phobos/std/bind.d

1059 lines
40 KiB
D

// Written in the D programming language.
/**
* $(RED This module has been deprecated. Use delegates for binding arguments to specific values.)
*
* Bind function arguments to functions.
*
* References:
* $(LINK2 http://www.boost.org/libs/bind/bind.html, boost bind)
* Macros:
* WIKI = Phobos/StdBind
*
* Copyright: Copyright Tomasz Stachowiak 2006 - 2009.
* License: <a href="http://www.boost.org/LICENSE_1_0.txt">Boost License 1.0</a>.
* Authors: Tomasz Stachowiak
* Source: $(PHOBOSSRC std/_bind.d)
*/
/* Copyright Tomasz Stachowiak 2006 - 2009.
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*/
module std.bind;
deprecated:
import std.string : stdFormat = format;
import std.traits;
import std.typetuple;
struct DynArg(int i) {
static assert (i >= 0);
alias i argNr;
}
/**
When passed to the 'bind' function, they will mark dynamic params - ones that aren't statically bound
In boost, they're called __1, __2, __3, etc.. here __0, __1, __2, ...
*/
const DynArg!(0) _0;
const DynArg!(1) _1; /// ditto
const DynArg!(2) _2; /// ditto
const DynArg!(3) _3; /// ditto
const DynArg!(4) _4; /// ditto
const DynArg!(5) _5; /// ditto
const DynArg!(6) _6; /// ditto
const DynArg!(7) _7; /// ditto
const DynArg!(8) _8; /// ditto
const DynArg!(9) _9; /// ditto
/*
Detect if a given type is a DynArg of any index
*/
template isDynArg(T) {
static if (is(typeof(T.argNr))) { // must have the argNr field
static if(is(T : DynArg!(T.argNr))) { // now check the exact type
static enum bool isDynArg = true;
} else static enum bool isDynArg = false;
} else static enum bool isDynArg = false;
}
/*
Detect if a given type is a DynArg of the specified index
*/
template isDynArg(T, int i) {
static enum bool isDynArg = is(T : DynArg!(i));
}
/*
Converts a static array type to a dynamic array type
*/
template DynamicArrayType(T) {
alias typeof(T[0])[] DynamicArrayType;
}
/*
Assigns one entity to another. As static arrays don't like normal assignment, slice assignment is used for them.
Params:
a = destination
b = source
*/
template _assign(T) {
static if (isStaticArray!(T)) {
void _assign(DynamicArrayType!(T) a, DynamicArrayType!(T) b) {
a[] = b[];
}
} else {
void _assign(ref T a, ref T b) {
a = b;
}
}
}
/*
Assigns and potentially converts one entity to another
Normally, only implicit conversion is used, but when both operands are numeric types, an explicit cast is performed on them.
Params:
T = destination type
a = destination
Y = source type
b = source
copyStaticArrays = when a static array is assigned to a dynamic one, it sometimes has to be .dup'ed as the storage may exist in volatile locations
*/
template _assign(T, Y, bool copyStaticArrays = true) {
static if (isStaticArray!(T)) {
// if the destination is a static array, copy each element from the source to the destination by a foreach
void _assign(DynamicArrayType!(T) a, DynamicArrayType!(Y) b) {
foreach (i, x; b) {
_assign!(typeof(a[i]), typeof(x))(a[i], x);
}
}
} else static if (!isStaticArray!(T) && isStaticArray!(Y)) {
// the destination is a dynamic array and the source is a static array. this sometimes needs a .dup
void _assign(ref T a, DynamicArrayType!(Y) b) {
static if (copyStaticArrays) {
a = b.dup;
} else {
a = b;
}
}
} else {
// none of the items is a static array
void _assign(ref T a, ref Y b) {
static if (IndexOf!(T, NumericTypes.type) != -1 && IndexOf!(Y, NumericTypes.type) != -1) {
a = cast(T)b;
} else {
a = b;
}
}
}
}
/**
A simple tuple struct with some basic operations
*/
struct Tuple(T ...) {
alias Tuple meta;
enum bool expressionTuple = isExpressionTuple!(T);
static if (!expressionTuple) {
alias T type; // a built-in tuple
T value; // a built-in tuple instance
} else {
alias T value;
}
enum int length = value.length;
/**
Statically yields a tuple type with an extra element added at its end
*/
template appendT(X) {
alias .Tuple!(T, X) appendT;
}
/**
Yields a tuple with an extra element added at its end
*/
appendT!(X) append(X)(X x) {
appendT!(X) res;
foreach (i, y; value) {
_assign!(typeof(y))(res.value[i], y);
}
_assign!(typeof(x))(res.value[$-1], x);
return res;
}
/**
Statically yields a tuple type with an extra element added at its beginning
*/
template prependT(X) {
alias .Tuple!(X, T) prependT;
}
/**
Yields a tuple with an extra element added at its beginning
*/
prependT!(X) prepend(X)(X x) {
prependT!(X) res;
foreach (i, y; value) {
_assign!(typeof(y))(res.value[i+1], y);
}
_assign!(typeof(x))(res.value[0], x);
return res;
}
/**
Statically concatenates this tuple type with another tuple type
*/
template concatT(T ...) {
static if (expressionTuple) {
alias .Tuple!(value, T) concatT;
} else {
alias .Tuple!(type, T) concatT;
}
}
string toString() {
auto res = "(" ~ stdFormat(value[0]);
foreach (x; value[1..$]) {
res ~= stdFormat(", ", x);
}
return res ~ ")";
}
}
/**
An empty tuple struct
*/
struct Tuple() {
alias Tuple meta;
template EmptyTuple_(T ...) {
alias T EmptyTuple_;
}
alias EmptyTuple_!() type; /// an empty built-in tuple
alias EmptyTuple_!() value; /// an empty built-in tuple
enum bool expressionTuple = false;
enum int length = 0;
template appendT(X) {
alias .Tuple!(X) appendT;
}
alias appendT prependT;
appendT!(X) append(X)(X x) {
appendT!(X) res;
foreach (i, y; value) {
_assign!(typeof(y))(res.value[i], y);
}
return res;
}
alias append prepend;
// T - other tuple
template concatT(T ...) {
alias .Tuple!(T) concatT;
}
char[] toString() {
return "()";
}
}
/**
Dynamically create a tuple from the given items
*/
Tuple!(T) tuple(T ...)(T t) {
Tuple!(T) res;
foreach (i, x; t) {
_assign!(typeof(x))(res.value[i], x);
}
return res;
}
/**
Checks whether a given type is the Tuple struct of any length
*/
template isTypeTuple(T) {
static if (is(T.type)) {
static if (is(T == Tuple!(T.type))) {
enum bool isTypeTuple = true;
} else enum bool isTypeTuple = false;
} else enum bool isTypeTuple = false;
}
unittest
{
static assert(isTypeTuple!(Tuple!(int)));
static assert(isTypeTuple!(Tuple!(float, char)));
static assert(isTypeTuple!(Tuple!(double, float, int, char[])));
static assert(isTypeTuple!(Tuple!(Object, creal, long)));
static assert(!isTypeTuple!(Object));
static assert(!isTypeTuple!(int));
}
template minNumArgs_impl(alias fn, fnT) {
alias ParameterTypeTuple!(fnT) Params;
Params params = void;
template loop(int i = 0) {
static assert (i <= Params.length);
static if (is(typeof(fn(params[0..i])))) {
enum int res = i;
} else {
alias loop!(i+1).res res;
}
}
alias loop!().res res;
}
/**
Finds the minimal number of arguments a given function needs to be provided
*/
template minNumArgs(alias fn, fnT = typeof(&fn)) {
enum int minNumArgs = minNumArgs_impl!(fn, fnT).res;
}
// mixed into BoundFunc struct/class
template MBoundFunc() {
// meta
alias FAlias_ FAlias;
alias FT FuncType;
alias AllBoundArgs_ AllBoundArgs; // all arguments given to bind() or bindAlias()
static if (!is(typeof(FAlias) == EmptySlot)) {
alias Tuple!(ParameterTypeTuple!(FT)) RealFuncParams; // the parameters of the bound function
alias FuncReferenceParamsAsPointers!(FAlias) FuncParams; // references converted to pointers
} else {
alias Tuple!(ParameterTypeTuple!(FT)) FuncParams; // the parameters of the bound function
}
alias ReturnType!(FT) RetType; // the return type of the bound function
alias ExtractedBoundArgs!(AllBoundArgs.type) BoundArgs; // 'saved' arguments. this includes nested/composed functions
// if bindAlias was used, we can detect default arguments and only demand the non-default arguments to be specified
static if (!is(typeof(FAlias) == EmptySlot)) {
enum int minFuncArgs = minNumArgs!(FAlias);
alias ParamsPassMethodTuple!(FAlias) ParamPassingMethods; // find out whether the function expects parameters by value or reference
} else {
enum int minFuncArgs = FuncParams.length;
}
// the parameters that our wrapper function must get
alias getDynArgTypes!(FuncParams, AllBoundArgs, minFuncArgs).res.type DynParams;
// data
FuncType fp;
BoundArgs boundArgs;
// yields the number of bound-function parameters that are covered by the binding. takes tuple expansion into account
template numFuncArgsReallyBound(int argI = 0, int fargI = 0, int bargI = 0) {
// walk though all of AllBoundArgs
static if (argI < AllBoundArgs.length) {
// the argI-th arg is a composed/nested function
static if (isBoundFunc!(AllBoundArgs.type[argI])) {
alias DerefFunc!(AllBoundArgs.type[argI]).RetType FuncRetType;
enum int argLen = getArgLen!(FuncParams.type[fargI], FuncRetType);
enum int bargInc = 1;
}
// the argI-th arg is a dynamic argument whose value we will get in the call to func()
else static if (isDynArg!(AllBoundArgs.type[argI])) {
enum int argLen = getArgLen!(FuncParams.type[fargI], DynParams[AllBoundArgs.type[argI].argNr]);
enum int bargInc = 0;
}
// the argI-th arg is a statically bound argument
else {
enum int argLen = getArgLen!(FuncParams.type[fargI], BoundArgs.type[bargI]);
enum int bargInc = 1;
}
// iterate
enum int res = numFuncArgsReallyBound!(argI+1, fargI+argLen, bargI+bargInc).res;
} else {
// last iteration
// the number of bound args is the number of arguments we've detected in this template loop
enum int res = fargI;
// make sure we'll copy all args the function is going to need
static assert (res >= minFuncArgs);
}
}
enum int numSpecifiedParams = numFuncArgsReallyBound!().res;
// it's a tuple type whose instance will be applied to the bound function
alias Tuple!(FuncParams.type[0 .. numSpecifiedParams]) SpecifiedParams;
// argI = indexes AllBoundArgs
// fargI = indexes funcArgs
// bargI = indexes boundArgs
void copyArgs(int argI = 0, int fargI = 0, int bargI = 0)(ref SpecifiedParams funcArgs, DynParams dynArgs) {
static if (argI < AllBoundArgs.length) {
// the argI-th arg is a composed/nested function
static if (isBoundFunc!(AllBoundArgs.type[argI])) {
alias DerefFunc!(AllBoundArgs.type[argI]).RetType FuncRetType;
alias DerefFunc!(AllBoundArgs.type[argI]).DynParams FuncDynParams;
// if FuncDynParams contains an empty slot, e.g. as in the case bind(&f, bind(&g, _1), _0)
// then we cannot just apply the dynArgs tuple to the nested/composed function because it will have EmptySlot params
// while our dynArgs tuple will contain ordinary types
static if (ContainsEmptySlotType!(FuncDynParams)) {
FuncDynParams funcParams; // we'll fill it with values in a bit
foreach (i, dummy_; dynArgs) {
static if (!is(typeof(FuncDynParams[i] == EmptySlot))) {
// 3rd param is false because there is no need to .dup static arrays just for the function below this foreach
// the storage exists in the whole copyArgs function
// dynArgs[i] is used instead of dummy_ so that loop-local data isn't referenced in any dynamic arrays after the loop
_assign!(typeof(funcParams[i]), typeof(dummy_), false)(funcParams[i], dynArgs[i]);
}
}
FuncRetType funcRet = boundArgs.value[bargI].func(funcParams);
} else {
FuncRetType funcRet = boundArgs.value[bargI].func(dynArgs[0..FuncDynParams.length]); // only give it as many dynParams as it needs
}
// we'll take data from the returned value
auto srcItem = &funcRet;
enum int bargInc = 1; // nested/composed functions belong to the boundArgs tuple
enum bool dupStaticArrays = true; // because the function's return value is stored locally
}
// the argI-th arg is a dynamic argument whose value we will get in the call to func()
else static if (isDynArg!(AllBoundArgs.type[argI])) {
// we'll take data from dynArgs
auto srcItem = &dynArgs[AllBoundArgs.type[argI].argNr];
enum int bargInc = 0; // dynamic args don't belond to the boundArgs tuple
enum bool dupStaticArrays = true; // because we get dynArgs on stack
}
// the argI-th arg is a statically bound argument
else {
// we'll take data directly from boundArgs
auto srcItem = &boundArgs.value[bargI];
enum int bargInc = 1; // statically bound args belong to the boundArgs tuple
enum bool dupStaticArrays = false; // because the storage exists in boundArgs
}
// the number of bound-function parameters this argument will cover after tuple expansion
enum int argLen = getArgLen!(funcArgs.type[fargI], typeof(*srcItem));
static if (isTypeTuple!(typeof(*srcItem)) && !isTypeTuple!(funcArgs.type[fargI])) {
foreach (i, x; srcItem.value) {
_assign!(funcArgs.type[fargI + i], typeof(x), dupStaticArrays)(funcArgs.value[fargI + i], x);
}
} else {
static assert (1 == argLen);
_assign!(funcArgs.type[fargI], typeof(*srcItem), dupStaticArrays)(funcArgs.value[fargI], *srcItem);
}
// because we might've just expended a tuple, this may be larger than one
static assert (argLen >= 1);
// we could've just used a dynamic arg (0) or a statically bound arg(1)
static assert (bargInc == 0 || bargInc == 1);
return copyArgs!(argI+1, fargI+argLen, bargI+bargInc)(funcArgs, dynArgs);
} else {
// last iteration
// make sure we've copied all args the function will need
static assert (fargI >= minFuncArgs);
}
}
static if (SpecifiedParams.length > 0) {
/// The final wrapped function
RetType func(DynParams dynArgs) {
SpecifiedParams funcArgs;
copyArgs!()(funcArgs, dynArgs);
// if the function expects any parameters passed by reference, we'll have to use the ptrApply template
// and convert pointers back to references by hand
static if (!is(typeof(FAlias) == EmptySlot) && IndexOf!(PassByRef, ParamPassingMethods.type) != -1) {
// function parameter type pointers (int, float*, ref char) -> (int*, float*, char*)
PointerTuple!(Tuple!(RealFuncParams.type[0 .. SpecifiedParams.length])) ptrs;
// initialize the 'ptrs' tuple instance
foreach (i, dummy_; funcArgs.value) {
static if (is(ParamPassingMethods.type[i] == PassByRef)) {
version (BindNoNullCheck) {}
else {
assert (funcArgs.value[i], "references cannot be null");
}
ptrs.value[i] = funcArgs.value[i];
} else {
ptrs.value[i] = &funcArgs.value[i];
}
}
// and call the function :)
ptrApply!(RetType, FuncType, ptrs.type)(fp, ptrs.value);
} else {
// ordinary call-by-tuple
return fp(funcArgs.value);
}
}
} else {
/// The final wrapped function
RetType func() {
return fp();
}
}
/// The final wrapped function
alias func call;
/// The final wrapped function
alias func opCall;
/**
The type of the delegate that may be returned from this object
*/
template PtrType() {
alias typeof(&(new BoundFunc).call) PtrType;
}
/**
Get a delegate. Equivalent to getting it thru &amp;foo.call
*/
PtrType!() ptr() {
return &this.func;
}
}
version (BindUseStruct) {
template DerefFunc(T) {
alias typeof(*T) DerefFunc;
}
/**
A context for bound/curried functions
*/
struct BoundFunc(FT, alias FAlias_, AllBoundArgs_) {
mixin MBoundFunc;
}
} else {
template DerefFunc(T) {
alias T DerefFunc;
}
/**
A context for bound/curried functions
*/
class BoundFunc(FT, alias FAlias_, AllBoundArgs_) {
mixin MBoundFunc;
}
}
/**
bind() can curry or "bind" arguments of a function, producing a different function which requires less parameters,
or a different order of parameters. It also allows function composition.
The syntax of a bind() call is:
bind(function or delegate pointer { , <b>argument</b> });
<b>argument</b> can be one of:
<ul>
<li> static/bound argument (an immediate value) </li>
<li> another bound function object </li>
<li> dynamic argument, of the form __[0-9], e.g. __0, __3 or __9 </li>
</ul>
The result is a function object, which can be called using call(), func() or opCall().
There also exists a convenience function, ptr() which returns a delegate to call/func/opCall
The resulting delegate accepts exactly as many parameters as many distinct dynamic arguments were used.
---
- bind(&foo, _0, _1) // will yield a delegate accepting two parameters
- bind(&foo, _1, _0) // will yield a delegate accepting two parameters
- bind(&bar, _0, _1, _2, _0) // will yield a delegate accepting three parameters
---
<br />
<br />
The types of dynamic parameters are extracted from the bound function itself and when necessary, type negotiation
is performed. For example, binding a function
---
void foo(int a, long b)
// with:
bind(&foo, _0, _0)
---
will result in a delegate accepting a single, optimal parameter type. The best type is computed
using std.typetuple.DerivedToFront, so in case of an int and a long, long will be selected. Generally, bind will try to find
a type that can be implicitly converted to all the other types a given dynamic parameter uses.
Note: in case of numeric types, an explicit, but transparent (to the user) cast will be performed
<br />
Function composition works intuitively:
---
bind(&f1, bind(&f2, _0))
---
which will yield a delegate, that takes the argument, calls f2, then uses the return value of f2 to call f1. Mathematically
speaking, it will yield a function composition:
---
f1(f2(_0))
---
When one function is composed multiple times, it will be called multiple times - Bind does no lazy evaluation, so
---
bind(&f3, bind(&f4, _0), bind(&f4, _0))
---
will produce a delegate, which, upon calling, will invoke f4 two times to evaluate the arguments for f3 and then call f3
One another feature that bind() supports is automatic tuple expansion. It means that having functions:
---
void foo(int a, int b)
Tuple!(int, int) bar()
---
Allows them to be bound by writing:
---
bind(&foo, bind(&bar))
// or
bind(&foo, tuple(23, 45))
---
*/
typeof(new BoundFunc!(FT, NullAlias, Tuple!(ArgList))) bind(FT, ArgList...)(FT fp, ArgList args) {
auto res = new DerefFunc!(ReturnType!(bind));
res.fp = fp;
extractBoundArgs!(0, 0, ArgList)(res.boundArgs, args);
return res;
}
/**
bindAlias() is similar to bind(), but it's more powerful. Use bindAlias() rather than bind() where possible. <br/>
The syntax is:
bindAlias!(Function)(argument, argument, argument, argument, ...);
bindAlias takes advantage of using aliases directly, thus being able to extract default values from functions and not forcing the user
to bind them. It doesn't, however mean that the resulting delegate can be called, omitting some of its parameters. It only means that these
arguments that have default values in the function provided to bindAlias don't have to be bound explicitly.
Additionally, bindAlias takes care of functions with out/ref parameters, by converting them to pointers internally. A function like:
---
void foo(ref a)
---
can be bound using:
---
int x;
bindAlias!(foo)(&x);
---
Note: there is no bind-time check for reference nullness, there is however a call-time check on all references which can be disabled
by using version=BindNoNullCheck or compiling in release mode.
*/
template bindAlias(alias FT) {
typeof(new BoundFunc!(typeof(&FT), FT, Tuple!(ArgList))) bindAlias(ArgList...)(ArgList args) {
auto res = new DerefFunc!(ReturnType!(bindAlias));
res.fp = &FT;
extractBoundArgs!(0, 0, ArgList)(res.boundArgs, args);
return res;
}
}
/*
Tells whether the specified type is a bound function
*/
template isBoundFunc(T) {
static if (is(DerefFunc!(T).FuncType)) {
static if (is(DerefFunc!(T).BoundArgs)) {
static if (is(typeof(DerefFunc!(T).FAlias))) {
static if (is(DerefFunc!(T) : BoundFunc!(DerefFunc!(T).FuncType, DerefFunc!(T).FAlias, DerefFunc!(T).AllBoundArgs))) {
static enum bool isBoundFunc = true;
} else static enum bool isBoundFunc = false;
} else static enum bool isBoundFunc = false;
} else static enum bool isBoundFunc = false;
} else static enum bool isBoundFunc = false;
}
// all numeric types as of dmd.175
alias Tuple!(byte, ubyte, short, ushort, int, uint, long, ulong, /+cent, ucent, +/float, double, real, ifloat, idouble, ireal, cfloat, cdouble, creal) NumericTypes;
/*
Gather all types that a given (i-th) dynamic arg uses.
The types will be inserted into a tuple
*/
template dynArgTypes(int i, FuncParams, BoundArgs, int minParamsLeft) {
// performs slicing on the tuple ... tuple[i .. $]
template sliceOffTuple(T, int i) {
alias Tuple!(T.type[i .. $]) res;
}
// prepends a T to the resulting tuple
// SkipType - the type in BoundArgs that we're just processing
template prependType(T, SkipType) {
static if (isTypeTuple!(SkipType) && !isTypeTuple!(FuncParams.type[0])) {
// perform tuple decomposition
// e.g. if a function being bound is accepting (int, int) and the current type is a Tuple!(int, int),
// then skip just one tuple in the bound args and the length of the tuple in func args
// - skips two ints and one tuple in the example
alias dynArgTypes!(
i,
sliceOffTuple!(FuncParams, SkipType.length).res,
Tuple!(BoundArgs.type[1..$]),
minParamsLeft - SkipType.length
).res tmp;
} else {
// just advance by one type
alias dynArgTypes!(
i,
sliceOffTuple!(FuncParams, 1).res,
Tuple!(BoundArgs.type[1..$]),
minParamsLeft-1
).res tmp;
}
static if (is(T == void)) { // void means that we aren't adding anything
alias tmp res;
} else {
alias tmp.meta.prependT!(T) res;
}
}
// iteration end detector
static if (is(BoundArgs == Tuple!())) {
static assert (minParamsLeft <= 0, "there are still unbound function parameters");
alias Tuple!() res;
}
else {
// w00t, detected a regular dynamic arg
static if (isDynArg!(BoundArgs.type[0], i)) {
alias prependType!(FuncParams.type[0], BoundArgs.type[0]).res res;
}
// the arg is a bound function, extract info from it. we will be evaluating it later
else static if (isBoundFunc!(BoundArgs.type[0])) {
alias DerefFunc!(BoundArgs.type[0]) BoundFunc; // the bound function is a struct pointer, we have to derefernce its type
// does that function even have any dynamic params ?
static if (BoundFunc.DynParams.length > i) {
alias prependType!(BoundFunc.DynParams[i], BoundFunc.RetType).res res;
}
// it doesn't
else {
alias prependType!(void, BoundFunc.RetType).res res;
}
}
// a static arg, just skip it since we want to find all types a given DynArg uses. static args <> dyn args
else alias prependType!(void, BoundArgs.type[0]).res res;
}
}
// just a simple util
private template maxInt(int a, int b) {
static if (a > b) static enum int maxInt = a;
else static enum int maxInt = b;
}
/*
Given a list of BoundArgs, it returns the nuber of args that should be specified dynamically
*/
template numDynArgs(BoundArgs) {
static if (BoundArgs.length == 0) {
// received an EmptyTuple
static enum int res = 0;
} else {
// ordinary dynamic arg
static if (isDynArg!(BoundArgs.type[0])) {
static enum int res = maxInt!(BoundArgs.type[0].argNr+1, numDynArgs!(Tuple!(BoundArgs.type[1..$])).res);
}
// count the args in nested / composed functions
else static if (isBoundFunc!(BoundArgs.type[0])) {
static enum int res = maxInt!(DerefFunc!(BoundArgs.type[0]).DynParams.length, numDynArgs!(Tuple!(BoundArgs.type[1..$])).res);
}
// statically bound arg, skip it
else {
static enum int res = numDynArgs!(Tuple!(BoundArgs.type[1..$])).res;
}
}
}
/*
Used internally to mark a parameter which is a dummy placeholder
E.g. when using bind(&f, bind(&g, _1), _0), then the inner bound function will use an EmptySlot for its 0-th parameter
*/
struct EmptySlot {
string toString( ) {
return "_";
}
}
/*
Get a tuple of all dynamic args a function binding will need
take nested/composed functions as well as tuple decomposition into account
*/
template getDynArgTypes(FuncParams, BoundArgs, int minFuncArgs) {
template loop(int i) {
static if (i < numDynArgs!(BoundArgs).res) {
alias dynArgTypes!(i, FuncParams, BoundArgs, minFuncArgs).res.type dirtyArgTypeList;
// 'clean' the type list, erasing all NoTypes from it that could've been added there from composed functions
// if the arg is not used, we'll mark it as NoType anyway, but for now, we only want 'real' types so the most derived one can be found
alias Tuple!(EraseAll!(EmptySlot, dirtyArgTypeList)) argTypeList;
// make sure the arg is used
static if(!is(argTypeList == Tuple!())) {
alias DerivedToFront!(argTypeList.type)[0] argType;
} else {
//static assert(false, i);
alias EmptySlot argType;
}
alias loop!(i+1).res.meta.prependT!(argType) res;
} else {
alias Tuple!() res;
}
}
alias loop!(0).res res;
}
/*
Given a tuple that bind() was called with, it will detect which types need to be stored in a BoundFunc object
*/
template ExtractedBoundArgs(BoundArgs ...) {
static if (BoundArgs.length == 0) {
alias Tuple!() ExtractedBoundArgs;
}
// we'll store all non-dynamic arguments...
else static if (!isDynArg!(BoundArgs[0])) {
alias ExtractedBoundArgs!(BoundArgs[1..$]).meta.prependT!(BoundArgs[0]) ExtractedBoundArgs;
}
// ... and we're going to leave the dynamic ones for later
else {
alias ExtractedBoundArgs!(BoundArgs[1..$]) ExtractedBoundArgs;
}
}
/*
Given a tuple that bind() was called with, it will copy all data that a BoundFunc object will store into an ExtractedBoundArgs tuple
*/
void extractBoundArgs(int dst, int src, BoundArgs ...)(ref ExtractedBoundArgs!(BoundArgs) result, BoundArgs boundArgs) {
static if (dst < result.length) {
// again, we only want non-dynamic arguments here
static if (!isDynArg!(BoundArgs[src])) {
_assign!(typeof(result.value[dst]), typeof(boundArgs[src]))(result.value[dst], boundArgs[src]);
return extractBoundArgs!(dst+1, src+1, BoundArgs)(result, boundArgs);
}
// the dynamic ones will be specified at the time BoundFunc.call() is invoked
else {
return extractBoundArgs!(dst, src+1, BoundArgs)(result, boundArgs);
}
}
}
/*
Number of args in the bound function that this Src arg will cover
*/
template getArgLen(Dst, Src) {
// if the arg is a tuple and the target isn't one, it will be expanded/decomposed to the tuple's length
static if (isTypeTuple!(Src) && !isTypeTuple!(Dst)) {
static enum int getArgLen = Src.length;
}
// plain arg - it will use 1:1 mapping of functioni params to bound params
else {
static enum int getArgLen = 1;
}
}
/*
Tell whether a parameter type tuple contains an EmptySlot struct
*/
template ContainsEmptySlotType(ParamList ...) {
enum bool ContainsEmptySlotType = -1 != IndexOf!(EmptySlot, ParamList);
}
// just something to be default in bind(). bindAlias() will use real aliases.
const EmptySlot NullAlias;
struct PassByCopy {}
struct PassByRef {}
template ParamsPassMethodTuple_impl(alias Func, int i = 0) {
alias Tuple!(ParameterTypeTuple!(typeof(&Func))) Params;
static if (Params.length == i) {
alias Tuple!() res;
} else {
Params params = void;
enum params.type[i] constParam;
// if the function expects references, it won't like our const.
static if (is(typeof(Func(params.value[0..i], constParam, params.value[i+1..$])))) {
alias ParamsPassMethodTuple_impl!(Func, i+1).res.meta.prependT!(PassByCopy) res;
} else {
alias ParamsPassMethodTuple_impl!(Func, i+1).res.meta.prependT!(PassByRef) res;
}
}
}
/*
Detect parameter passing methods: PassByCopy or PassByRef[erence]
*/
template ParamsPassMethodTuple(alias Func) {
alias ParamsPassMethodTuple_impl!(Func).res ParamsPassMethodTuple;
}
template FuncReferenceParamsAsPointers_impl(alias Func) {
alias Tuple!(ParameterTypeTuple!(typeof(&Func))) Params;
alias ParamsPassMethodTuple!(Func) PassMethods;
template loop(int i) {
static if (i == Params.length) {
alias Tuple!() res;
} else {
static if (is(PassMethods.type[i] == PassByRef)) {
alias Params.type[i]* type;
} else {
alias Params.type[i] type;
}
alias loop!(i+1).res.meta.prependT!(type) res;
}
}
alias loop!(0).res res;
}
/*
Takes a function/delegate alias and converts its refence parameters to pointers. E.g.
void function(int, ref char, float*) -> (int, char*, float*)
*/
template FuncReferenceParamsAsPointers(alias Func) {
alias FuncReferenceParamsAsPointers_impl!(Func).res FuncReferenceParamsAsPointers;
}
/*
Converts a tuple of types to a tuple containing pointer types of the original types
*/
template PointerTuple(T) {
static if (T.length > 0) {
alias PointerTuple!(Tuple!(T.type[1..$])).meta.prependT!(T.type[0]*) PointerTuple;
} else {
alias Tuple!() PointerTuple;
}
}
/*
Calls a function, dereferencing a pointer tuple for each argument
*/
RetType ptrApply(RetType, FN, T ...)(FN fn, T t) {
static if (1 == T.length) {
return fn(*t[0]);
}
else static if (2 == T.length) {
return fn(*t[0], *t[1]);
}
else static if (3 == T.length) {
return fn(*t[0], *t[1], *t[2]);
}
else static if (4 == T.length) {
return fn(*t[0], *t[1], *t[2], *t[3]);
}
else static if (5 == T.length) {
return fn(*t[0], *t[1], *t[2], *t[3], *t[4]);
}
else static if (6 == T.length) {
return fn(*t[0], *t[1], *t[2], *t[3], *t[4], *t[5]);
}
else static if (7 == T.length) {
return fn(*t[0], *t[1], *t[2], *t[3], *t[4], *t[5], *t[6]);
}
else static if (8 == T.length) {
return fn(*t[0], *t[1], *t[2], *t[3], *t[4], *t[5], *t[6], *t[7]);
}
else static if (9 == T.length) {
return fn(*t[0], *t[1], *t[2], *t[3], *t[4], *t[5], *t[6], *t[7], *t[8]);
}
else static if (10 == T.length) {
return fn(*t[0], *t[1], *t[2], *t[3], *t[4], *t[5], *t[6], *t[7], *t[8], *t[9]);
}
}