phobos/std/zlib.d
2011-02-26 15:32:21 -06:00

620 lines
15 KiB
D

// Written in the D programming language.
/**
* Compress/decompress data using the $(LINK2 http://www._zlib.net, zlib library).
*
* References:
* $(LINK2 http://en.wikipedia.org/wiki/Zlib, Wikipedia)
*
* Macros:
* WIKI = Phobos/StdZlib
*
* Copyright: Copyright Digital Mars 2000 - 2011.
* License: <a href="http://www.boost.org/LICENSE_1_0.txt">Boost License 1.0</a>.
* Authors: $(WEB digitalmars.com, Walter Bright)
* Source: $(PHOBOSSRC std/_zlib.d)
*/
/* Copyright Digital Mars 2000 - 2011.
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*/
module std.zlib;
//debug=zlib; // uncomment to turn on debugging printf's
private import etc.c.zlib, std.conv;
// Values for 'mode'
enum
{
Z_NO_FLUSH = 0,
Z_SYNC_FLUSH = 2,
Z_FULL_FLUSH = 3,
Z_FINISH = 4,
}
/*************************************
* Errors throw a ZlibException.
*/
class ZlibException : Exception
{
this(int errnum)
{ string msg;
switch (errnum)
{
case Z_STREAM_END: msg = "stream end"; break;
case Z_NEED_DICT: msg = "need dict"; break;
case Z_ERRNO: msg = "errno"; break;
case Z_STREAM_ERROR: msg = "stream error"; break;
case Z_DATA_ERROR: msg = "data error"; break;
case Z_MEM_ERROR: msg = "mem error"; break;
case Z_BUF_ERROR: msg = "buf error"; break;
case Z_VERSION_ERROR: msg = "version error"; break;
default: msg = "unknown error"; break;
}
super(msg);
}
}
/**************************************************
* Compute the Adler32 checksum of the data in buf[]. adler is the starting
* value when computing a cumulative checksum.
*/
uint adler32(uint adler, const(void)[] buf)
{
return etc.c.zlib.adler32(adler, cast(ubyte *)buf.ptr,
to!uint(buf.length));
}
unittest
{
static ubyte[] data = [1,2,3,4,5,6,7,8,9,10];
uint adler;
debug(zlib) printf("D.zlib.adler32.unittest\n");
adler = adler32(0u, cast(void[])data);
debug(zlib) printf("adler = %x\n", adler);
assert(adler == 0xdc0037);
}
/*********************************
* Compute the CRC32 checksum of the data in buf[]. crc is the starting value
* when computing a cumulative checksum.
*/
uint crc32(uint crc, const(void)[] buf)
{
return etc.c.zlib.crc32(crc, cast(ubyte *)buf.ptr, to!uint(buf.length));
}
unittest
{
static ubyte[] data = [1,2,3,4,5,6,7,8,9,10];
uint crc;
debug(zlib) printf("D.zlib.crc32.unittest\n");
crc = crc32(0u, cast(void[])data);
debug(zlib) printf("crc = %x\n", crc);
assert(crc == 0x2520577b);
}
/*********************************************
* Compresses the data in srcbuf[] using compression _level level.
* The default value
* for level is 6, legal values are 1..9, with 1 being the least compression
* and 9 being the most.
* Returns the compressed data.
*/
const(void)[] compress(const(void)[] srcbuf, int level)
in
{
assert(-1 <= level && level <= 9);
}
body
{
auto destlen = srcbuf.length + ((srcbuf.length + 1023) / 1024) + 12;
auto destbuf = new ubyte[destlen];
auto err = etc.c.zlib.compress2(destbuf.ptr, &destlen, cast(ubyte *)srcbuf.ptr, srcbuf.length, level);
if (err)
{ delete destbuf;
throw new ZlibException(err);
}
destbuf.length = destlen;
return destbuf;
}
/*********************************************
* ditto
*/
const(void)[] compress(const(void)[] buf)
{
return compress(buf, Z_DEFAULT_COMPRESSION);
}
/*********************************************
* Decompresses the data in srcbuf[].
* Params: destlen = size of the uncompressed data.
* It need not be accurate, but the decompression will be faster if the exact
* size is supplied.
* Returns: the decompressed data.
*/
void[] uncompress(void[] srcbuf, size_t destlen = 0u, int winbits = 15)
{
int err;
ubyte[] destbuf;
if (!destlen)
destlen = srcbuf.length * 2 + 1;
while (1)
{
etc.c.zlib.z_stream zs;
destbuf = new ubyte[destlen];
zs.next_in = cast(ubyte*) srcbuf;
zs.avail_in = to!uint(srcbuf.length);
zs.next_out = destbuf.ptr;
zs.avail_out = cast(typeof(zs.avail_out))destlen;
err = etc.c.zlib.inflateInit2(&zs, winbits);
if (err)
{ delete destbuf;
throw new ZlibException(err);
}
err = etc.c.zlib.inflate(&zs, Z_NO_FLUSH);
switch (err)
{
case Z_OK:
etc.c.zlib.inflateEnd(&zs);
destlen = destbuf.length * 2;
continue;
case Z_STREAM_END:
destbuf.length = zs.total_out;
err = etc.c.zlib.inflateEnd(&zs);
if (err != Z_OK)
goto Lerr;
return destbuf;
default:
etc.c.zlib.inflateEnd(&zs);
Lerr:
delete destbuf;
throw new ZlibException(err);
}
}
assert(0);
}
unittest
{
ubyte[] src = cast(ubyte[])
"the quick brown fox jumps over the lazy dog\r
the quick brown fox jumps over the lazy dog\r
";
ubyte[] dst;
ubyte[] result;
//arrayPrint(src);
dst = cast(ubyte[])compress(cast(void[])src);
//arrayPrint(dst);
result = cast(ubyte[])uncompress(cast(void[])dst);
//arrayPrint(result);
assert(result == src);
}
/+
void arrayPrint(ubyte[] array)
{
//printf("array %p,%d\n", cast(void*)array, array.length);
for (size_t i = 0; i < array.length; i++)
{
printf("%02x ", array[i]);
if (((i + 1) & 15) == 0)
printf("\n");
}
printf("\n\n");
}
+/
/*********************************************
* Used when the data to be compressed is not all in one buffer.
*/
class Compress
{
private:
z_stream zs;
int level = Z_DEFAULT_COMPRESSION;
int inited;
void error(int err)
{
if (inited)
{ deflateEnd(&zs);
inited = 0;
}
throw new ZlibException(err);
}
public:
/**
* Construct. level is the same as for D.zlib.compress().
*/
this(int level)
in
{
assert(1 <= level && level <= 9);
}
body
{
this.level = level;
}
/// ditto
this()
{
}
~this()
{ int err;
if (inited)
{
inited = 0;
err = deflateEnd(&zs);
if (err)
error(err);
}
}
/**
* Compress the data in buf and return the compressed data.
* The buffers
* returned from successive calls to this should be concatenated together.
*/
const(void)[] compress(const(void)[] buf)
{ int err;
ubyte[] destbuf;
if (buf.length == 0)
return null;
if (!inited)
{
err = deflateInit(&zs, level);
if (err)
error(err);
inited = 1;
}
destbuf = new ubyte[zs.avail_in + buf.length];
zs.next_out = destbuf.ptr;
zs.avail_out = to!uint(destbuf.length);
if (zs.avail_in)
buf = zs.next_in[0 .. zs.avail_in] ~ cast(ubyte[]) buf;
zs.next_in = cast(ubyte*) buf.ptr;
zs.avail_in = to!uint(buf.length);
err = deflate(&zs, Z_NO_FLUSH);
if (err != Z_STREAM_END && err != Z_OK)
{ delete destbuf;
error(err);
}
destbuf.length = destbuf.length - zs.avail_out;
return destbuf;
}
/***
* Compress and return any remaining data.
* The returned data should be appended to that returned by compress().
* Params:
* mode = one of the following:
* $(DL
$(DT Z_SYNC_FLUSH )
$(DD Syncs up flushing to the next byte boundary.
Used when more data is to be compressed later on.)
$(DT Z_FULL_FLUSH )
$(DD Syncs up flushing to the next byte boundary.
Used when more data is to be compressed later on,
and the decompressor needs to be restartable at this
point.)
$(DT Z_FINISH)
$(DD (default) Used when finished compressing the data. )
)
*/
void[] flush(int mode = Z_FINISH)
in
{
assert(mode == Z_FINISH || mode == Z_SYNC_FLUSH || mode == Z_FULL_FLUSH);
}
body
{
ubyte[] destbuf;
ubyte[512] tmpbuf = void;
int err;
if (!inited)
return null;
/* may be zs.avail_out+<some constant>
* zs.avail_out is set nonzero by deflate in previous compress()
*/
//tmpbuf = new void[zs.avail_out];
zs.next_out = tmpbuf.ptr;
zs.avail_out = tmpbuf.length;
while( (err = deflate(&zs, mode)) != Z_STREAM_END)
{
if (err == Z_OK)
{
if (zs.avail_out != 0 && mode != Z_FINISH)
break;
else if(zs.avail_out == 0)
{
destbuf ~= tmpbuf;
zs.next_out = tmpbuf.ptr;
zs.avail_out = tmpbuf.length;
continue;
}
err = Z_BUF_ERROR;
}
delete destbuf;
error(err);
}
destbuf ~= tmpbuf[0 .. (tmpbuf.length - zs.avail_out)];
if (mode == Z_FINISH)
{
err = deflateEnd(&zs);
inited = 0;
if (err)
error(err);
}
return destbuf;
}
}
/******
* Used when the data to be decompressed is not all in one buffer.
*/
class UnCompress
{
private:
z_stream zs;
int inited;
int done;
size_t destbufsize;
void error(int err)
{
if (inited)
{ inflateEnd(&zs);
inited = 0;
}
throw new ZlibException(err);
}
public:
/**
* Construct. destbufsize is the same as for D.zlib.uncompress().
*/
this(uint destbufsize)
{
this.destbufsize = destbufsize;
}
/** ditto */
this()
{
}
~this()
{ int err;
if (inited)
{
inited = 0;
err = inflateEnd(&zs);
if (err)
error(err);
}
done = 1;
}
/**
* Decompress the data in buf and return the decompressed data.
* The buffers returned from successive calls to this should be concatenated
* together.
*/
const(void)[] uncompress(const(void)[] buf)
in
{
assert(!done);
}
body
{ int err;
ubyte[] destbuf;
if (buf.length == 0)
return null;
if (!inited)
{
err = inflateInit(&zs);
if (err)
error(err);
inited = 1;
}
if (!destbufsize)
destbufsize = to!uint(buf.length) * 2;
destbuf = new ubyte[zs.avail_in * 2 + destbufsize];
zs.next_out = destbuf.ptr;
zs.avail_out = to!uint(destbuf.length);
if (zs.avail_in)
buf = zs.next_in[0 .. zs.avail_in] ~ cast(ubyte[]) buf;
zs.next_in = cast(ubyte*) buf;
zs.avail_in = to!uint(buf.length);
err = inflate(&zs, Z_NO_FLUSH);
if (err != Z_STREAM_END && err != Z_OK)
{ delete destbuf;
error(err);
}
destbuf.length = destbuf.length - zs.avail_out;
return destbuf;
}
/**
* Decompress and return any remaining data.
* The returned data should be appended to that returned by uncompress().
* The UnCompress object cannot be used further.
*/
void[] flush()
in
{
assert(!done);
}
out
{
assert(done);
}
body
{
ubyte[] extra;
ubyte[] destbuf;
int err;
done = 1;
if (!inited)
return null;
L1:
destbuf = new ubyte[zs.avail_in * 2 + 100];
zs.next_out = destbuf.ptr;
zs.avail_out = to!uint(destbuf.length);
err = etc.c.zlib.inflate(&zs, Z_NO_FLUSH);
if (err == Z_OK && zs.avail_out == 0)
{
extra ~= destbuf;
goto L1;
}
if (err != Z_STREAM_END)
{
delete destbuf;
if (err == Z_OK)
err = Z_BUF_ERROR;
error(err);
}
destbuf = destbuf.ptr[0 .. zs.next_out - destbuf.ptr];
err = etc.c.zlib.inflateEnd(&zs);
inited = 0;
if (err)
error(err);
if (extra.length)
destbuf = extra ~ destbuf;
return destbuf;
}
}
/* ========================== unittest ========================= */
private import std.stdio;
private import std.random;
unittest // by Dave
{
debug(zlib) printf("std.zlib.unittest\n");
bool CompressThenUncompress (ubyte[] src)
{
try {
ubyte[] dst = cast(ubyte[])std.zlib.compress(cast(void[])src);
double ratio = (dst.length / cast(double)src.length);
debug(zlib) writef("src.length: ", src.length, ", dst: ", dst.length, ", Ratio = ", ratio);
ubyte[] uncompressedBuf;
uncompressedBuf = cast(ubyte[])std.zlib.uncompress(cast(void[])dst);
assert(src.length == uncompressedBuf.length);
assert(src == uncompressedBuf);
}
catch {
debug(zlib) writefln(" ... Exception thrown when src.length = ", src.length, ".");
return false;
}
return true;
}
// smallish buffers
for(int idx = 0; idx < 25; idx++) {
char[] buf = new char[uniform(0, 100)];
// Alternate between more & less compressible
foreach(ref char c; buf)
c = cast(char) (' ' + (uniform(0, idx % 2 ? 91 : 2)));
if(CompressThenUncompress(cast(ubyte[])buf)) {
debug(zlib) printf("; Success.\n");
} else {
return;
}
}
// larger buffers
for(int idx = 0; idx < 25; idx++) {
char[] buf = new char[uniform(0, 1000/*0000*/)];
// Alternate between more & less compressible
foreach(ref char c; buf)
c = cast(char) (' ' + (uniform(0, idx % 2 ? 91 : 10)));
if(CompressThenUncompress(cast(ubyte[])buf)) {
debug(zlib) printf("; Success.\n");
} else {
return;
}
}
debug(zlib) printf("PASSED std.zlib.unittest\n");
}
unittest // by Artem Rebrov
{
Compress cmp = new Compress;
UnCompress decmp = new UnCompress;
const(void)[] input;
input = "tesatdffadf";
const(void)[] buf = cmp.compress(input);
buf ~= cmp.flush();
const(void)[] output = decmp.uncompress(buf);
//writefln("input = '%s'", cast(char[])input);
//writefln("output = '%s'", cast(char[])output);
assert( output[] == input[] );
}