optimised asm arbitrary precision arithmetic ('bignum')
* routines for X86 processors.
*
* All functions operate on arrays of uints, stored LSB first.
* If there is a destination array, it will be the first parameter.
* Currently, all of these functions are subject to change, and are
* intended for internal use only.
* The symbol [#] indicates an array of machine words which is to be
* interpreted as a multi-byte number.
*/
/* Copyright Don Clugston 2008 - 2010.
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*/
/**
* In simple terms, there are 3 modern x86 microarchitectures:
* (a) the P6 family (Pentium Pro, PII, PIII, PM, Core), produced by Intel;
* (b) the K6, Athlon, and AMD64 families, produced by AMD; and
* (c) the Pentium 4, produced by Marketing.
*
* This code has been optimised for the Intel P6 family.
* Generally the code remains near-optimal for Intel Core2/Corei7, after
* translating EAX-> RAX, etc, since all these CPUs use essentially the same
* pipeline, and are typically limited by memory access.
* The code uses techniques described in Agner Fog's superb Pentium manuals
* available at www.agner.org.
* Not optimised for AMD, which can do two memory loads per cycle (Intel
* CPUs can only do one). Despite this, performance is superior on AMD.
* Performance is dreadful on P4.
*
* Timing results (cycles per int)
* --Intel Pentium-- --AMD--
* PM P4 Core2 K7
* +,- 2.25 15.6 2.25 1.5
* <<,>> 2.0 6.6 2.0 5.0
* (<< MMX) 1.7 5.3 1.5 1.2
* * 5.0 15.0 4.0 4.3
* mulAdd 5.7 19.0 4.9 4.0
* div 30.0 32.0 32.0 22.4
* mulAcc(32) 6.5 20.0 5.4 4.9
*
* mulAcc(32) is multiplyAccumulate() for a 32*32 multiply. Thus it includes
* function call overhead.
* The timing for Div is quite unpredictable, but it's probably too slow
* to be useful. On 64-bit processors, these times should
* halve if run in 64-bit mode, except for the MMX functions.
*/
module std.internal.math.biguintx86;
@system:
pure:
nothrow:
/*
Naked asm is used throughout, because:
(a) it frees up the EBP register
(b) compiler bugs prevent the use of .ptr when a frame pointer is used.
*/
version (D_InlineAsm_X86)
{
private:
/* Duplicate string s, with n times, substituting index for '@'.
*
* Each instance of '@' in s is replaced by 0,1,...n-1. This is a helper
* function for some of the asm routines.
*/
string indexedLoopUnroll(int n, string s) pure @safe
{
string u;
for (int i = 0; i<n; ++i)
{
string nstr= (i>9 ? ""~ cast(char)('0'+i/10) : "") ~ cast(char)('0' + i%10);
int last = 0;
for (int j = 0; j<s.length; ++j)
{
if (s[j]=='@')
{
u ~= s[last .. j] ~ nstr;
last = j+1;
}
}
if (last<s.length) u = u ~ s[last..$];
}
return u;
}
@safe unittest
{
assert(indexedLoopUnroll(3, "@*23;")=="0*23;1*23;2*23;");
}
public:
alias BigDigit = uint; // A Bignum is an array of BigDigits. Usually the machine word size.
// Limits for when to switch between multiplication algorithms.
enum : int { KARATSUBALIMIT = 18 } // Minimum value for which Karatsuba is worthwhile.
enum : int { KARATSUBASQUARELIMIT=26 } // Minimum value for which square Karatsuba is worthwhile
/** Multi-byte addition or subtraction
* dest[#] = src1[#] + src2[#] + carry (0 or 1).
* or dest[#] = src1[#] - src2[#] - carry (0 or 1).
* Returns carry or borrow (0 or 1).
* Set op == '+' for addition, '-' for subtraction.
*/
uint multibyteAddSub(char op)(uint[] dest, const uint [] src1, const uint []
src2, uint carry) pure @safe @nogc
{
// Timing:
// Pentium M: 2.25/int
// P6 family, Core2 have a partial flags stall when reading the carry flag in
// an ADC, SBB operation after an operation such as INC or DEC which
// modifies some, but not all, flags. We avoid this by storing carry into
// a resister (AL), and restoring it after the branch.
enum { LASTPARAM = 4*4 } // 3* pushes + return address.
asm pure nothrow @nogc @trusted {
naked;
push EDI;
push EBX;
push ESI;
mov ECX, [ESP + LASTPARAM + 4*4]; // dest.length;
mov EDX, [ESP + LASTPARAM + 3*4]; // src1.ptr
mov ESI, [ESP + LASTPARAM + 1*4]; // src2.ptr
mov EDI, [ESP + LASTPARAM + 5*4]; // dest.ptr
// Carry is in EAX
// Count UP to zero (from -len) to minimize loop overhead.
lea EDX, [EDX + 4*ECX]; // EDX = end of src1.
lea ESI, [ESI + 4*ECX]; // EBP = end of src2.
lea EDI, [EDI + 4*ECX]; // EDI = end of dest.
neg ECX;
add ECX, 8;
jb L2; // if length < 8 , bypass the unrolled loop.
L_unrolled:
shr AL, 1; // get carry from EAX
}
mixin(" asm pure nothrow @nogc @trusted {"
~ indexedLoopUnroll( 8,
"mov EAX, [@*4-8*4+EDX+ECX*4];"
~ ( op == '+' ? "adc" : "sbb" ) ~ " EAX, [@*4-8*4+ESI+ECX*4];"
~ "mov [@*4-8*4+EDI+ECX*4], EAX;")
~ "}");
asm pure nothrow @nogc @trusted {
setc AL; // save carry
add ECX, 8;
ja L_unrolled;
L2: // Do the residual 1 .. 7 ints.
sub ECX, 8;
jz done;
L_residual:
shr AL, 1; // get carry from EAX
}
mixin(" asm pure nothrow @nogc @trusted {"
~ indexedLoopUnroll( 1,
"mov EAX, [@*4+EDX+ECX*4];"
~ ( op == '+' ? "adc" : "sbb" ) ~ " EAX, [@*4+ESI+ECX*4];"
~ "mov [@*4+EDI+ECX*4], EAX;") ~ "}");
asm pure nothrow @nogc @trusted {
setc AL; // save carry
add ECX, 1;
jnz L_residual;
done:
and EAX, 1; // make it O or 1.
pop ESI;
pop EBX;
pop EDI;
ret 6*4;
}
}
@safe unittest
{
uint [] a = new uint[40];
uint [] b = new uint[40];
uint [] c = new uint[40];
for (int i=0; i<a.length; ++i)
{
if (i&1) a[i]=0x8000_0000 + i;
else a[i]=i;
b[i]= 0x8000_0003;
}
c[19]=0x3333_3333;
uint carry = multibyteAddSub!('+')(c[0 .. 18], a[0 .. 18], b[0 .. 18], 0);
assert(carry == 1);
assert(c[0]==0x8000_0003);
assert(c[1]==4);
assert(c[19]==0x3333_3333); // check for overrun
for (int i=0; i<a.length; ++i)
{
a[i]=b[i]=c[i]=0;
}
a[8]=0x048D159E;
b[8]=0x048D159E;
a[10]=0x1D950C84;
b[10]=0x1D950C84;
a[5] =0x44444444;
carry = multibyteAddSub!('-')(a[0 .. 12], a[0 .. 12], b[0 .. 12], 0);
assert(a[11]==0);
for (int i=0; i<10; ++i) if (i != 5) assert(a[i]==0);
for (int q=3; q<36;++q)
{
for (int i=0; i<a.length; ++i)
{
a[i]=b[i]=c[i]=0;
}
a[q-2]=0x040000;
b[q-2]=0x040000;
carry = multibyteAddSub!('-')(a[0 .. q], a[0 .. q], b[0 .. q], 0);
assert(a[q-2]==0);
}
}
/** dest[#] += carry, or dest[#] -= carry.
* op must be '+' or '-'
* Returns final carry or borrow (0 or 1)
*/
uint multibyteIncrementAssign(char op)(uint[] dest, uint carry) pure @safe @nogc
{
enum { LASTPARAM = 1*4 } // 0* pushes + return address.
asm pure nothrow @nogc @trusted {
naked;
mov ECX, [ESP + LASTPARAM + 0*4]; // dest.length;
mov EDX, [ESP + LASTPARAM + 1*4]; // dest.ptr
// EAX = carry
L1: ;
}
static if (op=='+')
asm pure nothrow @nogc @trusted { add [EDX], EAX; }
else
asm pure nothrow @nogc @trusted { sub [EDX], EAX; }
asm pure nothrow @nogc @trusted {
mov EAX, 1;
jnc L2;
add EDX, 4;
dec ECX;
jnz L1;
mov EAX, 2;
L2: dec EAX;
ret 2*4;
}
}
/** dest[#] = src[#] << numbits
* numbits must be in the range 1 .. 31
* Returns the overflow
*/
uint multibyteShlNoMMX(uint [] dest, const uint [] src, uint numbits) pure @safe @nogc
{
// Timing: Optimal for P6 family.
// 2.0 cycles/int on PPro .. PM (limited by execution port p0)
// 5.0 cycles/int on Athlon, which has 7 cycles for SHLD!!
enum { LASTPARAM = 4*4 } // 3* pushes + return address.
asm pure nothrow @nogc @trusted {
naked;
push ESI;
push EDI;
push EBX;
mov EDI, [ESP + LASTPARAM + 4*3]; //dest.ptr;
mov EBX, [ESP + LASTPARAM + 4*2]; //dest.length;
mov ESI, [ESP + LASTPARAM + 4*1]; //src.ptr;
mov ECX, EAX; // numbits;
mov EAX, [-4+ESI + 4*EBX];
mov EDX, 0;
shld EDX, EAX, CL;
push EDX; // Save return value
cmp EBX, 1;
jz L_last;
mov EDX, [-4+ESI + 4*EBX];
test EBX, 1;
jz L_odd;
sub EBX, 1;
L_even:
mov EDX, [-4+ ESI + 4*EBX];
shld EAX, EDX, CL;
mov [EDI+4*EBX], EAX;
L_odd:
mov EAX, [-8+ESI + 4*EBX];
shld EDX, EAX, CL;
mov [-4+EDI + 4*EBX], EDX;
sub EBX, 2;
jg L_even;
L_last:
shl EAX, CL;
mov [EDI], EAX;
pop EAX; // pop return value
pop EBX;
pop EDI;
pop ESI;
ret 4*4;
}
}
/** dest[#] = src[#] >> numbits
* numbits must be in the range 1 .. 31
* This version uses MMX.
*/
uint multibyteShl(uint [] dest, const uint [] src, uint numbits) pure @safe @nogc
{
// Timing:
// K7 1.2/int. PM 1.7/int P4 5.3/int
enum { LASTPARAM = 4*4 } // 3* pushes + return address.
asm pure nothrow @nogc @trusted {
naked;
push ESI;
push EDI;
push EBX;
mov EDI, [ESP + LASTPARAM + 4*3]; //dest.ptr;
mov EBX, [ESP + LASTPARAM + 4*2]; //dest.length;
mov ESI, [ESP + LASTPARAM + 4*1]; //src.ptr;
movd MM3, EAX; // numbits = bits to shift left
xor EAX, 63;
align 16;
inc EAX;
movd MM4, EAX ; // 64-numbits = bits to shift right
// Get the return value into EAX
and EAX, 31; // EAX = 32-numbits
movd MM2, EAX; // 32-numbits
movd MM1, [ESI+4*EBX-4];
psrlq MM1, MM2;
movd EAX, MM1; // EAX = return value
test EBX, 1;
jz L_even;
L_odd:
cmp EBX, 1;
jz L_length1;
// deal with odd lengths
movq MM1, [ESI+4*EBX-8];
psrlq MM1, MM2;
movd [EDI +4*EBX-4], MM1;
sub EBX, 1;
L_even: // It's either singly or doubly even
movq MM2, [ESI + 4*EBX - 8];
psllq MM2, MM3;
sub EBX, 2;
jle L_last;
movq MM1, MM2;
add EBX, 2;
test EBX, 2;
jz L_onceeven;
sub EBX, 2;
// MAIN LOOP -- 128 bytes per iteration
L_twiceeven: // here MM2 is the carry
movq MM0, [ESI + 4*EBX-8];
psrlq MM0, MM4;
movq MM1, [ESI + 4*EBX-8];
psllq MM1, MM3;
por MM2, MM0;
movq [EDI +4*EBX], MM2;
L_onceeven: // here MM1 is the carry
movq MM0, [ESI + 4*EBX-16];
psrlq MM0, MM4;
movq MM2, [ESI + 4*EBX-16];
por MM1, MM0;
movq [EDI +4*EBX-8], MM1;
psllq MM2, MM3;
sub EBX, 4;
jg L_twiceeven;
L_last:
movq [EDI +4*EBX], MM2;
L_alldone:
emms; // NOTE: costs 6 cycles on Intel CPUs
pop EBX;
pop EDI;
pop ESI;
ret 4*4;
L_length1:
// length 1 is a special case
movd MM1, [ESI];
psllq MM1, MM3;
movd [EDI], MM1;
jmp L_alldone;
}
}
void multibyteShr(uint [] dest, const uint [] src, uint numbits) pure @safe @nogc
{
enum { LASTPARAM = 4*4 } // 3* pushes + return address.
asm pure nothrow @nogc @trusted {
naked;
push ESI;
push EDI;
push EBX;
mov EDI, [ESP + LASTPARAM + 4*3]; //dest.ptr;
mov EBX, [ESP + LASTPARAM + 4*2]; //dest.length;
align 16;
mov ESI, [ESP + LASTPARAM + 4*1]; //src.ptr;
lea EDI, [EDI + 4*EBX]; // EDI = end of dest
lea ESI, [ESI + 4*EBX]; // ESI = end of src
neg EBX; // count UP to zero.
movd MM3, EAX; // numbits = bits to shift right
xor EAX, 63;
inc EAX;
movd MM4, EAX ; // 64-numbits = bits to shift left
test EBX, 1;
jz L_even;
L_odd:
// deal with odd lengths
and EAX, 31; // EAX = 32-numbits
movd MM2, EAX; // 32-numbits
cmp EBX, -1;
jz L_length1;
movq MM0, [ESI+4*EBX];
psrlq MM0, MM3;
movd [EDI +4*EBX], MM0;
add EBX, 1;
L_even:
movq MM2, [ESI + 4*EBX];
psrlq MM2, MM3;
movq MM1, MM2;
add EBX, 4;
cmp EBX, -2+4;
jz L_last;
// It's either singly or doubly even
sub EBX, 2;
test EBX, 2;
jnz L_onceeven;
add EBX, 2;
// MAIN LOOP -- 128 bytes per iteration
L_twiceeven: // here MM2 is the carry
movq MM0, [ESI + 4*EBX-8];
psllq MM0, MM4;
movq MM1, [ESI + 4*EBX-8];
psrlq MM1, MM3;
por MM2, MM0;
movq [EDI +4*EBX-16], MM2;
L_onceeven: // here MM1 is the carry
movq MM0, [ESI + 4*EBX];
psllq MM0, MM4;
movq MM2, [ESI + 4*EBX];
por MM1, MM0;
movq [EDI +4*EBX-8], MM1;
psrlq MM2, MM3;
add EBX, 4;
jl L_twiceeven;
L_last:
movq [EDI +4*EBX-16], MM2;
L_alldone:
emms; // NOTE: costs 6 cycles on Intel CPUs
pop EBX;
pop EDI;
pop ESI;
ret 4*4;
L_length1:
// length 1 is a special case
movd MM1, [ESI+4*EBX];
psrlq MM1, MM3;
movd [EDI +4*EBX], MM1;
jmp L_alldone;
}
}
/** dest[#] = src[#] >> numbits
* numbits must be in the range 1 .. 31
*/
void multibyteShrNoMMX(uint [] dest, const uint [] src, uint numbits) pure @safe @nogc
{
// Timing: Optimal for P6 family.
// 2.0 cycles/int on PPro .. PM (limited by execution port p0)
// Terrible performance on AMD64, which has 7 cycles for SHRD!!
enum { LASTPARAM = 4*4 } // 3* pushes + return address.
asm pure nothrow @nogc @trusted {
naked;
push ESI;
push EDI;
push EBX;
mov EDI, [ESP + LASTPARAM + 4*3]; //dest.ptr;
mov EBX, [ESP + LASTPARAM + 4*2]; //dest.length;
mov ESI, [ESP + LASTPARAM + 4*1]; //src.ptr;
mov ECX, EAX; // numbits;
lea EDI, [EDI + 4*EBX]; // EDI = end of dest
lea ESI, [ESI + 4*EBX]; // ESI = end of src
neg EBX; // count UP to zero.
mov EAX, [ESI + 4*EBX];
cmp EBX, -1;
jz L_last;
mov EDX, [ESI + 4*EBX];
test EBX, 1;
jz L_odd;
add EBX, 1;
L_even:
mov EDX, [ ESI + 4*EBX];
shrd EAX, EDX, CL;
mov [-4 + EDI+4*EBX], EAX;
L_odd:
mov EAX, [4 + ESI + 4*EBX];
shrd EDX, EAX, CL;
mov [EDI + 4*EBX], EDX;
add EBX, 2;
jl L_even;
L_last:
shr EAX, CL;
mov [-4 + EDI], EAX;
pop EBX;
pop EDI;
pop ESI;
ret 4*4;
}
}
@safe unittest
{
uint [] aa = [0x1222_2223, 0x4555_5556, 0x8999_999A, 0xBCCC_CCCD, 0xEEEE_EEEE];
multibyteShr(aa[0..$-1], aa, 4);
assert(aa[0] == 0x6122_2222 && aa[1]==0xA455_5555
&& aa[2]==0xD899_9999 && aa[3]==0x0BCC_CCCC);
aa = [0x1222_2223, 0x4555_5556, 0x8999_999A, 0xBCCC_CCCD, 0xEEEE_EEEE];
multibyteShr(aa[2..$-1], aa[2..$-1], 4);
assert(aa[0] == 0x1222_2223 && aa[1]==0x4555_5556
&& aa[2]==0xD899_9999 && aa[3]==0x0BCC_CCCC);
aa = [0x1222_2223, 0x4555_5556, 0x8999_999A, 0xBCCC_CCCD, 0xEEEE_EEEE];
multibyteShr(aa[0..$-2], aa, 4);
assert(aa[1]==0xA455_5555 && aa[2]==0x0899_9999);
assert(aa[0]==0x6122_2222);
assert(aa[3]==0xBCCC_CCCD);
aa = [0xF0FF_FFFF, 0x1222_2223, 0x4555_5556, 0x8999_999A, 0xBCCC_CCCD, 0xEEEE_EEEE];
uint r = multibyteShl(aa[2 .. 4], aa[2 .. 4], 4);
assert(aa[0] == 0xF0FF_FFFF && aa[1]==0x1222_2223
&& aa[2]==0x5555_5560 && aa[3]==0x9999_99A4 && aa[4]==0xBCCC_CCCD);
assert(r == 8);
aa = [0xF0FF_FFFF, 0x1222_2223, 0x4555_5556, 0x8999_999A, 0xBCCC_CCCD, 0xEEEE_EEEE];
r = multibyteShl(aa[1 .. 4], aa[1 .. 4], 4);
assert(aa[0] == 0xF0FF_FFFF
&& aa[2]==0x5555_5561);
assert(aa[3]==0x9999_99A4 && aa[4]==0xBCCC_CCCD);
assert(r == 8);
assert(aa[1]==0x2222_2230);
aa = [0xF0FF_FFFF, 0x1222_2223, 0x4555_5556, 0x8999_999A, 0xBCCC_CCCD, 0xEEEE_EEEE];
r = multibyteShl(aa[0 .. 4], aa[1 .. 5], 31);
}
/** dest[#] = src[#] * multiplier + carry.
* Returns carry.
*/
uint multibyteMul(uint[] dest, const uint[] src, uint multiplier, uint carry)
pure @safe
{
// Timing: definitely not optimal.
// Pentium M: 5.0 cycles/operation, has 3 resource stalls/iteration
// Fastest implementation found was 4.6 cycles/op, but not worth the complexity.
enum { LASTPARAM = 4*4 } // 4* pushes + return address.
// We'll use p2 (load unit) instead of the overworked p0 or p1 (ALU units)
// when initializing variables to zero.
version (D_PIC)
{
enum { zero = 0 }
}
else
{
static immutable int zero = 0;
}
asm pure nothrow @nogc @trusted {
naked;
push ESI;
push EDI;
push EBX;
mov EDI, [ESP + LASTPARAM + 4*4]; // dest.ptr
mov EBX, [ESP + LASTPARAM + 4*3]; // dest.length
mov ESI, [ESP + LASTPARAM + 4*2]; // src.ptr
align 16;
lea EDI, [EDI + 4*EBX]; // EDI = end of dest
lea ESI, [ESI + 4*EBX]; // ESI = end of src
mov ECX, EAX; // [carry]; -- last param is in EAX.
neg EBX; // count UP to zero.
test EBX, 1;
jnz L_odd;
add EBX, 1;
L1:
mov EAX, [-4 + ESI + 4*EBX];
mul int ptr [ESP+LASTPARAM]; //[multiplier];
add EAX, ECX;
mov ECX, zero;
mov [-4+EDI + 4*EBX], EAX;
adc ECX, EDX;
L_odd:
mov EAX, [ESI + 4*EBX]; // p2
mul int ptr [ESP+LASTPARAM]; //[multiplier]; // p0*3,
add EAX, ECX;
mov ECX, zero;
adc ECX, EDX;
mov [EDI + 4*EBX], EAX;
add EBX, 2;
jl L1;
mov EAX, ECX; // get final carry
pop EBX;
pop EDI;
pop ESI;
ret 5*4;
}
}
@system unittest
{
uint [] aa = [0xF0FF_FFFF, 0x1222_2223, 0x4555_5556, 0x8999_999A, 0xBCCC_CCCD, 0xEEEE_EEEE];
multibyteMul(aa[1 .. 4], aa[1 .. 4], 16, 0);
assert(aa[0] == 0xF0FF_FFFF && aa[1] == 0x2222_2230 &&
aa[2]==0x5555_5561 && aa[3]==0x9999_99A4 && aa[4]==0x0BCCC_CCCD);
}
// The inner multiply-and-add loop, together with the Even entry point.
// Multiples by M_ADDRESS which should be "ESP+LASTPARAM" or "ESP". OP must be "add" or "sub"
// This is the most time-critical code in the BigInt library.
// It is used by both MulAdd, multiplyAccumulate, and triangleAccumulate
string asmMulAdd_innerloop(string OP, string M_ADDRESS) pure @safe {
// The bottlenecks in this code are extremely complicated. The MUL, ADD, and ADC
// need 4 cycles on each of the ALUs units p0 and p1. So we use memory load
// (unit p2) for initializing registers to zero.
// There are also dependencies between the instructions, and we run up against the
// ROB-read limit (can only read 2 registers per cycle).
// We also need the number of uops in the loop to be a multiple of 3.
// The only available execution unit for this is p3 (memory write). Unfortunately we can't do that
// if Position-Independent Code is required.
// Register usage
// ESI = end of src
// EDI = end of dest
// EBX = index. Counts up to zero (in steps of 2).
// EDX:EAX = scratch, used in multiply.
// ECX = carry1.
// EBP = carry2.
// ESP = points to the multiplier.
// The first member of 'dest' which will be modified is [EDI+4*EBX].
// EAX must already contain the first member of 'src', [ESI+4*EBX].
version (D_PIC) { bool using_PIC = true; } else { bool using_PIC = false; }
return "
// Entry point for even length
add EBX, 1;
mov EBP, ECX; // carry
mul int ptr [" ~ M_ADDRESS ~ "]; // M
mov ECX, 0;
add EBP, EAX;
mov EAX, [ESI+4*EBX];
adc ECX, EDX;
mul int ptr [" ~ M_ADDRESS ~ "]; // M
" ~ OP ~ " [-4+EDI+4*EBX], EBP;
mov EBP, zero;
adc ECX, EAX;
mov EAX, [4+ESI+4*EBX];
adc EBP, EDX;
add EBX, 2;
jnl L_done;
L1:
mul int ptr [" ~ M_ADDRESS ~ "];
" ~ OP ~ " [-8+EDI+4*EBX], ECX;
adc EBP, EAX;
mov ECX, zero;
mov EAX, [ESI+4*EBX];
adc ECX, EDX;
" ~
(using_PIC ? "" : " mov storagenop, EDX; ") // make #uops in loop a multiple of 3, can't do this in PIC mode.
~ "
mul int ptr [" ~ M_ADDRESS ~ "];
" ~ OP ~ " [-4+EDI+4*EBX], EBP;
mov EBP, zero;
adc ECX, EAX;
mov EAX, [4+ESI+4*EBX];
adc EBP, EDX;
add EBX, 2;
jl L1;
L_done: " ~ OP ~ " [-8+EDI+4*EBX], ECX;
adc EBP, 0;
";
// final carry is now in EBP
}
string asmMulAdd_enter_odd(string OP, string M_ADDRESS) pure @safe
{
return "
mul int ptr [" ~M_ADDRESS ~"];
mov EBP, zero;
add ECX, EAX;
mov EAX, [4+ESI+4*EBX];
adc EBP, EDX;
add EBX, 2;
jl L1;
jmp L_done;
";
}
version (D_PIC) {} else
{
// This cannot be declared inside the relevant functions because __gshared is
// not allowed in @safe functions. It cannot be regular shared either since
// that gives an access violation on Win32 for some reason.
private __gshared int storagenopTriangleAccumulate;
private __gshared int storagenopMulAdd;
private __gshared int storagenopMultiplyAccumulate;
}
/**
* dest[#] += src[#] * multiplier OP carry(0 .. FFFF_FFFF).
* where op == '+' or '-'
* Returns carry out of MSB (0 .. FFFF_FFFF).
*/
uint multibyteMulAdd(char op)(uint [] dest, const uint [] src, uint
multiplier, uint carry) pure @safe @nogc {
// Timing: This is the most time-critical bignum function.
// Pentium M: 5.4 cycles/operation, still has 2 resource stalls + 1load block/iteration
// The main loop is pipelined and unrolled by 2,
// so entry to the loop is also complicated.
// Register usage
// EDX:EAX = multiply
// EBX = counter
// ECX = carry1
// EBP = carry2
// EDI = dest
// ESI = src
enum string OP = (op=='+')? "add" : "sub";
version (D_PIC)
{
enum { zero = 0 }
}
else
{
// use p2 (load unit) instead of the overworked p0 or p1 (ALU units)
// when initializing registers to zero.
static immutable int zero = 0;
// use p3/p4 units
alias storagenop = storagenopMulAdd; // write-only
}
enum { LASTPARAM = 5*4 } // 4* pushes + return address.
asm pure nothrow @nogc @trusted {
naked;
push ESI;
push EDI;
push EBX;
push EBP;
mov EDI, [ESP + LASTPARAM + 4*4]; // dest.ptr
mov EBX, [ESP + LASTPARAM + 4*3]; // dest.length
align 16;
nop;
mov ESI, [ESP + LASTPARAM + 4*2]; // src.ptr
lea EDI, [EDI + 4*EBX]; // EDI = end of dest
lea ESI, [ESI + 4*EBX]; // ESI = end of src
mov EBP, 0;
mov ECX, EAX; // ECX = input carry.
neg EBX; // count UP to zero.
mov EAX, [ESI+4*EBX];
test EBX, 1;
jnz L_enter_odd;
}
// Main loop, with entry point for even length
mixin("asm pure nothrow @nogc @trusted {" ~ asmMulAdd_innerloop(OP, "ESP+LASTPARAM") ~ "}");
asm pure nothrow @nogc @trusted {
mov EAX, EBP; // get final carry
pop EBP;
pop EBX;
pop EDI;
pop ESI;
ret 5*4;
}
L_enter_odd:
mixin("asm pure nothrow @nogc @trusted {" ~ asmMulAdd_enter_odd(OP, "ESP+LASTPARAM") ~ "}");
}
@system unittest
{
uint [] aa = [0xF0FF_FFFF, 0x1222_2223, 0x4555_5556, 0x8999_999A, 0xBCCC_CCCD, 0xEEEE_EEEE];
uint [] bb = [0x1234_1234, 0xF0F0_F0F0, 0x00C0_C0C0, 0xF0F0_F0F0, 0xC0C0_C0C0];
multibyteMulAdd!('+')(bb[1..$-1], aa[1..$-2], 16, 5);
assert(bb[0] == 0x1234_1234 && bb[4] == 0xC0C0_C0C0);
assert(bb[1] == 0x2222_2230 + 0xF0F0_F0F0+5 && bb[2] == 0x5555_5561+0x00C0_C0C0+1
&& bb[3] == 0x9999_99A4+0xF0F0_F0F0 );
}
/**
Sets result[#] = result[0 .. left.length] + left[#] * right[#]
It is defined in this way to allow cache-efficient multiplication.
This function is equivalent to:
----
for (int i = 0; i< right.length; ++i)
{
dest[left.length + i] = multibyteMulAdd(dest[i .. left.length+i],
left, right[i], 0);
}
----
*/
void multibyteMultiplyAccumulate(uint [] dest, const uint[] left,
const uint [] right) pure @safe @nogc {
// Register usage
// EDX:EAX = used in multiply
// EBX = index
// ECX = carry1
// EBP = carry2
// EDI = end of dest for this pass through the loop. Index for outer loop.
// ESI = end of left. never changes
// [ESP] = M = right[i] = multiplier for this pass through the loop.
// right.length is changed into dest.ptr+dest.length
version (D_PIC)
{
enum { zero = 0 }
}
else
{
// use p2 (load unit) instead of the overworked p0 or p1 (ALU units)
// when initializing registers to zero.
static immutable int zero = 0;
// use p3/p4 units
alias storagenop = storagenopMultiplyAccumulate; // write-only
}
enum { LASTPARAM = 6*4 } // 4* pushes + local + return address.
asm pure nothrow @nogc @trusted {
naked;
push ESI;
push EDI;
align 16;
push EBX;
push EBP;
push EAX; // local variable M
mov EDI, [ESP + LASTPARAM + 4*5]; // dest.ptr
mov EBX, [ESP + LASTPARAM + 4*2]; // left.length
mov ESI, [ESP + LASTPARAM + 4*3]; // left.ptr
lea EDI, [EDI + 4*EBX]; // EDI = end of dest for first pass
mov EAX, [ESP + LASTPARAM + 4*0]; // right.length
lea EAX, [EDI + 4*EAX];
mov [ESP + LASTPARAM + 4*0], EAX; // last value for EDI
lea ESI, [ESI + 4*EBX]; // ESI = end of left
mov EAX, [ESP + LASTPARAM + 4*1]; // right.ptr
mov EAX, [EAX];
mov [ESP], EAX; // M
outer_loop:
mov EBP, 0;
mov ECX, 0; // ECX = input carry.
neg EBX; // count UP to zero.
mov EAX, [ESI+4*EBX];
test EBX, 1;
jnz L_enter_odd;
}
// -- Inner loop, with even entry point
mixin("asm pure nothrow @nogc @trusted { " ~ asmMulAdd_innerloop("add", "ESP") ~ "}");
asm pure nothrow @nogc @trusted {
mov [-4+EDI+4*EBX], EBP;
add EDI, 4;
cmp EDI, [ESP + LASTPARAM + 4*0]; // is EDI = &dest[$]?
jz outer_done;
mov EAX, [ESP + LASTPARAM + 4*1]; // right.ptr
mov EAX, [EAX+4]; // get new M
mov [ESP], EAX; // save new M
add int ptr [ESP + LASTPARAM + 4*1], 4; // right.ptr
mov EBX, [ESP + LASTPARAM + 4*2]; // left.length
jmp outer_loop;
outer_done:
pop EAX;
pop EBP;
pop EBX;
pop EDI;
pop ESI;
ret 6*4;
}
L_enter_odd:
mixin("asm pure nothrow @nogc @trusted {" ~ asmMulAdd_enter_odd("add", "ESP") ~ "}");
}
/** dest[#] /= divisor.
* overflow is the initial remainder, and must be in the range 0 .. divisor-1.
* divisor must not be a power of 2 (use right shift for that case;
* A division by zero will occur if divisor is a power of 2).
* Returns the final remainder
*
* Based on public domain code by Eric Bainville.
* (http://www.bealto.com/) Used with permission.
*/
uint multibyteDivAssign(uint [] dest, uint divisor, uint overflow) pure @safe @nogc
{
// Timing: limited by a horrible dependency chain.
// Pentium M: 18 cycles/op, 8 resource stalls/op.
// EAX, EDX = scratch, used by MUL
// EDI = dest
// CL = shift
// ESI = quotient
// EBX = remainderhi
// EBP = remainderlo
// [ESP-4] = mask
// [ESP] = kinv (2^64 /divisor)
enum { LASTPARAM = 5*4 } // 4* pushes + return address.
enum { LOCALS = 2*4} // MASK, KINV
asm pure nothrow @nogc @trusted {
naked;
push ESI;
push EDI;
push EBX;
push EBP;
mov EDI, [ESP + LASTPARAM + 4*2]; // dest.ptr
mov EBX, [ESP + LASTPARAM + 4*1]; // dest.length
// Loop from msb to lsb
lea EDI, [EDI + 4*EBX];
mov EBP, EAX; // rem is the input remainder, in 0 .. divisor-1
// Build the pseudo-inverse of divisor k: 2^64/k
// First determine the shift in ecx to get the max number of bits in kinv
xor ECX, ECX;
mov EAX, [ESP + LASTPARAM]; //divisor;
mov EDX, 1;
kinv1:
inc ECX;
ror EDX, 1;
shl EAX, 1;
jnc kinv1;
dec ECX;
// Here, ecx is a left shift moving the msb of k to bit 32
mov EAX, 1;
shl EAX, CL;
dec EAX;
ror EAX, CL ; //ecx bits at msb
push EAX; // MASK
// Then divide 2^(32+cx) by divisor (edx already ok)
xor EAX, EAX;
div int ptr [ESP + LASTPARAM + LOCALS-4*1]; //divisor;
push EAX; // kinv
align 16;
L2:
// Get 32 bits of quotient approx, multiplying
// most significant word of (rem*2^32+input)
mov EAX, [ESP+4]; //MASK;
and EAX, [EDI - 4];
or EAX, EBP;
rol EAX, CL;
mov EBX, EBP;
mov EBP, [EDI - 4];
mul int ptr [ESP]; //KINV;
shl EAX, 1;
rcl EDX, 1;
// Multiply by k and subtract to get remainder
// Subtraction must be done on two words
mov EAX, EDX;
mov ESI, EDX; // quot = high word
mul int ptr [ESP + LASTPARAM+LOCALS]; //divisor;
sub EBP, EAX;
sbb EBX, EDX;
jz Lb; // high word is 0, goto adjust on single word
// Adjust quotient and remainder on two words
Ld: inc ESI;
sub EBP, [ESP + LASTPARAM+LOCALS]; //divisor;
sbb EBX, 0;
jnz Ld;
// Adjust quotient and remainder on single word
Lb: cmp EBP, [ESP + LASTPARAM+LOCALS]; //divisor;
jc Lc; // rem in 0 .. divisor-1, OK
sub EBP, [ESP + LASTPARAM+LOCALS]; //divisor;
inc ESI;
jmp Lb;
// Store result
Lc:
mov [EDI - 4], ESI;
lea EDI, [EDI - 4];
dec int ptr [ESP + LASTPARAM + 4*1+LOCALS]; // len
jnz L2;
pop EAX; // discard kinv
pop EAX; // discard mask
mov EAX, EBP; // return final remainder
pop EBP;
pop EBX;
pop EDI;
pop ESI;
ret 3*4;
}
}
@safe unittest
{
uint [] aa = new uint[101];
for (int i=0; i<aa.length; ++i) aa[i] = 0x8765_4321 * (i+3);
uint overflow = multibyteMul(aa, aa, 0x8EFD_FCFB, 0x33FF_7461);
uint r = multibyteDivAssign(aa, 0x8EFD_FCFB, overflow);
for (int i=0; i<aa.length-1; ++i) assert(aa[i] == 0x8765_4321 * (i+3));
assert(r == 0x33FF_7461);
}
// Set dest[2*i .. 2*i+1]+=src[i]*src[i]
void multibyteAddDiagonalSquares(uint [] dest, const uint [] src) pure @safe @nogc
{
/* Unlike mulAdd, the carry is only 1 bit,
since FFFF*FFFF+FFFF_FFFF = 1_0000_0000.
Note also that on the last iteration, no carry can occur.
As for multibyteAdd, we save & restore carry flag through the loop.
The timing is entirely dictated by the dependency chain. We could
improve it by moving the mov EAX after the adc [EDI], EAX. Probably not worthwhile.
*/
enum { LASTPARAM = 4*5 } // 4* pushes + return address.
asm pure nothrow @nogc @trusted {
naked;
push ESI;
push EDI;
push EBX;
push ECX;
mov EDI, [ESP + LASTPARAM + 4*3]; //dest.ptr;
mov EBX, [ESP + LASTPARAM + 4*0]; //src.length;
mov ESI, [ESP + LASTPARAM + 4*1]; //src.ptr;
lea EDI, [EDI + 8*EBX]; // EDI = end of dest
lea ESI, [ESI + 4*EBX]; // ESI = end of src
neg EBX; // count UP to zero.
xor ECX, ECX; // initial carry = 0.
L1:
mov EAX, [ESI + 4*EBX];
mul EAX, EAX;
shr CL, 1; // get carry
adc [EDI + 8*EBX], EAX;
adc [EDI + 8*EBX + 4], EDX;
setc CL; // save carry
inc EBX;
jnz L1;
pop ECX;
pop EBX;
pop EDI;
pop ESI;
ret 4*4;
}
}
@safe unittest
{
uint [] aa = new uint[13];
uint [] bb = new uint[6];
for (int i=0; i<aa.length; ++i) aa[i] = 0x8000_0000;
for (int i=0; i<bb.length; ++i) bb[i] = i;
aa[$-1]= 7;
multibyteAddDiagonalSquares(aa[0..$-1], bb);
assert(aa[$-1]==7);
for (int i=0; i<bb.length; ++i) { assert(aa[2*i]==0x8000_0000+i*i); assert(aa[2*i+1]==0x8000_0000); }
}
void multibyteTriangleAccumulateD(uint[] dest, uint[] x) pure @safe @nogc
{
for (int i = 0; i < x.length-3; ++i)
{
dest[i+x.length] = multibyteMulAdd!('+')(
dest[i+i+1 .. i+x.length], x[i+1..$], x[i], 0);
}
ulong c = cast(ulong)(x[$-3]) * x[$-2] + dest[$-5];
dest[$-5] = cast(uint) c;
c >>= 32;
c += cast(ulong)(x[$-3]) * x[$-1] + dest[$-4];
dest[$-4] = cast(uint) c;
c >>= 32;
length2:
c += cast(ulong)(x[$-2]) * x[$-1];
dest[$-3] = cast(uint) c;
c >>= 32;
dest[$-2] = cast(uint) c;
}
//dest += src[0]*src[1...$] + src[1]*src[2..$] + ... + src[$-3]*src[$-2..$]+ src[$-2]*src[$-1]
// assert(dest.length = src.length*2);
// assert(src.length >= 3);
void multibyteTriangleAccumulateAsm(uint[] dest, const uint[] src) pure @safe @nogc
{
// Register usage
// EDX:EAX = used in multiply
// EBX = index
// ECX = carry1
// EBP = carry2
// EDI = end of dest for this pass through the loop. Index for outer loop.
// ESI = end of src. never changes
// [ESP] = M = src[i] = multiplier for this pass through the loop.
// dest.length is changed into dest.ptr+dest.length
version (D_PIC)
{
enum { zero = 0 }
}
else
{
// use p2 (load unit) instead of the overworked p0 or p1 (ALU units)
// when initializing registers to zero.
static immutable int zero = 0;
// use p3/p4 units
alias storagenop = storagenopTriangleAccumulate; // write-only
}
enum { LASTPARAM = 6*4 } // 4* pushes + local + return address.
asm pure nothrow @nogc @trusted {
naked;
push ESI;
push EDI;
align 16;
push EBX;
push EBP;
push EAX; // local variable M= src[i]
mov EDI, [ESP + LASTPARAM + 4*3]; // dest.ptr
mov EBX, [ESP + LASTPARAM + 4*0]; // src.length
mov ESI, [ESP + LASTPARAM + 4*1]; // src.ptr
lea ESI, [ESI + 4*EBX]; // ESI = end of left
add int ptr [ESP + LASTPARAM + 4*1], 4; // src.ptr, used for getting M
// local variable [ESP + LASTPARAM + 4*2] = last value for EDI
lea EDI, [EDI + 4*EBX]; // EDI = end of dest for first pass
lea EAX, [EDI + 4*EBX-3*4]; // up to src.length - 3
mov [ESP + LASTPARAM + 4*2], EAX; // last value for EDI = &dest[src.length*2 -3]
cmp EBX, 3;
jz length_is_3;
// We start at src[1], not src[0].
dec EBX;
mov [ESP + LASTPARAM + 4*0], EBX;
outer_loop:
mov EBX, [ESP + LASTPARAM + 4*0]; // src.length
mov EBP, 0;
mov ECX, 0; // ECX = input carry.
dec int ptr [ESP + LASTPARAM + 4*0]; // Next time, the length will be shorter by 1.
neg EBX; // count UP to zero.
mov EAX, [ESI + 4*EBX - 4*1]; // get new M
mov [ESP], EAX; // save new M
mov EAX, [ESI+4*EBX];
test EBX, 1;
jnz L_enter_odd;
}
// -- Inner loop, with even entry point
mixin("asm pure nothrow @nogc @trusted { " ~ asmMulAdd_innerloop("add", "ESP") ~ "}");
asm pure nothrow @nogc @trusted {
mov [-4+EDI+4*EBX], EBP;
add EDI, 4;
cmp EDI, [ESP + LASTPARAM + 4*2]; // is EDI = &dest[$-3]?
jnz outer_loop;
length_is_3:
mov EAX, [ESI - 4*3];
mul EAX, [ESI - 4*2];
mov ECX, 0;
add [EDI-2*4], EAX; // ECX:dest[$-5] += x[$-3] * x[$-2]
adc ECX, EDX;
mov EAX, [ESI - 4*3];
mul EAX, [ESI - 4*1]; // x[$-3] * x[$-1]
add EAX, ECX;
mov ECX, 0;
adc EDX, 0;
// now EDX: EAX = c + x[$-3] * x[$-1]
add [EDI-1*4], EAX; // ECX:dest[$-4] += (EDX:EAX)
adc ECX, EDX; // ECX holds dest[$-3], it acts as carry for the last row
// do length == 2
mov EAX, [ESI - 4*2];
mul EAX, [ESI - 4*1];
add ECX, EAX;
adc EDX, 0;
mov [EDI - 0*4], ECX; // dest[$-2:$-3] = c + x[$-2] * x[$-1];
mov [EDI + 1*4], EDX;
pop EAX;
pop EBP;
pop EBX;
pop EDI;
pop ESI;
ret 4*4;
}
L_enter_odd:
mixin("asm pure nothrow @nogc @trusted {" ~ asmMulAdd_enter_odd("add", "ESP") ~ "}");
}
@safe unittest
{
uint [] aa = new uint[200];
uint [] a = aa[0 .. 100];
uint [] b = new uint [100];
aa[] = 761;
a[] = 0;
b[] = 0;
a[3] = 6;
b[0]=1;
b[1] = 17;
b[50 .. 100]=78;
multibyteTriangleAccumulateAsm(a, b[0 .. 50]);
uint [] c = new uint[100];
c[] = 0;
c[1] = 17;
c[3] = 6;
assert(a[]==c[]);
assert(a[0]==0);
aa[] = 0xFFFF_FFFF;
a[] = 0;
b[] = 0;
b[0]= 0xbf6a1f01;
b[1]= 0x6e38ed64;
b[2]= 0xdaa797ed;
b[3] = 0;
multibyteTriangleAccumulateAsm(a[0 .. 8], b[0 .. 4]);
assert(a[1]==0x3a600964);
assert(a[2]==0x339974f6);
assert(a[3]==0x46736fce);
assert(a[4]==0x5e24a2b4);
b[3] = 0xe93ff9f4;
b[4] = 0x184f03;
a[]=0;
multibyteTriangleAccumulateAsm(a[0 .. 14], b[0 .. 7]);
assert(a[3]==0x79fff5c2);
assert(a[4]==0xcf384241);
assert(a[5]== 0x4a17fc8);
assert(a[6]==0x4d549025);
}
void multibyteSquare(BigDigit[] result, const BigDigit [] x) pure @safe @nogc
{
if (x.length < 4)
{
// Special cases, not worth doing triangular.
result[x.length] = multibyteMul(result[0 .. x.length], x, x[0], 0);
multibyteMultiplyAccumulate(result[1..$], x, x[1..$]);
return;
}
// Do half a square multiply.
// dest += src[0]*src[1...$] + src[1]*src[2..$] + ... + src[$-3]*src[$-2..$]+ src[$-2]*src[$-1]
result[x.length] = multibyteMul(result[1 .. x.length], x[1..$], x[0], 0);
multibyteTriangleAccumulateAsm(result[2..$], x[1..$]);
// Multiply by 2
result[$-1] = multibyteShlNoMMX(result[1..$-1], result[1..$-1], 1);
// And add the diagonal elements
result[0] = 0;
multibyteAddDiagonalSquares(result, x);
}
version (BignumPerformanceTest)
{
import core.stdc.stdio;
int clock() { asm { push EBX; xor EAX, EAX; cpuid; pop EBX; rdtsc; } }
__gshared uint [2200] X1;
__gshared uint [2200] Y1;
__gshared uint [4000] Z1;
void testPerformance() pure
{
// The performance results at the top of this file were obtained using
// a Windows device driver to access the CPU performance counters.
// The code below is less accurate but more widely usable.
// The value for division is quite inconsistent.
for (int i=0; i<X1.length; ++i) { X1[i]=i; Y1[i]=i; Z1[i]=i; }
int t, t0;
multibyteShl(Z1[0 .. 2000], X1[0 .. 2000], 7);
t0 = clock();
multibyteShl(Z1[0 .. 1000], X1[0 .. 1000], 7);
t = clock();
multibyteShl(Z1[0 .. 2000], X1[0 .. 2000], 7);
auto shltime = (clock() - t) - (t - t0);
t0 = clock();
multibyteShr(Z1[2 .. 1002], X1[4 .. 1004], 13);
t = clock();
multibyteShr(Z1[2 .. 2002], X1[4 .. 2004], 13);
auto shrtime = (clock() - t) - (t - t0);
t0 = clock();
multibyteAddSub!('+')(Z1[0 .. 1000], X1[0 .. 1000], Y1[0 .. 1000], 0);
t = clock();
multibyteAddSub!('+')(Z1[0 .. 2000], X1[0 .. 2000], Y1[0 .. 2000], 0);
auto addtime = (clock() - t) - (t-t0);
t0 = clock();
multibyteMul(Z1[0 .. 1000], X1[0 .. 1000], 7, 0);
t = clock();
multibyteMul(Z1[0 .. 2000], X1[0 .. 2000], 7, 0);
auto multime = (clock() - t) - (t - t0);
multibyteMulAdd!('+')(Z1[0 .. 2000], X1[0 .. 2000], 217, 0);
t0 = clock();
multibyteMulAdd!('+')(Z1[0 .. 1000], X1[0 .. 1000], 217, 0);
t = clock();
multibyteMulAdd!('+')(Z1[0 .. 2000], X1[0 .. 2000], 217, 0);
auto muladdtime = (clock() - t) - (t - t0);
multibyteMultiplyAccumulate(Z1[0 .. 64], X1[0 .. 32], Y1[0 .. 32]);
t = clock();
multibyteMultiplyAccumulate(Z1[0 .. 64], X1[0 .. 32], Y1[0 .. 32]);
auto accumtime = clock() - t;
t0 = clock();
multibyteDivAssign(Z1[0 .. 2000], 217, 0);
t = clock();
multibyteDivAssign(Z1[0 .. 1000], 37, 0);
auto divtime = (t - t0) - (clock() - t);
t= clock();
multibyteSquare(Z1[0 .. 64], X1[0 .. 32]);
auto squaretime = clock() - t;
printf("-- BigInt asm performance (cycles/int) --\n");
printf("Add: %.2f\n", addtime/1000.0);
printf("Shl: %.2f\n", shltime/1000.0);
printf("Shr: %.2f\n", shrtime/1000.0);
printf("Mul: %.2f\n", multime/1000.0);
printf("MulAdd: %.2f\n", muladdtime/1000.0);
printf("Div: %.2f\n", divtime/1000.0);
printf("MulAccum32: %.2f*n*n (total %d)\n", accumtime/(32.0*32.0), accumtime);
printf("Square32: %.2f*n*n (total %d)\n\n", squaretime/(32.0*32.0), squaretime);
}
static this()
{
testPerformance();
}
}
} // version (D_InlineAsm_X86)