phobos/std/functional.d

879 lines
25 KiB
D

// Written in the D programming language.
/**
Functions that manipulate other functions.
Macros:
WIKI = Phobos/StdFunctional
Copyright: Copyright Andrei Alexandrescu 2008 - 2009.
License: $(WEB boost.org/LICENSE_1_0.txt, Boost License 1.0).
Authors: $(WEB erdani.org, Andrei Alexandrescu)
Source: $(PHOBOSSRC std/_functional.d)
*/
/*
Copyright Andrei Alexandrescu 2008 - 2009.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
*/
module std.functional;
import std.metastrings, std.stdio, std.traits, std.typecons, std.typetuple;
// for making various functions visible in *naryFun
import std.algorithm, std.conv, std.exception, std.math, std.range, std.string;
/**
Transforms a string representing an expression into a unary
function. The string must use symbol name $(D a) as the parameter.
Example:
----
alias unaryFun!("(a & 1) == 0") isEven;
assert(isEven(2) && !isEven(1));
----
*/
template unaryFun(alias funbody, bool byRef = false, string parmName = "a")
{
alias unaryFunImpl!(funbody, byRef, parmName).result unaryFun;
}
template unaryFunImpl(alias fun, bool byRef, string parmName = "a")
{
static if (is(typeof(fun) : string))
{
template Body(ElementType)
{
// enum testAsExpression = "{"~ElementType.stringof
// ~" "~parmName~"; return ("~fun~");}()";
enum testAsExpression = "{ ElementType "~parmName
~"; return ("~fun~");}()";
enum testAsStmts = "{"~ElementType.stringof
~" "~parmName~"; "~fun~"}()";
// pragma(msg, "Expr: "~testAsExpression);
// pragma(msg, "Stmts: "~testAsStmts);
static if (__traits(compiles, mixin(testAsExpression)))
{
enum string code = "return (" ~ fun ~ ");";
alias typeof(mixin(testAsExpression)) ReturnType;
}
// else static if (__traits(compiles, mixin(testAsStmts)))
// {
// enum string code = fun;
// alias typeof(mixin(testAsStmts)) ReturnType;
// }
else
{
// Credit for this idea goes to Don Clugston
// static assert is a bit broken,
// better to do it this way to provide a backtrace.
// pragma(msg, "Bad unary function: " ~ fun ~ " for type "
// ~ ElementType.stringof);
static assert(false, "Bad unary function: " ~ fun ~
" for type " ~ ElementType.stringof);
}
}
static if (byRef)
{
Body!(ElementType).ReturnType result(ElementType)(ref ElementType __a)
{
mixin("alias __a "~parmName~";");
mixin(Body!(ElementType).code);
}
}
else
{
Body!(ElementType).ReturnType result(ElementType)(ElementType __a)
{
mixin("alias __a "~parmName~";");
mixin(Body!(ElementType).code);
}
// string mixme = "Body!(ElementType).ReturnType"
// " result(ElementType)(ElementType a)
// { " ~ Body!(ElementType).code ~ " }";
// mixin(mixme);
}
}
else
{
alias fun result;
}
}
unittest
{
static int f1(int a) { return a + 1; }
static assert(is(typeof(unaryFun!(f1)(1)) == int));
assert(unaryFun!(f1)(41) == 42);
int f2(int a) { return a + 1; }
static assert(is(typeof(unaryFun!(f2)(1)) == int));
assert(unaryFun!(f2)(41) == 42);
assert(unaryFun!("a + 1")(41) == 42);
//assert(unaryFun!("return a + 1;")(41) == 42);
int num = 41;
assert(unaryFun!("a + 1", true)(num) == 42);
}
/**
Transforms a string representing an expression into a Boolean binary
predicate. The string must use symbol names $(D a) and $(D b) as the
compared elements.
Example:
----
alias binaryFun!("a < b") less;
assert(less(1, 2) && !less(2, 1));
alias binaryFun!("a > b") greater;
assert(!greater("1", "2") && greater("2", "1"));
----
*/
template binaryFun(alias funbody, string parm1Name = "a",
string parm2Name = "b")
{
alias binaryFunImpl!(funbody, parm1Name, parm2Name).result binaryFun;
}
template binaryFunImpl(alias fun,
string parm1Name, string parm2Name)
{
static if (is(typeof(fun) : string))
{
template Body(ElementType1, ElementType2)
{
enum testAsExpression = "{ ElementType1 "
~parm1Name~"; ElementType2 "
~parm2Name~"; return ("~fun~");}()";
// enum testAsExpression = "{"~ElementType1.stringof
// ~" "~parm1Name~"; "~ElementType2.stringof
// ~" "~parm2Name~"; return ("~fun~");}()";
// enum testAsStmts = "{"~ElementType1.stringof
// ~" "~parm1Name~"; "~ElementType2.stringof
// ~" "~parm2Name~"; "~fun~"}()";
static if (__traits(compiles, mixin(testAsExpression)))
{
enum string code = "return (" ~ fun ~ ");";
alias typeof(mixin(testAsExpression)) ReturnType;
}
// else static if (__traits(compiles, mixin(testAsStmts)))
// {
// enum string code = fun;
// alias typeof(mixin(testAsStmts)) ReturnType;
// }
else
{
// Credit for this idea goes to Don Clugston
enum string msg =
"Bad binary function q{" ~ fun ~ "}."
~" You need to use a valid D expression using symbols "
~parm1Name~" of type "~ElementType1.stringof~" and "
~parm2Name~" of type "~ElementType2.stringof~"."
~(fun.length && fun[$ - 1] == ';'
? " The trailing semicolon is _not_ needed."
: "")
~(fun.length && fun[$ - 1] == '}'
? " The trailing bracket is mistaken."
: "");
static assert(false, msg);
}
}
Body!(ElementType1, ElementType2).ReturnType
result(ElementType1, ElementType2)
(ElementType1 __a, ElementType2 __b)
{
mixin("alias __a "~parm1Name~";");
mixin("alias __b "~parm2Name~";");
mixin(Body!(ElementType1, ElementType2).code);
}
}
else
{
alias fun result;
}
// static if (is(typeof(comp) : string))
// {
// // @@@BUG1816@@@: typeof(mixin(comp)) should work
// typeof({
// static ElementType1 a;
// static ElementType2 b;
// return mixin(comp);
// }())
// binaryFun(ElementType1, ElementType2)
// (ElementType1 a, ElementType2 b)
// {
// return mixin(comp);
// }
// }
// else
// {
// alias comp binaryFun;
// }
}
unittest
{
alias binaryFun!(q{a < b}) less;
assert(less(1, 2) && !less(2, 1));
assert(less("1", "2") && !less("2", "1"));
static int f1(int a, string b) { return a + 1; }
static assert(is(typeof(binaryFun!(f1)(1, "2")) == int));
assert(binaryFun!(f1)(41, "a") == 42);
string f2(int a, string b) { return b ~ "2"; }
static assert(is(typeof(binaryFun!(f2)(1, "1")) == string));
assert(binaryFun!(f2)(1, "4") == "42");
assert(binaryFun!("a + b")(41, 1) == 42);
//@@BUG
//assert(binaryFun!("return a + b;")(41, 1) == 42);
}
/*
Predicate that returns $(D_PARAM a < b).
*/
//bool less(T)(T a, T b) { return a < b; }
//alias binaryFun!(q{a < b}) less;
/*
Predicate that returns $(D_PARAM a > b).
*/
//alias binaryFun!(q{a > b}) greater;
/*
Predicate that returns $(D_PARAM a == b).
*/
//alias binaryFun!(q{a == b}) equalTo;
/*
Binary predicate that reverses the order of arguments, e.g., given
$(D pred(a, b)), returns $(D pred(b, a)).
*/
template binaryReverseArgs(alias pred)
{
typeof({ ElementType1 a; ElementType2 b; return pred(b, a);}())
binaryReverseArgs(ElementType1, ElementType2)(ElementType1 a,
ElementType2 b)
{
return pred(b, a);
}
}
unittest
{
alias binaryReverseArgs!(binaryFun!("a < b")) gt;
assert(gt(2, 1) && !gt(1, 1));
int x = 42;
bool xyz(int a, int b) { return a * x < b / x; }
auto foo = &xyz;
foo(4, 5);
alias binaryReverseArgs!(foo) zyx;
assert(zyx(5, 4) == foo(4, 5));
}
/**
Negates predicate $(D pred).
Example:
----
string a = " Hello, world!";
assert(find!(not!isspace)(a) == "Hello, world!");
----
*/
template not(alias pred)
{
auto not(T...)(T args)
if (is(typeof(!unaryFun!pred(args))) || is(typeof(!binaryFun!pred(args))))
{
static if (T.length == 1)
return !unaryFun!pred(args);
else static if (T.length == 2)
return !binaryFun!pred(args);
else
static assert(false, "not unimplemented for multiple arguments");
}
}
/**
Curries $(D fun) by tying its first argument to a particular value.
Example:
----
int fun(int a, int b) { return a + b; }
alias curry!(fun, 5) fun5;
assert(fun5(6) == 11);
----
Note that in most cases you'd use an alias instead of a value
assignment. Using an alias allows you to curry template functions
without committing to a particular type of the function.
*/
template curry(alias fun, alias arg)
{
static if (is(typeof(fun) == delegate) || is(typeof(fun) == function))
{
ReturnType!fun curry(ParameterTypeTuple!fun[1] arg2)
{
return fun(arg, arg2);
}
}
else
{
auto curry(T)(T arg2) if (is(typeof(fun(arg, T.init))))
{
return fun(arg, arg2);
}
}
}
private auto add(A, B)(A x, B y)
{
return x + y;
}
unittest
{
alias curry!(add, 5) add5;
assert(add5(6) == 11);
}
unittest
{
// static int f1(int a, int b) { return a + b; }
// assert(curry!(f1, 5)(6) == 11);
int x = 5;
int f2(int a, int b) { return a + b; }
assert(curry!(f2, x)(6) == 11);
auto dg = &f2;
auto f3 = &curry!(dg, x);
assert(f3(6) == 11);
}
/**
Takes multiple functions and adjoins them together. The result is a
$(XREF typecons, Tuple) with one element per passed-in function. Upon
invocation, the returned tuple is the adjoined results of all
functions.
Example:
----
static bool f1(int a) { return a != 0; }
static int f2(int a) { return a / 2; }
auto x = adjoin!(f1, f2)(5);
assert(is(typeof(x) == Tuple!(bool, int)));
assert(x[0] == true && x[1] == 2);
----
*/
template adjoin(F...) if (F.length)
{
auto adjoin(V...)(V a)
{
static if (F.length == 1)
{
return F[0](a);
}
else static if (F.length == 2)
{
return tuple(F[0](a), F[1](a));
}
else
{
alias typeof(F[0](a)) Head;
Tuple!(Head, typeof(.adjoin!(F[1..$])(a)).Types) result = void;
foreach (i, Unused; result.Types)
{
emplace(&result[i], F[i](a));
}
return result;
}
}
}
unittest
{
static bool F1(int a) { return a != 0; }
auto x1 = adjoin!(F1)(5);
static int F2(int a) { return a / 2; }
auto x2 = adjoin!(F1, F2)(5);
assert(is(typeof(x2) == Tuple!(bool, int)));
assert(x2[0] && x2[1] == 2);
auto x3 = adjoin!(F1, F2, F2)(5);
assert(is(typeof(x3) == Tuple!(bool, int, int)));
assert(x3[0] && x3[1] == 2 && x3[2] == 2);
bool F4(int a) { return a != x1; }
alias adjoin!(F4) eff4;
static struct S
{
bool delegate(int) store;
int fun() { return 42 + store(5); }
}
S s;
s.store = (int a) { return eff4(a); };
auto x4 = s.fun();
assert(x4 == 43);
}
// /*private*/ template NaryFun(string fun, string letter, V...)
// {
// static if (V.length == 0)
// {
// enum args = "";
// }
// else
// {
// enum args = V[0].stringof~" "~letter~"; "
// ~NaryFun!(fun, [letter[0] + 1], V[1..$]).args;
// enum code = args ~ "return "~fun~";";
// }
// alias void Result;
// }
// unittest
// {
// writeln(NaryFun!("a * b * 2", "a", int, double).code);
// }
// /**
// naryFun
// */
// template naryFun(string fun)
// {
// //NaryFun!(fun, "a", V).Result
// int naryFun(V...)(V values)
// {
// enum string code = NaryFun!(fun, "a", V).code;
// mixin(code);
// }
// }
// unittest
// {
// alias naryFun!("a + b") test;
// test(1, 2);
// }
/**
Composes passed-in functions $(D fun[0], fun[1], ...) returning a
function $(D f(x)) that in turn returns $(D
fun[0](fun[1](...(x)))...). Each function can be a regular
functions, a delegate, or a string.
Example:
----
// First split a string in whitespace-separated tokens and then
// convert each token into an integer
assert(compose!(map!(to!(int)), split)("1 2 3") == [1, 2, 3]);
----
*/
template compose(fun...) { alias composeImpl!(fun).doIt compose; }
// Implementation of compose
template composeImpl(fun...)
{
static if (fun.length == 1)
{
static if (is(typeof(fun[0]) : string))
alias unaryFun!(fun[0]) doIt;
else
alias fun[0] doIt;
}
else static if (fun.length == 2)
{
// starch
static if (is(typeof(fun[0]) : string))
alias unaryFun!(fun[0]) fun0;
else
alias fun[0] fun0;
static if (is(typeof(fun[1]) : string))
alias unaryFun!(fun[1]) fun1;
else
alias fun[1] fun1;
// protein: the core composition operation
typeof({ E a; return fun0(fun1(a)); }()) doIt(E)(E a)
{
return fun0(fun1(a));
}
}
else
{
// protein: assembling operations
alias composeImpl!(fun[0], composeImpl!(fun[1 .. $]).doIt).doIt doIt;
}
}
/**
Pipes functions in sequence. Offers the same functionality as $(D
compose), but with functions specified in reverse order. This may
lead to more readable code in some situation because the order of
execution is the same as lexical order.
Example:
----
// Read an entire text file, split the resulting string in
// whitespace-separated tokens, and then convert each token into an
// integer
int[] a = pipe!(readText, split, map!(to!(int)))("file.txt");
----
*/
template pipe(fun...)
{
alias compose!(Reverse!(fun)) pipe;
}
unittest
{
string foo(int a) { return to!(string)(a); }
int bar(string a) { return to!(int)(a) + 1; }
double baz(int a) { return a + 0.5; }
assert(compose!(baz, bar, foo)(1) == 2.5);
assert(pipe!(foo, bar, baz)(1) == 2.5);
assert(compose!(baz, `to!(int)(a) + 1`, foo)(1) == 2.5);
assert(compose!(baz, bar)("1"[]) == 2.5);
assert(compose!(baz, bar)("1") == 2.5);
// @@@BUG@@@
//assert(compose!(`a + 0.5`, `to!(int)(a) + 1`, foo)(1) == 2.5);
}
/**
* $(LUCKY Memoizes) a function so as to avoid repeated
* computation. The memoization structure is a hash table keyed by a
* tuple of the function's arguments. There is a speed gain if the
* function is repeatedly called with the same arguments and is more
* expensive than a hash table lookup. For more information on memoization, refer to $(WEB docs.google.com/viewer?url=http%3A%2F%2Fhop.perl.plover.com%2Fbook%2Fpdf%2F03CachingAndMemoization.pdf, this book chapter).
Example:
----
double transmogrify(int a, string b)
{
... expensive computation ...
}
alias memoize!transmogrify fastTransmogrify;
unittest
{
auto slow = transmogrify(2, "hello");
auto fast = fastTransmogrify(2, "hello");
assert(slow == fast);
}
----
Technically the memoized function should be pure because $(D memoize) assumes it will
always return the same result for a given tuple of arguments. However, $(D memoize) does not
enforce that because sometimes it
is useful to memoize an impure function, too.
To _memoize a recursive function, simply insert the memoized call in lieu of the plain recursive call.
For example, to transform the exponential-time Fibonacci implementation into a linear-time computation:
Example:
----
ulong fib(ulong n)
{
alias memoize!fib mfib;
return n < 2 ? 1 : mfib(n - 2) + mfib(n - 1);
}
...
assert(fib(10) == 89);
----
To improve the speed of the factorial function,
Example:
----
ulong fact(ulong n)
{
alias memoize!fact mfact;
return n < 2 ? 1 : n * mfact(n - 1);
}
...
assert(fact(10) == 3628800);
----
This memoizes all values of $(D fact) up to the largest argument. To only cache the final
result, move $(D memoize) outside the function as shown below.
Example:
----
ulong factImpl(ulong n)
{
return n < 2 ? 1 : n * mfact(n - 1);
}
alias memoize!factImpl fact;
...
assert(fact(10) == 3628800);
----
The $(D maxSize) parameter is a cutoff for the cache size. If upon a miss the length of the hash
table is found to be $(D maxSize), the table is simply cleared.
Example:
----
// Memoize no more than 128 values of transmogrify
alias memoize!(transmogrify, 128) fastTransmogrify;
----
*/
template memoize(alias fun, uint maxSize = uint.max)
{
ReturnType!fun memoize(ParameterTypeTuple!fun args)
{
static ReturnType!fun[Tuple!(typeof(args))] memo;
auto t = tuple(args);
auto p = t in memo;
if (p) return *p;
static if (maxSize != uint.max)
{
if (memo.length >= maxSize) memo = null;
}
auto r = fun(args);
//writeln("Inserting result ", typeof(r).stringof, "(", r, ") for parameters ", t);
memo[t] = r;
return r;
}
}
unittest
{
alias memoize!(function double(double x) { return sqrt(x); }) msqrt;
auto y = msqrt(2.0);
assert(y == msqrt(2.0));
y = msqrt(4.0);
assert(y == sqrt(4.0));
// alias memoize!rgb2cmyk mrgb2cmyk;
// auto z = mrgb2cmyk([43, 56, 76]);
// assert(z == mrgb2cmyk([43, 56, 76]));
//alias memoize!fib mfib;
static ulong fib(ulong n)
{
alias memoize!fib mfib;
return n < 2 ? 1 : mfib(n - 2) + mfib(n - 1);
}
auto z = fib(10);
assert(z == 89);
static ulong fact(ulong n)
{
alias memoize!fact mfact;
return n < 2 ? 1 : n * mfact(n - 1);
}
assert(fact(10) == 3628800);
}
private struct DelegateFaker(F) {
/*
* What all the stuff below does is this:
*--------------------
* struct DelegateFaker(F) {
* extern(linkage)
* [ref] ReturnType!F doIt(ParameterTypeTuple!F args) [@attributes]
* {
* auto fp = cast(F) &this;
* return fp(args);
* }
* }
*--------------------
*/
// We will use MemberFunctionGenerator in std.typecons. This is a policy
// configuration for generating the doIt().
template GeneratingPolicy()
{
// Inform the genereator that we only have type information.
enum WITHOUT_SYMBOL = true;
// Generate the function body of doIt().
template generateFunctionBody(unused...)
{
enum generateFunctionBody =
// [ref] ReturnType doIt(ParameterTypeTuple args) @attributes
q{
// When this function gets called, the this pointer isn't
// really a this pointer (no instance even really exists), but
// a function pointer that points to the function to be called.
// Cast it to the correct type and call it.
auto fp = cast(F) &this; // XXX doesn't work with @safe
return fp(args);
};
}
}
// Type information used by the generated code.
alias FuncInfo!(F) FuncInfo_doIt;
// Generate the member function doIt().
mixin( std.typecons.MemberFunctionGenerator!(GeneratingPolicy!())
.generateFunction!("FuncInfo_doIt", "doIt", F) );
}
/**
* Convert a callable to a delegate with the same parameter list and
* return type, avoiding heap allocations and use of auxiliary storage.
*
* Examples:
* ----
* void doStuff() {
* writeln("Hello, world.");
* }
*
* void runDelegate(void delegate() myDelegate) {
* myDelegate();
* }
*
* auto delegateToPass = toDelegate(&doStuff);
* runDelegate(delegateToPass); // Calls doStuff, prints "Hello, world."
* ----
*
* BUGS:
* $(UL
* $(LI Does not work with $(D @safe) functions.)
* $(LI Ignores C-style / D-style variadic arguments.)
* )
*/
auto toDelegate(F)(auto ref F fp) if (isCallable!(F))
{
static if (is(F == delegate))
{
return fp;
}
else static if (is(typeof(&F.opCall) == delegate)
|| (is(typeof(&F.opCall) V : V*) && is(V == function)))
{
return toDelegate(&fp.opCall);
}
else
{
alias typeof(&(new DelegateFaker!(F)).doIt) DelType;
static struct DelegateFields {
union {
DelType del;
//pragma(msg, typeof(del));
struct {
void* contextPtr;
void* funcPtr;
}
}
}
// fp is stored in the returned delegate's context pointer.
// The returned delegate's function pointer points to
// DelegateFaker.doIt.
DelegateFields df;
df.contextPtr = cast(void*) fp;
DelegateFaker!(F) dummy;
auto dummyDel = &(dummy.doIt);
df.funcPtr = dummyDel.funcptr;
return df.del;
}
}
unittest {
static int inc(ref uint num) {
num++;
return 8675309;
}
uint myNum = 0;
auto incMyNumDel = toDelegate(&inc);
static assert(is(typeof(incMyNumDel) == int delegate(ref uint)));
auto returnVal = incMyNumDel(myNum);
assert(myNum == 1);
interface I { int opCall(); }
class C: I { int opCall() { inc(myNum); return myNum;} }
auto c = new C;
auto i = cast(I) c;
auto getvalc = toDelegate(c);
assert(getvalc() == 2);
auto getvali = toDelegate(i);
assert(getvali() == 3);
struct S1 { int opCall() { inc(myNum); return myNum; } }
static assert(!is(typeof(&s1.opCall) == delegate));
S1 s1;
auto getvals1 = toDelegate(s1);
assert(getvals1() == 4);
struct S2 { static int opCall() { return 123456; } }
static assert(!is(typeof(&S2.opCall) == delegate));
S2 s2;
auto getvals2 =&S2.opCall;
assert(getvals2() == 123456);
/* test for attributes */
{
static int refvar = 0xDeadFace;
static ref int func_ref() { return refvar; }
static int func_pure() pure { return 1; }
static int func_nothrow() nothrow { return 2; }
static int func_property() @property { return 3; }
static int func_safe() @safe { return 4; }
static int func_trusted() @trusted { return 5; }
static int func_system() @system { return 6; }
static int func_pure_nothrow() pure nothrow { return 7; }
static int func_pure_nothrow_safe() pure @safe { return 8; }
auto dg_ref = toDelegate(&func_ref);
auto dg_pure = toDelegate(&func_pure);
auto dg_nothrow = toDelegate(&func_nothrow);
auto dg_property = toDelegate(&func_property);
//auto dg_safe = toDelegate(&func_safe);
auto dg_trusted = toDelegate(&func_trusted);
auto dg_system = toDelegate(&func_system);
auto dg_pure_nothrow = toDelegate(&func_pure_nothrow);
//auto dg_pure_nothrow_safe = toDelegate(&func_pure_nothrow_safe);
//static assert(is(typeof(dg_ref) == ref int delegate())); // [BUG@DMD]
static assert(is(typeof(dg_pure) == int delegate() pure));
static assert(is(typeof(dg_nothrow) == int delegate() nothrow));
static assert(is(typeof(dg_property) == int delegate() @property));
//static assert(is(typeof(dg_safe) == int delegate() @safe));
static assert(is(typeof(dg_trusted) == int delegate() @trusted));
static assert(is(typeof(dg_system) == int delegate() @system));
static assert(is(typeof(dg_pure_nothrow) == int delegate() pure nothrow));
//static assert(is(typeof(dg_pure_nothrow_safe) == int delegate() pure nothrow @safe));
assert(dg_ref() == refvar);
assert(dg_pure() == 1);
assert(dg_nothrow() == 2);
assert(dg_property() == 3);
//assert(dg_safe() == 4);
assert(dg_trusted() == 5);
assert(dg_system() == 6);
assert(dg_pure_nothrow() == 7);
//assert(dg_pure_nothrow_safe() == 8);
}
/* test for linkage */
{
struct S
{
extern(C) static void xtrnC() {}
extern(D) static void xtrnD() {}
}
auto dg_xtrnC = toDelegate(&S.xtrnC);
auto dg_xtrnD = toDelegate(&S.xtrnD);
static assert(! is(typeof(dg_xtrnC) == typeof(dg_xtrnD)));
}
}