phobos/std/complex.d
2011-02-26 15:32:21 -06:00

567 lines
12 KiB
D

// Written in the D programming language.
/** Module that will replace the built-in types $(D cfloat), $(D cdouble),
$(D creal), $(D ifloat), $(D idouble), and $(D ireal).
Authors: Lars Tandle Kyllingstad
Copyright: Copyright (c) 2010, Lars T. Kyllingstad.
License: $(WEB boost.org/LICENSE_1_0.txt, Boost License 1.0)
Source: $(PHOBOSSRC std/_complex.d)
*/
module std.complex;
import std.format;
import std.math;
import std.numeric;
import std.traits;
/** A complex number parametrised by a type T.
Bugs:
Some operators, such as opAssign and opOpAssign, should return by ref,
but currently don't. This will be implemented as soon as
$(LINK2 http://d.puremagic.com/issues/show_bug.cgi?id=2460, DMD bug 2460)
is fixed.
*/
struct Complex(T) if (isFloatingPoint!T)
{
/** The real part of the number. */
T re;
/** The imaginary part of the number. */
T im;
@safe pure nothrow // The following functions depend only on std.math.
{
/** Calculate the absolute value (or modulus) of the number. */
@property T abs() const
{
return hypot(re, im);
}
/** Calculate the argument (or phase) of the number. */
@property T arg() const
{
return atan2(im, re);
}
/** Return the complex conjugate of the number. */
@property Complex conj() const
{
return Complex(re, -im);
}
// ASSIGNMENT OPERATORS
// TODO: Make operators return by ref when DMD bug 2460 is fixed.
// this = complex
Complex opAssign(R : T)(Complex!R z)
{
re = z.re;
im = z.im;
return this;
}
// this = numeric
Complex opAssign(R : T)(R r)
{
re = r;
im = 0;
return this;
}
// COMPARISON OPERATORS
// this == complex
bool opEquals(R : T)(Complex!R z) const
{
return re == z.re && im == z.im;
}
// this == numeric
bool opEquals(R : T)(R r) const
{
return re == r && im == 0;
}
// UNARY OPERATORS
// +complex
Complex opUnary(string op)() const
if (op == "+")
{
return this;
}
// -complex
Complex opUnary(string op)() const
if (op == "-")
{
return Complex(-re, -im);
}
// BINARY OPERATORS
// complex op complex
Complex!(CommonType!(T,R)) opBinary(string op, R)(Complex!R z) const
{
alias typeof(return) C;
auto w = C(this.re, this.im);
return w.opOpAssign!(op)(z);
}
// complex op numeric
Complex!(CommonType!(T,R)) opBinary(string op, R)(R r) const
if (isNumeric!R)
{
alias typeof(return) C;
auto w = C(this.re, this.im);
return w.opOpAssign!(op)(r);
}
// numeric + complex, numeric * complex
Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(R r) const
if ((op == "+" || op == "*") && (isNumeric!R))
{
return opBinary!(op)(r);
}
// numeric - complex
Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(R r) const
if (op == "-" && isNumeric!R)
{
return Complex(r - re, -im);
}
// numeric / complex
Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(R r) const
if (op == "/" && isNumeric!R)
{
typeof(return) w;
alias FPTemporary!(typeof(w.re)) Tmp;
if (fabs(re) < fabs(im))
{
Tmp ratio = re/im;
Tmp rdivd = r/(re*ratio + im);
w.re = rdivd*ratio;
w.im = -rdivd;
}
else
{
Tmp ratio = im/re;
Tmp rdivd = r/(re + im*ratio);
w.re = rdivd;
w.im = -rdivd*ratio;
}
return w;
}
// OPASSIGN OPERATORS
// complex += complex, complex -= complex
Complex opOpAssign(string op, C)(C z)
if ((op == "+" || op == "-") && is(C R == Complex!R))
{
mixin ("re "~op~"= z.re;");
mixin ("im "~op~"= z.im;");
return this;
}
// complex *= complex
Complex opOpAssign(string op, C)(C z)
if (op == "*" && is(C R == Complex!R))
{
auto temp = re*z.re - im*z.im;
im = im*z.re + re*z.im;
re = temp;
return this;
}
// complex /= complex
Complex opOpAssign(string op, C)(C z)
if (op == "/" && is(C R == Complex!R))
{
if (fabs(z.re) < fabs(z.im))
{
FPTemporary!T ratio = z.re/z.im;
FPTemporary!T denom = z.re*ratio + z.im;
auto temp = (re*ratio + im)/denom;
im = (im*ratio - re)/denom;
re = temp;
}
else
{
FPTemporary!T ratio = z.im/z.re;
FPTemporary!T denom = z.re + z.im*ratio;
auto temp = (re + im*ratio)/denom;
im = (im - re*ratio)/denom;
re = temp;
}
return this;
}
// complex ^^= complex
Complex opOpAssign(string op, C)(C z)
if (op == "^^" && is(C R == Complex!R))
{
FPTemporary!T r = abs;
FPTemporary!T t = arg;
FPTemporary!T ab = r^^z.re * exp(-t*z.im);
FPTemporary!T ar = t*z.re + log(r)*z.im;
re = ab*cos(ar);
im = ab*sin(ar);
return this;
}
// complex += numeric, complex -= numeric
Complex opOpAssign(string op, U : T)(U a)
if (op == "+" || op == "-")
{
mixin ("re "~op~"= a;");
return this;
}
// complex *= numeric, complex /= numeric
Complex opOpAssign(string op, U : T)(U a)
if (op == "*" || op == "/")
{
mixin ("re "~op~"= a;");
mixin ("im "~op~"= a;");
return this;
}
// complex ^^= real
Complex opOpAssign(string op, R)(R r)
if (op == "^^" && isFloatingPoint!R)
{
FPTemporary!T ab = abs^^r;
FPTemporary!T ar = arg*r;
re = ab*cos(ar);
im = ab*sin(ar);
return this;
}
// complex ^^= int
Complex opOpAssign(string op, U)(U i)
if (op == "^^" && isIntegral!U)
{
switch (i)
{
case 0:
re = 1.0;
im = 0.0;
break;
case 1:
// identity; do nothing
break;
case 2:
this *= this;
break;
case 3:
auto z = this;
this *= z;
this *= z;
break;
default:
this ^^= cast(real) i;
}
return this;
}
} // @safe pure nothrow
/** Convert the complex number to a string representation.
If a $(D sink) delegate is specified, the string is passed to it
and this function returns $(D null). Otherwise, this function
returns the string representation directly.
The output format is controlled via $(D formatSpec), which should consist
of a single POSIX format specifier, including the percent (%) character.
Note that complex numbers are floating point numbers, so the only
valid format characters are 'e', 'f', 'g', 'a', and 's', where 's'
gives the default behaviour. Positional parameters are not valid
in this context.
See the $(LINK2 std_format.html, std.format documentation) for
more information.
*/
string toString
(void delegate(const(char)[]) sink = null, string formatSpec = "%s")
const
{
if (sink == null)
{
char[] buf;
buf.reserve(100);
toString((const(char)[] s) { buf ~= s; }, formatSpec);
return cast(string) buf;
}
formattedWrite(sink, formatSpec, re);
if (signbit(im) == 0) sink("+");
formattedWrite(sink, formatSpec, im);
sink("i");
return null;
}
}
unittest
{
enum EPS = double.epsilon;
// Check abs() and arg()
auto c1 = Complex!double(1.0, 1.0);
assert (approxEqual(c1.abs, sqrt(2.0), EPS));
assert (approxEqual(c1.arg, PI_4, EPS));
auto c1c = c1.conj;
assert (c1c.re == 1.0 && c1c.im == -1.0);
// Check unary operations.
auto c2 = Complex!double(0.5, 2.0);
assert (c2 == +c2);
assert ((-c2).re == -(c2.re));
assert ((-c2).im == -(c2.im));
assert (c2 == -(-c2));
// Check complex-complex operations.
auto cpc = c1 + c2;
assert (cpc.re == c1.re + c2.re);
assert (cpc.im == c1.im + c2.im);
auto cmc = c1 - c2;
assert (cmc.re == c1.re - c2.re);
assert (cmc.im == c1.im - c2.im);
auto ctc = c1 * c2;
assert (approxEqual(ctc.abs, c1.abs*c2.abs, EPS));
assert (approxEqual(ctc.arg, c1.arg+c2.arg, EPS));
auto cdc = c1 / c2;
assert (approxEqual(cdc.abs, c1.abs/c2.abs, EPS));
assert (approxEqual(cdc.arg, c1.arg-c2.arg, EPS));
auto cec = c1^^c2;
assert (approxEqual(cec.re, 0.11524131979943839881, EPS));
assert (approxEqual(cec.im, 0.21870790452746026696, EPS));
// Check complex-real operations.
double a = 123.456;
auto cpr = c1 + a;
assert (cpr.re == c1.re + a);
assert (cpr.im == c1.im);
auto cmr = c1 - a;
assert (cmr.re == c1.re - a);
assert (cmr.im == c1.im);
auto ctr = c1 * a;
assert (ctr.re == c1.re*a);
assert (ctr.im == c1.im*a);
auto cdr = c1 / a;
assert (approxEqual(cdr.abs, c1.abs/a, EPS));
assert (approxEqual(cdr.arg, c1.arg, EPS));
auto rpc = a + c1;
assert (rpc == cpr);
auto rmc = a - c1;
assert (rmc.re == a-c1.re);
assert (rmc.im == -c1.im);
auto rtc = a * c1;
assert (rtc == ctr);
auto rdc = a / c1;
assert (approxEqual(rdc.abs, a/c1.abs, EPS));
assert (approxEqual(rdc.arg, -c1.arg, EPS));
auto cer = c1^^3.0;
assert (approxEqual(cer.abs, c1.abs^^3, EPS));
assert (approxEqual(cer.arg, c1.arg*3, EPS));
// Check Complex-int operations.
foreach (i; 0..6)
{
auto cei = c1^^i;
assert (approxEqual(cei.abs, c1.abs^^i, EPS));
// Use cos() here to deal with arguments that go outside
// the (-pi,pi] interval (only an issue for i>3).
assert (approxEqual(cos(cei.arg), cos(c1.arg*i), EPS));
}
// Check operations between different complex types.
auto cf = Complex!float(1.0, 1.0);
auto cr = Complex!real(1.0, 1.0);
auto c1pcf = c1 + cf;
auto c1pcr = c1 + cr;
static assert (is(typeof(c1pcf) == Complex!double));
static assert (is(typeof(c1pcr) == Complex!real));
assert (c1pcf.re == c1pcr.re);
assert (c1pcf.im == c1pcr.im);
}
unittest
{
// Assignments and comparisons
Complex!double z;
z = 1;
assert (z == 1);
assert (z.re == 1.0 && z.im == 0.0);
z = 2.0;
assert (z == 2.0);
assert (z.re == 2.0 && z.im == 0.0);
z = 1.0L;
assert (z == 1.0L);
assert (z.re == 1.0 && z.im == 0.0);
auto w = Complex!real(1.0, 1.0);
z = w;
assert (z == w);
assert (z.re == 1.0 && z.im == 1.0);
auto c = Complex!float(2.0, 2.0);
z = c;
assert (z == c);
assert (z.re == 2.0 && z.im == 2.0);
}
unittest
{
// Convert to string.
// Using default format specifier
auto z1 = Complex!real(0.123456789, 0.123456789);
char[] s1;
z1.toString((const(char)[] c) { s1 ~= c; });
assert (s1 == "0.123457+0.123457i");
assert (s1 == z1.toString());
// Using custom format specifier
auto z2 = z1.conj;
char[] s2;
z2.toString((const(char)[] c) { s2 ~= c; }, "%.8e");
assert (s2 == "1.23456789e-01-1.23456789e-01i");
assert (s2 == z2.toString(null, "%.8e"));
}
/* Fold Complex!(Complex!T) to Complex!T.
The rationale for this is that just like the real line is a
subspace of the complex plane, the complex plane is a subspace
of itself. Example of usage:
---
Complex!T addI(T)(T x)
{
return x + Complex!T(0.0, 1.0);
}
---
The above will work if T is both real and complex.
*/
template Complex(T) if (is(T R == Complex!R))
{
alias T Complex;
}
unittest
{
static assert (is(Complex!(Complex!real) == Complex!real));
Complex!T addI(T)(T x)
{
return x + Complex!T(0.0, 1.0);
}
auto z1 = addI(1.0);
assert (z1.re == 1.0 && z1.im == 1.0);
enum one = Complex!double(1.0, 0.0);
auto z2 = addI(one);
assert (z1 == z2);
}
/** Construct a complex number given its absolute value and argument. */
Complex!(CommonType!(T, U)) fromPolar(T, U)(T modulus, U argument)
@safe pure nothrow
{
return Complex!(CommonType!(T,U))
(modulus*cos(argument), modulus*sin(argument));
}
unittest
{
auto z = fromPolar(sqrt(2.0), PI_4);
assert (approxEqual(z.re, 1.0L, real.epsilon));
assert (approxEqual(z.im, 1.0L, real.epsilon));
}