phobos/std/traits.d
2011-06-06 13:31:09 -05:00

3625 lines
103 KiB
D

// Written in the D programming language.
/**
* Templates with which to extract information about types and symbols at
* compile time.
*
* Macros:
* WIKI = Phobos/StdTraits
*
* Copyright: Copyright Digital Mars 2005 - 2009.
* License: <a href="http://www.boost.org/LICENSE_1_0.txt">Boost License 1.0</a>.
* Authors: $(WEB digitalmars.com, Walter Bright),
* Tomasz Stachowiak ($(D isExpressionTuple)),
* $(WEB erdani.org, Andrei Alexandrescu),
* Shin Fujishiro
* Source: $(PHOBOSSRC std/_traits.d)
*/
/* Copyright Digital Mars 2005 - 2009.
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*/
module std.traits;
import std.typetuple;
import std.typecons : Rebindable;
import core.vararg;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
// Functions
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
// Petit demangler
// (this or similar thing will eventually go to std.demangle if necessary
// ctfe stuffs are available)
private
{
struct Demangle(T)
{
T value; // extracted information
string rest;
}
/* Demangles mstr as the storage class part of Argument. */
Demangle!uint demangleParameterStorageClass(string mstr)
{
uint pstc = 0; // parameter storage class
// Argument --> Argument2 | M Argument2
if (mstr.length > 0 && mstr[0] == 'M')
{
pstc |= ParameterStorageClass.SCOPE;
mstr = mstr[1 .. $];
}
// Argument2 --> Type | J Type | K Type | L Type
ParameterStorageClass stc2;
switch (mstr.length ? mstr[0] : char.init)
{
case 'J': stc2 = ParameterStorageClass.OUT; break;
case 'K': stc2 = ParameterStorageClass.REF; break;
case 'L': stc2 = ParameterStorageClass.LAZY; break;
default : break;
}
if (stc2 != ParameterStorageClass.init)
{
pstc |= stc2;
mstr = mstr[1 .. $];
}
return Demangle!uint(pstc, mstr);
}
/* Demangles mstr as FuncAttrs. */
Demangle!uint demangleFunctionAttributes(string mstr)
{
enum LOOKUP_ATTRIBUTE =
[
'a': FunctionAttribute.PURE,
'b': FunctionAttribute.NOTHROW,
'c': FunctionAttribute.REF,
'd': FunctionAttribute.PROPERTY,
'e': FunctionAttribute.TRUSTED,
'f': FunctionAttribute.SAFE
];
uint atts = 0;
// FuncAttrs --> FuncAttr | FuncAttr FuncAttrs
// FuncAttr --> empty | Na | Nb | Nc | Nd | Ne | Nf
while (mstr.length >= 2 && mstr[0] == 'N')
{
if (FunctionAttribute att = LOOKUP_ATTRIBUTE[ mstr[1] ])
{
atts |= att;
mstr = mstr[2 .. $];
}
else assert(0);
}
return Demangle!uint(atts, mstr);
}
}
// workaround @@@BUG4333@@@
private template staticLength(tuple...)
{
enum size_t staticLength = tuple.length;
}
/***
* Get the type of the return value from a function,
* a pointer to function, a delegate, a struct
* with an opCall, a pointer to a struct with an opCall,
* or a class with an opCall.
* Example:
* ---
* import std.traits;
* int foo();
* ReturnType!(foo) x; // x is declared as int
* ---
*/
template ReturnType(/+@@@BUG4217@@@+/func...)
if (/+@@@BUG4333@@@+/staticLength!(func) == 1)
{
static if (is(FunctionTypeOf!(func) R == return))
alias R ReturnType;
else
static assert(0, "argument has no return type");
}
unittest
{
struct G
{
int opCall (int i) { return 1;}
}
alias ReturnType!(G) ShouldBeInt;
static assert(is(ShouldBeInt == int));
G g;
static assert(is(ReturnType!(g) == int));
G* p;
alias ReturnType!(p) pg;
static assert(is(pg == int));
class C
{
int opCall (int i) { return 1;}
}
static assert(is(ReturnType!(C) == int));
C c;
static assert(is(ReturnType!(c) == int));
class Test
{
int prop() @property { return 0; }
}
alias ReturnType!(Test.prop) R_Test_prop;
static assert(is(R_Test_prop == int));
alias ReturnType!((int a) { return a; }) R_dglit;
static assert(is(R_dglit == int));
}
/***
Get, as a tuple, the types of the parameters to a function, a pointer
to function, a delegate, a struct with an $(D opCall), a pointer to a
struct with an $(D opCall), or a class with an $(D opCall).
Example:
---
import std.traits;
int foo(int, long);
void bar(ParameterTypeTuple!(foo)); // declares void bar(int, long);
void abc(ParameterTypeTuple!(foo)[1]); // declares void abc(long);
---
*/
template ParameterTypeTuple(/+@@@BUG4217@@@+/dg...)
if (/+@@@BUG4333@@@+/staticLength!(dg) == 1)
{
static if (is(FunctionTypeOf!(dg) P == function))
alias P ParameterTypeTuple;
else
static assert(0, "argument has no parameters");
}
unittest
{
int foo(int i, bool b) { return 0; }
static assert (is(ParameterTypeTuple!(foo) == TypeTuple!(int, bool)));
static assert (is(ParameterTypeTuple!(typeof(&foo))
== TypeTuple!(int, bool)));
struct S { real opCall(real r, int i) { return 0.0; } }
S s;
static assert (is(ParameterTypeTuple!(S) == TypeTuple!(real, int)));
static assert (is(ParameterTypeTuple!(S*) == TypeTuple!(real, int)));
static assert (is(ParameterTypeTuple!(s) == TypeTuple!(real, int)));
class Test
{
int prop() @property { return 0; }
}
alias ParameterTypeTuple!(Test.prop) P_Test_prop;
static assert(P_Test_prop.length == 0);
alias ParameterTypeTuple!((int a){}) P_dglit;
static assert(P_dglit.length == 1);
static assert(is(P_dglit[0] == int));
}
/**
Returns a tuple consisting of the storage classes of the parameters of a
function $(D func).
Example:
--------------------
alias ParameterStorageClass STC; // shorten the enum name
void func(ref int ctx, out real result, real param)
{
}
alias ParameterStorageClassTuple!(func) pstc;
static assert(pstc.length == 3); // three parameters
static assert(pstc[0] == STC.REF);
static assert(pstc[1] == STC.OUT);
static assert(pstc[2] == STC.NONE);
--------------------
*/
enum ParameterStorageClass : uint
{
/**
* These flags can be bitwise OR-ed together to represent complex storage
* class.
*/
NONE = 0,
SCOPE = 0b000_1, /// ditto
OUT = 0b001_0, /// ditto
REF = 0b010_0, /// ditto
LAZY = 0b100_0, /// ditto
}
/// ditto
template ParameterStorageClassTuple(/+@@@BUG4217@@@+/func...)
if (/+@@@BUG4333@@@+/staticLength!(func) == 1)
{
static if (is(FunctionTypeOf!(func) F))
alias ParameterStorageClassTupleImpl!(Unqual!(F)).Result
ParameterStorageClassTuple;
else
static assert(0, "argument has no parameters");
}
private template ParameterStorageClassTupleImpl(Func)
{
/*
* TypeFuncion:
* CallConvention FuncAttrs Arguments ArgClose Type
*/
alias ParameterTypeTuple!(Func) Params;
// chop off CallConvention and FuncAttrs
enum margs = demangleFunctionAttributes(mangledName!(Func)[1 .. $]).rest;
// demangle Arguments and store parameter storage classes in a tuple
template demangleNextParameter(string margs, size_t i = 0)
{
static if (i < Params.length)
{
enum demang = demangleParameterStorageClass(margs);
enum skip = mangledName!(Params[i]).length; // for bypassing Type
enum rest = demang.rest;
alias TypeTuple!(
demang.value + 0, // workaround: "not evaluatable at ..."
demangleNextParameter!(rest[skip .. $], i + 1).Result
) Result;
}
else // went thru all the parameters
{
alias TypeTuple!() Result;
}
}
alias demangleNextParameter!(margs).Result Result;
}
unittest
{
alias ParameterStorageClass STC;
void noparam() {}
static assert(ParameterStorageClassTuple!(noparam).length == 0);
void test(scope int, ref int, out int, lazy int, int) { }
alias ParameterStorageClassTuple!(test) test_pstc;
static assert(test_pstc.length == 5);
static assert(test_pstc[0] == STC.SCOPE);
static assert(test_pstc[1] == STC.REF);
static assert(test_pstc[2] == STC.OUT);
static assert(test_pstc[3] == STC.LAZY);
static assert(test_pstc[4] == STC.NONE);
interface Test
{
void test_const(int) const;
void test_sharedconst(int) shared const;
}
Test testi;
alias ParameterStorageClassTuple!(Test.test_const) test_const_pstc;
static assert(test_const_pstc.length == 1);
static assert(test_const_pstc[0] == STC.NONE);
alias ParameterStorageClassTuple!(testi.test_sharedconst) test_sharedconst_pstc;
static assert(test_sharedconst_pstc.length == 1);
static assert(test_sharedconst_pstc[0] == STC.NONE);
alias ParameterStorageClassTuple!((ref int a) {}) dglit_pstc;
static assert(dglit_pstc.length == 1);
static assert(dglit_pstc[0] == STC.REF);
}
/**
Returns the attributes attached to a function $(D func).
Example:
--------------------
alias FunctionAttribute FA; // shorten the enum name
real func(real x) pure nothrow @safe
{
return x;
}
static assert(functionAttributes!(func) & FA.PURE);
static assert(functionAttributes!(func) & FA.SAFE);
static assert(!(functionAttributes!(func) & FA.TRUSTED)); // not @trusted
--------------------
*/
enum FunctionAttribute : uint
{
/**
* These flags can be bitwise OR-ed together to represent complex attribute.
*/
NONE = 0,
PURE = 0b00000001, /// ditto
NOTHROW = 0b00000010, /// ditto
REF = 0b00000100, /// ditto
PROPERTY = 0b00001000, /// ditto
TRUSTED = 0b00010000, /// ditto
SAFE = 0b00100000, /// ditto
}
/// ditto
template functionAttributes(/+@@@BUG4217@@@+/func...)
if (/+@@@BUG4333@@@+/staticLength!(func) == 1)
{
static if (is(FunctionTypeOf!(func) F))
enum uint functionAttributes = demangleFunctionAttributes(
mangledName!(Unqual!(F))[1 .. $] ).value;
else
static assert(0, "argument is not a function");
}
unittest
{
alias FunctionAttribute FA;
interface Set
{
int pureF() pure;
int nothrowF() nothrow;
ref int refF();
int propertyF() @property;
int trustedF() @trusted;
int safeF() @safe;
}
static assert(functionAttributes!(Set.pureF) == FA.PURE);
static assert(functionAttributes!(Set.nothrowF) == FA.NOTHROW);
static assert(functionAttributes!(Set.refF) == FA.REF);
static assert(functionAttributes!(Set.propertyF) == FA.PROPERTY);
static assert(functionAttributes!(Set.trustedF) == FA.TRUSTED);
static assert(functionAttributes!(Set.safeF) == FA.SAFE);
static assert(!(functionAttributes!(Set.safeF) & FA.TRUSTED));
int pure_nothrow() pure nothrow { return 0; }
static assert(functionAttributes!(pure_nothrow) == (FA.PURE | FA.NOTHROW));
//ref int ref_property() @property { return *(new int); } // @@@BUG2509@@@
//static assert(functionAttributes!(ref_property) == (FA.REF | FA.PROPERTY));
void safe_nothrow() @safe nothrow { }
static assert(functionAttributes!(safe_nothrow) == (FA.SAFE | FA.NOTHROW));
interface Test2
{
int pure_const() pure const;
int pure_sharedconst() pure shared const;
}
static assert(functionAttributes!(Test2.pure_const) == FA.PURE);
static assert(functionAttributes!(Test2.pure_sharedconst) == FA.PURE);
static assert(functionAttributes!((int a) {}) == FA.NONE);
}
private @safe void dummySafeFunc(alias func)()
{
alias ParameterTypeTuple!func Params;
static if (Params.length)
{
Params args;
func(args);
}
else
{
func();
}
}
/**
Checks the func that is @safe or @trusted
Example:
--------------------
@system int add(int a, int b) {return a+b;}
@safe int sub(int a, int b) {return a-b;}
@trusted int mul(int a, int b) {return a*b;}
bool a = isSafe!(add);
assert(a == false);
bool b = isSafe!(sub);
assert(b == true);
bool c = isSafe!(mul);
assert(c == true);
--------------------
*/
template isSafe(alias func)
{
static if (is(typeof(func) == function))
{
enum isSafe = (functionAttributes!(func) == FunctionAttribute.SAFE
|| functionAttributes!(func) == FunctionAttribute.TRUSTED);
}
else
{
enum isSafe = is(typeof({dummySafeFunc!func();}()));
}
}
@safe
unittest
{
interface Set
{
int systemF() @system;
int trustedF() @trusted;
int safeF() @safe;
}
static assert(isSafe!((int a){}));
static assert(isSafe!(Set.safeF));
static assert(isSafe!(Set.trustedF));
static assert(!isSafe!(Set.systemF));
}
/**
Checks the all functions are @safe or @trusted
Example:
--------------------
@system int add(int a, int b) {return a+b;}
@safe int sub(int a, int b) {return a-b;}
@trusted int mul(int a, int b) {return a*b;}
bool a = areAllSafe!(add, sub);
assert(a == false);
bool b = areAllSafe!(sub, mul);
assert(b == true);
--------------------
*/
template areAllSafe(funcs...)
if (funcs.length > 0)
{
static if (funcs.length == 1)
{
enum areAllSafe = isSafe!(funcs[0]);
}
else static if (isSafe!(funcs[0]))
{
enum areAllSafe = areAllSafe!(funcs[1..$]);
}
else
{
enum areAllSafe = false;
}
}
@safe
unittest
{
interface Set
{
int systemF() @system;
int trustedF() @trusted;
int safeF() @safe;
}
static assert(areAllSafe!((int a){}, Set.safeF));
static assert(!areAllSafe!(Set.trustedF, Set.systemF));
}
/**
Checks the func that is @system
Example:
--------------------
@system int add(int a, int b) {return a+b;}
@safe int sub(int a, int b) {return a-b;}
@trusted int mul(int a, int b) {return a*b;}
bool a = isUnsafe!(add);
assert(a == true);
bool b = isUnsafe!(sub);
assert(b == false);
bool c = isUnsafe!(mul);
assert(c == false);
--------------------
*/
template isUnsafe(alias func)
{
enum isUnsafe = !isSafe!func;
}
@safe
unittest
{
interface Set
{
int systemF() @system;
int trustedF() @trusted;
int safeF() @safe;
}
static assert(!isUnsafe!((int a){}));
static assert(!isUnsafe!(Set.safeF));
static assert(!isUnsafe!(Set.trustedF));
static assert(isUnsafe!(Set.systemF));
}
/**
Returns the calling convention of function as a string.
Example:
--------------------
string a = functionLinkage!(writeln!(string, int));
assert(a == "D"); // extern(D)
auto fp = &printf;
string b = functionLinkage!(fp);
assert(b == "C"); // extern(C)
--------------------
*/
template functionLinkage(/+@@@BUG4217@@@+/func...)
if (/+@@@BUG4333@@@+/staticLength!(func) == 1)
{
static if (is(FunctionTypeOf!(func) F))
enum string functionLinkage =
LOOKUP_LINKAGE[ mangledName!(Unqual!(F))[0] ];
else
static assert(0, "argument is not a function");
}
private enum LOOKUP_LINKAGE =
[
'F': "D",
'U': "C",
'W': "Windows",
'V': "Pascal",
'R': "C++"
];
unittest
{
extern(D) void Dfunc() {}
extern(C) void Cfunc() {}
static assert(functionLinkage!(Dfunc) == "D");
static assert(functionLinkage!(Cfunc) == "C");
interface Test
{
void const_func() const;
void sharedconst_func() shared const;
}
static assert(functionLinkage!(Test.const_func) == "D");
static assert(functionLinkage!(Test.sharedconst_func) == "D");
static assert(functionLinkage!((int a){}) == "D");
}
/**
Determines what kind of variadic parameters function has.
Example:
--------------------
void func() {}
static assert(variadicFunctionStyle!(func) == Variadic.NO);
extern(C) int printf(in char*, ...);
static assert(variadicFunctionStyle!(printf) == Variadic.C);
--------------------
*/
enum Variadic
{
NO, /// Function is not variadic.
C, /// Function is a _C-style variadic function.
/// Function is a _D-style variadic function, which uses
D, /// __argptr and __arguments.
TYPESAFE, /// Function is a typesafe variadic function.
}
/// ditto
template variadicFunctionStyle(/+@@@BUG4217@@@+/func...)
if (/+@@@BUG4333@@@+/staticLength!(func) == 1)
{
static if (is(FunctionTypeOf!(func) F))
enum Variadic variadicFunctionStyle =
determineVariadicity!(Unqual!(F))();
else
static assert(0, "argument is not a function");
}
private Variadic determineVariadicity(Func)()
{
// TypeFuncion --> CallConvention FuncAttrs Arguments ArgClose Type
immutable callconv = functionLinkage!(Func);
immutable mfunc = mangledName!(Func);
immutable mtype = mangledName!(ReturnType!(Func));
debug assert(mfunc[$ - mtype.length .. $] == mtype, mfunc ~ "|" ~ mtype);
immutable argclose = mfunc[$ - mtype.length - 1];
final switch (argclose)
{
case 'X': return Variadic.TYPESAFE;
case 'Y': return (callconv == "C") ? Variadic.C : Variadic.D;
case 'Z': return Variadic.NO;
}
}
unittest
{
extern(D) void novar() {};
extern(C) void cstyle(int, ...) {};
extern(D) void dstyle(...) {};
extern(D) void typesafe(int[]...) {};
static assert(variadicFunctionStyle!(novar) == Variadic.NO);
static assert(variadicFunctionStyle!(cstyle) == Variadic.C);
static assert(variadicFunctionStyle!(dstyle) == Variadic.D);
static assert(variadicFunctionStyle!(typesafe) == Variadic.TYPESAFE);
static assert(variadicFunctionStyle!((int[] a...) {}) == Variadic.TYPESAFE);
}
/**
Get the function type from a callable object $(D func).
Using builtin $(D typeof) on a property function yields the types of the
property value, not of the property function itself. Still,
$(D FunctionTypeOf) is able to obtain function types of properties.
--------------------
class C {
int value() @property;
}
static assert(is( typeof(C.value) == int ));
static assert(is( FunctionTypeOf!(C.value) == function ));
--------------------
Note:
Do not confuse function types with function pointer types; function types are
usually used for compile-time reflection purposes.
*/
template FunctionTypeOf(/+@@@BUG4217@@@+/func...)
if (/+@@@BUG4333@@@+/staticLength!(func) == 1)
{
alias FunctionTypeOf_bug4333!(func).FunctionTypeOf FunctionTypeOf;
}
private template FunctionTypeOf_bug4333(func...)
{
/+@@@BUG4333@@@+/enum dummy__ = func.length;
static if (is(typeof(& func[0]) Fsym : Fsym*) && is(Fsym == function))
{
alias Fsym FunctionTypeOf; // HIT: function symbol
}
else static if (is(typeof(& func[0].opCall) Fobj == delegate))
{
alias Fobj FunctionTypeOf; // HIT: callable object
}
else static if (is(typeof(& func[0].opCall) Ftyp : Ftyp*) && is(Ftyp == function))
{
alias Ftyp FunctionTypeOf; // HIT: callable type
}
else static if (is(func[0] T) || is(typeof(func[0]) T))
{
static if (is(T == function))
alias T FunctionTypeOf; // HIT: function
else static if (is(T Fptr : Fptr*) && is(Fptr == function))
alias Fptr FunctionTypeOf; // HIT: function pointer
else static if (is(T Fdlg == delegate))
alias Fdlg FunctionTypeOf; // HIT: delegate
}
else static assert(0, "argument is not a callable object");
}
unittest
{
int test(int a) { return 0; }
int function(int) test_fp;
int delegate(int) test_dg;
static assert(is( typeof(test) == FunctionTypeOf!(typeof(test)) ));
static assert(is( typeof(test) == FunctionTypeOf!(test) ));
static assert(is( typeof(test) == FunctionTypeOf!(test_fp) ));
static assert(is( typeof(test) == FunctionTypeOf!(test_dg) ));
interface Prop { int prop() @property; }
Prop prop;
static assert(is( FunctionTypeOf!(Prop.prop) == function ));
static assert(is( FunctionTypeOf!(prop.prop) == function ));
class Callable { int opCall(int) { return 0; } }
auto call = new Callable;
static assert(is( FunctionTypeOf!(call) == typeof(test) ));
struct StaticCallable { static int opCall(int) { return 0; } }
StaticCallable stcall_val;
StaticCallable* stcall_ptr;
static assert(is( FunctionTypeOf!(stcall_val) == typeof(test) ));
static assert(is( FunctionTypeOf!(stcall_ptr) == typeof(test) ));
interface Overloads {
void test(string);
real test(real);
int test();
int test() @property;
}
alias TypeTuple!(__traits(getVirtualFunctions, Overloads, "test")) ov;
alias FunctionTypeOf!(ov[0]) F_ov0;
alias FunctionTypeOf!(ov[1]) F_ov1;
alias FunctionTypeOf!(ov[2]) F_ov2;
alias FunctionTypeOf!(ov[3]) F_ov3;
static assert(is(F_ov0* == void function(string)));
static assert(is(F_ov1* == real function(real)));
static assert(is(F_ov2* == int function()));
static assert(is(F_ov3* == int function() @property));
alias FunctionTypeOf!((int a){ return a; }) F_dglit;
static assert(is(F_dglit* == int function(int)));
}
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
// Aggregate Types
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
/***
* Get the types of the fields of a struct or class.
* This consists of the fields that take up memory space,
* excluding the hidden fields like the virtual function
* table pointer.
*/
template FieldTypeTuple(S)
{
static if (is(S == struct) || is(S == class) || is(S == union))
alias typeof(S.tupleof) FieldTypeTuple;
else
alias TypeTuple!(S) FieldTypeTuple;
//static assert(0, "argument is not struct or class");
}
// // FieldOffsetsTuple
// private template FieldOffsetsTupleImpl(size_t n, T...)
// {
// static if (T.length == 0)
// {
// alias TypeTuple!() Result;
// }
// else
// {
// //private alias FieldTypeTuple!(T[0]) Types;
// private enum size_t myOffset =
// ((n + T[0].alignof - 1) / T[0].alignof) * T[0].alignof;
// static if (is(T[0] == struct))
// {
// alias FieldTypeTuple!(T[0]) MyRep;
// alias FieldOffsetsTupleImpl!(myOffset, MyRep, T[1 .. $]).Result
// Result;
// }
// else
// {
// private enum size_t mySize = T[0].sizeof;
// alias TypeTuple!(myOffset) Head;
// static if (is(T == union))
// {
// alias FieldOffsetsTupleImpl!(myOffset, T[1 .. $]).Result
// Tail;
// }
// else
// {
// alias FieldOffsetsTupleImpl!(myOffset + mySize,
// T[1 .. $]).Result
// Tail;
// }
// alias TypeTuple!(Head, Tail) Result;
// }
// }
// }
// template FieldOffsetsTuple(T...)
// {
// alias FieldOffsetsTupleImpl!(0, T).Result FieldOffsetsTuple;
// }
// unittest
// {
// alias FieldOffsetsTuple!(int) T1;
// assert(T1.length == 1 && T1[0] == 0);
// //
// struct S2 { char a; int b; char c; double d; char e, f; }
// alias FieldOffsetsTuple!(S2) T2;
// //pragma(msg, T2);
// static assert(T2.length == 6
// && T2[0] == 0 && T2[1] == 4 && T2[2] == 8 && T2[3] == 16
// && T2[4] == 24&& T2[5] == 25);
// //
// class C { int a, b, c, d; }
// struct S3 { char a; C b; char c; }
// alias FieldOffsetsTuple!(S3) T3;
// //pragma(msg, T2);
// static assert(T3.length == 3
// && T3[0] == 0 && T3[1] == 4 && T3[2] == 8);
// //
// struct S4 { char a; union { int b; char c; } int d; }
// alias FieldOffsetsTuple!(S4) T4;
// //pragma(msg, FieldTypeTuple!(S4));
// static assert(T4.length == 4
// && T4[0] == 0 && T4[1] == 4 && T4[2] == 8);
// }
// /***
// Get the offsets of the fields of a struct or class.
// */
// template FieldOffsetsTuple(S)
// {
// static if (is(S == struct) || is(S == class))
// alias typeof(S.tupleof) FieldTypeTuple;
// else
// static assert(0, "argument is not struct or class");
// }
/***
Get the primitive types of the fields of a struct or class, in
topological order.
Example:
----
struct S1 { int a; float b; }
struct S2 { char[] a; union { S1 b; S1 * c; } }
alias RepresentationTypeTuple!(S2) R;
assert(R.length == 4
&& is(R[0] == char[]) && is(R[1] == int)
&& is(R[2] == float) && is(R[3] == S1*));
----
*/
template RepresentationTypeTuple(T)
{
static if (is(T == struct) || is(T == union) || is(T == class))
{
alias RepresentationTypeTupleImpl!(FieldTypeTuple!T)
RepresentationTypeTuple;
}
else static if (is(T U == typedef))
{
alias RepresentationTypeTuple!U RepresentationTypeTuple;
}
else
{
alias RepresentationTypeTupleImpl!T
RepresentationTypeTuple;
}
}
private template RepresentationTypeTupleImpl(T...)
{
static if (T.length == 0)
{
alias TypeTuple!() RepresentationTypeTupleImpl;
}
else
{
static if (is(T[0] == struct) || is(T[0] == union))
// @@@BUG@@@ this should work
// alias .RepresentationTypes!(T[0].tupleof)
// RepresentationTypes;
alias .RepresentationTypeTupleImpl!(FieldTypeTuple!(T[0]),
T[1 .. $])
RepresentationTypeTupleImpl;
else static if (is(T[0] U == typedef))
{
alias .RepresentationTypeTupleImpl!(FieldTypeTuple!(U),
T[1 .. $])
RepresentationTypeTupleImpl;
}
else
{
alias TypeTuple!(T[0], RepresentationTypeTupleImpl!(T[1 .. $]))
RepresentationTypeTupleImpl;
}
}
}
unittest
{
alias RepresentationTypeTuple!(int) S1;
static assert(is(S1 == TypeTuple!(int)));
struct S2 { int a; }
static assert(is(RepresentationTypeTuple!(S2) == TypeTuple!(int)));
struct S3 { int a; char b; }
static assert(is(RepresentationTypeTuple!(S3) == TypeTuple!(int, char)));
struct S4 { S1 a; int b; S3 c; }
static assert(is(RepresentationTypeTuple!(S4) ==
TypeTuple!(int, int, int, char)));
struct S11 { int a; float b; }
struct S21 { char[] a; union { S11 b; S11 * c; } }
alias RepresentationTypeTuple!(S21) R;
assert(R.length == 4
&& is(R[0] == char[]) && is(R[1] == int)
&& is(R[2] == float) && is(R[3] == S11*));
class C { int a; float b; }
alias RepresentationTypeTuple!C R1;
static assert(R1.length == 2 && is(R1[0] == int) && is(R1[1] == float));
}
/*
RepresentationOffsets
*/
// private template Repeat(size_t n, T...)
// {
// static if (n == 0) alias TypeTuple!() Repeat;
// else alias TypeTuple!(T, Repeat!(n - 1, T)) Repeat;
// }
// template RepresentationOffsetsImpl(size_t n, T...)
// {
// static if (T.length == 0)
// {
// alias TypeTuple!() Result;
// }
// else
// {
// private enum size_t myOffset =
// ((n + T[0].alignof - 1) / T[0].alignof) * T[0].alignof;
// static if (!is(T[0] == union))
// {
// alias Repeat!(n, FieldTypeTuple!(T[0])).Result
// Head;
// }
// static if (is(T[0] == struct))
// {
// alias .RepresentationOffsetsImpl!(n, FieldTypeTuple!(T[0])).Result
// Head;
// }
// else
// {
// alias TypeTuple!(myOffset) Head;
// }
// alias TypeTuple!(Head,
// RepresentationOffsetsImpl!(
// myOffset + T[0].sizeof, T[1 .. $]).Result)
// Result;
// }
// }
// template RepresentationOffsets(T)
// {
// alias RepresentationOffsetsImpl!(0, T).Result
// RepresentationOffsets;
// }
// unittest
// {
// struct S1 { char c; int i; }
// alias RepresentationOffsets!(S1) Offsets;
// static assert(Offsets[0] == 0);
// //pragma(msg, Offsets[1]);
// static assert(Offsets[1] == 4);
// }
// hasRawAliasing
private template hasRawPointerImpl(T...)
{
static if (T.length == 0)
{
enum result = false;
}
else
{
static if (is(T[0] foo : U*, U) && !isFunctionPointer!(T[0]))
enum hasRawAliasing = !is(U == immutable);
else static if (is(T[0] foo : U[], U) && !isStaticArray!(T[0]))
enum hasRawAliasing = !is(U == immutable);
else static if (isAssociativeArray!(T[0]))
enum hasRawAliasing = !is(T[0] == immutable);
else
enum hasRawAliasing = false;
enum result = hasRawAliasing || hasRawPointerImpl!(T[1 .. $]).result;
}
}
private template HasRawLocalPointerImpl(T...)
{
static if (T.length == 0)
{
enum result = false;
}
else
{
static if (is(T[0] foo : U*, U) && !isFunctionPointer!(T[0]))
enum hasRawLocalAliasing = !is(U == immutable) && !is(U == shared);
else static if (is(T[0] foo : U[], U) && !isStaticArray!(T[0]))
enum hasRawLocalAliasing = !is(U == immutable) && !is(U == shared);
else static if (isAssociativeArray!(T[0]))
enum hasRawLocalAliasing = !is(T[0] == immutable) && !is(T[0] == shared);
else
enum hasRawLocalAliasing = false;
enum result = hasRawLocalAliasing || HasRawLocalPointerImpl!(T[1 .. $]).result;
}
}
/*
Statically evaluates to $(D true) if and only if $(D T)'s
representation contains at least one field of pointer or array type.
Members of class types are not considered raw pointers. Pointers to
immutable objects are not considered raw aliasing.
Example:
---
// simple types
static assert(!hasRawAliasing!(int));
static assert(hasRawAliasing!(char*));
// references aren't raw pointers
static assert(!hasRawAliasing!(Object));
// built-in arrays do contain raw pointers
static assert(hasRawAliasing!(int[]));
// aggregate of simple types
struct S1 { int a; double b; }
static assert(!hasRawAliasing!(S1));
// indirect aggregation
struct S2 { S1 a; double b; }
static assert(!hasRawAliasing!(S2));
// struct with a pointer member
struct S3 { int a; double * b; }
static assert(hasRawAliasing!(S3));
// struct with an indirect pointer member
struct S4 { S3 a; double b; }
static assert(hasRawAliasing!(S4));
----
*/
private template hasRawAliasing(T...)
{
enum hasRawAliasing
= hasRawPointerImpl!(RepresentationTypeTuple!T).result;
}
unittest
{
// simple types
static assert(!hasRawAliasing!(int));
static assert(hasRawAliasing!(char*));
// references aren't raw pointers
static assert(!hasRawAliasing!(Object));
static assert(!hasRawAliasing!(int));
struct S1 { int z; }
static assert(!hasRawAliasing!(S1));
struct S2 { int* z; }
static assert(hasRawAliasing!(S2));
struct S3 { int a; int* z; int c; }
static assert(hasRawAliasing!(S3));
struct S4 { int a; int z; int c; }
static assert(!hasRawAliasing!(S4));
struct S5 { int a; Object z; int c; }
static assert(!hasRawAliasing!(S5));
union S6 { int a; int b; }
static assert(!hasRawAliasing!(S6));
union S7 { int a; int * b; }
static assert(hasRawAliasing!(S7));
typedef int* S8;
static assert(hasRawAliasing!(S8));
enum S9 { a };
static assert(!hasRawAliasing!(S9));
// indirect members
struct S10 { S7 a; int b; }
static assert(hasRawAliasing!(S10));
struct S11 { S6 a; int b; }
static assert(!hasRawAliasing!(S11));
static assert(hasRawAliasing!(int[string]));
static assert(!hasRawAliasing!(immutable(int[string])));
}
/*
Statically evaluates to $(D true) if and only if $(D T)'s
representation contains at least one non-shared field of pointer or
array type. Members of class types are not considered raw pointers.
Pointers to immutable objects are not considered raw aliasing.
Example:
---
// simple types
static assert(!hasRawLocalAliasing!(int));
static assert(hasRawLocalAliasing!(char*));
static assert(!hasRawLocalAliasing!(shared char*));
// references aren't raw pointers
static assert(!hasRawLocalAliasing!(Object));
// built-in arrays do contain raw pointers
static assert(hasRawLocalAliasing!(int[]));
static assert(!hasRawLocalAliasing!(shared int[]));
// aggregate of simple types
struct S1 { int a; double b; }
static assert(!hasRawLocalAliasing!(S1));
// indirect aggregation
struct S2 { S1 a; double b; }
static assert(!hasRawLocalAliasing!(S2));
// struct with a pointer member
struct S3 { int a; double * b; }
static assert(hasRawLocalAliasing!(S3));
struct S4 { int a; shared double * b; }
static assert(hasRawLocalAliasing!(S4));
// struct with an indirect pointer member
struct S5 { S3 a; double b; }
static assert(hasRawLocalAliasing!(S5));
struct S6 { S4 a; double b; }
static assert(!hasRawLocalAliasing!(S6));
----
*/
private template hasRawUnsharedAliasing(T...)
{
enum hasRawUnsharedAliasing
= HasRawLocalPointerImpl!(RepresentationTypeTuple!(T)).result;
}
unittest
{
// simple types
static assert(!hasRawUnsharedAliasing!(int));
static assert(hasRawUnsharedAliasing!(char*));
static assert(!hasRawUnsharedAliasing!(shared char*));
// references aren't raw pointers
static assert(!hasRawUnsharedAliasing!(Object));
static assert(!hasRawUnsharedAliasing!(int));
struct S1 { int z; }
static assert(!hasRawUnsharedAliasing!(S1));
struct S2 { int* z; }
static assert(hasRawUnsharedAliasing!(S2));
struct S3 { shared int* z; }
static assert(!hasRawUnsharedAliasing!(S3));
struct S4 { int a; int* z; int c; }
static assert(hasRawUnsharedAliasing!(S4));
struct S5 { int a; shared int* z; int c; }
static assert(!hasRawUnsharedAliasing!(S5));
struct S6 { int a; int z; int c; }
static assert(!hasRawUnsharedAliasing!(S6));
struct S7 { int a; Object z; int c; }
static assert(!hasRawUnsharedAliasing!(S7));
union S8 { int a; int b; }
static assert(!hasRawUnsharedAliasing!(S8));
union S9 { int a; int * b; }
static assert(hasRawUnsharedAliasing!(S9));
union S10 { int a; shared int * b; }
static assert(!hasRawUnsharedAliasing!(S10));
typedef int* S11;
static assert(hasRawUnsharedAliasing!(S11));
typedef shared int* S12;
static assert(hasRawUnsharedAliasing!(S12));
enum S13 { a };
static assert(!hasRawUnsharedAliasing!(S13));
// indirect members
struct S14 { S9 a; int b; }
static assert(hasRawUnsharedAliasing!(S14));
struct S15 { S10 a; int b; }
static assert(!hasRawUnsharedAliasing!(S15));
struct S16 { S6 a; int b; }
static assert(!hasRawUnsharedAliasing!(S16));
static assert(hasRawUnsharedAliasing!(int[string]));
static assert(!hasRawUnsharedAliasing!(shared(int[string])));
static assert(!hasRawUnsharedAliasing!(immutable(int[string])));
}
/*
Statically evaluates to $(D true) if and only if $(D T)'s
representation includes at least one non-immutable object reference.
*/
private template hasObjects(T...)
{
static if (T.length == 0)
{
enum hasObjects = false;
}
else static if (is(T[0] U == typedef))
{
enum hasObjects = hasObjects!(U, T[1 .. $]);
}
else static if (is(T[0] == struct))
{
enum hasObjects = hasObjects!(
RepresentationTypeTuple!(T[0]), T[1 .. $]);
}
else
{
enum hasObjects = ((is(T[0] == class) || is(T[0] == interface))
&& !is(T[0] == immutable)) || hasObjects!(T[1 .. $]);
}
}
/*
Statically evaluates to $(D true) if and only if $(D T)'s
representation includes at least one non-immutable non-shared object
reference.
*/
private template hasUnsharedObjects(T...)
{
static if (T.length == 0)
{
enum hasUnsharedObjects = false;
}
else static if (is(T[0] U == typedef))
{
enum hasUnsharedObjects = hasUnsharedObjects!(U, T[1 .. $]);
}
else static if (is(T[0] == struct))
{
enum hasUnsharedObjects = hasUnsharedObjects!(
RepresentationTypeTuple!(T[0]), T[1 .. $]);
}
else
{
enum hasUnsharedObjects = ((is(T[0] == class) || is(T[0] == interface)) &&
!is(T[0] == immutable) && !is(T[0] == shared)) ||
hasUnsharedObjects!(T[1 .. $]);
}
}
/**
Returns $(D true) if and only if $(D T)'s representation includes at
least one of the following: $(OL $(LI a raw pointer $(D U*) and $(D U)
is not immutable;) $(LI an array $(D U[]) and $(D U) is not
immutable;) $(LI a reference to a class or interface type $(D C) and $(D C) is
not immutable.) $(LI an associative array that is not immutable.)
$(LI a delegate.))
*/
template hasAliasing(T...)
{
enum hasAliasing = hasRawAliasing!(T) || hasObjects!(T) ||
anySatisfy!(isDelegate, T);
}
// Specialization to special-case std.typecons.Rebindable.
template hasAliasing(R : Rebindable!R)
{
enum hasAliasing = hasAliasing!R;
}
unittest
{
struct S1 { int a; Object b; }
static assert(hasAliasing!(S1));
struct S2 { string a; }
static assert(!hasAliasing!(S2));
struct S3 { int a; immutable Object b; }
static assert(!hasAliasing!(S3));
struct X { float[3] vals; }
static assert(!hasAliasing!X);
static assert(hasAliasing!(uint[uint]));
static assert(!hasAliasing!(immutable(uint[uint])));
static assert(hasAliasing!(void delegate()));
static assert(!hasAliasing!(void function()));
interface I;
static assert(hasAliasing!I);
static assert(hasAliasing!(Rebindable!(const Object)));
static assert(!hasAliasing!(Rebindable!(immutable Object)));
static assert(hasAliasing!(Rebindable!(shared Object)));
static assert(hasAliasing!(Rebindable!(Object)));
}
/**
Returns $(D true) if and only if $(D T)'s representation includes at
least one of the following: $(OL $(LI a raw pointer $(D U*);) $(LI an
array $(D U[]);) $(LI a reference to a class type $(D C).)
$(LI an associative array.) $(LI a delegate.))
*/
template hasIndirections(T)
{
enum hasIndirections = hasIndirectionsImpl!(RepresentationTypeTuple!T);
}
template hasIndirectionsImpl(T...)
{
static if (!T.length)
{
enum hasIndirectionsImpl = false;
}
else static if(isFunctionPointer!(T[0]))
{
enum hasIndirectionsImpl = hasIndirectionsImpl!(T[1 .. $]);
}
else static if(isStaticArray!(T[0]))
{
enum hasIndirectionsImpl = hasIndirectionsImpl!(T[1 .. $]) ||
hasIndirectionsImpl!(RepresentationTypeTuple!(typeof(T[0].init[0])));
}
else
{
enum hasIndirectionsImpl = isPointer!(T[0]) || isDynamicArray!(T[0]) ||
is (T[0] : const(Object)) || isAssociativeArray!(T[0]) ||
isDelegate!(T[0]) || is(T[0] == interface)
|| hasIndirectionsImpl!(T[1 .. $]);
}
}
unittest
{
struct S1 { int a; Object b; }
static assert(hasIndirections!(S1));
struct S2 { string a; }
static assert(hasIndirections!(S2));
struct S3 { int a; immutable Object b; }
static assert(hasIndirections!(S3));
static assert(hasIndirections!(int[string]));
static assert(hasIndirections!(void delegate()));
interface I;
static assert(hasIndirections!I);
static assert(!hasIndirections!(void function()));
static assert(hasIndirections!(void*[1]));
static assert(!hasIndirections!(byte[1]));
}
// These are for backwards compatibility, are intentionally lacking ddoc,
// and should eventually be deprecated.
alias hasUnsharedAliasing hasLocalAliasing;
alias hasRawUnsharedAliasing hasRawLocalAliasing;
alias hasUnsharedObjects hasLocalObjects;
/**
Returns $(D true) if and only if $(D T)'s representation includes at
least one of the following: $(OL $(LI a raw pointer $(D U*) and $(D U)
is not immutable or shared;) $(LI an array $(D U[]) and $(D U) is not
immutable or shared;) $(LI a reference to a class type $(D C) and
$(D C) is not immutable or shared.) $(LI an associative array that is not
immutable or shared.) $(LI a delegate that is not shared.))
*/
template hasUnsharedAliasing(T...)
{
enum hasUnsharedAliasing = hasRawUnsharedAliasing!(T) ||
anySatisfy!(unsharedDelegate, T) || hasUnsharedObjects!(T);
}
// Specialization to special-case std.typecons.Rebindable.
template hasUnsharedAliasing(R : Rebindable!R)
{
enum hasUnsharedAliasing = hasUnsharedAliasing!R;
}
private template unsharedDelegate(T)
{
enum bool unsharedDelegate = isDelegate!T && !is(T == shared);
}
unittest
{
struct S1 { int a; Object b; }
static assert(hasUnsharedAliasing!(S1));
struct S2 { string a; }
static assert(!hasUnsharedAliasing!(S2));
struct S3 { int a; immutable Object b; }
static assert(!hasUnsharedAliasing!(S3));
struct S4 { int a; shared Object b; }
static assert(!hasUnsharedAliasing!(S4));
struct S5 { char[] a; }
static assert(hasUnsharedAliasing!(S5));
struct S6 { shared char[] b; }
static assert(!hasUnsharedAliasing!(S6));
struct S7 { float[3] vals; }
static assert(!hasUnsharedAliasing!(S7));
static assert(hasUnsharedAliasing!(uint[uint]));
static assert(hasUnsharedAliasing!(void delegate()));
static assert(!hasUnsharedAliasing!(shared(void delegate())));
static assert(!hasUnsharedAliasing!(void function()));
interface I {}
static assert(hasUnsharedAliasing!I);
static assert(hasUnsharedAliasing!(Rebindable!(const Object)));
static assert(!hasUnsharedAliasing!(Rebindable!(immutable Object)));
static assert(!hasUnsharedAliasing!(Rebindable!(shared Object)));
static assert(hasUnsharedAliasing!(Rebindable!(Object)));
}
/**
True if $(D S) or any type embedded directly in the representation of $(D S)
defines an elaborate copy constructor. Elaborate copy constructors are
introduced by defining $(D this(this)) for a $(D struct). (Non-struct types
never have elaborate copy constructors.)
*/
template hasElaborateCopyConstructor(S)
{
static if(!is(S == struct))
{
enum bool hasElaborateCopyConstructor = false;
}
else
{
enum hasElaborateCopyConstructor = is(typeof({
S s;
return &s.__postblit;
})) || anySatisfy!(.hasElaborateCopyConstructor, typeof(S.tupleof));
}
}
unittest
{
static assert(!hasElaborateCopyConstructor!int);
struct S
{
this(this) {}
}
static assert(hasElaborateCopyConstructor!S);
struct S2
{
uint num;
}
struct S3
{
uint num;
S s;
}
static assert(!hasElaborateCopyConstructor!S2);
static assert(hasElaborateCopyConstructor!S3);
}
/**
True if $(D S) or any type directly embedded in the representation of $(D S)
defines an elaborate assignmentq. Elaborate assignments are introduced by
defining $(D opAssign(typeof(this))) or $(D opAssign(ref typeof(this)))
for a $(D struct). (Non-struct types never have elaborate assignments.)
*/
template hasElaborateAssign(S)
{
static if(!is(S == struct))
{
enum bool hasElaborateAssign = false;
}
else
{
enum hasElaborateAssign = is(typeof(S.init.opAssign(S.init))) ||
anySatisfy!(.hasElaborateAssign, typeof(S.tupleof));
}
}
unittest
{
static assert(!hasElaborateAssign!int);
struct S { void opAssign(S) {} }
static assert(hasElaborateAssign!S);
struct S1 { void opAssign(ref S1) {} }
static assert(hasElaborateAssign!S1);
struct S2 { void opAssign(S1) {} }
static assert(!hasElaborateAssign!S2);
struct S3 { S s; }
static assert(hasElaborateAssign!S3);
}
/**
True if $(D S) or any type directly embedded in the representation
of $(D S) defines an elaborate destructor. Elaborate destructors
are introduced by defining $(D ~this()) for a $(D
struct). (Non-struct types never have elaborate destructors, even
though classes may define $(D ~this()).)
*/
template hasElaborateDestructor(S)
{
static if(!is(S == struct))
{
enum bool hasElaborateDestructor = false;
}
else
{
enum hasElaborateDestructor = is(typeof({S s; return &s.__dtor;}))
|| anySatisfy!(.hasElaborateDestructor, typeof(S.tupleof));
}
}
unittest
{
static assert(!hasElaborateDestructor!int);
static struct S1 { }
static assert(!hasElaborateDestructor!S1);
static struct S2 { ~this() {} }
static assert(hasElaborateDestructor!S2);
static struct S3 { S2 field; }
static assert(hasElaborateDestructor!S3);
}
/**
Yields $(D true) if and only if $(D T) is a $(D struct) or a $(D
class) that defines a symbol called $(D name).
*/
template hasMember(T, string name)
{
static if (is(T == struct) || is(T == class))
{
enum bool hasMember =
staticIndexOf!(name, __traits(allMembers, T)) != -1;
}
else
{
enum bool hasMember = false;
}
}
unittest
{
//pragma(msg, __traits(allMembers, void delegate()));
static assert(!hasMember!(int, "blah"));
struct S1 { int blah; }
static assert(hasMember!(S1, "blah"));
struct S2 { int blah(); }
static assert(hasMember!(S2, "blah"));
struct C1 { int blah; }
static assert(hasMember!(C1, "blah"));
struct C2 { int blah(); }
static assert(hasMember!(C2, "blah"));
}
/**
Retrieves the members of an enumerated type $(D enum E).
Params:
E = An enumerated type. $(D E) may have duplicated values.
Returns:
Static tuple composed of the members of the enumerated type $(D E).
The members are arranged in the same order as declared in $(D E).
Note:
Returned values are strictly typed with $(D E). Thus, the following code
does not work without the explicit cast:
--------------------
enum E : int { a, b, c }
int[] abc = cast(int[]) [ EnumMembers!E ];
--------------------
Cast is not necessary if the type of the variable is inferred. See the
example below.
Examples:
Creating an array of enumerated values:
--------------------
enum Sqrts : real
{
one = 1,
two = 1.41421,
three = 1.73205,
}
auto sqrts = [ EnumMembers!Sqrts ];
assert(sqrts == [ Sqrts.one, Sqrts.two, Sqrts.three ]);
--------------------
A generic function $(D rank(v)) in the following example uses this
template for finding a member $(D e) in an enumerated type $(D E).
--------------------
// Returns i if e is the i-th enumerator of E.
size_t rank(E)(E e)
if (is(E == enum))
{
foreach (i, member; EnumMembers!E)
{
if (e == member)
return i;
}
assert(0, "Not an enum member");
}
enum Mode
{
read = 1,
write = 2,
map = 4,
}
assert(rank(Mode.read ) == 0);
assert(rank(Mode.write) == 1);
assert(rank(Mode.map ) == 2);
--------------------
*/
template EnumMembers(E)
if (is(E == enum))
{
alias EnumSpecificMembers!(E, __traits(allMembers, E)) EnumMembers;
}
private template EnumSpecificMembers(Enum, names...)
{
static if (names.length > 0)
{
alias TypeTuple!(
WithIdentifier!(names[0])
.Symbolize!(__traits(getMember, Enum, names[0])),
EnumSpecificMembers!(Enum, names[1 .. $])
) EnumSpecificMembers;
}
else
{
alias TypeTuple!() EnumSpecificMembers;
}
}
unittest
{
enum A { a }
static assert([ EnumMembers!A ] == [ A.a ]);
enum B { a, b, c, d, e }
static assert([ EnumMembers!B ] == [ B.a, B.b, B.c, B.d, B.e ]);
}
unittest // typed enums
{
enum A : string { a = "alpha", b = "beta" }
static assert([ EnumMembers!A ] == [ A.a, A.b ]);
static struct S
{
int value;
int opCmp(S rhs) const nothrow { return value - rhs.value; }
}
enum B : S { a = S(1), b = S(2), c = S(3) }
static assert([ EnumMembers!B ] == [ B.a, B.b, B.c ]);
}
unittest // duplicated values
{
enum A
{
a = 0, b = 0,
c = 1, d = 1, e
}
static assert([ EnumMembers!A ] == [ A.a, A.b, A.c, A.d, A.e ]);
}
// Supply the specified identifier to an constant value.
//
// The identifier of each enum member will be exposed via this template
// once the BUG4732 is fixed.
//
// enum E { member }
// assert(__traits(identifier, EnumMembers!E[0]) == "member");
//
private template WithIdentifier(string ident)
{
static if (ident == "Symbolize")
{
template Symbolize(alias value)
{
enum Symbolize = value;
}
}
else
{
mixin("template Symbolize(alias "~ ident ~")"
~"{"
~"alias "~ ident ~" Symbolize;"
~"}");
}
}
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
// Classes and Interfaces
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
/***
* Get a $(D_PARAM TypeTuple) of the base class and base interfaces of
* this class or interface. $(D_PARAM BaseTypeTuple!(Object)) returns
* the empty type tuple.
*
* Example:
* ---
* import std.traits, std.typetuple, std.stdio;
* interface I { }
* class A { }
* class B : A, I { }
*
* void main()
* {
* alias BaseTypeTuple!(B) TL;
* writeln(typeid(TL)); // prints: (A,I)
* }
* ---
*/
template BaseTypeTuple(A)
{
static if (is(A P == super))
alias P BaseTypeTuple;
else
static assert(0, "argument is not a class or interface");
}
unittest
{
interface I1 { }
interface I2 { }
interface I12 : I1, I2 { }
static assert(is(BaseTypeTuple!I12 == TypeTuple!(I1, I2)));
interface I3 : I1 { }
interface I123 : I1, I2, I3 { }
static assert(is(BaseTypeTuple!I123 == TypeTuple!(I1, I2, I3)));
}
unittest
{
interface I1 { }
interface I2 { }
class A { }
class C : A, I1, I2 { }
alias BaseTypeTuple!(C) TL;
assert(TL.length == 3);
assert(is (TL[0] == A));
assert(is (TL[1] == I1));
assert(is (TL[2] == I2));
assert(BaseTypeTuple!(Object).length == 0);
}
/**
* Get a $(D_PARAM TypeTuple) of $(I all) base classes of this class,
* in decreasing order. Interfaces are not included. $(D_PARAM
* BaseClassesTuple!(Object)) yields the empty type tuple.
*
* Example:
* ---
* import std.traits, std.typetuple, std.stdio;
* interface I { }
* class A { }
* class B : A, I { }
* class C : B { }
*
* void main()
* {
* alias BaseClassesTuple!(C) TL;
* writeln(typeid(TL)); // prints: (B,A,Object)
* }
* ---
*/
template BaseClassesTuple(T)
{
static if (is(T == Object))
{
alias TypeTuple!() BaseClassesTuple;
}
static if (is(BaseTypeTuple!(T)[0] == Object))
{
alias TypeTuple!(Object) BaseClassesTuple;
}
else
{
alias TypeTuple!(BaseTypeTuple!(T)[0],
BaseClassesTuple!(BaseTypeTuple!(T)[0]))
BaseClassesTuple;
}
}
/**
* Get a $(D_PARAM TypeTuple) of $(I all) interfaces directly or
* indirectly inherited by this class or interface. Interfaces do not
* repeat if multiply implemented. $(D_PARAM InterfacesTuple!(Object))
* yields the empty type tuple.
*
* Example:
* ---
* import std.traits, std.typetuple, std.stdio;
* interface I1 { }
* interface I2 { }
* class A : I1, I2 { }
* class B : A, I1 { }
* class C : B { }
*
* void main()
* {
* alias InterfacesTuple!(C) TL;
* writeln(typeid(TL)); // prints: (I1, I2)
* }
* ---
*/
template InterfacesTuple(T)
{
static if (is(T S == super) && S.length)
alias NoDuplicates!(InterfacesTuple_Flatten!(S))
InterfacesTuple;
else
alias TypeTuple!() InterfacesTuple;
}
// internal
private template InterfacesTuple_Flatten(H, T...)
{
static if (T.length)
{
alias TypeTuple!(
InterfacesTuple_Flatten!(H),
InterfacesTuple_Flatten!(T))
InterfacesTuple_Flatten;
}
else
{
static if (is(H == interface))
alias TypeTuple!(H, InterfacesTuple!(H))
InterfacesTuple_Flatten;
else
alias InterfacesTuple!(H) InterfacesTuple_Flatten;
}
}
unittest
{
struct Test1_WorkaroundForBug2986 {
// doc example
interface I1 {}
interface I2 {}
class A : I1, I2 { }
class B : A, I1 { }
class C : B { }
alias InterfacesTuple!(C) TL;
static assert(is(TL[0] == I1) && is(TL[1] == I2));
}
struct Test2_WorkaroundForBug2986 {
interface Iaa {}
interface Iab {}
interface Iba {}
interface Ibb {}
interface Ia : Iaa, Iab {}
interface Ib : Iba, Ibb {}
interface I : Ia, Ib {}
interface J {}
class B : J {}
class C : B, Ia, Ib {}
static assert(is(InterfacesTuple!(I) ==
TypeTuple!(Ia, Iaa, Iab, Ib, Iba, Ibb)));
static assert(is(InterfacesTuple!(C) ==
TypeTuple!(J, Ia, Iaa, Iab, Ib, Iba, Ibb)));
}
}
/**
* Get a $(D_PARAM TypeTuple) of $(I all) base classes of $(D_PARAM
* T), in decreasing order, followed by $(D_PARAM T)'s
* interfaces. $(D_PARAM TransitiveBaseTypeTuple!(Object)) yields the
* empty type tuple.
*
* Example:
* ---
* import std.traits, std.typetuple, std.stdio;
* interface I { }
* class A { }
* class B : A, I { }
* class C : B { }
*
* void main()
* {
* alias TransitiveBaseTypeTuple!(C) TL;
* writeln(typeid(TL)); // prints: (B,A,Object,I)
* }
* ---
*/
template TransitiveBaseTypeTuple(T)
{
static if (is(T == Object))
alias TypeTuple!() TransitiveBaseTypeTuple;
else
alias TypeTuple!(BaseClassesTuple!(T),
InterfacesTuple!(T))
TransitiveBaseTypeTuple;
}
unittest
{
interface J1 {}
interface J2 {}
class B1 {}
class B2 : B1, J1, J2 {}
class B3 : B2, J1 {}
alias TransitiveBaseTypeTuple!(B3) TL;
assert(TL.length == 5);
assert(is (TL[0] == B2));
assert(is (TL[1] == B1));
assert(is (TL[2] == Object));
assert(is (TL[3] == J1));
assert(is (TL[4] == J2));
assert(TransitiveBaseTypeTuple!(Object).length == 0);
}
/**
Returns a tuple of non-static functions with the name $(D name) declared in the
class or interface $(D C). Covariant duplicates are shrunk into the most
derived one.
Example:
--------------------
interface I { I foo(); }
class B
{
real foo(real v) { return v; }
}
class C : B, I
{
override C foo() { return this; } // covariant overriding of I.foo()
}
alias MemberFunctionsTuple!(C, "foo") foos;
static assert(foos.length == 2);
static assert(__traits(isSame, foos[0], C.foo));
static assert(__traits(isSame, foos[1], B.foo));
--------------------
*/
template MemberFunctionsTuple(C, string name)
if (is(C == class) || is(C == interface))
{
static if (__traits(hasMember, C, name))
alias MemberFunctionTupleImpl!(C, name).result MemberFunctionsTuple;
else
alias TypeTuple!() MemberFunctionsTuple;
}
private template MemberFunctionTupleImpl(C, string name)
{
/*
* First, collect all overloads in the class hierarchy.
*/
template CollectOverloads(Node)
{
static if (__traits(hasMember, Node, name))
{
// Get all overloads in sight (not hidden).
alias TypeTuple!(__traits(getVirtualFunctions, Node, name)) inSight;
// And collect all overloads in ancestor classes to reveal hidden
// methods. The result may contain duplicates.
template walkThru(Parents...)
{
static if (Parents.length > 0)
alias TypeTuple!(
CollectOverloads!(Parents[0]).result,
walkThru!(Parents[1 .. $])
) walkThru;
else
alias TypeTuple!() walkThru;
}
static if (is(Node Parents == super))
alias TypeTuple!(inSight, walkThru!(Parents)) result;
else
alias TypeTuple!(inSight) result;
}
else
alias TypeTuple!() result; // no overloads in this hierarchy
}
// duplicates in this tuple will be removed by shrink()
alias CollectOverloads!(C).result overloads;
/*
* Now shrink covariant overloads into one.
*/
template shrink(overloads...)
{
static if (overloads.length > 0)
{
alias shrinkOne!(overloads).result temp;
alias TypeTuple!(temp[0], shrink!(temp[1 .. $]).result) result;
}
else
alias TypeTuple!() result; // done
}
// .result[0] = the most derived one in the covariant siblings of target
// .result[1..$] = non-covariant others
template shrinkOne(/+ alias target, rest... +/ args...)
{
alias args[0 .. 1] target; // prevent property functions from being evaluated
alias args[1 .. $] rest;
static if (rest.length > 0)
{
alias FunctionTypeOf!(target) Target;
alias FunctionTypeOf!(rest[0]) Rest0;
static if (isCovariantWith!(Target, Rest0))
// target overrides rest[0] -- erase rest[0].
alias shrinkOne!(target, rest[1 .. $]).result result;
else static if (isCovariantWith!(Rest0, Target))
// rest[0] overrides target -- erase target.
alias shrinkOne!(rest[0], rest[1 .. $]).result result;
else
// target and rest[0] are distinct.
alias TypeTuple!(
shrinkOne!(target, rest[1 .. $]).result,
rest[0] // keep
) result;
}
else
alias TypeTuple!(target) result; // done
}
// done.
alias shrink!(overloads).result result;
}
unittest
{
interface I { I test(); }
interface J : I { J test(); }
interface K { K test(int); }
class B : I, K
{
K test(int) { return this; }
B test() { return this; }
static void test(string) { }
}
class C : B, J
{
override C test() { return this; }
}
alias MemberFunctionsTuple!(C, "test") test;
static assert(test.length == 2);
static assert(is(FunctionTypeOf!(test[0]) == FunctionTypeOf!(C.test)));
static assert(is(FunctionTypeOf!(test[1]) == FunctionTypeOf!(K.test)));
alias MemberFunctionsTuple!(C, "noexist") noexist;
static assert(noexist.length == 0);
interface L { int prop() @property; }
alias MemberFunctionsTuple!(L, "prop") prop;
static assert(prop.length == 1);
interface Test_I
{
void foo();
void foo(int);
void foo(int, int);
}
interface Test : Test_I {}
alias MemberFunctionsTuple!(Test, "foo") Test_foo;
static assert(Test_foo.length == 3);
static assert(is(typeof(&Test_foo[0]) == void function()));
static assert(is(typeof(&Test_foo[2]) == void function(int)));
static assert(is(typeof(&Test_foo[1]) == void function(int, int)));
}
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
// Type Conversion
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
/**
Get the type that all types can be implicitly converted to. Useful
e.g. in figuring out an array type from a bunch of initializing
values. Returns $(D_PARAM void) if passed an empty list, or if the
types have no common type.
Example:
----
alias CommonType!(int, long, short) X;
assert(is(X == long));
alias CommonType!(int, char[], short) Y;
assert(is(Y == void));
----
*/
template CommonType(T...)
{
static if (!T.length)
alias void CommonType;
else static if (T.length == 1)
{
static if(is(typeof(T[0])))
{
alias typeof(T[0]) CommonType;
}
else
{
alias T[0] CommonType;
}
}
else static if (is(typeof(true ? T[0].init : T[1].init) U))
alias CommonType!(U, T[2 .. $]) CommonType;
else
alias void CommonType;
}
unittest
{
alias CommonType!(int, long, short) X;
static assert(is(X == long));
alias CommonType!(char[], int, long, short) Y;
static assert(is(Y == void), Y.stringof);
static assert(is(CommonType!(3) == int));
static assert(is(CommonType!(double, 4, float) == double));
static assert(is(CommonType!(string, char[]) == const(char)[]));
static assert(is(CommonType!(3, 3U) == uint));
}
/**
* Returns a tuple with all possible target types of an implicit
* conversion of a value of type $(D_PARAM T).
*
* Important note:
*
* The possible targets are computed more conservatively than the D
* 2.005 compiler does, eliminating all dangerous conversions. For
* example, $(D_PARAM ImplicitConversionTargets!(double)) does not
* include $(D_PARAM float).
*/
template ImplicitConversionTargets(T)
{
static if (is(T == bool))
alias TypeTuple!(byte, ubyte, short, ushort, int, uint, long, ulong,
float, double, real, char, wchar, dchar)
ImplicitConversionTargets;
else static if (is(T == byte))
alias TypeTuple!(short, ushort, int, uint, long, ulong,
float, double, real, char, wchar, dchar)
ImplicitConversionTargets;
else static if (is(T == ubyte))
alias TypeTuple!(short, ushort, int, uint, long, ulong,
float, double, real, char, wchar, dchar)
ImplicitConversionTargets;
else static if (is(T == short))
alias TypeTuple!(ushort, int, uint, long, ulong,
float, double, real)
ImplicitConversionTargets;
else static if (is(T == ushort))
alias TypeTuple!(int, uint, long, ulong, float, double, real)
ImplicitConversionTargets;
else static if (is(T == int))
alias TypeTuple!(long, ulong, float, double, real)
ImplicitConversionTargets;
else static if (is(T == uint))
alias TypeTuple!(long, ulong, float, double, real)
ImplicitConversionTargets;
else static if (is(T == long))
alias TypeTuple!(float, double, real)
ImplicitConversionTargets;
else static if (is(T == ulong))
alias TypeTuple!(float, double, real)
ImplicitConversionTargets;
else static if (is(T == float))
alias TypeTuple!(double, real)
ImplicitConversionTargets;
else static if (is(T == double))
alias TypeTuple!(real)
ImplicitConversionTargets;
else static if (is(T == char))
alias TypeTuple!(wchar, dchar, byte, ubyte, short, ushort,
int, uint, long, ulong, float, double, real)
ImplicitConversionTargets;
else static if (is(T == wchar))
alias TypeTuple!(wchar, dchar, short, ushort, int, uint, long, ulong,
float, double, real)
ImplicitConversionTargets;
else static if (is(T == dchar))
alias TypeTuple!(wchar, dchar, int, uint, long, ulong,
float, double, real)
ImplicitConversionTargets;
else static if(is(T : Object))
alias TransitiveBaseTypeTuple!(T) ImplicitConversionTargets;
// @@@BUG@@@ this should work
// else static if (isDynamicArray!T && !is(typeof(T.init[0]) == const))
// alias TypeTuple!(const(typeof(T.init[0]))[]) ImplicitConversionTargets;
else static if (is(T == char[]))
alias TypeTuple!(const(char)[]) ImplicitConversionTargets;
else static if (isDynamicArray!T && !is(typeof(T.init[0]) == const))
alias TypeTuple!(const(typeof(T.init[0]))[]) ImplicitConversionTargets;
else static if (is(T : void*))
alias TypeTuple!(void*) ImplicitConversionTargets;
else
alias TypeTuple!() ImplicitConversionTargets;
}
unittest
{
assert(is(ImplicitConversionTargets!(double)[0] == real));
}
/**
Is $(D From) implicitly convertible to $(D To)?
*/
template isImplicitlyConvertible(From, To)
{
enum bool isImplicitlyConvertible = is(typeof({
void fun(To) {}
From f;
fun(f);
}()));
}
unittest
{
static assert(isImplicitlyConvertible!(immutable(char), char));
static assert(isImplicitlyConvertible!(const(char), char));
static assert(isImplicitlyConvertible!(char, wchar));
static assert(!isImplicitlyConvertible!(wchar, char));
}
/**
Returns $(D true) iff a value of type $(D Rhs) can be assigned to a variable of
type $(D Lhs).
Examples:
---
static assert(isAssignable!(long, int));
static assert(!isAssignable!(int, long));
static assert(isAssignable!(const(char)[], string));
static assert(!isAssignable!(string, char[]));
---
*/
template isAssignable(Lhs, Rhs) {
enum bool isAssignable = is(typeof({
Lhs l;
Rhs r;
l = r;
return l;
}));
}
unittest {
static assert(isAssignable!(long, int));
static assert(!isAssignable!(int, long));
static assert(isAssignable!(const(char)[], string));
static assert(!isAssignable!(string, char[]));
}
/*
Works like $(D isImplicitlyConvertible), except this cares only about storage
classes of the arguments.
*/
private template isStorageClassImplicitlyConvertible(From, To)
{
enum isStorageClassImplicitlyConvertible = isImplicitlyConvertible!(
ModifyTypePreservingSTC!(Pointify, From),
ModifyTypePreservingSTC!(Pointify, To) );
}
private template Pointify(T) { alias void* Pointify; }
unittest
{
static assert(isStorageClassImplicitlyConvertible!( int, const int));
static assert(isStorageClassImplicitlyConvertible!(immutable int, const int));
static assert(! isStorageClassImplicitlyConvertible!(const int, int));
static assert(! isStorageClassImplicitlyConvertible!(const int, immutable int));
static assert(! isStorageClassImplicitlyConvertible!(int, shared int));
static assert(! isStorageClassImplicitlyConvertible!(shared int, int));
}
/**
Determines whether the function type $(D F) is covariant with $(D G), i.e.,
functions of the type $(D F) can override ones of the type $(D G).
Example:
--------------------
interface I { I clone(); }
interface J { J clone(); }
class C : I
{
override C clone() // covariant overriding of I.clone()
{
return new C;
}
}
// C.clone() can override I.clone(), indeed.
static assert(isCovariantWith!(typeof(C.clone), typeof(I.clone)));
// C.clone() can't override J.clone(); the return type C is not implicitly
// convertible to J.
static assert(isCovariantWith!(typeof(C.clone), typeof(J.clone)));
--------------------
*/
template isCovariantWith(F, G)
if (is(F == function) && is(G == function))
{
static if (is(F : G))
enum isCovariantWith = true;
else
enum isCovariantWith = isCovariantWithImpl!(F, G).yes;
}
private template isCovariantWithImpl(Upr, Lwr)
{
/*
* Check for calling convention: require exact match.
*/
template checkLinkage()
{
enum ok = functionLinkage!(Upr) == functionLinkage!(Lwr);
}
/*
* Check for variadic parameter: require exact match.
*/
template checkVariadicity()
{
enum ok = variadicFunctionStyle!(Upr) == variadicFunctionStyle!(Lwr);
}
/*
* Check for function storage class:
* - overrider can have narrower storage class than base
*/
template checkSTC()
{
// Note the order of arguments. The convertion order Lwr -> Upr is
// correct since Upr should be semantically 'narrower' than Lwr.
enum ok = isStorageClassImplicitlyConvertible!(Lwr, Upr);
}
/*
* Check for function attributes:
* - require exact match for ref and @property
* - overrider can add pure and nothrow, but can't remove them
* - @safe and @trusted are covariant with each other, unremovable
*/
template checkAttributes()
{
alias FunctionAttribute FA;
enum uprAtts = functionAttributes!(Upr);
enum lwrAtts = functionAttributes!(Lwr);
//
enum WANT_EXACT = FA.REF | FA.PROPERTY;
enum SAFETY = FA.SAFE | FA.TRUSTED;
enum ok =
( (uprAtts & WANT_EXACT) == (lwrAtts & WANT_EXACT)) &&
( (uprAtts & FA.PURE ) >= (lwrAtts & FA.PURE )) &&
( (uprAtts & FA.NOTHROW) >= (lwrAtts & FA.NOTHROW)) &&
(!!(uprAtts & SAFETY ) >= !!(lwrAtts & SAFETY )) ;
}
/*
* Check for return type: usual implicit convertion.
*/
template checkReturnType()
{
enum ok = is(ReturnType!(Upr) : ReturnType!(Lwr));
}
/*
* Check for parameters:
* - require exact match for types (cf. bugzilla 3075)
* - require exact match for in, out, ref and lazy
* - overrider can add scope, but can't remove
*/
template checkParameters()
{
alias ParameterStorageClass STC;
alias ParameterTypeTuple!(Upr) UprParams;
alias ParameterTypeTuple!(Lwr) LwrParams;
alias ParameterStorageClassTuple!(Upr) UprPSTCs;
alias ParameterStorageClassTuple!(Lwr) LwrPSTCs;
//
template checkNext(size_t i)
{
static if (i < UprParams.length)
{
enum uprStc = UprPSTCs[i];
enum lwrStc = LwrPSTCs[i];
//
enum WANT_EXACT = STC.OUT | STC.REF | STC.LAZY;
enum ok =
((uprStc & WANT_EXACT) == (lwrStc & WANT_EXACT)) &&
((uprStc & STC.SCOPE ) >= (lwrStc & STC.SCOPE )) &&
checkNext!(i + 1).ok;
}
else
enum ok = true; // done
}
static if (UprParams.length == LwrParams.length)
enum ok = is(UprParams == LwrParams) && checkNext!(0).ok;
else
enum ok = false;
}
/* run all the checks */
enum bool yes =
checkLinkage !().ok &&
checkVariadicity!().ok &&
checkSTC !().ok &&
checkAttributes !().ok &&
checkReturnType !().ok &&
checkParameters !().ok ;
}
version (unittest) private template isCovariantWith(alias f, alias g)
{
enum bool isCovariantWith = isCovariantWith!(typeof(f), typeof(g));
}
unittest
{
// covariant return type
interface I {}
interface J : I {}
interface BaseA { const(I) test(int); }
interface DerivA_1 : BaseA { override const(J) test(int); }
interface DerivA_2 : BaseA { override J test(int); }
static assert(isCovariantWith!(DerivA_1.test, BaseA.test));
static assert(isCovariantWith!(DerivA_2.test, BaseA.test));
static assert(! isCovariantWith!(BaseA.test, DerivA_1.test));
static assert(! isCovariantWith!(BaseA.test, DerivA_2.test));
static assert(isCovariantWith!(BaseA.test, BaseA.test));
static assert(isCovariantWith!(DerivA_1.test, DerivA_1.test));
static assert(isCovariantWith!(DerivA_2.test, DerivA_2.test));
// scope parameter
interface BaseB { void test( int, int); }
interface DerivB_1 : BaseB { override void test(scope int, int); }
interface DerivB_2 : BaseB { override void test( int, scope int); }
interface DerivB_3 : BaseB { override void test(scope int, scope int); }
static assert(isCovariantWith!(DerivB_1.test, BaseB.test));
static assert(isCovariantWith!(DerivB_2.test, BaseB.test));
static assert(isCovariantWith!(DerivB_3.test, BaseB.test));
static assert(! isCovariantWith!(BaseB.test, DerivB_1.test));
static assert(! isCovariantWith!(BaseB.test, DerivB_2.test));
static assert(! isCovariantWith!(BaseB.test, DerivB_3.test));
// function storage class
interface BaseC { void test() ; }
interface DerivC_1 : BaseC { override void test() const; }
static assert(isCovariantWith!(DerivC_1.test, BaseC.test));
static assert(! isCovariantWith!(BaseC.test, DerivC_1.test));
// increasing safety
interface BaseE { void test() ; }
interface DerivE_1 : BaseE { override void test() @safe ; }
interface DerivE_2 : BaseE { override void test() @trusted; }
static assert(isCovariantWith!(DerivE_1.test, BaseE.test));
static assert(isCovariantWith!(DerivE_2.test, BaseE.test));
static assert(! isCovariantWith!(BaseE.test, DerivE_1.test));
static assert(! isCovariantWith!(BaseE.test, DerivE_2.test));
// @safe and @trusted
interface BaseF
{
void test1() @safe;
void test2() @trusted;
}
interface DerivF : BaseF
{
override void test1() @trusted;
override void test2() @safe;
}
static assert(isCovariantWith!(DerivF.test1, BaseF.test1));
static assert(isCovariantWith!(DerivF.test2, BaseF.test2));
}
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
// isSomething
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
/**
* Detect whether T is a built-in integral type. Types $(D bool), $(D
* char), $(D wchar), and $(D dchar) are not considered integral.
*/
template isIntegral(T)
{
enum bool isIntegral = staticIndexOf!(Unqual!(T), byte,
ubyte, short, ushort, int, uint, long, ulong) >= 0;
}
unittest
{
static assert(isIntegral!(byte));
static assert(isIntegral!(const(byte)));
static assert(isIntegral!(immutable(byte)));
static assert(isIntegral!(shared(byte)));
static assert(isIntegral!(shared(const(byte))));
static assert(isIntegral!(ubyte));
static assert(isIntegral!(const(ubyte)));
static assert(isIntegral!(immutable(ubyte)));
static assert(isIntegral!(shared(ubyte)));
static assert(isIntegral!(shared(const(ubyte))));
static assert(isIntegral!(short));
static assert(isIntegral!(const(short)));
static assert(isIntegral!(immutable(short)));
static assert(isIntegral!(shared(short)));
static assert(isIntegral!(shared(const(short))));
static assert(isIntegral!(ushort));
static assert(isIntegral!(const(ushort)));
static assert(isIntegral!(immutable(ushort)));
static assert(isIntegral!(shared(ushort)));
static assert(isIntegral!(shared(const(ushort))));
static assert(isIntegral!(int));
static assert(isIntegral!(const(int)));
static assert(isIntegral!(immutable(int)));
static assert(isIntegral!(shared(int)));
static assert(isIntegral!(shared(const(int))));
static assert(isIntegral!(uint));
static assert(isIntegral!(const(uint)));
static assert(isIntegral!(immutable(uint)));
static assert(isIntegral!(shared(uint)));
static assert(isIntegral!(shared(const(uint))));
static assert(isIntegral!(long));
static assert(isIntegral!(const(long)));
static assert(isIntegral!(immutable(long)));
static assert(isIntegral!(shared(long)));
static assert(isIntegral!(shared(const(long))));
static assert(isIntegral!(ulong));
static assert(isIntegral!(const(ulong)));
static assert(isIntegral!(immutable(ulong)));
static assert(isIntegral!(shared(ulong)));
static assert(isIntegral!(shared(const(ulong))));
static assert(!isIntegral!(float));
}
/**
* Detect whether T is a built-in floating point type.
*/
template isFloatingPoint(T)
{
enum bool isFloatingPoint = staticIndexOf!(Unqual!(T),
float, double, real) >= 0;
}
unittest
{
foreach (F; TypeTuple!(float, double, real))
{
F a = 5.5;
static assert(isFloatingPoint!(typeof(a)));
const F b = 5.5;
static assert(isFloatingPoint!(typeof(b)));
immutable F c = 5.5;
static assert(isFloatingPoint!(typeof(c)));
}
foreach (T; TypeTuple!(int, long, char))
{
T a;
static assert(!isFloatingPoint!(typeof(a)));
const T b = 0;
static assert(!isFloatingPoint!(typeof(b)));
immutable T c = 0;
static assert(!isFloatingPoint!(typeof(c)));
}
}
/**
Detect whether T is a built-in numeric type (integral or floating
point).
*/
template isNumeric(T)
{
enum bool isNumeric = isIntegral!(T) || isFloatingPoint!(T);
}
/**
Detect whether $(D T) is a built-in unsigned numeric type.
*/
template isUnsigned(T)
{
enum bool isUnsigned = staticIndexOf!(Unqual!T,
ubyte, ushort, uint, ulong) >= 0;
}
/**
Detect whether $(D T) is a built-in signed numeric type.
*/
template isSigned(T)
{
enum bool isSigned = staticIndexOf!(Unqual!T,
byte, short, int, long, float, double, real) >= 0;
}
/**
Detect whether T is one of the built-in string types
*/
template isSomeString(T)
{
enum isSomeString = isNarrowString!T || is(T : const(dchar[]));
}
unittest
{
static assert(!isSomeString!(int));
static assert(!isSomeString!(int[]));
static assert(!isSomeString!(byte[]));
static assert(isSomeString!(char[]));
static assert(isSomeString!(dchar[]));
static assert(isSomeString!(string));
static assert(isSomeString!(wstring));
static assert(isSomeString!(dstring));
static assert(isSomeString!(char[4]));
}
template isNarrowString(T)
{
enum isNarrowString = is(T : const(char[])) || is(T : const(wchar[]));
}
unittest
{
static assert(!isNarrowString!(int));
static assert(!isNarrowString!(int[]));
static assert(!isNarrowString!(byte[]));
static assert(isNarrowString!(char[]));
static assert(!isNarrowString!(dchar[]));
static assert(isNarrowString!(string));
static assert(isNarrowString!(wstring));
static assert(!isNarrowString!(dstring));
static assert(isNarrowString!(char[4]));
}
/**
Detect whether T is one of the built-in character types
*/
template isSomeChar(T)
{
enum isSomeChar = staticIndexOf!(Unqual!T, char, wchar, dchar) >= 0;
}
unittest
{
static assert(!isSomeChar!(int));
static assert(!isSomeChar!(int));
static assert(!isSomeChar!(byte));
static assert(isSomeChar!(char));
static assert(isSomeChar!(dchar));
static assert(!isSomeChar!(string));
static assert(!isSomeChar!(wstring));
static assert(!isSomeChar!(dstring));
static assert(!isSomeChar!(char[4]));
static assert(isSomeChar!(immutable(char)));
}
/**
* Detect whether T is an associative array type
*/
template isAssociativeArray(T)
{
enum bool isAssociativeArray = __traits(isAssociativeArray, T);
}
unittest
{
struct Foo {
@property uint[] keys() {
return null;
}
@property uint[] values() {
return null;
}
}
static assert(!isAssociativeArray!(Foo));
static assert(!isAssociativeArray!(int));
static assert(!isAssociativeArray!(int[]));
static assert(isAssociativeArray!(int[int]));
static assert(isAssociativeArray!(int[string]));
static assert(isAssociativeArray!(immutable(char[5])[int]));
}
/**
* Detect whether type T is a static array.
*/
template isStaticArray(T : U[N], U, size_t N)
{
enum bool isStaticArray = true;
}
template isStaticArray(T)
{
enum bool isStaticArray = false;
}
unittest
{
static assert (isStaticArray!(int[51]));
static assert (isStaticArray!(int[][2]));
static assert (isStaticArray!(char[][int][11]));
static assert (!isStaticArray!(const(int)[]));
static assert (!isStaticArray!(immutable(int)[]));
static assert (!isStaticArray!(const(int)[4][]));
static assert (!isStaticArray!(int[]));
static assert (!isStaticArray!(int[char]));
static assert (!isStaticArray!(int[1][]));
static assert (isStaticArray!(immutable char[13u]));
static assert (isStaticArray!(const(real)[1]));
static assert (isStaticArray!(const(real)[1][1]));
static assert (isStaticArray!(void[0]));
static assert (!isStaticArray!(int[int]));
static assert (!isStaticArray!(int));
}
/**
* Detect whether type T is a dynamic array.
*/
template isDynamicArray(T, U = void)
{
enum bool isDynamicArray = false;
}
template isDynamicArray(T : U[], U)
{
enum bool isDynamicArray = !isStaticArray!(T);
}
unittest
{
static assert(isDynamicArray!(int[]));
static assert(!isDynamicArray!(int[5]));
}
/**
* Detect whether type T is an array.
*/
template isArray(T)
{
enum bool isArray = isStaticArray!(T) || isDynamicArray!(T);
}
unittest
{
static assert(isArray!(int[]));
static assert(isArray!(int[5]));
static assert(!isArray!(uint));
static assert(!isArray!(uint[uint]));
static assert(isArray!(void[]));
}
/**
* Detect whether type $(D T) is a pointer.
*/
template isPointer(T)
{
static if (is(T P == U*, U))
{
enum bool isPointer = true;
}
else
{
enum bool isPointer = false;
}
}
unittest
{
static assert(isPointer!(int*));
static assert(!isPointer!(uint));
static assert(!isPointer!(uint[uint]));
static assert(!isPointer!(char[]));
static assert(isPointer!(void*));
}
/**
Returns the target type of a pointer.
*/
template pointerTarget(T : T*) {
alias T pointerTarget;
}
unittest {
static assert(is(pointerTarget!(int*) == int));
static assert(!is(pointerTarget!int));
static assert(is(pointerTarget!(long*) == long));
}
/**
* Returns $(D true) if T can be iterated over using a $(D foreach) loop with
* a single loop variable of automatically inferred type, regardless of how
* the $(D foreach) loop is implemented. This includes ranges, structs/classes
* that define $(D opApply) with a single loop variable, and builtin dynamic,
* static and associative arrays.
*/
template isIterable(T)
{
static if (is(typeof({foreach(elem; T.init) {}}))) {
enum bool isIterable = true;
} else {
enum bool isIterable = false;
}
}
unittest {
struct OpApply
{
int opApply(int delegate(ref uint) dg) { assert(0); }
}
struct Range
{
uint front() { assert(0); }
void popFront() { assert(0); }
enum bool empty = false;
}
static assert(isIterable!(uint[]));
static assert(!isIterable!(uint));
static assert(isIterable!(OpApply));
static assert(isIterable!(uint[string]));
static assert(isIterable!(Range));
}
/*
* Returns true if T is not const or immutable. Note that isMutable is true for
* string, or immutable(char)[], because the 'head' is mutable.
*/
template isMutable(T)
{
enum isMutable = !is(T == const) && !is(T == immutable);
}
unittest
{
static assert(isMutable!int);
static assert(isMutable!string);
static assert(isMutable!(shared int));
static assert(isMutable!(shared const(int)[]));
static assert(!isMutable!(const int));
static assert(!isMutable!(shared(const int)));
static assert(!isMutable!(immutable string));
}
/**
* Tells whether the tuple T is an expression tuple.
*/
template isExpressionTuple(T ...)
{
static if (T.length > 0)
enum bool isExpressionTuple =
!is(T[0]) && __traits(compiles, { auto ex = T[0]; }) &&
isExpressionTuple!(T[1 .. $]);
else
enum bool isExpressionTuple = true; // default
}
unittest
{
void foo();
static int bar() { return 42; }
enum aa = [ 1: -1 ];
alias int myint;
static assert(isExpressionTuple!(42));
static assert(isExpressionTuple!(aa));
static assert(isExpressionTuple!("cattywampus", 2.7, aa));
static assert(isExpressionTuple!(bar()));
static assert(! isExpressionTuple!(isExpressionTuple));
static assert(! isExpressionTuple!(foo));
static assert(! isExpressionTuple!( (a) { } ));
static assert(! isExpressionTuple!(int));
static assert(! isExpressionTuple!(myint));
}
/**
Detect whether tuple $(D T) is a type tuple.
*/
template isTypeTuple(T...)
{
static if (T.length > 0)
enum bool isTypeTuple = is(T[0]) && isTypeTuple!(T[1 .. $]);
else
enum bool isTypeTuple = true; // default
}
unittest
{
class C {}
void func(int) {}
auto c = new C;
enum CONST = 42;
static assert(isTypeTuple!(int));
static assert(isTypeTuple!(string));
static assert(isTypeTuple!(C));
static assert(isTypeTuple!(typeof(func)));
static assert(isTypeTuple!(int, char, double));
static assert(! isTypeTuple!(c));
static assert(! isTypeTuple!(isTypeTuple));
static assert(! isTypeTuple!(CONST));
}
/**
Detect whether symbol or type $(D T) is a function pointer.
*/
template isFunctionPointer(T...)
if (/+@@@BUG4333@@@+/staticLength!(T) == 1)
{
static if (is(T[0] U) || is(typeof(T[0]) U))
{
static if (is(U F : F*) && is(F == function))
enum bool isFunctionPointer = true;
else
enum bool isFunctionPointer = false;
}
else
enum bool isFunctionPointer = false;
}
unittest
{
static void foo() {}
void bar() {}
auto fpfoo = &foo;
static assert(isFunctionPointer!(fpfoo));
static assert(isFunctionPointer!(void function()));
auto dgbar = &bar;
static assert(! isFunctionPointer!(dgbar));
static assert(! isFunctionPointer!(void delegate()));
static assert(! isFunctionPointer!(foo));
static assert(! isFunctionPointer!(bar));
static assert(!isFunctionPointer!((int a) {}));
}
/**
Detect whether $(D T) is a delegate.
*/
template isDelegate(T...)
if(staticLength!T == 1)
{
enum bool isDelegate = is(T[0] == delegate);
}
unittest
{
static assert(isDelegate!(void delegate()));
static assert(isDelegate!(uint delegate(uint)));
static assert(isDelegate!(shared uint delegate(uint)));
static assert(!isDelegate!(uint));
static assert(!isDelegate!(void function()));
}
/**
Detect whether symbol or type $(D T) is a function, a function pointer or a delegate.
*/
template isSomeFunction(/+@@@BUG4217@@@+/T...)
if (/+@@@BUG4333@@@+/staticLength!(T) == 1)
{
enum bool isSomeFunction = isSomeFunction_bug4333!(T).isSomeFunction;
}
private template isSomeFunction_bug4333(T...)
{
/+@@@BUG4333@@@+/enum dummy__ = T.length;
static if (is(typeof(& T[0]) U : U*) && is(U == function))
{
// T is a function symbol.
enum bool isSomeFunction = true;
}
else static if (is(T[0] W) || is(typeof(T[0]) W))
{
// T is an expression or a type. Take the type of it and examine.
static if (is(W F : F*) && is(F == function))
enum bool isSomeFunction = true; // function pointer
else
enum bool isSomeFunction = is(W == function) || is(W == delegate);
}
else
enum bool isSomeFunction = false;
}
unittest
{
static real func(ref int) { return 0; }
class C
{
real method(ref int) { return 0; }
real prop() @property { return 0; }
}
auto c = new C;
auto fp = &func;
auto dg = &c.method;
real val;
static assert(isSomeFunction!(func));
static assert(isSomeFunction!(C.method));
static assert(isSomeFunction!(C.prop));
static assert(isSomeFunction!(c.prop));
static assert(isSomeFunction!(c.prop));
static assert(isSomeFunction!(fp));
static assert(isSomeFunction!(dg));
static assert(isSomeFunction!(typeof(func)));
static assert(isSomeFunction!(real function(ref int)));
static assert(isSomeFunction!(real delegate(ref int)));
static assert(! isSomeFunction!(int));
static assert(! isSomeFunction!(val));
static assert(! isSomeFunction!(isSomeFunction));
static assert(isSomeFunction!((int a) { return a; }));
}
/**
Detect whether $(D T) is a callable object, which can be called with the
function call operator $(D $(LPAREN)...$(RPAREN)).
*/
template isCallable(/+@@@BUG4217@@@+/T...)
if (/+@@@BUG4333@@@+/staticLength!(T) == 1)
{
enum bool isCallable = isCallable_bug4333!(T).isCallable;
}
private template isCallable_bug4333(T...)
{
/+@@@BUG4333@@@+/enum dummy__ = T.length;
static if (is(typeof(& T[0].opCall) == delegate))
// T is a object which has a member function opCall().
enum bool isCallable = true;
else static if (is(typeof(& T[0].opCall) V : V*) && is(V == function))
// T is a type which has a static member function opCall().
enum bool isCallable = true;
else
enum bool isCallable = isSomeFunction!(T);
}
unittest
{
interface I { real value() @property; }
struct S { static int opCall(int) { return 0; } }
class C { int opCall(int) { return 0; } }
auto c = new C;
static assert( isCallable!(c));
static assert( isCallable!(S));
static assert( isCallable!(c.opCall));
static assert( isCallable!(I.value));
static assert(!isCallable!(I));
static assert(isCallable!((int a) { return a; }));
}
/**
Exactly the same as the builtin traits:
$(D ___traits(_isAbstractFunction, method)).
*/
template isAbstractFunction(/+@@@BUG4217@@@+/method...)
if (/+@@@BUG4333@@@+/staticLength!(method) == 1)
{
enum bool isAbstractFunction = __traits(isAbstractFunction, method[0]);
}
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
// General Types
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
/**
Removes all qualifiers, if any, from type $(D T).
Example:
----
static assert(is(Unqual!(int) == int));
static assert(is(Unqual!(const int) == int));
static assert(is(Unqual!(immutable int) == int));
static assert(is(Unqual!(shared int) == int));
static assert(is(Unqual!(shared(const int)) == int));
----
*/
template Unqual(T)
{
version (none) // Error: recursive alias declaration @@@BUG1308@@@
{
static if (is(T U == const U)) alias Unqual!U Unqual;
else static if (is(T U == immutable U)) alias Unqual!U Unqual;
else static if (is(T U == shared U)) alias Unqual!U Unqual;
else alias T Unqual;
}
else // workaround
{
static if (is(T U == shared(const U))) alias U Unqual;
else static if (is(T U == const U )) alias U Unqual;
else static if (is(T U == immutable U )) alias U Unqual;
else static if (is(T U == shared U )) alias U Unqual;
else alias T Unqual;
}
}
unittest
{
static assert(is(Unqual!(int) == int));
static assert(is(Unqual!(const int) == int));
static assert(is(Unqual!(immutable int) == int));
static assert(is(Unqual!(shared int) == int));
static assert(is(Unqual!(shared(const int)) == int));
alias immutable(int[]) ImmIntArr;
static assert(is(Unqual!(ImmIntArr) == immutable(int)[]));
}
// [For internal use]
private template ModifyTypePreservingSTC(alias Modifier, T)
{
static if (is(T U == shared(const U))) alias shared(const Modifier!U) ModifyTypePreservingSTC;
else static if (is(T U == const U )) alias const(Modifier!U) ModifyTypePreservingSTC;
else static if (is(T U == immutable U )) alias immutable(Modifier!U) ModifyTypePreservingSTC;
else static if (is(T U == shared U )) alias shared(Modifier!U) ModifyTypePreservingSTC;
else alias Modifier!T ModifyTypePreservingSTC;
}
unittest
{
static assert(is(ModifyTypePreservingSTC!(Intify, const real) == const int));
static assert(is(ModifyTypePreservingSTC!(Intify, immutable real) == immutable int));
static assert(is(ModifyTypePreservingSTC!(Intify, shared real) == shared int));
static assert(is(ModifyTypePreservingSTC!(Intify, shared(const real)) == shared(const int)));
}
version (unittest) private template Intify(T) { alias int Intify; }
/*
*/
template StringTypeOf(T) if (isSomeString!T)
{
static if (is(T == class) || is(T == struct))
{
static if (is(T : const(char[])))
{
static if (is(T : char[]))
alias char[] StringTypeOf;
else static if (is(T : immutable(char[])))
alias immutable(char)[] StringTypeOf;
else
alias const(char)[] StringTypeOf;
}
else static if (is(T : const(wchar[])))
{
static if (is(T : wchar[]))
alias wchar[] StringTypeOf;
else static if (is(T : immutable(wchar[])))
alias immutable(wchar)[] StringTypeOf;
else
alias const(wchar)[] StringTypeOf;
}
else
{
static if (is(T : dchar[]))
alias dchar[] StringTypeOf;
else static if (is(T : immutable(dchar[])))
alias immutable(dchar)[] StringTypeOf;
else
alias const(dchar)[] StringTypeOf;
}
}
else
{
alias T StringTypeOf;
}
}
unittest
{
class C(Char, int n)
{
static if (n==0) Char[] val;
static if (n==1) const(Char)[] val;
static if (n==2) const(Char[]) val;
static if (n==3) immutable(Char)[] val;
static if (n==4) immutable(Char[]) val;
alias val this;
}
struct S(Char, int n)
{
static if (n==0) Char[] val;
static if (n==1) const(Char)[] val;
static if (n==2) const(Char[]) val;
static if (n==3) immutable(Char)[] val;
static if (n==4) immutable(Char[]) val;
alias val this;
}
foreach (Char; TypeTuple!(char, wchar, dchar))
{
static assert(is(StringTypeOf!(C!(Char, 0)) == Char[]));
static assert(is(StringTypeOf!(C!(Char, 1)) == const(Char)[]));
static assert(is(StringTypeOf!(C!(Char, 2)) == const(Char)[])); // cannot get exact string type
static assert(is(StringTypeOf!(C!(Char, 3)) == immutable(Char)[]));
static assert(is(StringTypeOf!(C!(Char, 4)) == immutable(Char)[])); // cannot get exact string type
static assert(is(StringTypeOf!(S!(Char, 0)) == Char[]));
static assert(is(StringTypeOf!(S!(Char, 1)) == const(Char)[]));
static assert(is(StringTypeOf!(S!(Char, 2)) == const(Char)[])); // cannot get exact string type
static assert(is(StringTypeOf!(S!(Char, 3)) == immutable(Char)[]));
static assert(is(StringTypeOf!(S!(Char, 4)) == immutable(Char)[])); // cannot get exact string type
}
}
/**
Returns the inferred type of the loop variable when a variable of type T
is iterated over using a $(D foreach) loop with a single loop variable and
automatically inferred return type. Note that this may not be the same as
$(D std.range.ElementType!(Range)) in the case of narrow strings, or if T
has both opApply and a range interface.
*/
template ForeachType(T)
{
alias ReturnType!(typeof(
{
foreach(elem; T.init) {
return elem;
}
assert(0);
})) ForeachType;
}
unittest
{
static assert(is(ForeachType!(uint[]) == uint));
static assert(is(ForeachType!(string) == immutable(char)));
static assert(is(ForeachType!(string[string]) == string));
}
/**
Strips off all $(D typedef)s (including $(D enum) ones) from type $(D T).
Example:
--------------------
enum E : int { a }
typedef E F;
typedef const F G;
static assert(is(OriginalType!G == const int));
--------------------
*/
template OriginalType(T)
{
alias ModifyTypePreservingSTC!(OriginalTypeImpl, T) OriginalType;
}
private template OriginalTypeImpl(T)
{
static if (is(T U == typedef)) alias OriginalType!U OriginalTypeImpl;
else static if (is(T U == enum)) alias OriginalType!U OriginalTypeImpl;
else alias T OriginalTypeImpl;
}
unittest
{
typedef real T;
typedef T U;
enum V : U { a }
static assert(is(OriginalType!T == real));
static assert(is(OriginalType!U == real));
static assert(is(OriginalType!V == real));
enum E : real { a }
enum F : E { a = E.a }
typedef const F G;
static assert(is(OriginalType!E == real));
static assert(is(OriginalType!F == real));
static assert(is(OriginalType!G == const real));
}
/**
* Returns the corresponding unsigned type for T. T must be a numeric
* integral type, otherwise a compile-time error occurs.
*/
template Unsigned(T)
{
alias ModifyTypePreservingSTC!(UnsignedImpl, OriginalType!T) Unsigned;
}
private template UnsignedImpl(T)
{
static if (isUnsigned!(T)) alias T UnsignedImpl;
else static if (is(T == byte)) alias ubyte UnsignedImpl;
else static if (is(T == short)) alias ushort UnsignedImpl;
else static if (is(T == int)) alias uint UnsignedImpl;
else static if (is(T == long)) alias ulong UnsignedImpl;
else static assert(false, "Type " ~ T.stringof
~ " does not have an Unsigned counterpart");
}
unittest
{
alias Unsigned!(int) U;
assert(is(U == uint));
alias Unsigned!(const(int)) U1;
assert(is(U1 == const(uint)), U1.stringof);
alias Unsigned!(immutable(int)) U2;
assert(is(U2 == immutable(uint)), U2.stringof);
//struct S {}
//alias Unsigned!(S) U2;
//alias Unsigned!(double) U3;
}
/**
Returns the largest type, i.e. T such that T.sizeof is the largest. If more
than one type is of the same size, the leftmost argument of these in will be
returned.
*/
template Largest(T...) if(T.length >= 1) {
static if(T.length == 1) {
alias T[0] Largest;
} static if(T.length == 2) {
static if(T[0].sizeof >= T[1].sizeof) {
alias T[0] Largest;
} else {
alias T[1] Largest;
}
} else {
alias Largest!(Largest!(T[0], T[1]), T[2..$]) Largest;
}
}
unittest {
static assert(is(Largest!(uint, ubyte, ulong, real) == real));
static assert(is(Largest!(ulong, double) == ulong));
static assert(is(Largest!(double, ulong) == double));
static assert(is(Largest!(uint, byte, double, short) == double));
}
/**
Returns the corresponding signed type for T. T must be a numeric integral type,
otherwise a compile-time error occurs.
*/
template Signed(T)
{
alias ModifyTypePreservingSTC!(SignedImpl, OriginalType!T) Signed;
}
private template SignedImpl(T)
{
static if (isSigned!(T)) alias T SignedImpl;
else static if (is(T == ubyte)) alias byte SignedImpl;
else static if (is(T == ushort)) alias short SignedImpl;
else static if (is(T == uint)) alias int SignedImpl;
else static if (is(T == ulong)) alias long SignedImpl;
else static assert(false, "Type " ~ T.stringof
~ " does not have an Signed counterpart");
}
unittest
{
alias Signed!(uint) S;
assert(is(S == int));
alias Signed!(const(uint)) S1;
assert(is(S1 == const(int)), S1.stringof);
alias Signed!(immutable(uint)) S2;
assert(is(S2 == immutable(int)), S2.stringof);
}
/**
* Returns the corresponding unsigned value for $(D x), e.g. if $(D x)
* has type $(D int), returns $(D cast(uint) x). The advantage
* compared to the cast is that you do not need to rewrite the cast if
* $(D x) later changes type to e.g. $(D long).
*/
auto unsigned(T)(T x) if (isIntegral!T)
{
static if (is(Unqual!T == byte)) return cast(ubyte) x;
else static if (is(Unqual!T == short)) return cast(ushort) x;
else static if (is(Unqual!T == int)) return cast(uint) x;
else static if (is(Unqual!T == long)) return cast(ulong) x;
else
{
static assert(T.min == 0, "Bug in either unsigned or isIntegral");
return x;
}
}
unittest
{
static assert(is(typeof(unsigned(1 + 1)) == uint));
}
auto unsigned(T)(T x) if (isSomeChar!T)
{
// All characters are unsigned
static assert(T.min == 0);
return x;
}
/**
Returns the most negative value of the numeric type T.
*/
template mostNegative(T)
{
static if (is(typeof(T.min_normal))) enum mostNegative = -T.max;
else static if (T.min == 0) enum byte mostNegative = 0;
else enum mostNegative = T.min;
}
unittest
{
static assert(mostNegative!(float) == -float.max);
static assert(mostNegative!(uint) == 0);
static assert(mostNegative!(long) == long.min);
}
//:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
// Misc.
//:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
/**
Returns the mangled name of symbol or type $(D sth).
$(D mangledName) is the same as builtin $(D .mangleof) property, except that
the correct names of property functions are obtained.
--------------------
module test;
import std.traits : mangledName;
class C {
int value() @property;
}
pragma(msg, C.value.mangleof); // prints "i"
pragma(msg, mangledName!(C.value)); // prints "_D4test1C5valueMFNdZi"
--------------------
*/
template mangledName(sth...)
if (/+@@@BUG4333@@@+/staticLength!(sth) == 1)
{
enum string mangledName = removeDummyEnvelope(Dummy!(sth).Hook.mangleof);
}
private template Dummy(T...) { struct Hook {} }
private string removeDummyEnvelope(string s)
{
// remove --> S3std6traits ... Z4Hook
s = s[12 .. $ - 6];
// remove --> DIGIT+ __T5Dummy
foreach (i, c; s)
{
if (c < '0' || '9' < c)
{
s = s[i .. $];
break;
}
}
s = s[9 .. $]; // __T5Dummy
// remove --> T | V | S
immutable kind = s[0];
s = s[1 .. $];
if (kind == 'S') // it's a symbol
{
/*
* The mangled symbol name is packed in LName --> Number Name. Here
* we are chopping off the useless preceding Number, which is the
* length of Name in decimal notation.
*
* NOTE: n = m + Log(m) + 1; n = LName.length, m = Name.length.
*/
immutable n = s.length;
size_t m_upb = 10;
foreach (k; 1 .. 5) // k = Log(m_upb)
{
if (n < m_upb + k + 1)
{
// Now m_upb/10 <= m < m_upb; hence k = Log(m) + 1.
s = s[k .. $];
break;
}
m_upb *= 10;
}
}
return s;
}
unittest
{
typedef int MyInt;
MyInt test() { return 0; }
class C { int value() @property { return 0; } }
static assert(mangledName!(int) == int.mangleof);
static assert(mangledName!(C) == C.mangleof);
//static assert(mangledName!(MyInt)[$ - 7 .. $] == "T5MyInt"); // XXX depends on bug 4237
//static assert(mangledName!(test)[$ - 7 .. $] == "T5MyInt");
static assert(mangledName!(C.value)[$ - 12 .. $] == "5valueMFNdZi");
static assert(mangledName!(mangledName) == "3std6traits11mangledName");
static assert(mangledName!(removeDummyEnvelope) ==
"_D3std6traits19removeDummyEnvelopeFAyaZAya");
int x;
static assert(mangledName!((int a) { return a+x; })[$ - 5 .. $] == "MFiZi");
}
/*
workaround for @@@BUG2234@@@ "allMembers does not return interface members"
*/
package template traits_allMembers(Agg)
{
static if (is(Agg == class) || is(Agg == interface))
alias NoDuplicates!( __traits(allMembers, Agg),
traits_allMembers_ifaces!(InterfacesTuple!(Agg)) )
traits_allMembers;
else
alias TypeTuple!(__traits(allMembers, Agg)) traits_allMembers;
}
private template traits_allMembers_ifaces(I...)
{
static if (I.length > 0)
alias TypeTuple!( __traits(allMembers, I[0]),
traits_allMembers_ifaces!(I[1 .. $]) )
traits_allMembers_ifaces;
else
alias TypeTuple!() traits_allMembers_ifaces;
}
unittest
{
interface I { void test(); }
interface J : I { }
interface K : J { }
alias traits_allMembers!(K) names;
static assert(names.length == 1);
static assert(names[0] == "test");
}
// XXX Select & select should go to another module. (functional or algorithm?)
/**
Aliases itself to $(D T) if the boolean $(D condition) is $(D true)
and to $(D F) otherwise.
Example:
----
alias Select!(size_t.sizeof == 4, int, long) Int;
----
*/
template Select(bool condition, T, F)
{
static if (condition) alias T Select;
else alias F Select;
}
unittest
{
static assert(is(Select!(true, int, long) == int));
static assert(is(Select!(false, int, long) == long));
}
/**
If $(D cond) is $(D true), returns $(D a) without evaluating $(D
b). Otherwise, returns $(D b) without evaluating $(D a).
*/
A select(bool cond : true, A, B)(A a, lazy B b) { return a; }
/// Ditto
B select(bool cond : false, A, B)(lazy A a, B b) { return b; }
unittest
{
real pleasecallme() { return 0; }
int dontcallme() { assert(0); }
auto a = select!true(pleasecallme(), dontcallme());
auto b = select!false(dontcallme(), pleasecallme());
static assert(is(typeof(a) == real));
static assert(is(typeof(b) == real));
}