phobos/internal/gc/gc.d
2007-09-10 05:25:16 +00:00

775 lines
16 KiB
D

/*
* Copyright (C) 2004-2005 by Digital Mars, www.digitalmars.com
* Written by Walter Bright
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* o The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* o Altered source versions must be plainly marked as such, and must not
* be misrepresented as being the original software.
* o This notice may not be removed or altered from any source
* distribution.
*/
// Storage allocation
module std.gc;
//debug = PRINTF;
import std.c.stdarg;
import std.c.stdlib;
import std.c.string;
import gcx;
import std.outofmemory;
import gcstats;
import std.thread;
version=GCCLASS;
version (GCCLASS)
alias GC gc_t;
else
alias GC* gc_t;
gc_t _gc;
void addRoot(void *p) { _gc.addRoot(p); }
void removeRoot(void *p) { _gc.removeRoot(p); }
void addRange(void *pbot, void *ptop) { _gc.addRange(pbot, ptop); }
void removeRange(void *pbot) { _gc.removeRange(pbot); }
void fullCollect() { _gc.fullCollect(); }
void fullCollectNoStack() { _gc.fullCollectNoStack(); }
void genCollect() { _gc.genCollect(); }
void minimize() { _gc.minimize(); }
void disable() { _gc.disable(); }
void enable() { _gc.enable(); }
void getStats(out GCStats stats) { _gc.getStats(stats); }
void* getGCHandle()
{
return cast(void*)_gc;
}
void setGCHandle(void* p)
{
void* oldp = getGCHandle();
gc_t g = cast(gc_t)p;
if (g.gcversion != gcx.GCVERSION)
throw new Error("incompatible gc versions");
// Add our static data to the new gc
GC.scanStaticData(g);
_gc = g;
// return oldp;
}
void endGCHandle()
{
GC.unscanStaticData(_gc);
}
extern (C)
{
void _d_monitorrelease(Object h);
void gc_init()
{
version (GCCLASS)
{ void* p;
ClassInfo ci = GC.classinfo;
p = std.c.stdlib.malloc(ci.init.length);
(cast(byte*)p)[0 .. ci.init.length] = ci.init[];
_gc = cast(GC)p;
}
else
{
_gc = cast(GC *) std.c.stdlib.calloc(1, GC.sizeof);
}
_gc.initialize();
GC.scanStaticData(_gc);
std.thread.Thread.thread_init();
}
void gc_term()
{
_gc.fullCollectNoStack();
}
Object _d_newclass(ClassInfo ci)
{
void *p;
debug(PRINTF) printf("_d_newclass(ci = %p)\n", ci);
if (ci.flags & 1) // if COM object
{
p = cast(Object)std.c.stdlib.malloc(ci.init.length);
if (!p)
_d_OutOfMemory();
}
else
{
p = _gc.malloc(ci.init.length);
debug(PRINTF) printf(" p = %p\n", p);
_gc.setFinalizer(p, &new_finalizer);
}
debug (PRINTF)
{
printf("p = %p\n", p);
printf("ci = %p, ci.init = %p, len = %d\n", ci, ci.init, ci.init.length);
printf("vptr = %p\n", *cast(void **)ci.init);
printf("vtbl[0] = %p\n", (*cast(void ***)ci.init)[0]);
printf("vtbl[1] = %p\n", (*cast(void ***)ci.init)[1]);
printf("init[0] = %x\n", (cast(uint *)ci.init)[0]);
printf("init[1] = %x\n", (cast(uint *)ci.init)[1]);
printf("init[2] = %x\n", (cast(uint *)ci.init)[2]);
printf("init[3] = %x\n", (cast(uint *)ci.init)[3]);
printf("init[4] = %x\n", (cast(uint *)ci.init)[4]);
}
// Initialize it
(cast(byte*)p)[0 .. ci.init.length] = ci.init[];
//printf("initialization done\n");
return cast(Object)p;
}
extern (D) alias void (*fp_t)(Object); // generic function pointer
void _d_delinterface(void** p)
{
if (*p)
{
Interface *pi = **cast(Interface ***)*p;
Object o;
o = cast(Object)(*p - pi.offset);
_d_delclass(&o);
*p = null;
}
}
void _d_delclass(Object *p)
{
if (*p)
{
debug (PRINTF) printf("_d_delclass(%p)\n", *p);
version(0)
{
ClassInfo **pc = cast(ClassInfo **)*p;
if (*pc)
{
ClassInfo c = **pc;
if (c.deallocator)
{
_d_callfinalizer(*p);
fp_t fp = cast(fp_t)c.deallocator;
(*fp)(*p); // call deallocator
*p = null;
return;
}
}
}
_gc.free(*p);
*p = null;
}
}
ulong _d_new(size_t length, size_t size)
{
void *p;
ulong result;
debug(PRINTF) printf("_d_new(length = %d, size = %d)\n", length, size);
if (length == 0 || size == 0)
result = 0;
else
{
p = _gc.malloc(length * size + 1);
debug(PRINTF) printf(" p = %p\n", p);
memset(p, 0, length * size);
result = cast(ulong)length + (cast(ulong)cast(uint)p << 32);
}
return result;
}
ulong _d_newarrayi(size_t length, size_t size, ...)
{
void *p;
ulong result;
//debug(PRINTF) printf("_d_newarrayi(length = %d, size = %d)\n", length, size);
if (length == 0 || size == 0)
result = 0;
else
{
//void* q = cast(void*)(&size + 1); // pointer to initializer
va_list q;
va_start!(size_t)(q, size); // q is pointer to ... initializer
p = _gc.malloc(length * size + 1);
debug(PRINTF) printf(" p = %p\n", p);
if (size == 1)
memset(p, *cast(ubyte*)q, length);
else
{
for (uint u = 0; u < length; u++)
{
memcpy(p + u * size, q, size);
}
}
va_end(q);
result = cast(ulong)length + (cast(ulong)cast(uint)p << 32);
}
return result;
}
ulong _d_newbitarray(size_t length, bit value)
{
void *p;
ulong result;
debug(PRINTF) printf("_d_newbitarray(length = %d, value = %d)\n", length, value);
if (length == 0)
result = 0;
else
{ size_t size = (length + 8) >> 3; // number of bytes
ubyte fill = value ? 0xFF : 0;
p = _gc.malloc(size);
debug(PRINTF) printf(" p = %p\n", p);
memset(p, fill, size);
result = cast(ulong)length + (cast(ulong)cast(uint)p << 32);
}
return result;
}
struct Array
{
size_t length;
byte *data;
};
// Perhaps we should get a a size argument like _d_new(), so we
// can zero out the array?
void _d_delarray(Array *p)
{
if (p)
{
assert(!p.length || p.data);
if (p.data)
_gc.free(p.data);
p.data = null;
p.length = 0;
}
}
void _d_delmemory(void* *p)
{
if (*p)
{
_gc.free(*p);
*p = null;
}
}
}
void new_finalizer(void *p, void *dummy)
{
//printf("new_finalizer(p = %p)\n", p);
_d_callfinalizer(p);
}
extern (C)
void _d_callfinalizer(void *p)
{
//printf("_d_callfinalizer(p = %p)\n", p);
if (p) // not necessary if called from gc
{
ClassInfo **pc = cast(ClassInfo **)p;
if (*pc)
{
ClassInfo c = **pc;
try
{
do
{
if (c.destructor)
{
fp_t fp = cast(fp_t)c.destructor;
(*fp)(cast(Object)p); // call destructor
}
c = c.base;
} while (c);
if ((cast(void**)p)[1]) // if monitor is not null
_d_monitorrelease(cast(Object)p);
}
finally
{
*pc = null; // zero vptr
}
}
}
}
/+ ------------------------------------------------ +/
/******************************
* Resize dynamic arrays other than bit[].
*/
extern (C)
byte[] _d_arraysetlength(size_t newlength, size_t sizeelem, Array *p)
in
{
assert(sizeelem);
assert(!p.length || p.data);
}
body
{
byte* newdata;
debug(PRINTF)
{
printf("_d_arraysetlength(p = %p, sizeelem = %d, newlength = %d)\n", p, sizeelem, newlength);
if (p)
printf("\tp.data = %p, p.length = %d\n", p.data, p.length);
}
if (newlength)
{
version (D_InlineAsm_X86)
{
size_t newsize = void;
asm
{
mov EAX,newlength ;
mul EAX,sizeelem ;
mov newsize,EAX ;
jc Loverflow ;
}
}
else
{
size_t newsize = sizeelem * newlength;
if (newsize / newlength != sizeelem)
goto Loverflow;
}
//printf("newsize = %x, newlength = %x\n", newsize, newlength);
if (p.length)
{
newdata = p.data;
if (newlength > p.length)
{
size_t size = p.length * sizeelem;
size_t cap = _gc.capacity(p.data);
if (cap <= newsize)
{
newdata = cast(byte *)_gc.malloc(newsize + 1);
newdata[0 .. size] = p.data[0 .. size];
}
newdata[size .. newsize] = 0;
}
}
else
{
newdata = cast(byte *)_gc.calloc(newsize + 1, 1);
}
}
else
{
newdata = null;
}
p.data = newdata;
p.length = newlength;
return newdata[0 .. newlength];
Loverflow:
_d_OutOfMemory();
}
/**
* For non-zero initializers
*/
extern (C)
byte[] _d_arraysetlength2(size_t newlength, size_t sizeelem, Array *p, ...)
in
{
assert(sizeelem);
assert(!p.length || p.data);
}
body
{
byte* newdata;
debug(PRINTF)
{
printf("_d_arraysetlength2(p = %p, sizeelem = %d, newlength = %d)\n", p, sizeelem, newlength);
if (p)
printf("\tp.data = %p, p.length = %d\n", p.data, p.length);
}
if (newlength)
{
version (D_InlineAsm_X86)
{
size_t newsize = void;
asm
{
mov EAX,newlength ;
mul EAX,sizeelem ;
mov newsize,EAX ;
jc Loverflow ;
}
}
else
{
size_t newsize = sizeelem * newlength;
if (newsize / newlength != sizeelem)
goto Loverflow;
}
//printf("newsize = %x, newlength = %x\n", newsize, newlength);
size_t size = p.length * sizeelem;
if (p.length)
{
newdata = p.data;
if (newlength > p.length)
{
size_t cap = _gc.capacity(p.data);
if (cap <= newsize)
{
newdata = cast(byte *)_gc.malloc(newsize + 1);
newdata[0 .. size] = p.data[0 .. size];
}
}
}
else
{
newdata = cast(byte *)_gc.malloc(newsize + 1);
}
va_list q;
va_start!(Array *)(q, p); // q is pointer to initializer
if (newsize > size)
{
if (sizeelem == 1)
newdata[size .. newsize] = *(cast(byte*)q);
else
{
for (size_t u = size; u < newsize; u += sizeelem)
{
memcpy(newdata + u, q, sizeelem);
}
}
}
}
else
{
newdata = null;
}
p.data = newdata;
p.length = newlength;
return newdata[0 .. newlength];
Loverflow:
_d_OutOfMemory();
}
/***************************
* Resize bit[] arrays.
*/
version (none)
{
extern (C)
bit[] _d_arraysetlengthb(size_t newlength, Array *p)
{
byte* newdata;
size_t newsize;
debug (PRINTF)
printf("p = %p, newlength = %d\n", p, newlength);
assert(!p.length || p.data);
if (newlength)
{
newsize = ((newlength + 31) >> 5) * 4; // # bytes rounded up to uint
if (p.length)
{ size_t size = ((p.length + 31) >> 5) * 4;
newdata = p.data;
if (newsize > size)
{
size_t cap = _gc.capacity(p.data);
if (cap <= newsize)
{
newdata = cast(byte *)_gc.malloc(newsize + 1);
newdata[0 .. size] = p.data[0 .. size];
}
newdata[size .. newsize] = 0;
}
}
else
{
newdata = cast(byte *)_gc.calloc(newsize + 1, 1);
}
}
else
{
newdata = null;
}
p.data = newdata;
p.length = newlength;
return (cast(bit *)newdata)[0 .. newlength];
}
}
/****************************************
* Append y[] to array x[].
* size is size of each array element.
*/
extern (C)
long _d_arrayappend(Array *px, byte[] y, size_t size)
{
size_t cap = _gc.capacity(px.data);
size_t length = px.length;
size_t newlength = length + y.length;
if (newlength * size > cap)
{ byte* newdata;
newdata = cast(byte *)_gc.malloc(newCapacity(newlength, size) + 1);
memcpy(newdata, px.data, length * size);
px.data = newdata;
}
px.length = newlength;
memcpy(px.data + length * size, y, y.length * size);
return *cast(long*)px;
}
extern (C)
long _d_arrayappendb(Array *px, bit[] y)
{
size_t cap = _gc.capacity(px.data);
size_t length = px.length;
size_t newlength = length + y.length;
size_t newsize = (newlength + 7) / 8;
if (newsize > cap)
{ void* newdata;
//newdata = _gc.malloc(newlength * size);
newdata = _gc.malloc(newCapacity(newsize, 1) + 1);
memcpy(newdata, px.data, (length + 7) / 8);
px.data = cast(byte*)newdata;
}
px.length = newlength;
if ((length & 7) == 0)
// byte aligned, straightforward copy
memcpy(px.data + length / 8, y, (y.length + 7) / 8);
else
{ bit* x = cast(bit*)px.data;
for (size_t u = 0; u < y.length; u++)
{
x[length + u] = y[u];
}
}
return *cast(long*)px;
}
size_t newCapacity(size_t newlength, size_t size)
{
version(none)
{
size_t newcap = newlength * size;
}
else
{
/*
* Better version by Dave Fladebo:
* This uses an inverse logorithmic algorithm to pre-allocate a bit more
* space for larger arrays.
* - Arrays smaller than 4096 bytes are left as-is, so for the most
* common cases, memory allocation is 1 to 1. The small overhead added
* doesn't effect small array perf. (it's virutally the same as
* current).
* - Larger arrays have some space pre-allocated.
* - As the arrays grow, the relative pre-allocated space shrinks.
* - The logorithmic algorithm allocates relatively more space for
* mid-size arrays, making it very fast for medium arrays (for
* mid-to-large arrays, this turns out to be quite a bit faster than the
* equivalent realloc() code in C, on Linux at least. Small arrays are
* just as fast as GCC).
* - Perhaps most importantly, overall memory usage and stress on the GC
* is decreased significantly for demanding environments.
*/
size_t newcap = newlength * size;
size_t newext = 0;
if (newcap > 4096)
{
//double mult2 = 1.0 + (size / log10(pow(newcap * 2.0,2.0)));
// Redo above line using only integer math
static int log2plus1(size_t c)
{ int i;
if (c == 0)
i = -1;
else
for (i = 1; c >>= 1; i++)
{ }
return i;
}
/* The following setting for mult sets how much bigger
* the new size will be over what is actually needed.
* 100 means the same size, more means proportionally more.
* More means faster but more memory consumption.
*/
//long mult = 100 + (1000L * size) / (6 * log2plus1(newcap));
long mult = 100 + (1000L * size) / log2plus1(newcap);
// testing shows 1.02 for large arrays is about the point of diminishing return
if (mult < 102)
mult = 102;
newext = cast(size_t)((newcap * mult) / 100);
newext -= newext % size;
//printf("mult: %2.2f, mult2: %2.2f, alloc: %2.2f\n",mult/100.0,mult2,newext / cast(double)size);
}
newcap = newext > newcap ? newext : newcap;
//printf("newcap = %d, newlength = %d, size = %d\n", newcap, newlength, size);
}
return newcap;
}
extern (C)
byte[] _d_arrayappendc(inout byte[] x, in size_t size, ...)
{
size_t cap = _gc.capacity(x);
size_t length = x.length;
size_t newlength = length + 1;
assert(cap == 0 || length * size <= cap);
//printf("_d_arrayappendc(size = %d, ptr = %p, length = %d, cap = %d)\n", size, x.ptr, x.length, cap);
if (newlength * size >= cap)
{ byte* newdata;
//printf("_d_arrayappendc(size = %d, newlength = %d, cap = %d)\n", size, newlength, cap);
cap = newCapacity(newlength, size);
assert(cap >= newlength * size);
newdata = cast(byte *)_gc.malloc(cap + 1);
memcpy(newdata, x, length * size);
(cast(void **)(&x))[1] = newdata;
}
byte *argp = cast(byte *)(&size + 1);
*cast(size_t *)&x = newlength;
(cast(byte *)x)[length * size .. newlength * size] = argp[0 .. size];
assert((cast(size_t)x.ptr & 15) == 0);
assert(_gc.capacity(x.ptr) > x.length * size);
return x;
}
extern (C)
byte[] _d_arraycat(byte[] x, byte[] y, size_t size)
out (result)
{
//printf("_d_arraycat(%d,%p ~ %d,%p size = %d => %d,%p)\n", x.length, x.ptr, y.length, y.ptr, size, result.length, result.ptr);
assert(result.length == x.length + y.length);
for (size_t i = 0; i < x.length * size; i++)
assert((cast(byte*)result)[i] == (cast(byte*)x)[i]);
for (size_t i = 0; i < y.length * size; i++)
assert((cast(byte*)result)[x.length * size + i] == (cast(byte*)y)[i]);
size_t cap = _gc.capacity(result.ptr);
assert(!cap || cap > result.length * size);
}
body
{
version (none)
{
/* Cannot use this optimization because:
* char[] a, b;
* char c = 'a';
* b = a ~ c;
* c = 'b';
* will change the contents of b.
*/
if (!y.length)
return x;
if (!x.length)
return y;
}
size_t xlen = x.length * size;
size_t ylen = y.length * size;
size_t len = xlen + ylen;
if (!len)
return null;
byte* p = cast(byte*)_gc.malloc(len + 1);
memcpy(p, x, xlen);
memcpy(p + xlen, y, ylen);
p[len] = 0;
return p[0 .. x.length + y.length];
}
extern (C)
bit[] _d_arrayappendcb(inout bit[] x, bit b)
{
if (x.length & 7)
{
*cast(size_t *)&x = x.length + 1;
}
else
{
x.length = x.length + 1;
}
x[x.length - 1] = b;
return x;
}