phobos/std/date.d
2011-02-26 15:32:21 -06:00

1214 lines
31 KiB
D

// Written in the D programming language.
/**
* $(RED Scheduled for deprecation. Please use std.datetime instead.)
*
* Dates are represented in several formats. The date implementation
* revolves around a central type, $(D d_time), from which other
* formats are converted to and from. Dates are calculated using the
* Gregorian calendar.
*
* References: $(WEB wikipedia.org/wiki/Gregorian_calendar, Gregorian
* calendar (Wikipedia))
*
* Macros: WIKI = Phobos/StdDate
*
* Copyright: Copyright Digital Mars 2000 - 2009.
* License: <a href="http://www.boost.org/LICENSE_1_0.txt">Boost License 1.0</a>.
* Authors: $(WEB digitalmars.com, Walter Bright)
* Source: $(PHOBOSSRC std/_date.d)
*/
/* Copyright Digital Mars 2000 - 2009.
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*/
module std.date;
import std.conv, std.datebase, std.dateparse, std.exception, std.stdio;
import std.c.stdlib;
pragma(msg, "std.date and std.dateparse have been scheduled for deprecation. "
"Please use std.datetime instead.");
/**
* $(D d_time) is a signed arithmetic type giving the time elapsed
* since January 1, 1970. Negative values are for dates preceding
* 1970. The time unit used is Ticks. Ticks are milliseconds or
* smaller intervals.
*
* The usual arithmetic operations can be performed on d_time, such as adding,
* subtracting, etc. Elapsed time in Ticks can be computed by subtracting a
* starting d_time from an ending d_time.
*/
alias long d_time;
/**
* A value for d_time that does not represent a valid time.
*/
enum d_time d_time_nan = long.min;
/**
* Time broken down into its components.
*/
struct Date
{
int year = int.min; /// use int.min as "nan" year value
int month; /// 1..12
int day; /// 1..31
int hour; /// 0..23
int minute; /// 0..59
int second; /// 0..59
int ms; /// 0..999
int weekday; /// 0: not specified, 1..7: Sunday..Saturday
int tzcorrection = int.min; /// -1200..1200 correction in hours
/// Parse date out of string s[] and store it in this Date instance.
void parse(string s)
{
DateParse dp;
dp.parse(s, this);
}
}
enum
{
hoursPerDay = 24,
minutesPerHour = 60,
msPerMinute = 60 * 1000,
msPerHour = 60 * msPerMinute,
msPerDay = 86_400_000,
ticksPerMs = 1,
ticksPerSecond = 1000, /// Will be at least 1000
ticksPerMinute = ticksPerSecond * 60,
ticksPerHour = ticksPerMinute * 60,
ticksPerDay = ticksPerHour * 24,
}
deprecated alias ticksPerSecond TicksPerSecond;
deprecated alias ticksPerMs TicksPerMs;
deprecated alias ticksPerMinute TicksPerMinute;
deprecated alias ticksPerHour TicksPerHour;
deprecated alias ticksPerDay TicksPerDay;
deprecated
unittest
{
assert(ticksPerSecond == TicksPerSecond);
}
__gshared d_time localTZA = 0;
private immutable char[] daystr = "SunMonTueWedThuFriSat";
private immutable char[] monstr = "JanFebMarAprMayJunJulAugSepOctNovDec";
private immutable int[12] mdays =
[ 0,31,59,90,120,151,181,212,243,273,304,334 ];
/********************************
* Compute year and week [1..53] from t. The ISO 8601 week 1 is the first week
* of the year that includes January 4. Monday is the first day of the week.
* References:
* $(LINK2 http://en.wikipedia.org/wiki/ISO_8601, ISO 8601 (Wikipedia))
*/
void toISO8601YearWeek(d_time t, out int year, out int week)
{
year = yearFromTime(t);
auto yday = day(t) - dayFromYear(year);
/* Determine day of week Jan 4 falls on.
* Weeks begin on a Monday.
*/
auto d = dayFromYear(year);
auto w = (d + 3/*Jan4*/ + 3) % 7;
if (w < 0)
w += 7;
/* Find yday of beginning of ISO 8601 year
*/
auto ydaybeg = 3/*Jan4*/ - w;
/* Check if yday is actually the last week of the previous year
*/
if (yday < ydaybeg)
{
year -= 1;
week = 53;
return;
}
/* Check if yday is actually the first week of the next year
*/
if (yday >= 362) // possible
{ int d2;
int ydaybeg2;
d2 = dayFromYear(year + 1);
w = (d2 + 3/*Jan4*/ + 3) % 7;
if (w < 0)
w += 7;
//printf("w = %d\n", w);
ydaybeg2 = 3/*Jan4*/ - w;
if (d + yday >= d2 + ydaybeg2)
{
year += 1;
week = 1;
return;
}
}
week = (yday - ydaybeg) / 7 + 1;
}
/* ***********************************
* Divide time by divisor. Always round down, even if d is negative.
*/
pure d_time floor(d_time d, int divisor)
{
return (d < 0 ? d - divisor - 1 : d) / divisor;
}
int dmod(d_time n, d_time d)
{ d_time r;
r = n % d;
if (r < 0)
r += d;
assert(cast(int)r == r);
return cast(int)r;
}
/********************************
* Calculates the hour from time.
*
* Params:
* time = The time to compute the hour from.
* Returns:
* The calculated hour, 0..23.
*/
int hourFromTime(d_time time)
{
return dmod(floor(time, msPerHour), hoursPerDay);
}
/********************************
* Calculates the minute from time.
*
* Params:
* time = The time to compute the minute from.
* Returns:
* The calculated minute, 0..59.
*/
int minFromTime(d_time time)
{
return dmod(floor(time, msPerMinute), minutesPerHour);
}
/********************************
* Calculates the second from time.
*
* Params:
* time = The time to compute the second from.
* Returns:
* The calculated second, 0..59.
*/
int secFromTime(d_time time)
{
return dmod(floor(time, ticksPerSecond), 60);
}
/********************************
* Calculates the milisecond from time.
*
* Params:
* time = The time to compute the milisecond from.
* Returns:
* The calculated milisecond, 0..999.
*/
int msFromTime(d_time time)
{
return dmod(time / (ticksPerSecond / 1000), 1000);
}
int timeWithinDay(d_time t)
{
return dmod(t, msPerDay);
}
d_time toInteger(d_time n)
{
return n;
}
int day(d_time t)
{
return cast(int)floor(t, msPerDay);
}
pure bool leapYear(uint y)
{
return (y % 4) == 0 && (y % 100 || (y % 400) == 0);
}
unittest {
assert(!leapYear(1970));
assert(leapYear(1984));
assert(leapYear(2000));
assert(!leapYear(2100));
}
/********************************
* Calculates the number of days that exists in a year.
*
* Leap years have 366 days, while other years have 365.
*
* Params:
* year = The year to compute the number of days from.
* Returns:
* The number of days in the year, 365 or 366.
*/
pure uint daysInYear(uint year)
{
return (leapYear(year) ? 366 : 365);
}
/********************************
* Calculates the number of days elapsed since 1 January 1970
* until 1 January of the given year.
*
* Params:
* year = The year to compute the number of days from.
* Returns:
* The number of days elapsed.
*
* Example:
* ----------
* writeln(dayFromYear(1970)); // writes '0'
* writeln(dayFromYear(1971)); // writes '365'
* writeln(dayFromYear(1972)); // writes '730'
* ----------
*/
pure int dayFromYear(int year)
{
return cast(int) (365 * (year - 1970) +
floor((year - 1969), 4) -
floor((year - 1901), 100) +
floor((year - 1601), 400));
}
pure d_time timeFromYear(int y)
{
return cast(d_time)msPerDay * dayFromYear(y);
}
/*****************************
* Calculates the year from the d_time t.
*/
pure int yearFromTime(d_time t)
{
if (t == d_time_nan)
return 0;
// Hazard a guess
//y = 1970 + cast(int) (t / (365.2425 * msPerDay));
// Use integer only math
int y = 1970 + cast(int) (t / (3652425 * (msPerDay / 10000)));
if (timeFromYear(y) <= t)
{
while (timeFromYear(y + 1) <= t)
y++;
}
else
{
do
{
y--;
}
while (timeFromYear(y) > t);
}
return y;
}
/*******************************
* Determines if d_time t is a leap year.
*
* A leap year is every 4 years except years ending in 00 that are not
* divsible by 400.
*
* Returns: !=0 if it is a leap year.
*
* References:
* $(LINK2 http://en.wikipedia.org/wiki/Leap_year, Wikipedia)
*/
pure bool inLeapYear(d_time t)
{
return leapYear(yearFromTime(t));
}
/*****************************
* Calculates the month from the d_time t.
*
* Returns: Integer in the range 0..11, where
* 0 represents January and 11 represents December.
*/
int monthFromTime(d_time t)
{
auto year = yearFromTime(t);
auto day = day(t) - dayFromYear(year);
int month;
if (day < 59)
{
if (day < 31)
{ assert(day >= 0);
month = 0;
}
else
month = 1;
}
else
{
day -= leapYear(year);
if (day < 212)
{
if (day < 59)
month = 1;
else if (day < 90)
month = 2;
else if (day < 120)
month = 3;
else if (day < 151)
month = 4;
else if (day < 181)
month = 5;
else
month = 6;
}
else
{
if (day < 243)
month = 7;
else if (day < 273)
month = 8;
else if (day < 304)
month = 9;
else if (day < 334)
month = 10;
else if (day < 365)
month = 11;
else
assert(0);
}
}
return month;
}
/*******************************
* Compute which day in a month a d_time t is.
* Returns:
* Integer in the range 1..31
*/
int dateFromTime(d_time t)
{
auto year = yearFromTime(t);
auto day = day(t) - dayFromYear(year);
auto leap = leapYear(year);
auto month = monthFromTime(t);
int date;
switch (month)
{
case 0: date = day + 1; break;
case 1: date = day - 30; break;
case 2: date = day - 58 - leap; break;
case 3: date = day - 89 - leap; break;
case 4: date = day - 119 - leap; break;
case 5: date = day - 150 - leap; break;
case 6: date = day - 180 - leap; break;
case 7: date = day - 211 - leap; break;
case 8: date = day - 242 - leap; break;
case 9: date = day - 272 - leap; break;
case 10: date = day - 303 - leap; break;
case 11: date = day - 333 - leap; break;
default:
assert(0);
}
return date;
}
/*******************************
* Compute which day of the week a d_time t is.
* Returns:
* Integer in the range 0..6, where 0 represents Sunday
* and 6 represents Saturday.
*/
int weekDay(d_time t)
{
auto w = (cast(int)day(t) + 4) % 7;
if (w < 0)
w += 7;
return w;
}
/***********************************
* Convert from UTC to local time.
*/
d_time UTCtoLocalTime(d_time t)
{
return (t == d_time_nan)
? d_time_nan
: t + localTZA + daylightSavingTA(t);
}
/***********************************
* Convert from local time to UTC.
*/
d_time localTimetoUTC(d_time t)
{
return (t == d_time_nan)
? d_time_nan
/* BUGZILLA 1752 says this line should be:
* : t - localTZA - daylightSavingTA(t);
*/
: t - localTZA - daylightSavingTA(t - localTZA);
}
d_time makeTime(d_time hour, d_time min, d_time sec, d_time ms)
{
return hour * ticksPerHour +
min * ticksPerMinute +
sec * ticksPerSecond +
ms * ticksPerMs;
}
/* *****************************
* Params:
* month = 0..11
* date = day of month, 1..31
* Returns:
* number of days since start of epoch
*/
d_time makeDay(d_time year, d_time month, d_time date)
{
const y = cast(int)(year + floor(month, 12));
const m = dmod(month, 12);
const leap = leapYear(y);
auto t = timeFromYear(y) + cast(d_time) mdays[m] * msPerDay;
if (leap && month >= 2)
t += msPerDay;
if (yearFromTime(t) != y ||
monthFromTime(t) != m ||
dateFromTime(t) != 1)
{
return d_time_nan;
}
return day(t) + date - 1;
}
d_time makeDate(d_time day, d_time time)
{
if (day == d_time_nan || time == d_time_nan)
return d_time_nan;
return day * ticksPerDay + time;
}
d_time timeClip(d_time time)
{
//printf("TimeClip(%g) = %g\n", time, toInteger(time));
return toInteger(time);
}
/***************************************
* Determine the date in the month, 1..31, of the nth
* weekday.
* Params:
* year = year
* month = month, 1..12
* weekday = day of week 0..6 representing Sunday..Saturday
* n = nth occurrence of that weekday in the month, 1..5, where
* 5 also means "the last occurrence in the month"
* Returns:
* the date in the month, 1..31, of the nth weekday
*/
int dateFromNthWeekdayOfMonth(int year, int month, int weekday, int n)
in
{
assert(1 <= month && month <= 12);
assert(0 <= weekday && weekday <= 6);
assert(1 <= n && n <= 5);
}
body
{
// Get day of the first of the month
auto x = makeDay(year, month - 1, 1);
// Get the week day 0..6 of the first of this month
auto wd = weekDay(makeDate(x, 0));
// Get monthday of first occurrence of weekday in this month
auto mday = weekday - wd + 1;
if (mday < 1)
mday += 7;
// Add in number of weeks
mday += (n - 1) * 7;
// If monthday is more than the number of days in the month,
// back up to 'last' occurrence
if (mday > 28 && mday > daysInMonth(year, month))
{ assert(n == 5);
mday -= 7;
}
return mday;
}
unittest
{
assert(dateFromNthWeekdayOfMonth(2003, 3, 0, 5) == 30);
assert(dateFromNthWeekdayOfMonth(2003, 10, 0, 5) == 26);
assert(dateFromNthWeekdayOfMonth(2004, 3, 0, 5) == 28);
assert(dateFromNthWeekdayOfMonth(2004, 10, 0, 5) == 31);
}
/**************************************
* Determine the number of days in a month, 1..31.
* Params:
* month = 1..12
*/
int daysInMonth(int year, int month)
{
switch (month)
{
case 1:
case 3:
case 5:
case 7:
case 8:
case 10:
case 12:
return 31;
case 2:
return 28 + leapYear(year);
case 4:
case 6:
case 9:
case 11:
return 30;
default:
break;
}
return enforce(false, "Invalid month passed to daysInMonth");
}
unittest
{
assert(daysInMonth(2003, 2) == 28);
assert(daysInMonth(2004, 2) == 29);
}
/*************************************
* Converts UTC time into a text string of the form:
* "Www Mmm dd hh:mm:ss GMT+-TZ yyyy".
* For example, "Tue Apr 02 02:04:57 GMT-0800 1996".
* If time is invalid, i.e. is d_time_nan,
* the string "Invalid date" is returned.
*
* Example:
* ------------------------------------
d_time lNow;
char[] lNowString;
// Grab the date and time relative to UTC
lNow = std.date.getUTCtime();
// Convert this into the local date and time for display.
lNowString = std.date.UTCtoString(lNow);
* ------------------------------------
*/
string UTCtoString(d_time time)
{
// Years are supposed to be -285616 .. 285616, or 7 digits
// "Tue Apr 02 02:04:57 GMT-0800 1996"
auto buffer = new char[29 + 7 + 1];
if (time == d_time_nan)
return "Invalid Date";
auto dst = daylightSavingTA(time);
auto offset = localTZA + dst;
auto t = time + offset;
auto sign = '+';
if (offset < 0)
{ sign = '-';
// offset = -offset;
offset = -(localTZA + dst);
}
auto mn = cast(int)(offset / msPerMinute);
auto hr = mn / 60;
mn %= 60;
//printf("hr = %d, offset = %g, localTZA = %g, dst = %g, + = %g\n", hr, offset, localTZA, dst, localTZA + dst);
auto len = sprintf(buffer.ptr,
"%.3s %.3s %02d %02d:%02d:%02d GMT%c%02d%02d %d",
&daystr[weekDay(t) * 3],
&monstr[monthFromTime(t) * 3],
dateFromTime(t),
hourFromTime(t), minFromTime(t), secFromTime(t),
sign, hr, mn,
cast(long)yearFromTime(t));
// Ensure no buggy buffer overflows
//printf("len = %d, buffer.length = %d\n", len, buffer.length);
assert(len < buffer.length);
buffer = buffer[0 .. len];
return assumeUnique(buffer);
}
/// Alias for UTCtoString (deprecated).
deprecated alias UTCtoString toString;
/***********************************
* Converts t into a text string of the form: "Www, dd Mmm yyyy hh:mm:ss UTC".
* If t is invalid, "Invalid date" is returned.
*/
string toUTCString(d_time t)
{
// Years are supposed to be -285616 .. 285616, or 7 digits
// "Tue, 02 Apr 1996 02:04:57 GMT"
auto buffer = new char[25 + 7 + 1];
if (t == d_time_nan)
return "Invalid Date";
auto len = sprintf(buffer.ptr, "%.3s, %02d %.3s %d %02d:%02d:%02d UTC",
&daystr[weekDay(t) * 3], dateFromTime(t),
&monstr[monthFromTime(t) * 3],
yearFromTime(t),
hourFromTime(t), minFromTime(t), secFromTime(t));
// Ensure no buggy buffer overflows
assert(len < buffer.length);
return cast(string) buffer[0 .. len];
}
/************************************
* Converts the date portion of time into a text string of the form: "Www Mmm dd
* yyyy", for example, "Tue Apr 02 1996".
* If time is invalid, "Invalid date" is returned.
*/
string toDateString(d_time time)
{
// Years are supposed to be -285616 .. 285616, or 7 digits
// "Tue Apr 02 1996"
auto buffer = new char[29 + 7 + 1];
if (time == d_time_nan)
return "Invalid Date";
auto dst = daylightSavingTA(time);
auto offset = localTZA + dst;
auto t = time + offset;
auto len = sprintf(buffer.ptr, "%.3s %.3s %02d %d",
&daystr[weekDay(t) * 3],
&monstr[monthFromTime(t) * 3],
dateFromTime(t),
cast(long)yearFromTime(t));
// Ensure no buggy buffer overflows
assert(len < buffer.length);
return cast(string) buffer[0 .. len];
}
/******************************************
* Converts the time portion of t into a text string of the form: "hh:mm:ss
* GMT+-TZ", for example, "02:04:57 GMT-0800".
* If t is invalid, "Invalid date" is returned.
* The input must be in UTC, and the output is in local time.
*/
string toTimeString(d_time time)
{
// "02:04:57 GMT-0800"
auto buffer = new char[17 + 1];
if (time == d_time_nan)
return "Invalid Date";
auto dst = daylightSavingTA(time);
auto offset = localTZA + dst;
auto t = time + offset;
auto sign = '+';
if (offset < 0)
{ sign = '-';
// offset = -offset;
offset = -(localTZA + dst);
}
auto mn = cast(int)(offset / msPerMinute);
auto hr = mn / 60;
mn %= 60;
//printf("hr = %d, offset = %g, localTZA = %g, dst = %g, + = %g\n", hr, offset, localTZA, dst, localTZA + dst);
auto len = sprintf(buffer.ptr, "%02d:%02d:%02d GMT%c%02d%02d",
hourFromTime(t), minFromTime(t), secFromTime(t),
sign, hr, mn);
// Ensure no buggy buffer overflows
assert(len < buffer.length);
// Lop off terminating 0
return cast(string) buffer[0 .. len];
}
/******************************************
* Parses s as a textual date string, and returns it as a d_time. If
* the string is not a valid date, $(D d_time_nan) is returned.
*/
d_time parse(string s)
{
try
{
Date dp;
dp.parse(s);
auto time = makeTime(dp.hour, dp.minute, dp.second, dp.ms);
// Assume UTC if no tzcorrection is set (runnable/testdate).
if (dp.tzcorrection != int.min)
{
time += cast(d_time)(dp.tzcorrection / 100) * msPerHour +
cast(d_time)(dp.tzcorrection % 100) * msPerMinute;
}
auto day = makeDay(dp.year, dp.month - 1, dp.day);
auto result = makeDate(day,time);
return timeClip(result);
}
catch
{
return d_time_nan; // erroneous date string
}
}
extern(C) void std_date_static_this()
{
localTZA = getLocalTZA();
}
version (Win32)
{
private import std.c.windows.windows;
//import c.time;
/******
* Get current UTC time.
*/
d_time getUTCtime()
{
SYSTEMTIME st;
GetSystemTime(&st); // get time in UTC
return SYSTEMTIME2d_time(&st, 0);
//return c.time.time(null) * ticksPerSecond;
}
static d_time FILETIME2d_time(const FILETIME *ft)
{
SYSTEMTIME st = void;
if (!FileTimeToSystemTime(ft, &st))
return d_time_nan;
return SYSTEMTIME2d_time(&st, 0);
}
FILETIME d_time2FILETIME(d_time dt)
{
static assert(10_000_000 >= ticksPerSecond);
static assert(10_000_000 % ticksPerSecond == 0);
enum ulong ticksFrom1601To1970 = 11_644_473_600UL * ticksPerSecond;
ulong t = (dt + ticksFrom1601To1970) * (10_000_000 / ticksPerSecond);
FILETIME result = void;
result.dwLowDateTime = cast(uint) (t & uint.max);
result.dwHighDateTime = cast(uint) (t >> 32);
return result;
}
unittest
{
auto dt = getUTCtime;
auto ft = d_time2FILETIME(dt);
auto dt1 = FILETIME2d_time(&ft);
assert(dt == dt1, text(dt, " != ", dt1));
}
static d_time SYSTEMTIME2d_time(const SYSTEMTIME *st, d_time t)
{
/* More info: http://delphicikk.atw.hu/listaz.php?id=2667&oldal=52
*/
d_time day = void;
d_time time = void;
if (st.wYear)
{
time = makeTime(st.wHour, st.wMinute, st.wSecond, st.wMilliseconds);
day = makeDay(st.wYear, st.wMonth - 1, st.wDay);
}
else
{ /* wYear being 0 is a flag to indicate relative time:
* wMonth is the month 1..12
* wDayOfWeek is weekday 0..6 corresponding to Sunday..Saturday
* wDay is the nth time, 1..5, that wDayOfWeek occurs
*/
auto year = yearFromTime(t);
auto mday = dateFromNthWeekdayOfMonth(year,
st.wMonth, st.wDay, st.wDayOfWeek);
day = makeDay(year, st.wMonth - 1, mday);
time = makeTime(st.wHour, st.wMinute, 0, 0);
}
auto n = makeDate(day,time);
return timeClip(n);
}
d_time getLocalTZA()
{
TIME_ZONE_INFORMATION tzi = void;
/* http://msdn.microsoft.com/library/en-us/sysinfo/base/gettimezoneinformation.asp
* http://msdn2.microsoft.com/en-us/library/ms725481.aspx
*/
auto r = GetTimeZoneInformation(&tzi);
//printf("bias = %d\n", tzi.Bias);
//printf("standardbias = %d\n", tzi.StandardBias);
//printf("daylightbias = %d\n", tzi.DaylightBias);
switch (r)
{
case TIME_ZONE_ID_STANDARD:
return -(tzi.Bias + tzi.StandardBias)
* cast(d_time)(60 * ticksPerSecond);
case TIME_ZONE_ID_DAYLIGHT:
// falthrough
//t = -(tzi.Bias + tzi.DaylightBias) * cast(d_time)(60 * ticksPerSecond);
//break;
case TIME_ZONE_ID_UNKNOWN:
return -(tzi.Bias) * cast(d_time)(60 * ticksPerSecond);
default:
return 0;
}
}
/*
* Get daylight savings time adjust for time dt.
*/
int daylightSavingTA(d_time dt)
{
TIME_ZONE_INFORMATION tzi = void;
d_time ts;
d_time td;
/* http://msdn.microsoft.com/library/en-us/sysinfo/base/gettimezoneinformation.asp
*/
auto r = GetTimeZoneInformation(&tzi);
auto t = 0;
switch (r)
{
case TIME_ZONE_ID_STANDARD:
case TIME_ZONE_ID_DAYLIGHT:
if (tzi.StandardDate.wMonth == 0 ||
tzi.DaylightDate.wMonth == 0)
break;
ts = SYSTEMTIME2d_time(&tzi.StandardDate, dt);
td = SYSTEMTIME2d_time(&tzi.DaylightDate, dt);
if (td <= dt && dt < ts)
{
t = -tzi.DaylightBias * (60 * ticksPerSecond);
//printf("DST is in effect, %d\n", t);
}
else
{
//printf("no DST\n");
}
break;
case TIME_ZONE_ID_UNKNOWN:
// Daylight savings time not used in this time zone
break;
default:
assert(0);
}
return t;
}
}
version (Posix)
{
private import core.sys.posix.time;
private import core.sys.posix.sys.time;
/******
* Get current UTC time.
*/
d_time getUTCtime()
{ timeval tv;
//printf("getUTCtime()\n");
if (gettimeofday(&tv, null))
{ // Some error happened - try time() instead
return time(null) * ticksPerSecond;
}
return tv.tv_sec * cast(d_time)ticksPerSecond +
(tv.tv_usec / (1000000 / cast(d_time)ticksPerSecond));
}
d_time getLocalTZA()
{
time_t t;
time(&t);
version (OSX)
{
tm result;
localtime_r(&t, &result);
return result.tm_gmtoff * ticksPerSecond;
}
else version (FreeBSD)
{
tm result;
localtime_r(&t, &result);
return result.tm_gmtoff * ticksPerSecond;
}
else
{
localtime(&t); // this will set timezone
return -(timezone * ticksPerSecond);
}
}
/*
* Get daylight savings time adjust for time dt.
*/
int daylightSavingTA(d_time dt)
{
tm *tmp;
time_t t;
int dst = 0;
if (dt != d_time_nan)
{
d_time seconds = dt / ticksPerSecond;
t = cast(time_t) seconds;
if (t == seconds) // if in range
{
tmp = localtime(&t);
if (tmp.tm_isdst > 0)
dst = ticksPerHour; // BUG: Assume daylight savings time is plus one hour.
}
else // out of range for system time, use our own calculation
{
/* BUG: this works for the US, but not other timezones.
*/
dt -= localTZA;
int year = yearFromTime(dt);
/* Compute time given year, month 1..12,
* week in month, weekday, hour
*/
d_time dstt(int year, int month, int week, int weekday, int hour)
{
auto mday = dateFromNthWeekdayOfMonth(year, month, weekday, week);
return timeClip(makeDate(
makeDay(year, month - 1, mday),
makeTime(hour, 0, 0, 0)));
}
d_time start;
d_time end;
if (year < 2007)
{ // Daylight savings time goes from 2 AM the first Sunday
// in April through 2 AM the last Sunday in October
start = dstt(year, 4, 1, 0, 2);
end = dstt(year, 10, 5, 0, 2);
}
else
{
// the second Sunday of March to
// the first Sunday in November
start = dstt(year, 3, 2, 0, 2);
end = dstt(year, 11, 1, 0, 2);
}
if (start <= dt && dt < end)
dst = ticksPerHour;
//writefln("start = %s, dt = %s, end = %s, dst = %s", start, dt, end, dst);
}
}
return dst;
}
}
/+ DOS File Time +/
/***
* Type representing the DOS file date/time format.
*/
typedef uint DosFileTime;
/************************************
* Convert from DOS file date/time to d_time.
*/
d_time toDtime(DosFileTime time)
{
uint dt = cast(uint)time;
if (dt == 0)
return d_time_nan;
int year = ((dt >> 25) & 0x7F) + 1980;
int month = ((dt >> 21) & 0x0F) - 1; // 0..12
int dayofmonth = ((dt >> 16) & 0x1F); // 0..31
int hour = (dt >> 11) & 0x1F; // 0..23
int minute = (dt >> 5) & 0x3F; // 0..59
int second = (dt << 1) & 0x3E; // 0..58 (in 2 second increments)
d_time t;
t = std.date.makeDate(std.date.makeDay(year, month, dayofmonth),
std.date.makeTime(hour, minute, second, 0));
assert(yearFromTime(t) == year);
assert(monthFromTime(t) == month);
assert(dateFromTime(t) == dayofmonth);
assert(hourFromTime(t) == hour);
assert(minFromTime(t) == minute);
assert(secFromTime(t) == second);
t -= localTZA + daylightSavingTA(t);
return t;
}
/****************************************
* Convert from d_time to DOS file date/time.
*/
DosFileTime toDosFileTime(d_time t)
{ uint dt;
if (t == d_time_nan)
return cast(DosFileTime)0;
t += localTZA + daylightSavingTA(t);
uint year = yearFromTime(t);
uint month = monthFromTime(t);
uint dayofmonth = dateFromTime(t);
uint hour = hourFromTime(t);
uint minute = minFromTime(t);
uint second = secFromTime(t);
dt = (year - 1980) << 25;
dt |= ((month + 1) & 0x0F) << 21;
dt |= (dayofmonth & 0x1F) << 16;
dt |= (hour & 0x1F) << 11;
dt |= (minute & 0x3F) << 5;
dt |= (second >> 1) & 0x1F;
return cast(DosFileTime)dt;
}
/**
Benchmarks code for speed assessment and comparison.
Params:
fun = aliases of callable objects (e.g. function names). Each should
take no arguments.
times = The number of times each function is to be executed.
result = The optional store for the return value. If $(D null) is
passed in, new store is allocated appropriately.
Returns:
An array of $(D n) $(D uint)s. Element at slot $(D i) contains the
number of milliseconds spent in calling the $(D i)th function $(D
times) times.
Example:
----
int a;
void f0() { }
void f1() { auto b = a; }
void f2() { auto b = to!(string)(a); }
auto r = benchmark!(f0, f1, f2)(10_000_000);
----
*/
ulong[] benchmark(fun...)(uint times, ulong[] result = null)
{
result.length = fun.length;
result.length = 0;
foreach (i, Unused; fun)
{
immutable t = getUTCtime;
foreach (j; 0 .. times)
{
fun[i]();
}
immutable delta = getUTCtime - t;
result ~= cast(uint)delta;
}
foreach (ref e; result)
{
e *= 1000;
e /= ticksPerSecond;
}
return result;
}
unittest
{
int a;
void f0() { }
//void f1() { auto b = to!(string)(a); }
void f2() { auto b = (a); }
auto r = benchmark!(f0, f2)(100);
//writeln(r);
}