phobos/std/algorithm.d

8026 lines
231 KiB
D

// Written in the D programming language.
/**
<script type="text/javascript">inhibitQuickIndex = 1</script>
$(BOOKTABLE ,
$(TR $(TH Category) $(TH Functions)
)
$(TR $(TDNW Searching) $(TD $(MYREF balancedParens) $(MYREF
boyerMooreFinder) $(MYREF canFind) $(MYREF count) $(MYREF countUntil)
$(MYREF endsWith) $(MYREF find) $(MYREF findAdjacent) $(MYREF
findAmong) $(MYREF findSkip) $(MYREF findSplit) $(MYREF
findSplitAfter) $(MYREF findSplitBefore) $(MYREF indexOf) $(MYREF
minCount) $(MYREF minPos) $(MYREF mismatch) $(MYREF skipOver) $(MYREF
startsWith) $(MYREF until) )
)
$(TR $(TDNW Comparison) $(TD $(MYREF cmp) $(MYREF equal) $(MYREF
levenshteinDistance) $(MYREF levenshteinDistanceAndPath) $(MYREF max)
$(MYREF min) $(MYREF mismatch) )
)
$(TR $(TDNW Iteration) $(TD $(MYREF filter) $(MYREF filterBidirectional)
$(MYREF group) $(MYREF joiner) $(MYREF map) $(MYREF reduce) $(MYREF
splitter) $(MYREF uniq) )
)
$(TR $(TDNW Sorting) $(TD $(MYREF completeSort) $(MYREF isPartitioned)
$(MYREF isSorted) $(MYREF makeIndex) $(MYREF partialSort) $(MYREF
partition) $(MYREF schwartzSort) $(MYREF sort) $(MYREF topN) $(MYREF
topNCopy) )
)
$(TR $(TDNW Set&nbsp;operations) $(TD $(MYREF
largestPartialIntersection) $(MYREF largestPartialIntersectionWeighted)
$(MYREF nWayUnion) $(MYREF setDifference) $(MYREF setIntersection) $(MYREF
setSymmetricDifference) $(MYREF setUnion) )
)
$(TR $(TDNW Mutation) $(TD $(MYREF bringToFront) $(MYREF copy) $(MYREF
fill) $(MYREF initializeAll) $(MYREF move) $(MYREF moveAll) $(MYREF
moveSome) $(MYREF remove) $(MYREF reverse) $(MYREF swap) $(MYREF
swapRanges) $(MYREF uninitializedFill) ))
)
Implements algorithms oriented mainly towards processing of
sequences. Some functions are semantic equivalents or supersets of
those found in the $(D $(LESS)_algorithm$(GREATER)) header in $(WEB
sgi.com/tech/stl/, Alexander Stepanov's Standard Template Library) for
C++.
Many functions in this module are parameterized with a function or a
$(GLOSSARY predicate). The predicate may be passed either as a
function name, a delegate name, a $(GLOSSARY functor) name, or a
compile-time string. The string may consist of $(B any) legal D
expression that uses the symbol $(D a) (for unary functions) or the
symbols $(D a) and $(D b) (for binary functions). These names will NOT
interfere with other homonym symbols in user code because they are
evaluated in a different context. The default for all binary
comparison predicates is $(D "a == b") for unordered operations and
$(D "a < b") for ordered operations.
Example:
----
int[] a = ...;
static bool greater(int a, int b)
{
return a > b;
}
sort!(greater)(a); // predicate as alias
sort!("a > b")(a); // predicate as string
// (no ambiguity with array name)
sort(a); // no predicate, "a < b" is implicit
----
$(BOOKTABLE Cheat Sheet,
$(TR $(TH Function Name) $(TH Description)
)
$(LEADINGROW Searching
)
$(TR $(TDNW $(LREF balancedParens)) $(TD $(D
balancedParens("((1 + 1) / 2)")) returns $(D true) because the string
has balanced parentheses.)
)
$(TR $(TDNW $(LREF boyerMooreFinder)) $(TD $(D find("hello
world", boyerMooreFinder("or"))) returns $(D "orld") using the $(LUCKY
Boyer-Moore _algorithm).)
)
$(TR $(TDNW $(LREF canFind)) $(TD $(D canFind("hello world",
"or")) returns $(D true).)
)
$(TR $(TDNW $(LREF count)) $(TD Counts elements that are equal
to a specified value or satisfy a predicate. $(D count([1, 2, 1], 1))
returns $(D 2) and $(D count!"a < 0"([1, -3, 0])) returns $(D 1).)
)
$(TR $(TDNW $(LREF countUntil)) $(TD $(D countUntil(a, b))
returns the number of steps taken in $(D a) to reach $(D b); for
example, $(D countUntil("hello!", "o")) returns $(D 4).)
)
$(TR $(TDNW $(LREF endsWith)) $(TD $(D endsWith("rocks", "ks"))
returns $(D true).)
)
$(TR $(TD $(LREF find)) $(TD $(D find("hello world",
"or")) returns $(D "orld") using linear search.)
)
$(TR $(TDNW $(LREF findAdjacent)) $(TD $(D findAdjacent([1, 2,
3, 3, 4])) returns the subrange starting with two equal adjacent
elements, i.e. $(D [3, 3, 4]).)
)
$(TR $(TDNW $(LREF findAmong)) $(TD $(D findAmong("abcd",
"qcx")) returns $(D "cd") because $(D 'c') is among $(D "qcx").)
)
$(TR $(TDNW $(LREF findSkip)) $(TD If $(D a = "abcde"), then
$(D findSkip(a, "x")) returns $(D false) and leaves $(D a) unchanged,
whereas $(D findSkip(a, 'c')) advances $(D a) to $(D "cde") and
returns $(D true).)
)
$(TR $(TDNW $(LREF findSplit)) $(TD $(D findSplit("abcdefg",
"de")) returns the three ranges $(D "abc"), $(D "de"), and $(D
"fg").)
)
$(TR $(TDNW $(LREF findSplitAfter)) $(TD $(D
findSplitAfter("abcdefg", "de")) returns the two ranges $(D "abcde")
and $(D "fg").)
)
$(TR $(TDNW $(LREF findSplitBefore)) $(TD $(D
findSplitBefore("abcdefg", "de")) returns the two ranges $(D "abc") and
$(D "defg").)
)
$(TR $(TDNW $(LREF minCount)) $(TD $(D minCount([2, 1, 1, 4,
1])) returns $(D tuple(1, 3)).)
)
$(TR $(TDNW $(LREF minPos)) $(TD $(D minPos([2, 3, 1, 3, 4,
1])) returns the subrange $(D [1, 3, 4, 1]), i.e., positions the range
at the first occurrence of its minimal element.)
)
$(TR $(TDNW $(LREF skipOver)) $(TD Assume $(D a = "blah"). Then
$(D skipOver(a, "bi")) leaves $(D a) unchanged and returns $(D false),
whereas $(D skipOver(a, "bl")) advances $(D a) to refer to $(D "ah")
and returns $(D true).)
)
$(TR $(TDNW $(LREF startsWith)) $(TD $(D startsWith("hello,
world", "hello")) returns $(D true).)
)
$(TR $(TDNW $(LREF until)) $(TD Lazily iterates a range
until a specific value is found.)
)
$(LEADINGROW Comparison
)
$(TR $(TDNW $(LREF cmp)) $(TD $(D cmp("abc", "abcd")) is $(D
-1), $(D cmp("abc", aba")) is $(D 1), and $(D cmp("abc", "abc")) is
$(D 0).)
)
$(TR $(TDNW $(LREF equal)) $(TD Compares ranges for
element-by-element equality, e.g. $(D equal([1, 2, 3], [1.0, 2.0,
3.0])) returns $(D true).)
)
$(TR $(TDNW $(LREF levenshteinDistance)) $(TD $(D
levenshteinDistance("kitten", "sitting")) returns $(D 3) by using the
$(LUCKY Levenshtein distance _algorithm).)
)
$(TR $(TDNW $(LREF levenshteinDistanceAndPath)) $(TD $(D
levenshteinDistanceAndPath("kitten", "sitting")) returns $(D tuple(3,
"snnnsni")) by using the $(LUCKY Levenshtein distance _algorithm).)
)
$(TR $(TDNW $(LREF max)) $(TD $(D max(3, 4, 2)) returns $(D
4).)
)
$(TR $(TDNW $(LREF min)) $(TD $(D min(3, 4, 2)) returns $(D
2).)
)
$(TR $(TDNW $(LREF mismatch)) $(TD $(D mismatch("oh hi",
"ohayo")) returns $(D tuple(" hi", "ayo")).)
)
$(LEADINGROW Iteration
)
$(TR $(TDNW $(LREF filter)) $(TD $(D filter!"a > 0"([1, -1, 2,
0, -3])) iterates over elements $(D 1), $(D 2), and $(D 0).)
)
$(TR $(TDNW $(LREF filterBidirectional)) $(TD Similar to $(D
filter), but also provides $(D back) and $(D popBack) at a small
increase in cost.)
)
$(TR $(TDNW $(LREF group)) $(TD $(D group([5, 2, 2, 3, 3]))
returns a range containing the tuples $(D tuple(5, 1)),
$(D tuple(2, 2)), and $(D tuple(3, 2)).)
)
$(TR $(TDNW $(LREF joiner)) $(TD $(D joiner(["hello",
"world!"], ";")) returns a range that iterates over the characters $(D
"hello; world!"). No new string is created - the existing inputs are
iterated.)
)
$(TR $(TDNW $(LREF map)) $(TD $(D map!"2 * a"([1, 2, 3]))
lazily returns a range with the numbers $(D 2), $(D 4), $(D 6).)
)
$(TR $(TDNW $(LREF reduce)) $(TD $(D reduce!"a + b"([1, 2, 3,
4])) returns $(D 10).)
)
$(TR $(TDNW $(LREF splitter)) $(TD Lazily splits a range by a
separator.)
)
$(TR $(TDNW $(LREF uniq)) $(TD Iterates over the unique elements
in a range, which is assumed sorted.)
)
$(LEADINGROW Sorting
)
$(TR $(TDNW $(LREF completeSort)) $(TD If $(D a = [10, 20, 30])
and $(D b = [40, 6, 15]), then $(D completeSort(a, b)) leaves $(D a =
[6, 10, 15]) and $(D b = [20, 30, 40]). The range $(D a) must be
sorted prior to the call, and as a result the combination $(D $(XREF
range,chain)(a, b)) is sorted.)
)
$(TR $(TDNW $(LREF isPartitioned)) $(TD $(D isPartitioned!"a <
0"([-1, -2, 1, 0, 2])) returns $(D true) because the predicate is $(D
true) for a portion of the range and $(D false) afterwards.)
)
$(TR $(TDNW $(LREF isSorted)) $(TD $(D isSorted([1, 1, 2, 3]))
returns $(D true).)
)
$(TR $(TDNW $(LREF makeIndex)) $(TD Creates a separate index
for a range.)
)
$(TR $(TDNW $(LREF partialSort)) $(TD If $(D a = [5, 4, 3, 2,
1]), then $(D partialSort(a, 3)) leaves $(D a[0 .. 3] = [1, 2,
3]). The other elements of $(D a) are left in an unspecified order.)
)
$(TR $(TDNW $(LREF partition)) $(TD Partitions a range
according to a predicate.)
)
$(TR $(TDNW $(LREF schwartzSort)) $(TD Sorts with the help of
the $(LUCKY Schwartzian transform).)
)
$(TR $(TDNW $(LREF sort)) $(TD Sorts.)
)
$(TR $(TDNW $(LREF topN)) $(TD Separates the top elements in a
range.)
)
$(TR $(TDNW $(LREF topNCopy)) $(TD Copies out the top elements
of a range.)
)
$(LEADINGROW Set operations
)
$(TR $(TDNW $(LREF largestPartialIntersection)) $(TD Copies out
the values that occur most frequently in a range of ranges.)
)
$(TR $(TDNW $(LREF largestPartialIntersectionWeighted)) $(TD
Copies out the values that occur most frequently (multiplied by
per-value weights) in a range of ranges.)
)
$(TR $(TDNW $(LREF nWayUnion)) $(TD Computes the union of a set
of sets implemented as a range of sorted ranges.)
)
$(TR $(TDNW $(LREF setDifference)) $(TD Lazily computes the set
difference of two or more sorted ranges.)
)
$(TR $(TDNW $(LREF setIntersection)) $(TD Lazily computes the
set difference of two or more sorted ranges.)
)
$(TR $(TDNW $(LREF setSymmetricDifference)) $(TD Lazily
computes the symmetric set difference of two or more sorted ranges.)
)
$(TR $(TDNW $(LREF setUnion)) $(TD Lazily computes the set
union of two or more sorted ranges.)
)
$(LEADINGROW Mutation
)
$(TR $(TDNW $(LREF bringToFront)) $(TD If $(D a = [1, 2, 3])
and $(D b = [4, 5, 6, 7]), $(D bringToFront(a, b)) leaves $(D a = [4,
5, 6]) and $(D b = [7, 1, 2, 3]).)
)
$(TR $(TDNW $(LREF copy)) $(TD Copies a range to another. If
$(D a = [1, 2, 3]) and $(D b = new int[5]), then $(D copy(a, b))
leaves $(D b = [1, 2, 3, 0, 0]) and returns $(D b[3 .. $]).)
)
$(TR $(TDNW $(LREF fill)) $(TD Fills a range with a pattern,
e.g., if $(D a = new int[3]), then $(D fill(a, 4)) leaves $(D a = [4,
4, 4]) and $(D fill(a, [3, 4])) leaves $(D a = [3, 4, 3]).)
)
$(TR $(TDNW $(LREF initializeAll)) $(TD If $(D a = [1.2, 3.4]),
then $(D initializeAll(a)) leaves $(D a = [double.init,
double.init]).)
)
$(TR $(TDNW $(LREF move)) $(TD $(D move(a, b)) moves $(D a)
into $(D b). $(D move(a)) reads $(D a) destructively.)
)
$(TR $(TDNW $(LREF moveAll)) $(TD Moves all elements from one
range to another.)
)
$(TR $(TDNW $(LREF moveSome)) $(TD Moves as many elements as
possible from one range to another.)
)
$(TR $(TDNW $(LREF reverse)) $(TD If $(D a = [1, 2, 3]), $(D
reverse(a)) changes it to $(D [3, 2, 1]).)
)
$(TR $(TDNW $(LREF swap)) $(TD Swaps two values.)
)
$(TR $(TDNW $(LREF swapRanges)) $(TD Swaps all elements of two
ranges.)
)
$(TR $(TDNW $(LREF uninitializedFill)) $(TD Fills a range
(assumed uninitialized) with a value.)
)
)
Macros:
WIKI = Phobos/StdAlgorithm
MYREF = <font face='Consolas, "Bitstream Vera Sans Mono", "Andale Mono", Monaco, "DejaVu Sans Mono", "Lucida Console", monospace'><a href="#$1">$1</a>&nbsp;</font>
Copyright: Andrei Alexandrescu 2008-.
License: $(WEB boost.org/LICENSE_1_0.txt, Boost License 1.0).
Authors: $(WEB erdani.com, Andrei Alexandrescu)
Source: $(PHOBOSSRC std/_algorithm.d)
*/
module std.algorithm;
//debug = std_algorithm;
import std.c.string;
import std.array, std.container, std.conv, std.exception,
std.functional, std.math, std.metastrings, std.range, std.string,
std.traits, std.typecons, std.typetuple, std.stdio;
version(unittest)
{
import std.random, std.stdio, std.string;
mixin(dummyRanges);
}
/**
Implements the homonym function (also known as $(D transform)) present
in many languages of functional flavor. The call $(D map!(fun)(range))
returns a range of which elements are obtained by applying $(D fun(x))
left to right for all $(D x) in $(D range). The original ranges are
not changed. Evaluation is done lazily. The range returned by $(D map)
caches the last value such that evaluating $(D front) multiple times
does not result in multiple calls to $(D fun).
Example:
----
int[] arr1 = [ 1, 2, 3, 4 ];
int[] arr2 = [ 5, 6 ];
auto squares = map!("a * a")(chain(arr1, arr2));
assert(equal(squares, [ 1, 4, 9, 16, 25, 36 ]));
----
Multiple functions can be passed to $(D map). In that case, the
element type of $(D map) is a tuple containing one element for each
function.
Example:
----
auto arr1 = [ 1, 2, 3, 4 ];
foreach (e; map!("a + a", "a * a")(arr1))
{
writeln(e[0], " ", e[1]);
}
----
You may alias $(D map) with some function(s) to a symbol and use it
separately:
----
alias map!(to!string) stringize;
assert(equal(stringize([ 1, 2, 3, 4 ]), [ "1", "2", "3", "4" ]));
----
*/
template map(fun...) if (fun.length >= 1)
{
auto map(Range)(Range r) if (isInputRange!(Unqual!Range))
{
static if (fun.length > 1)
{
alias adjoin!(staticMap!(unaryFun, fun)) _fun;
}
else
{
alias unaryFun!fun _fun;
}
struct Result
{
alias Unqual!Range R;
alias typeof(_fun(.ElementType!R.init)) ElementType;
R _input;
static if (isBidirectionalRange!R)
{
@property auto ref back()
{
return _fun(_input.back);
}
void popBack()
{
_input.popBack();
}
}
this(R input)
{
_input = input;
}
static if (isInfinite!R)
{
// Propagate infinite-ness.
enum bool empty = false;
}
else
{
@property bool empty()
{
return _input.empty;
}
}
void popFront()
{
_input.popFront();
}
@property auto ref front()
{
return _fun(_input.front);
}
static if (isRandomAccessRange!R)
{
auto ref opIndex(size_t index)
{
return _fun(_input[index]);
}
}
static if (hasLength!R || isSomeString!R)
{
@property size_t length()
{
return _input.length;
}
}
static if (hasSlicing!R)
{
auto opSlice(size_t lowerBound, size_t upperBound)
{
return typeof(this)(_input[lowerBound..upperBound]);
}
}
static if (isForwardRange!R)
@property auto save()
{
auto result = this;
result._input = result._input.save;
return result;
}
}
return Result(r);
}
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
alias map!(to!string) stringize;
assert(equal(stringize([ 1, 2, 3, 4 ]), [ "1", "2", "3", "4" ]));
uint counter;
alias map!((a) { return counter++; }) count;
assert(equal(count([ 10, 2, 30, 4 ]), [ 0, 1, 2, 3 ]));
counter = 0;
adjoin!((a) { return counter++; }, (a) { return counter++; })(1);
alias map!((a) { return counter++; }, (a) { return counter++; }) countAndSquare;
//assert(equal(countAndSquare([ 10, 2 ]), [ tuple(0u, 100), tuple(1u, 4) ]));
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] arr1 = [ 1, 2, 3, 4 ];
const int[] arr1Const = arr1;
int[] arr2 = [ 5, 6 ];
auto squares = map!("a * a")(arr1Const);
assert(equal(squares, [ 1, 4, 9, 16 ][]));
assert(equal(map!("a * a")(chain(arr1, arr2)), [ 1, 4, 9, 16, 25, 36 ][]));
// Test the caching stuff.
assert(squares.back == 16);
auto squares2 = squares.save;
assert(squares2.back == 16);
assert(squares2.front == 1);
squares2.popFront;
assert(squares2.front == 4);
squares2.popBack;
assert(squares2.front == 4);
assert(squares2.back == 9);
assert(equal(map!("a * a")(chain(arr1, arr2)), [ 1, 4, 9, 16, 25, 36 ][]));
uint i;
foreach (e; map!("a", "a * a")(arr1))
{
assert(e[0] == ++i);
assert(e[1] == i * i);
}
// Test length.
assert(squares.length == 4);
assert(map!"a * a"(chain(arr1, arr2)).length == 6);
// Test indexing.
assert(squares[0] == 1);
assert(squares[1] == 4);
assert(squares[2] == 9);
assert(squares[3] == 16);
// Test slicing.
auto squareSlice = squares[1..squares.length - 1];
assert(equal(squareSlice, [4, 9][]));
assert(squareSlice.back == 9);
assert(squareSlice[1] == 9);
// Test on a forward range to make sure it compiles when all the fancy
// stuff is disabled.
auto fibsSquares = map!"a * a"(recurrence!("a[n-1] + a[n-2]")(1, 1));
assert(fibsSquares.front == 1);
fibsSquares.popFront;
fibsSquares.popFront;
assert(fibsSquares.front == 4);
fibsSquares.popFront;
assert(fibsSquares.front == 9);
auto repeatMap = map!"a"(repeat(1));
static assert(isInfinite!(typeof(repeatMap)));
auto intRange = map!"a"([1,2,3]);
static assert(isRandomAccessRange!(typeof(intRange)));
foreach(DummyType; AllDummyRanges)
{
DummyType d;
auto m = map!"a * a"(d);
static assert(propagatesRangeType!(typeof(m), DummyType));
assert(equal(m, [1,4,9,16,25,36,49,64,81,100]));
}
}
// reduce
/**
Implements the homonym function (also known as $(D accumulate), $(D
compress), $(D inject), or $(D foldl)) present in various programming
languages of functional flavor. The call $(D reduce!(fun)(seed,
range)) first assigns $(D seed) to an internal variable $(D result),
also called the accumulator. Then, for each element $(D x) in $(D
range), $(D result = fun(result, x)) gets evaluated. Finally, $(D
result) is returned. The one-argument version $(D reduce!(fun)(range))
works similarly, but it uses the first element of the range as the
seed (the range must be non-empty).
Many aggregate range operations turn out to be solved with $(D reduce)
quickly and easily. The example below illustrates $(D reduce)'s
remarkable power and flexibility.
Example:
----
int[] arr = [ 1, 2, 3, 4, 5 ];
// Sum all elements
auto sum = reduce!("a + b")(0, arr);
assert(sum == 15);
// Compute the maximum of all elements
auto largest = reduce!(max)(arr);
assert(largest == 5);
// Compute the number of odd elements
auto odds = reduce!("a + (b & 1)")(0, arr);
assert(odds == 3);
// Compute the sum of squares
auto ssquares = reduce!("a + b * b")(0, arr);
assert(ssquares == 55);
// Chain multiple ranges into seed
int[] a = [ 3, 4 ];
int[] b = [ 100 ];
auto r = reduce!("a + b")(chain(a, b));
assert(r == 107);
// Mixing convertible types is fair game, too
double[] c = [ 2.5, 3.0 ];
auto r1 = reduce!("a + b")(chain(a, b, c));
assert(r1 == 112.5);
----
$(DDOC_SECTION_H Multiple functions:) Sometimes it is very useful to
compute multiple aggregates in one pass. One advantage is that the
computation is faster because the looping overhead is shared. That's
why $(D reduce) accepts multiple functions. If two or more functions
are passed, $(D reduce) returns a $(XREF typecons, Tuple) object with
one member per passed-in function. The number of seeds must be
correspondingly increased.
Example:
----
double[] a = [ 3.0, 4, 7, 11, 3, 2, 5 ];
// Compute minimum and maximum in one pass
auto r = reduce!(min, max)(a);
// The type of r is Tuple!(double, double)
assert(r[0] == 2); // minimum
assert(r[1] == 11); // maximum
// Compute sum and sum of squares in one pass
r = reduce!("a + b", "a + b * b")(tuple(0.0, 0.0), a);
assert(r[0] == 35); // sum
assert(r[1] == 233); // sum of squares
// Compute average and standard deviation from the above
auto avg = r[0] / a.length;
auto stdev = sqrt(r[1] / a.length - avg * avg);
----
*/
template reduce(fun...) if (fun.length >= 1)
{
auto reduce(Args...)(Args args)
if (Args.length > 0 && Args.length <= 2 && isIterable!(Args[$ - 1]))
{
static if(isInputRange!(Args[$ - 1]))
{
static if (Args.length == 2)
{
alias args[0] seed;
alias args[1] r;
Unqual!(Args[0]) result = seed;
for (; !r.empty; r.popFront)
{
static if (fun.length == 1)
{
result = binaryFun!(fun[0])(result, r.front);
}
else
{
foreach (i, Unused; Args[0].Types)
{
result[i] = binaryFun!(fun[i])(result[i], r.front);
}
}
}
return result;
}
else
{
enforce(!args[$ - 1].empty,
"Cannot reduce an empty range w/o an explicit seed value.");
alias args[0] r;
static if (fun.length == 1)
{
auto seed = r.front;
r.popFront();
return reduce(seed, r);
}
else
{
static assert(fun.length > 1);
typeof(adjoin!(staticMap!(binaryFun, fun))(r.front, r.front))
result = void;
foreach (i, T; result.Types)
{
emplace(&result[i], r.front);
}
r.popFront();
return reduce(result, r);
}
}
}
else
{ // opApply case. Coded as a separate case because efficiently
// handling all of the small details like avoiding unnecessary
// copying, iterating by dchar over strings, and dealing with the
// no explicit start value case would become an unreadable mess
// if these were merged.
alias args[$ - 1] r;
alias Args[$ - 1] R;
alias ForeachType!R E;
static if(args.length == 2)
{
static if(fun.length == 1)
{
auto result = Tuple!(Unqual!(Args[0]))(args[0]);
}
else
{
Unqual!(Args[0]) result = args[0];
}
enum bool initialized = true;
}
else static if(fun.length == 1)
{
Tuple!(typeof(binaryFun!fun(E.init, E.init))) result = void;
bool initialized = false;
}
else
{
typeof(adjoin!(staticMap!(binaryFun, fun))(E.init, E.init))
result = void;
bool initialized = false;
}
// For now, just iterate using ref to avoid unnecessary copying.
// When Bug 2443 is fixed, this may need to change.
foreach(ref elem; r)
{
if(initialized)
{
foreach(i, T; result.Types)
{
result[i] = binaryFun!(fun[i])(result[i], elem);
}
}
else
{
static if(is(typeof(&initialized)))
{
initialized = true;
}
foreach (i, T; result.Types)
{
emplace(&result[i], elem);
}
}
}
enforce(initialized,
"Cannot reduce an empty iterable w/o an explicit seed value.");
static if(fun.length == 1)
{
return result[0];
}
else
{
return result;
}
}
}
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
double[] a = [ 3, 4 ];
auto r = reduce!("a + b")(0.0, a);
assert(r == 7);
r = reduce!("a + b")(a);
assert(r == 7);
r = reduce!(min)(a);
assert(r == 3);
double[] b = [ 100 ];
auto r1 = reduce!("a + b")(chain(a, b));
assert(r1 == 107);
// two funs
auto r2 = reduce!("a + b", "a - b")(tuple(0., 0.), a);
assert(r2[0] == 7 && r2[1] == -7);
auto r3 = reduce!("a + b", "a - b")(a);
assert(r3[0] == 7 && r3[1] == -1);
a = [ 1, 2, 3, 4, 5 ];
// Stringize with commas
string rep = reduce!("a ~ `, ` ~ to!(string)(b)")("", a);
assert(rep[2 .. $] == "1, 2, 3, 4, 5", "["~rep[2 .. $]~"]");
// Test the opApply case.
struct OpApply
{
bool actEmpty;
int opApply(int delegate(ref int) dg)
{
int res;
if(actEmpty) return res;
foreach(i; 0..100)
{
res = dg(i);
if(res) break;
}
return res;
}
}
OpApply oa;
auto hundredSum = reduce!"a + b"(iota(100));
assert(reduce!"a + b"(5, oa) == hundredSum + 5);
assert(reduce!"a + b"(oa) == hundredSum);
assert(reduce!("a + b", max)(oa) == tuple(hundredSum, 99));
assert(reduce!("a + b", max)(tuple(5, 0), oa) == tuple(hundredSum + 5, 99));
// Test for throwing on empty range plus no seed.
try {
reduce!"a + b"([1, 2][0..0]);
assert(0);
} catch(Exception) {}
oa.actEmpty = true;
try {
reduce!"a + b"(oa);
assert(0);
} catch(Exception) {}
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
const float a = 0.0;
const float[] b = [ 1.2, 3, 3.3 ];
float[] c = [ 1.2, 3, 3.3 ];
auto r = reduce!"a + b"(a, b);
r = reduce!"a + b"(a, c);
}
/**
Fills a range with a value.
Example:
----
int[] a = [ 1, 2, 3, 4 ];
fill(a, 5);
assert(a == [ 5, 5, 5, 5 ]);
----
*/
void fill(Range, Value)(Range range, Value filler)
if (isForwardRange!Range && is(typeof(range.front = filler)))
{
alias ElementType!Range T;
static if (hasElaborateCopyConstructor!T || !isDynamicArray!Range)
{
for (; !range.empty; range.popFront)
{
range.front = filler;
}
}
else
{
if (range.empty) return;
// Range is a dynamic array of bald values, just fill memory
// Can't use memcpy or memmove coz ranges overlap
range.front = filler;
auto bytesToFill = T.sizeof * (range.length - 1);
auto bytesFilled = T.sizeof;
while (bytesToFill)
{
auto fillNow = min(bytesToFill, bytesFilled);
memcpy(cast(void*) range.ptr + bytesFilled,
cast(void*) range.ptr,
fillNow);
bytesToFill -= fillNow;
bytesFilled += fillNow;
}
}
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 1, 2, 3 ];
fill(a, 6);
assert(a == [ 6, 6, 6 ], text(a));
void fun0()
{
foreach (i; 0 .. 1000)
{
foreach (ref e; a) e = 6;
}
}
void fun1() { foreach (i; 0 .. 1000) fill(a, 6); }
//void fun2() { foreach (i; 0 .. 1000) fill2(a, 6); }
//writeln(benchmark!(fun0, fun1, fun2)(10000));
}
/**
Fills $(D range) with a pattern copied from $(D filler). The length of
$(D range) does not have to be a multiple of the length of $(D
filler). If $(D filler) is empty, an exception is thrown.
Example:
----
int[] a = [ 1, 2, 3, 4, 5 ];
int[] b = [ 8, 9 ];
fill(a, b);
assert(a == [ 8, 9, 8, 9, 8 ]);
----
*/
void fill(Range1, Range2)(Range1 range, Range2 filler)
if (isForwardRange!Range1 && isForwardRange!Range2
&& is(typeof(Range1.init.front = Range2.init.front)))
{
enforce(!filler.empty);
auto t = filler.save;
for (; !range.empty; range.popFront, t.popFront)
{
if (t.empty) t = filler;
range.front = t.front;
}
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 1, 2, 3, 4, 5 ];
int[] b = [1, 2];
fill(a, b);
assert(a == [ 1, 2, 1, 2, 1 ]);
}
/**
Fills a range with a value. Assumes that the range does not currently
contain meaningful content. This is of interest for structs that
define copy constructors (for all other types, fill and
uninitializedFill are equivalent).
Example:
----
struct S { ... }
S[] s = (cast(S*) malloc(5 * S.sizeof))[0 .. 5];
uninitializedFill(s, 42);
assert(s == [ 42, 42, 42, 42, 42 ]);
----
*/
void uninitializedFill(Range, Value)(Range range, Value filler)
if (isForwardRange!Range && is(typeof(range.front = filler)))
{
alias ElementType!Range T;
static if (hasElaborateCopyConstructor!T)
{
// Must construct stuff by the book
for (; !range.empty; range.popFront)
{
emplace(&range.front, filler);
}
}
else
{
// Doesn't matter whether fill is initialized or not
return fill(range, filler);
}
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 1, 2, 3 ];
uninitializedFill(a, 6);
assert(a == [ 6, 6, 6 ]);
void fun0()
{
foreach (i; 0 .. 1000)
{
foreach (ref e; a) e = 6;
}
}
void fun1() { foreach (i; 0 .. 1000) fill(a, 6); }
//void fun2() { foreach (i; 0 .. 1000) fill2(a, 6); }
//writeln(benchmark!(fun0, fun1, fun2)(10000));
}
/**
Initializes all elements of a range with their $(D .init)
value. Assumes that the range does not currently contain meaningful
content.
Example:
----
struct S { ... }
S[] s = (cast(S*) malloc(5 * S.sizeof))[0 .. 5];
initializeAll(s);
assert(s == [ 0, 0, 0, 0, 0 ]);
----
*/
void initializeAll(Range)(Range range)
if (isForwardRange!Range && is(typeof(range.front = range.front)))
{
alias ElementType!Range T;
static assert(is(typeof(&(range.front()))) || !hasElaborateAssign!T,
"Cannot initialize a range that does not expose"
" references to its elements");
static if (!isDynamicArray!Range)
{
static if (is(typeof(&(range.front()))))
{
// Range exposes references
for (; !range.empty; range.popFront)
{
memcpy(&(range.front()), &T.init, T.sizeof);
}
}
else
{
// Go the slow route
for (; !range.empty; range.popFront)
{
range.front = filler;
}
}
}
else
{
fill(range, T.init);
}
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 1, 2, 3 ];
uninitializedFill(a, 6);
assert(a == [ 6, 6, 6 ]);
initializeAll(a);
assert(a == [ 0, 0, 0 ]);
void fun0()
{
foreach (i; 0 .. 1000)
{
foreach (ref e; a) e = 6;
}
}
void fun1() { foreach (i; 0 .. 1000) fill(a, 6); }
//void fun2() { foreach (i; 0 .. 1000) fill2(a, 6); }
//writeln(benchmark!(fun0, fun1, fun2)(10000));
}
// filter
/**
Implements the homonym function present in various programming
languages of functional flavor. The call $(D filter!(fun)(range))
returns a new range only containing elements $(D x) in $(D r) for
which $(D predicate(x)) is $(D true).
Example:
----
int[] arr = [ 1, 2, 3, 4, 5 ];
// Sum all elements
auto small = filter!("a < 3")(arr);
assert(equal(small, [ 1, 2 ]));
// In combination with chain() to span multiple ranges
int[] a = [ 3, -2, 400 ];
int[] b = [ 100, -101, 102 ];
auto r = filter!("a > 0")(chain(a, b));
assert(equal(r, [ 3, 400, 100, 102 ]));
// Mixing convertible types is fair game, too
double[] c = [ 2.5, 3.0 ];
auto r1 = filter!("cast(int) a != a")(chain(c, a, b));
assert(equal(r1, [ 2.5 ]));
----
*/
template filter(alias pred) if (is(typeof(unaryFun!pred)))
{
auto filter(Range)(Range rs) if (isInputRange!(Unqual!Range))
{
struct Result
{
alias Unqual!Range R;
R _input;
this(R r)
{
_input = r;
while (!_input.empty && !unaryFun!pred(_input.front))
{
_input.popFront();
}
}
auto opSlice() { return this; }
static if (isInfinite!Range)
{
enum bool empty = false;
}
else
{
@property bool empty() { return _input.empty; }
}
void popFront()
{
do
{
_input.popFront;
} while (!_input.empty && !unaryFun!pred(_input.front));
}
@property auto ref front()
{
return _input.front;
}
static if(isForwardRange!R)
{
@property auto save()
{
return Result(_input);
}
}
}
return Result(rs);
}
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 3, 4, 2 ];
auto r = filter!("a > 3")(a);
static assert(isForwardRange!(typeof(r)));
assert(equal(r, [ 4 ][]));
a = [ 1, 22, 3, 42, 5 ];
auto under10 = filter!("a < 10")(a);
assert(equal(under10, [1, 3, 5][]));
static assert(isForwardRange!(typeof(under10)));
under10.front() = 4;
assert(equal(under10, [4, 3, 5][]));
under10.front() = 40;
assert(equal(under10, [40, 3, 5][]));
under10.front() = 1;
auto infinite = filter!"a > 2"(repeat(3));
static assert(isInfinite!(typeof(infinite)));
static assert(isForwardRange!(typeof(infinite)));
foreach(DummyType; AllDummyRanges) {
DummyType d;
auto f = filter!"a & 1"(d);
assert(equal(f, [1,3,5,7,9]));
static if (isForwardRange!DummyType) {
static assert(isForwardRange!(typeof(f)));
}
}
// With delegates
int x = 10;
int overX(int a) { return a > x; }
typeof(filter!overX(a)) getFilter()
{
return filter!overX(a);
}
auto r1 = getFilter();
assert(equal(r1, [22, 42]));
// With chain
auto nums = [0,1,2,3,4];
assert(equal(filter!overX(chain(a, nums)), [22, 42]));
// With copying of inner struct Filter to Map
auto arr = [1,2,3,4,5];
auto m = map!"a + 1"(filter!"a < 4"(arr));
}
unittest
{
int[] a = [ 3, 4 ];
const aConst = a;
auto r = filter!("a > 3")(aConst);
assert(equal(r, [ 4 ][]));
a = [ 1, 22, 3, 42, 5 ];
auto under10 = filter!("a < 10")(a);
assert(equal(under10, [1, 3, 5][]));
assert(equal(under10.save, [1, 3, 5][]));
assert(equal(under10.save, under10));
// With copying of inner struct Filter to Map
auto arr = [1,2,3,4,5];
auto m = map!"a + 1"(filter!"a < 4"(arr));
}
unittest
{
assert(equal(compose!(map!"2 * a", filter!"a & 1")([1,2,3,4,5]),
[2,6,10]));
assert(equal(pipe!(filter!"a & 1", map!"2 * a")([1,2,3,4,5]),
[2,6,10]));
}
unittest
{
int x = 10;
int underX(int a) { return a < x; }
const(int)[] list = [ 1, 2, 10, 11, 3, 4 ];
assert(equal(filter!underX(list), [ 1, 2, 3, 4 ]));
}
// filterBidirectional
/**
* Similar to $(D filter), except it defines a bidirectional
* range. There is a speed disadvantage - the constructor spends time
* finding the last element in the range that satisfies the filtering
* condition (in addition to finding the first one). The advantage is
* that the filtered range can be spanned from both directions. Also,
* $(XREF range, retro) can be applied against the filtered range.
*
Example:
----
int[] arr = [ 1, 2, 3, 4, 5 ];
auto small = filterBidirectional!("a < 3")(arr);
assert(small.back == 2);
assert(equal(small, [ 1, 2 ]));
assert(equal(retro(small), [ 2, 1 ]));
// In combination with chain() to span multiple ranges
int[] a = [ 3, -2, 400 ];
int[] b = [ 100, -101, 102 ];
auto r = filterBidirectional!("a > 0")(chain(a, b));
assert(r.back == 102);
----
*/
template filterBidirectional(alias pred)
{
auto filterBidirectional(Range)(Range r) if (isBidirectionalRange!(Unqual!Range))
{
static struct Result
{
alias Unqual!Range R;
alias unaryFun!pred predFun;
R _input;
this(R r)
{
_input = r;
while (!_input.empty && !predFun(_input.front)) _input.popFront();
while (!_input.empty && !predFun(_input.back)) _input.popBack();
}
@property bool empty() { return _input.empty; }
void popFront()
{
do
{
_input.popFront;
} while (!_input.empty && !predFun(_input.front));
}
@property auto ref front()
{
return _input.front;
}
void popBack()
{
do
{
_input.popBack;
} while (!_input.empty && !predFun(_input.back));
}
@property auto ref back()
{
return _input.back;
}
@property auto save()
{
Result result;
result._input = _input.save;
return result;
}
}
return Result(r);
}
}
unittest
{
int[] arr = [ 1, 2, 3, 4, 5 ];
auto small = filterBidirectional!("a < 3")(arr);
static assert(isBidirectionalRange!(typeof(small)));
assert(small.back == 2);
assert(equal(small, [ 1, 2 ]));
assert(equal(retro(small), [ 2, 1 ]));
// In combination with chain() to span multiple ranges
int[] a = [ 3, -2, 400 ];
int[] b = [ 100, -101, 102 ];
auto r = filterBidirectional!("a > 0")(chain(a, b));
assert(r.back == 102);
}
// move
/**
Moves $(D source) into $(D target) via a destructive
copy. Specifically: $(UL $(LI If $(D hasAliasing!T) is true (see
$(XREF traits, hasAliasing)), then the representation of $(D source)
is bitwise copied into $(D target) and then $(D source = T.init) is
evaluated.) $(LI Otherwise, $(D target = source) is evaluated.)) See
also $(XREF contracts, pointsTo).
Preconditions:
$(D &source == &target || !pointsTo(source, source))
*/
void move(T)(ref T source, ref T target)
{
if (&source == &target) return;
assert(!pointsTo(source, source));
static if (is(T == struct))
{
// Most complicated case. Destroy whatever target had in it
// and bitblast source over it
static if (is(typeof(target.__dtor()))) target.__dtor();
memcpy(&target, &source, T.sizeof);
// If the source defines a destructor or a postblit hook, we must obliterate the
// object in order to avoid double freeing and undue aliasing
static if (is(typeof(source.__dtor())) || is(typeof(source.__postblit())))
{
static T empty;
memcpy(&source, &empty, T.sizeof);
}
}
else
{
// Primitive data (including pointers and arrays) or class -
// assignment works great
target = source;
// static if (is(typeof(source = null)))
// {
// // Nullify the source to help the garbage collector
// source = null;
// }
}
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
Object obj1 = new Object;
Object obj2 = obj1;
Object obj3;
move(obj2, obj3);
assert(obj3 is obj1);
struct S1 { int a = 1, b = 2; }
S1 s11 = { 10, 11 };
S1 s12;
move(s11, s12);
assert(s11.a == 10 && s11.b == 11 && s12.a == 10 && s12.b == 11);
struct S2 { int a = 1; int * b; }
S2 s21 = { 10, null };
s21.b = new int;
S2 s22;
move(s21, s22);
assert(s21 == s22);
}
/// Ditto
T move(T)(ref T src)
{
T result;
move(src, result);
return result;
}
// moveAll
/**
For each element $(D a) in $(D src) and each element $(D b) in $(D
tgt) in lockstep in increasing order, calls $(D move(a, b)). Returns
the leftover portion of $(D tgt). Throws an exeption if there is not
enough room in $(D tgt) to acommodate all of $(D src).
Preconditions:
$(D walkLength(src) >= walkLength(tgt))
*/
Range2 moveAll(Range1, Range2)(Range1 src, Range2 tgt)
if (isInputRange!Range1 && isInputRange!Range2
&& is(typeof(move(src.front, tgt.front))))
{
for (; !src.empty; src.popFront, tgt.popFront)
{
enforce(!tgt.empty);
move(src.front, tgt.front);
}
return tgt;
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 1, 2, 3 ];
int[] b = new int[5];
assert(moveAll(a, b) is b[3 .. $]);
assert(a == b[0 .. 3]);
assert(a == [ 1, 2, 3 ]);
}
// moveSome
/**
For each element $(D a) in $(D src) and each element $(D b) in $(D
tgt) in lockstep in increasing order, calls $(D move(a, b)). Stops
when either $(D src) or $(D tgt) have been exhausted. Returns the
leftover portions of the two ranges.
*/
Tuple!(Range1, Range2) moveSome(Range1, Range2)(Range1 src, Range2 tgt)
if (isInputRange!Range1 && isInputRange!Range2
&& is(typeof(move(src.front, tgt.front))))
{
for (; !src.empty && !tgt.empty; src.popFront, tgt.popFront)
{
enforce(!tgt.empty);
move(src.front, tgt.front);
}
return tuple(src, tgt);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 1, 2, 3, 4, 5 ];
int[] b = new int[3];
assert(moveSome(a, b)[0] is a[3 .. $]);
assert(a[0 .. 3] == b);
assert(a == [ 1, 2, 3, 4, 5 ]);
}
// swap
/**
Swaps $(D lhs) and $(D rhs). See also $(XREF exception, pointsTo).
Preconditions:
$(D !pointsTo(lhs, lhs) && !pointsTo(lhs, rhs) && !pointsTo(rhs, lhs)
&& !pointsTo(rhs, rhs))
*/
void swap(T)(ref T lhs, ref T rhs) @trusted pure nothrow
if (isMutable!T && !is(typeof(T.init.proxySwap(T.init))))
{
static if (hasElaborateAssign!T)
{
// For structs with non-trivial assignment, move memory directly
// First check for undue aliasing
assert(!pointsTo(lhs, rhs) && !pointsTo(rhs, lhs)
&& !pointsTo(lhs, lhs) && !pointsTo(rhs, rhs));
// Swap bits
ubyte[T.sizeof] t = void;
auto a = (cast(ubyte*) &lhs)[0 .. T.sizeof];
auto b = (cast(ubyte*) &rhs)[0 .. T.sizeof];
t[] = a[];
a[] = b[];
b[] = t[];
}
else
{
// Temporary fix Bug 4789. Wor around the fact that assigning a static
// array to itself doesn't work properly.
static if(isStaticArray!T) {
if(lhs.ptr is rhs.ptr) {
return;
}
}
// For non-struct types, suffice to do the classic swap
auto tmp = lhs;
lhs = rhs;
rhs = tmp;
}
}
// Not yet documented
void swap(T)(T lhs, T rhs) if (is(typeof(T.init.proxySwap(T.init))))
{
lhs.proxySwap(rhs);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int a = 42, b = 34;
swap(a, b);
assert(a == 34 && b == 42);
struct S { int x; char c; int[] y; }
S s1 = { 0, 'z', [ 1, 2 ] };
S s2 = { 42, 'a', [ 4, 6 ] };
//writeln(s2.tupleof.stringof);
swap(s1, s2);
assert(s1.x == 42);
assert(s1.c == 'a');
assert(s1.y == [ 4, 6 ]);
assert(s2.x == 0);
assert(s2.c == 'z');
assert(s2.y == [ 1, 2 ]);
immutable int imm1, imm2;
static assert(!__traits(compiles, swap(imm1, imm2)));
}
unittest
{
struct NoCopy
{
this(this) { assert(0); }
int n;
string s;
}
NoCopy nc1, nc2;
nc1.n = 127; nc1.s = "abc";
nc2.n = 513; nc2.s = "uvwxyz";
swap(nc1, nc2);
assert(nc1.n == 513 && nc1.s == "uvwxyz");
assert(nc2.n == 127 && nc2.s == "abc");
struct NoCopyHolder
{
NoCopy noCopy;
}
NoCopyHolder h1, h2;
h1.noCopy.n = 31; h1.noCopy.s = "abc";
h2.noCopy.n = 65; h2.noCopy.s = null;
swap(h1, h2);
assert(h1.noCopy.n == 65 && h1.noCopy.s == null);
assert(h2.noCopy.n == 31 && h2.noCopy.s == "abc");
const NoCopy const1, const2;
static assert(!__traits(compiles, swap(const1, const2)));
}
void swapFront(R1, R2)(R1 r1, R2 r2)
if (isInputRange!R1 && isInputRange!R2)
{
static if (is(typeof(swap(r1.front, r2.front))))
{
swap(r1.front, r2.front);
}
else
{
auto t1 = moveFront(r1), t2 = moveFront(r2);
r1.front = move(t2);
r2.front = move(t1);
}
}
// splitter
/**
Splits a range using an element as a separator. This can be used with
any range type, but is most popular with string types.
Two adjacent separators are considered to surround an empty element in
the split range.
If the empty range is given, the result is a range with one empty
element. If a range with one separator is given, the result is a range
with two empty elements.
Example:
---
assert(equal(splitter("hello world", ' '), [ "hello", "", "world" ]));
int[] a = [ 1, 2, 0, 0, 3, 0, 4, 5, 0 ];
int[][] w = [ [1, 2], [], [3], [4, 5] ];
assert(equal(splitter(a, 0), w));
a = null;
assert(equal(splitter(a, 0), [ (int[]).init ]));
a = [ 0 ];
assert(equal(splitter(a, 0), [ (int[]).init, (int[]).init ]));
a = [ 0, 1 ];
assert(equal(splitter(a, 0), [ [], [1] ]));
----
*/
auto splitter(Range, Separator)(Range r, Separator s)
if (is(typeof(ElementType!Range.init == Separator.init))
&& (hasSlicing!Range || isNarrowString!Range))
{
struct Result
{
private:
Range _input;
Separator _separator;
enum size_t _unComputed = size_t.max - 1, _atEnd = size_t.max;
size_t _frontLength = _unComputed;
size_t _backLength = _unComputed;
static if(isBidirectionalRange!Range)
{
static sizediff_t lastIndexOf(Range haystack, Separator needle)
{
immutable index = countUntil(retro(haystack), needle);
return (index == -1) ? -1 : haystack.length - 1 - index;
}
}
public:
this(Range input, Separator separator)
{
_input = input;
_separator = separator;
}
static if (isInfinite!Range)
{
enum bool empty = false;
}
else
{
@property bool empty()
{
return _frontLength == _atEnd;
}
}
@property Range front()
{
assert(!empty);
if (_frontLength == _unComputed)
{
_frontLength = countUntil(_input, _separator);
if (_frontLength == -1) _frontLength = _input.length;
}
return _input[0 .. _frontLength];
}
void popFront()
{
assert(!empty);
if (_frontLength == _unComputed)
{
front;
}
assert(_frontLength <= _input.length);
if (_frontLength == _input.length)
{
// no more input and need to fetch => done
_frontLength = _atEnd;
// Probably don't need this, but just for consistency:
_backLength = _atEnd;
}
else
{
_input = _input[_frontLength .. _input.length];
skipOver(_input, _separator) || assert(false);
_frontLength = _unComputed;
}
}
static if(isForwardRange!Range)
{
@property typeof(this) save()
{
auto ret = this;
ret._input = _input.save;
return ret;
}
}
static if(isBidirectionalRange!Range)
{
@property Range back()
{
assert(!empty);
if (_backLength == _unComputed)
{
immutable lastIndex = lastIndexOf(_input, _separator);
if(lastIndex == -1)
{
_backLength = _input.length;
}
else
{
_backLength = _input.length - lastIndex - 1;
}
}
return _input[_input.length - _backLength .. _input.length];
}
void popBack()
{
assert(!empty);
if (_backLength == _unComputed)
{
// evaluate back to make sure it's computed
back;
}
assert(_backLength <= _input.length);
if (_backLength == _input.length)
{
// no more input and need to fetch => done
_frontLength = _atEnd;
_backLength = _atEnd;
}
else
{
_input = _input[0 .. _input.length - _backLength];
if (!_input.empty && _input.back == _separator)
{
_input.popBack();
}
else
{
assert(false);
}
_backLength = _unComputed;
}
}
}
}
return Result(r, s);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
assert(equal(splitter("hello world", ' '), [ "hello", "", "world" ]));
int[] a = [ 1, 2, 0, 0, 3, 0, 4, 5, 0 ];
int[][] w = [ [1, 2], [], [3], [4, 5], [] ];
static assert(isForwardRange!(typeof(splitter(a, 0))));
// foreach (x; splitter(a, 0)) {
// writeln("[", x, "]");
// }
assert(equal(splitter(a, 0), w));
a = null;
assert(equal(splitter(a, 0), [ (int[]).init ][]));
a = [ 0 ];
assert(equal(splitter(a, 0), [ (int[]).init, (int[]).init ][]));
a = [ 0, 1 ];
assert(equal(splitter(a, 0), [ [], [1] ][]));
// Thoroughly exercise the bidirectional stuff.
auto str = "abc abcd abcde ab abcdefg abcdefghij ab ac ar an at ada";
assert(equal(
retro(splitter(str, 'a')),
retro(array(splitter(str, 'a')))
));
// Test interleaving front and back.
auto split = splitter(str, 'a');
assert(split.front == "");
assert(split.back == "");
split.popBack();
assert(split.back == "d");
split.popFront();
assert(split.front == "bc ");
assert(split.back == "d");
split.popFront();
split.popBack();
assert(split.back == "t ");
split.popBack();
split.popBack();
split.popFront();
split.popFront();
assert(split.front == "b ");
assert(split.back == "r ");
foreach(DummyType; AllDummyRanges) { // Bug 4408
static if(isRandomAccessRange!DummyType) {
static assert(isBidirectionalRange!DummyType);
DummyType d;
auto s = splitter(d, 5);
assert(equal(s.front, [1,2,3,4]));
assert(equal(s.back, [6,7,8,9,10]));
auto s2 = splitter(d, [4, 5]);
assert(equal(s2.front, [1,2,3]));
assert(equal(s2.back, [6,7,8,9,10]));
}
}
}
/**
Splits a range using another range as a separator. This can be used
with any range type, but is most popular with string types.
*/
auto splitter(Range, Separator)(Range r, Separator s)
if (is(typeof(Range.init.front == Separator.init.front) : bool))
{
struct Result
{
private:
Range _input;
Separator _separator;
// _frontLength == size_t.max means empty
size_t _frontLength = size_t.max;
static if (isBidirectionalRange!Range)
size_t _backLength = size_t.max;
size_t separatorLength() { return _separator.length; }
void ensureFrontLength()
{
if (_frontLength != _frontLength.max) return;
assert(!_input.empty);
// compute front length
_frontLength = _input.length - find(_input, _separator).length;
static if (isBidirectionalRange!Range)
if (_frontLength == _input.length) _backLength = _frontLength;
}
void ensureBackLength()
{
static if (isBidirectionalRange!Range)
if (_backLength != _backLength.max) return;
assert(!_input.empty);
// compute back length
static if (isBidirectionalRange!Range)
{
_backLength = _input.length -
find(retro(_input), retro(_separator)).source.length;
}
}
public:
this(Range input, Separator separator)
{
_input = input;
_separator = separator;
}
@property Range front()
{
assert(!empty);
ensureFrontLength();
return _input[0 .. _frontLength];
}
static if (isInfinite!Range)
{
enum bool empty = false; // Propagate infiniteness
}
else
{
@property bool empty()
{
return _frontLength == size_t.max && _input.empty;
}
}
void popFront()
{
assert(!empty);
ensureFrontLength;
if (_frontLength == _input.length)
{
// done, there's no separator in sight
_input = _input[_frontLength .. _frontLength];
_frontLength = _frontLength.max;
static if (isBidirectionalRange!Range)
_backLength = _backLength.max;
return;
}
if (_frontLength + separatorLength == _input.length)
{
// Special case: popping the first-to-last item; there is
// an empty item right after this.
_input = _input[_input.length .. _input.length];
_frontLength = 0;
static if (isBidirectionalRange!Range)
_backLength = 0;
return;
}
// Normal case, pop one item and the separator, get ready for
// reading the next item
_input = _input[_frontLength + separatorLength .. _input.length];
// mark _frontLength as uninitialized
_frontLength = _frontLength.max;
}
static if(isForwardRange!Range)
{
@property typeof(this) save()
{
auto ret = this;
ret._input = _input.save;
return ret;
}
}
// Bidirectional functionality as suggested by Brad Roberts.
static if (isBidirectionalRange!Range)
{
@property Range back()
{
ensureBackLength;
return _input[_input.length - _backLength .. _input.length];
}
void popBack()
{
ensureBackLength;
if (_backLength == _input.length)
{
// done
_input = _input[0 .. 0];
_frontLength = _frontLength.max;
_backLength = _backLength.max;
return;
}
if (_backLength + separatorLength == _input.length)
{
// Special case: popping the first-to-first item; there is
// an empty item right before this. Leave the separator in.
_input = _input[0 .. 0];
_frontLength = 0;
_backLength = 0;
return;
}
// Normal case
_input = _input[0 .. _input.length - _backLength - separatorLength];
_backLength = _backLength.max;
}
}
}
return Result(r, s);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
auto s = ",abc, de, fg,hi,";
auto sp0 = splitter(s, ',');
// //foreach (e; sp0) writeln("[", e, "]");
assert(equal(sp0, ["", "abc", " de", " fg", "hi", ""][]));
auto s1 = ", abc, de, fg, hi, ";
auto sp1 = splitter(s1, ", ");
//foreach (e; sp1) writeln("[", e, "]");
assert(equal(sp1, ["", "abc", "de", " fg", "hi", ""][]));
static assert(isForwardRange!(typeof(sp1)));
int[] a = [ 1, 2, 0, 3, 0, 4, 5, 0 ];
int[][] w = [ [1, 2], [3], [4, 5], [] ];
uint i;
foreach (e; splitter(a, 0))
{
assert(i < w.length);
assert(e == w[i++]);
}
assert(i == w.length);
// // Now go back
// auto s2 = splitter(a, 0);
// foreach (e; retro(s2))
// {
// assert(i > 0);
// assert(equal(e, w[--i]), text(e));
// }
// assert(i == 0);
wstring names = ",peter,paul,jerry,";
auto words = split(names, ",");
assert(walkLength(words) == 5, text(walkLength(words)));
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
auto s6 = ",";
auto sp6 = splitter(s6, ',');
foreach (e; sp6)
{
//writeln("{", e, "}");
}
assert(equal(sp6, ["", ""][]));
}
auto splitter(alias isTerminator, Range)(Range input)
if (is(typeof(unaryFun!(isTerminator)(ElementType!(Range).init))))
{
struct Result
{
private Range _input;
private size_t _end;
private alias unaryFun!isTerminator _isTerminator;
this(Range input)
{
_input = input;
if (_input.empty)
{
_end = _end.max;
}
else
{
// Chase first terminator
while (_end < _input.length && !_isTerminator(_input[_end]))
{
++_end;
}
}
}
static if (isInfinite!Range)
{
enum bool empty = false; // Propagate infiniteness.
}
else
{
@property bool empty()
{
return _end == _end.max;
}
}
@property Range front()
{
assert(!empty);
return _input[0 .. _end];
}
void popFront()
{
assert(!empty);
if (_input.empty)
{
_end = _end.max;
return;
}
// Skip over existing word
_input = _input[_end .. _input.length];
// Skip terminator
for (;;)
{
if (_input.empty)
{
// Nothing following the terminator - done
_end = _end.max;
return;
}
if (!_isTerminator(_input.front))
{
// Found a legit next field
break;
}
_input.popFront();
}
assert(!_input.empty && !_isTerminator(_input.front));
// Prepare _end
_end = 1;
while (_end < _input.length && !_isTerminator(_input[_end]))
{
++_end;
}
}
static if(isForwardRange!Range)
{
@property typeof(this) save()
{
auto ret = this;
ret._input = _input.save;
return ret;
}
}
}
return Result(input);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
void compare(string sentence, string[] witness)
{
foreach (word; splitter!"a == ' '"(sentence))
{
assert(word == witness.front, word);
witness.popFront();
}
assert(witness.empty, witness[0]);
}
compare(" Mary has a little lamb. ",
["", "Mary", "has", "a", "little", "lamb."]);
compare("Mary has a little lamb. ",
["Mary", "has", "a", "little", "lamb."]);
compare("Mary has a little lamb.",
["Mary", "has", "a", "little", "lamb."]);
compare("", []);
compare(" ", [""]);
static assert(isForwardRange!(typeof(splitter!"a == ' '"("ABC"))));
foreach(DummyType; AllDummyRanges)
{
static if(isRandomAccessRange!DummyType)
{
auto rangeSplit = splitter!"a == 5"(DummyType.init);
assert(equal(rangeSplit.front, [1,2,3,4]));
rangeSplit.popFront();
assert(equal(rangeSplit.front, [6,7,8,9,10]));
}
}
}
// joiner
/**
Lazily joins a range of ranges with a separator. The separator itself
is a range.
Example:
----
assert(equal(joiner([""], "xyz"), ""));
assert(equal(joiner(["", ""], "xyz"), "xyz"));
assert(equal(joiner(["", "abc"], "xyz"), "xyzabc"));
assert(equal(joiner(["abc", ""], "xyz"), "abcxyz"));
assert(equal(joiner(["abc", "def"], "xyz"), "abcxyzdef"));
assert(equal(joiner(["Mary", "has", "a", "little", "lamb"], "..."),
"Mary...has...a...little...lamb"));
----
*/
auto joiner(RoR, Separator)(RoR r, Separator sep)
if (isForwardRange!RoR && isInputRange!(ElementType!RoR)
&& isForwardRange!Separator
&& is(ElementType!Separator : ElementType!(ElementType!RoR)))
{
static struct Result
{
private RoR _items;
private ElementType!RoR _current;
private Separator _sep, _currentSep;
private void useSeparator()
{
assert(_currentSep.empty && _current.empty,
"joiner: internal error");
if (_sep.empty)
{
// Advance to the next range in the
// input
//_items.popFront();
for (;; _items.popFront())
{
if (_items.empty) return;
if (!_items.front.empty) break;
}
_current = _items.front;
_items.popFront();
}
else
{
// Must make sure something is coming after the
// separator - it's a separator, not a terminator!
if (_items.empty) return;
_currentSep = _sep.save;
assert(!_currentSep.empty);
}
}
private void useItem()
{
assert(_currentSep.empty && _current.empty,
"joiner: internal error");
// Use the input
if (_items.empty) return;
_current = _items.front;
_items.popFront();
if (!_current.empty)
{
return;
}
// No data in the current item - toggle to use the
// separator
useSeparator();
}
this(RoR items, Separator sep)
{
_items = items;
_sep = sep;
useItem();
// We need the separator if the input has at least two
// elements
if (_current.empty && _items.empty)
{
// Vacate the whole thing
_currentSep = _currentSep.init;
}
}
@property auto empty()
{
return _current.empty && _currentSep.empty;
}
@property ElementType!(ElementType!RoR) front()
{
if (!_currentSep.empty) return _currentSep.front;
assert(!_current.empty);
return _current.front;
}
void popFront()
{
assert(!empty);
// Using separator?
if (!_currentSep.empty)
{
_currentSep.popFront();
if (!_currentSep.empty) return;
useItem();
}
else
{
// we're using the range
_current.popFront();
if (!_current.empty) return;
useSeparator();
}
}
static if (isForwardRange!RoR && isForwardRange!(ElementType!RoR))
{
@property auto save()
{
Result copy;
copy._items = _items.save;
copy._current = _current.save;
copy._sep = _sep.save;
copy._currentSep = _currentSep.save;
return copy;
}
}
}
return Result(r, sep);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
static assert(isInputRange!(typeof(joiner([""], ""))));
static assert(isForwardRange!(typeof(joiner([""], ""))));
assert(equal(joiner([""], "xyz"), ""), text(joiner([""], "xyz")));
assert(equal(joiner(["", ""], "xyz"), "xyz"), text(joiner(["", ""], "xyz")));
assert(equal(joiner(["", "abc"], "xyz"), "xyzabc"));
assert(equal(joiner(["abc", ""], "xyz"), "abcxyz"));
assert(equal(joiner(["abc", "def"], "xyz"), "abcxyzdef"));
assert(equal(joiner(["Mary", "has", "a", "little", "lamb"], "..."),
"Mary...has...a...little...lamb"));
}
auto joiner(RoR)(RoR r)
if (isInputRange!RoR && isInputRange!(ElementType!RoR))
{
static struct Result
{
private:
RoR _items;
ElementType!RoR _current;
void prepare()
{
for (;; _items.popFront())
{
if (_items.empty) return;
if (!_items.front.empty) break;
}
_current = _items.front;
_items.popFront();
}
public:
this(RoR r)
{
_items = r;
prepare();
}
static if (isInfinite!(ElementType!RoR))
{
enum bool empty = false;
}
else
{
@property auto empty()
{
return _current.empty;
}
}
@property auto ref front()
{
assert(!empty);
return _current.front;
}
void popFront()
{
assert(!_current.empty);
_current.popFront();
if (_current.empty) prepare();
}
static if (isForwardRange!RoR && isForwardRange!(ElementType!RoR))
{
@property auto save()
{
Result copy;
copy._items = _items.save;
copy._current = _current.save;
return copy;
}
}
}
return Result(r);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
static assert(isInputRange!(typeof(joiner([""]))));
static assert(isForwardRange!(typeof(joiner([""]))));
assert(equal(joiner([""]), ""));
assert(equal(joiner(["", ""]), ""));
assert(equal(joiner(["", "abc"]), "abc"));
assert(equal(joiner(["abc", ""]), "abc"));
assert(equal(joiner(["abc", "def"]), "abcdef"));
assert(equal(joiner(["Mary", "has", "a", "little", "lamb"]),
"Maryhasalittlelamb"));
assert(equal(joiner(std.range.repeat("abc", 3)), "abcabcabc"));
// joiner allows in-place mutation!
auto a = [ [1, 2, 3], [42, 43] ];
auto j = joiner(a);
j.front() = 44;
assert(a == [ [44, 2, 3], [42, 43] ]);
}
// uniq
/**
Iterates unique consecutive elements of the given range (functionality
akin to the $(WEB wikipedia.org/wiki/_Uniq, _uniq) system
utility). Equivalence of elements is assessed by using the predicate
$(D pred), by default $(D "a == b"). If the given range is
bidirectional, $(D uniq) also yields a bidirectional range.
Example:
----
int[] arr = [ 1, 2, 2, 2, 2, 3, 4, 4, 4, 5 ];
assert(equal(uniq(arr), [ 1, 2, 3, 4, 5 ][]));
----
*/
auto uniq(alias pred = "a == b", Range)(Range r)
if (isInputRange!Range && is(typeof(binaryFun!pred(r.front, r.front)) == bool))
{
struct Result
{
Range _input;
this(Range input)
{
_input = input;
}
auto opSlice()
{
return this;
}
void popFront()
{
auto last = _input.front;
do
{
_input.popFront;
}
while (!_input.empty && binaryFun!(pred)(last, _input.front));
}
@property ElementType!Range front() { return _input.front; }
static if (isBidirectionalRange!Range)
{
void popBack()
{
auto last = _input.back;
do
{
_input.popBack;
}
while (!_input.empty && binaryFun!pred(last, _input.back));
}
@property ElementType!Range back() { return _input.back; }
}
static if (isInfinite!Range)
{
enum bool empty = false; // Propagate infiniteness.
}
else
{
@property bool empty() { return _input.empty; }
}
static if (isForwardRange!Range) {
@property typeof(this) save() {
return typeof(this)(_input.save);
}
}
}
return Result(r);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] arr = [ 1, 2, 2, 2, 2, 3, 4, 4, 4, 5 ];
auto r = uniq(arr);
static assert(isForwardRange!(typeof(r)));
assert(equal(r, [ 1, 2, 3, 4, 5 ][]));
assert(equal(retro(r), retro([ 1, 2, 3, 4, 5 ][])));
foreach(DummyType; AllDummyRanges) {
DummyType d;
auto u = uniq(d);
assert(equal(u, [1,2,3,4,5,6,7,8,9,10]));
static assert(d.rt == RangeType.Input || isForwardRange!(typeof(u)));
static if (d.rt >= RangeType.Bidirectional) {
assert(equal(retro(u), [10,9,8,7,6,5,4,3,2,1]));
}
}
}
// group
/**
Similarly to $(D uniq), $(D group) iterates unique consecutive
elements of the given range. The element type is $(D
Tuple!(ElementType!R, uint)) because it includes the count of
equivalent elements seen. Equivalence of elements is assessed by using
the predicate $(D pred), by default $(D "a == b").
$(D Group) is an input range if $(D R) is an input range, and a
forward range in all other cases.
Example:
----
int[] arr = [ 1, 2, 2, 2, 2, 3, 4, 4, 4, 5 ];
assert(equal(group(arr), [ tuple(1, 1u), tuple(2, 4u), tuple(3, 1u),
tuple(4, 3u), tuple(5, 1u) ][]));
----
*/
struct Group(alias pred, R) if (isInputRange!R)
{
private R _input;
private Tuple!(ElementType!R, uint) _current;
private alias binaryFun!pred comp;
this(R input)
{
_input = input;
if (!_input.empty) popFront;
}
void popFront()
{
if (_input.empty)
{
_current[1] = 0;
}
else
{
_current = tuple(_input.front, 1u);
_input.popFront;
while (!_input.empty && comp(_current[0], _input.front))
{
++_current[1];
_input.popFront;
}
}
}
static if (isInfinite!R)
{
enum bool empty = false; // Propagate infiniteness.
}
else
{
@property bool empty()
{
return _current[1] == 0;
}
}
@property ref Tuple!(ElementType!R, uint) front()
{
assert(!empty);
return _current;
}
static if (isForwardRange!R) {
@property typeof(this) save() {
typeof(this) ret;
ret._input = this._input.save;
ret._current = this._current;
return ret;
}
}
}
/// Ditto
Group!(pred, Range) group(alias pred = "a == b", Range)(Range r)
{
return typeof(return)(r);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] arr = [ 1, 2, 2, 2, 2, 3, 4, 4, 4, 5 ];
assert(equal(group(arr), [ tuple(1, 1u), tuple(2, 4u), tuple(3, 1u),
tuple(4, 3u), tuple(5, 1u) ][]));
static assert(isForwardRange!(typeof(group(arr))));
foreach(DummyType; AllDummyRanges) {
DummyType d;
auto g = group(d);
static assert(d.rt == RangeType.Input || isForwardRange!(typeof(g)));
assert(equal(g, [tuple(1, 1u), tuple(2, 1u), tuple(3, 1u), tuple(4, 1u),
tuple(5, 1u), tuple(6, 1u), tuple(7, 1u), tuple(8, 1u),
tuple(9, 1u), tuple(10, 1u)]));
}
}
// overwriteAdjacent
/*
Reduces $(D r) by shifting it to the left until no adjacent elements
$(D a), $(D b) remain in $(D r) such that $(D pred(a, b)). Shifting is
performed by evaluating $(D move(source, target)) as a primitive. The
algorithm is stable and runs in $(BIGOH r.length) time. Returns the
reduced range.
The default $(XREF _algorithm, move) performs a potentially
destructive assignment of $(D source) to $(D target), so the objects
beyond the returned range should be considered "empty". By default $(D
pred) compares for equality, in which case $(D overwriteAdjacent)
collapses adjacent duplicate elements to one (functionality akin to
the $(WEB wikipedia.org/wiki/Uniq, uniq) system utility).
Example:
----
int[] arr = [ 1, 2, 2, 2, 2, 3, 4, 4, 4, 5 ];
auto r = overwriteAdjacent(arr);
assert(r == [ 1, 2, 3, 4, 5 ]);
----
*/
// Range overwriteAdjacent(alias pred, alias move, Range)(Range r)
// {
// if (r.empty) return r;
// //auto target = begin(r), e = end(r);
// auto target = r;
// auto source = r;
// source.popFront;
// while (!source.empty)
// {
// if (!pred(target.front, source.front))
// {
// target.popFront;
// continue;
// }
// // found an equal *source and *target
// for (;;)
// {
// //@@@
// //move(source.front, target.front);
// target[0] = source[0];
// source.popFront;
// if (source.empty) break;
// if (!pred(target.front, source.front)) target.popFront;
// }
// break;
// }
// return range(begin(r), target + 1);
// }
// /// Ditto
// Range overwriteAdjacent(
// string fun = "a == b",
// alias move = .move,
// Range)(Range r)
// {
// return .overwriteAdjacent!(binaryFun!(fun), move, Range)(r);
// }
// unittest
// {
// int[] arr = [ 1, 2, 2, 2, 2, 3, 4, 4, 4, 5 ];
// auto r = overwriteAdjacent(arr);
// assert(r == [ 1, 2, 3, 4, 5 ]);
// assert(arr == [ 1, 2, 3, 4, 5, 3, 4, 4, 4, 5 ]);
// }
// find
/**
Finds an individual element in an input range. Elements of $(D
haystack) are compared with $(D needle) by using predicate $(D
pred). Performs $(BIGOH walkLength(haystack)) evaluations of $(D
pred). See also $(WEB sgi.com/tech/stl/_find.html, STL's _find).
To _find the last occurence of $(D needle) in $(D haystack), call $(D
find(retro(haystack), needle)). See also $(XREF range, retro).
Params:
haystack = The range searched in.
needle = The element searched for.
Constraints:
$(D isInputRange!R && is(typeof(binaryFun!pred(haystack.front, needle)
: bool)))
Returns:
$(D haystack) advanced such that $(D binaryFun!pred(haystack.front,
needle)) is $(D true) (if no such position exists, returns $(D
haystack) after exhaustion).
Example:
----
assert(find("hello, world", ',') == ", world");
assert(find([1, 2, 3, 5], 4) == []);
assert(find(SList!int(1, 2, 3, 4, 5)[], 4) == SList!int(4, 5)[]);
assert(find!"a > b"([1, 2, 3, 5], 2) == [3, 5]);
auto a = [ 1, 2, 3 ];
assert(find(a, 5).empty); // not found
assert(!find(a, 2).empty); // found
// Case-insensitive find of a string
string[] s = [ "Hello", "world", "!" ];
assert(!find!("tolower(a) == b")(s, "hello").empty);
----
*/
R find(alias pred = "a == b", R, E)(R haystack, E needle)
if (isInputRange!R &&
is(typeof(binaryFun!pred(haystack.front, needle)) : bool))
{
for (; !haystack.empty; haystack.popFront())
{
if (binaryFun!pred(haystack.front, needle)) break;
}
return haystack;
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
auto lst = SList!int(1, 2, 5, 7, 3);
assert(lst.front == 1);
auto r = find(lst[], 5);
assert(equal(r, SList!int(5, 7, 3)[]));
assert(find([1, 2, 3, 5], 4).empty);
}
/**
Finds a forward range in another. Elements are compared for
equality. Performs $(BIGOH walkLength(haystack) * walkLength(needle))
comparisons in the worst case. Specializations taking advantage of
bidirectional or random access (where present) may accelerate search
depending on the statistics of the two ranges' content.
Params:
haystack = The range searched in.
needle = The range searched for.
Constraints:
$(D isForwardRange!R1 && isForwardRange!R2 &&
is(typeof(binaryFun!pred(haystack.front, needle.front) : bool)))
Returns:
$(D haystack) advanced such that $(D needle) is a prefix of it (if no
such position exists, returns $(D haystack) advanced to termination).
----
assert(find("hello, world", "World").empty);
assert(find("hello, world", "wo") == "world");
assert(find([1, 2, 3, 4], SList!(2, 3)[]) == [2, 3, 4]);
----
*/
R1 find(alias pred = "a == b", R1, R2)(R1 haystack, R2 needle)
if (isForwardRange!R1 && isForwardRange!R2
&& is(typeof(binaryFun!pred(haystack.front, needle.front)) : bool)
&& !isRandomAccessRange!R1)
{
static if (is(typeof(pred == "a == b")) && pred == "a == b" && isSomeString!R1 && isSomeString!R2
&& haystack[0].sizeof == needle[0].sizeof)
{
//return cast(R1) find(representation(haystack), representation(needle));
// Specialization for simple string search
alias Select!(haystack[0].sizeof == 1, ubyte[],
Select!(haystack[0].sizeof == 2, ushort[], uint[]))
Representation;
// Will use the array specialization
return cast(R1) .find!(pred, Representation, Representation)
(cast(Representation) haystack, cast(Representation) needle);
}
else
{
return simpleMindedFind!pred(haystack, needle);
}
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
auto lst = SList!int(1, 2, 5, 7, 3);
static assert(isForwardRange!(int[]));
static assert(isForwardRange!(typeof(lst[])));
auto r = find(lst[], [2, 5]);
assert(equal(r, SList!int(2, 5, 7, 3)[]));
}
// Specialization for searching a random-access range for a
// bidirectional range
R1 find(alias pred = "a == b", R1, R2)(R1 haystack, R2 needle)
if (isRandomAccessRange!R1 && isBidirectionalRange!R2
&& is(typeof(binaryFun!pred(haystack.front, needle.front)) : bool))
{
if (needle.empty) return haystack;
const needleLength = walkLength(needle);
if (needleLength > haystack.length)
{
// @@@BUG@@@
//return haystack[$ .. $];
return haystack[haystack.length .. haystack.length];
}
// @@@BUG@@@
// auto needleBack = moveBack(needle);
// Stage 1: find the step
size_t step = 1;
auto needleBack = needle.back;
needle.popBack();
for (auto i = needle.save; !i.empty && !binaryFun!pred(i.back, needleBack);
i.popBack(), ++step)
{
}
// Stage 2: linear find
size_t scout = needleLength - 1;
for (;;)
{
if (scout >= haystack.length)
{
return haystack[haystack.length .. haystack.length];
}
if (!binaryFun!pred(haystack[scout], needleBack))
{
++scout;
continue;
}
// Found a match with the last element in the needle
auto cand = haystack[scout + 1 - needleLength .. haystack.length];
if (startsWith!pred(cand, needle))
{
// found
return cand;
}
// Continue with the stride
scout += step;
}
}
unittest
{
//scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done.");
// @@@BUG@@@ removing static below makes unittest fail
static struct BiRange
{
int[] payload;
@property bool empty() { return payload.empty; }
@property BiRange save() { return this; }
@property ref int front() { return payload[0]; }
@property ref int back() { return payload[$ - 1]; }
void popFront() { return payload.popFront(); }
void popBack() { return payload.popBack(); }
}
//static assert(isBidirectionalRange!BiRange);
auto r = BiRange([1, 2, 3, 10, 11, 4]);
//assert(equal(find(r, [3, 10]), BiRange([3, 10, 11, 4])));
//assert(find("abc", "bc").length == 2);
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
//assert(find!"a == b"("abc", "bc").length == 2);
}
// Leftover specialization: searching a random-access range for a
// non-bidirectional forward range
R1 find(alias pred = "a == b", R1, R2)(R1 haystack, R2 needle)
if (isRandomAccessRange!R1 && isForwardRange!R2 && !isBidirectionalRange!R2
&& is(typeof(binaryFun!pred(haystack.front, needle.front)) : bool))
{
static if (!is(ElementType!R1 == ElementType!R2))
{
return simpleMindedFind!pred(haystack, needle);
}
else
{
// Prepare the search with needle's first element
if (needle.empty) return haystack;
haystack = .find!pred(haystack, needle.front);
if (haystack.empty) return haystack;
needle.popFront();
size_t matchLen = 1;
// Loop invariant: haystack[0 .. matchLen] matches everything in
// the initial needle that was popped out of needle.
for (;;)
{
// Extend matchLength as much as possible
for (;;)
{
if (needle.empty || haystack.empty) return haystack;
if (!binaryFun!pred(haystack[matchLen], needle.front)) break;
++matchLen;
needle.popFront();
}
auto bestMatch = haystack[0 .. matchLen];
haystack.popFront();
haystack = .find!pred(haystack, bestMatch);
}
}
}
unittest
{
assert(find([ 1, 2, 3 ], SList!int(2, 3)[]) == [ 2, 3 ]);
assert(find([ 1, 2, 1, 2, 3, 3 ], SList!int(2, 3)[]) == [ 2, 3, 3 ]);
}
// Internally used by some find() overloads above. Can't make it
// private due to bugs in the compiler.
/*private*/ R1 simpleMindedFind(alias pred, R1, R2)(R1 haystack, R2 needle)
{
enum estimateNeedleLength = hasLength!R1 && !hasLength!R2;
static if (hasLength!R1)
{
static if (hasLength!R2)
size_t estimatedNeedleLength = 0;
else
immutable size_t estimatedNeedleLength = needle.length;
}
bool haystackTooShort()
{
static if (hasLength!R1)
{
return haystack.length < estimatedNeedleLength;
}
else
{
return haystack.empty;
}
}
searching:
for (;; haystack.popFront())
{
if (haystackTooShort())
{
// Failed search
static if (hasLength!R1)
{
static if (is(typeof(haystack[haystack.length ..
haystack.length]) : R1))
return haystack[haystack.length .. haystack.length];
else
return R1.init;
}
else
{
assert(haystack.empty);
return haystack;
}
}
static if (estimateNeedleLength)
size_t matchLength = 0;
for (auto h = haystack.save, n = needle.save;
!n.empty;
h.popFront(), n.popFront())
{
if (h.empty || !binaryFun!pred(h.front, n.front))
{
// Failed searching n in h
static if (estimateNeedleLength)
{
if (estimatedNeedleLength < matchLength)
estimatedNeedleLength = matchLength;
}
continue searching;
}
static if (estimateNeedleLength)
++matchLength;
}
break;
}
return haystack;
}
/**
Finds two or more $(D needles) into a $(D haystack). The predicate $(D
pred) is used throughout to compare elements. By default, elements are
compared for equality.
Params:
haystack = The target of the search. Must be an $(GLOSSARY input
range). If any of $(D needles) is a range with elements comparable to
elements in $(D haystack), then $(D haystack) must be a $(GLOSSARY
forward range) such that the search can backtrack.
needles = One or more items to search for. Each of $(D needles) must
be either comparable to one element in $(D haystack), or be itself a
$(GLOSSARY forward range) with elements comparable with elements in
$(D haystack).
Returns:
A tuple containing $(D haystack) positioned to match one of the
needles and also the 1-based index of the matching element in $(D
needles) (0 if none of $(D needles) matched, 1 if $(D needles[0])
matched, 2 if $(D needles[1]) matched...).
The relationship between $(D haystack) and $(D needles) simply means
that one can e.g. search for individual $(D int)s or arrays of $(D
int)s in an array of $(D int)s. In addition, if elements are
individually comparable, searches of heterogeneous types are allowed
as well: a $(D double[]) can be searched for an $(D int) or a $(D
short[]), and conversely a $(D long) can be searched for a $(D float)
or a $(D double[]). This makes for efficient searches without the need
to coerce one side of the comparison into the other's side type.
Example:
----
int[] a = [ 1, 4, 2, 3 ];
assert(find(a, 4) == [ 4, 2, 3 ]);
assert(find(a, [ 1, 4 ]) == [ 1, 4, 2, 3 ]);
assert(find(a, [ 1, 3 ], 4) == tuple([ 4, 2, 3 ], 2));
// Mixed types allowed if comparable
assert(find(a, 5, [ 1.2, 3.5 ], 2.0, [ 1 ]) == tuple([ 2, 3 ], 3));
----
The complexity of the search is $(BIGOH haystack.length *
max(needles.length)). (For needles that are individual items, length
is considered to be 1.) The strategy used in searching several
subranges at once maximizes cache usage by moving in $(D haystack) as
few times as possible.
*/
Tuple!(Range, size_t) find(alias pred = "a == b", Range, Ranges...)
(Range haystack, Ranges needles)
if (Ranges.length > 1 && allSatisfy!(isForwardRange, Ranges))
{
for (;; haystack.popFront)
{
size_t r = startsWith!pred(haystack, needles);
if (r || haystack.empty)
{
return tuple(haystack, r);
}
}
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
auto s1 = "Mary has a little lamb";
//writeln(find(s1, "has a", "has an"));
assert(find(s1, "has a", "has an") == tuple("has a little lamb", 1));
assert(find("abc", "bc").length == 2);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 1, 2, 3 ];
assert(find(a, 5).empty);
assert(find(a, 2) == [2, 3]);
foreach (T; TypeTuple!(int, double))
{
auto b = rndstuff!(T)();
if (!b.length) continue;
b[$ / 2] = 200;
b[$ / 4] = 200;
assert(find(b, 200).length == b.length - b.length / 4);
}
// Case-insensitive find of a string
string[] s = [ "Hello", "world", "!" ];
//writeln(find!("toupper(a) == toupper(b)")(s, "hello"));
assert(find!("toupper(a) == toupper(b)")(s, "hello").length == 3);
static bool f(string a, string b) { return toupper(a) == toupper(b); }
assert(find!(f)(s, "hello").length == 3);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 1, 2, 3, 2, 6 ];
assert(find(std.range.retro(a), 5).empty);
assert(equal(find(std.range.retro(a), 2), [ 2, 3, 2, 1 ][]));
foreach (T; TypeTuple!(int, double))
{
auto b = rndstuff!(T)();
if (!b.length) continue;
b[$ / 2] = 200;
b[$ / 4] = 200;
assert(find(std.range.retro(b), 200).length ==
b.length - (b.length - 1) / 2);
}
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ -1, 0, 1, 2, 3, 4, 5 ];
int[] b = [ 1, 2, 3 ];
assert(find(a, b) == [ 1, 2, 3, 4, 5 ]);
assert(find(b, a).empty);
foreach(DummyType; AllDummyRanges) {
DummyType d;
auto findRes = find(d, 5);
assert(equal(findRes, [5,6,7,8,9,10]));
}
}
/// Ditto
struct BoyerMooreFinder(alias pred, Range)
{
private:
size_t skip[];
sizediff_t[ElementType!(Range)] occ;
Range needle;
sizediff_t occurrence(ElementType!(Range) c)
{
auto p = c in occ;
return p ? *p : -1;
}
/*
This helper function checks whether the last "portion" bytes of
"needle" (which is "nlen" bytes long) exist within the "needle" at
offset "offset" (counted from the end of the string), and whether the
character preceding "offset" is not a match. Notice that the range
being checked may reach beyond the beginning of the string. Such range
is ignored.
*/
static bool needlematch(R)(R needle,
size_t portion, size_t offset)
{
sizediff_t virtual_begin = needle.length - offset - portion;
sizediff_t ignore = 0;
if (virtual_begin < 0) {
ignore = -virtual_begin;
virtual_begin = 0;
}
if (virtual_begin > 0
&& needle[virtual_begin - 1] == needle[$ - portion - 1])
return 0;
immutable delta = portion - ignore;
return equal(needle[needle.length - delta .. needle.length],
needle[virtual_begin .. virtual_begin + delta]);
}
public:
this(Range needle)
{
if (!needle.length) return;
this.needle = needle;
/* Populate table with the analysis of the needle */
/* But ignoring the last letter */
foreach (i, n ; needle[0 .. $ - 1])
{
this.occ[n] = i;
}
/* Preprocess #2: init skip[] */
/* Note: This step could be made a lot faster.
* A simple implementation is shown here. */
this.skip = new size_t[needle.length];
foreach (a; 0 .. needle.length)
{
size_t value = 0;
while (value < needle.length
&& !needlematch(needle, a, value))
{
++value;
}
this.skip[needle.length - a - 1] = value;
}
}
Range beFound(Range haystack)
{
if (!needle.length) return haystack;
if (needle.length > haystack.length) return haystack[$ .. $];
/* Search: */
auto limit = haystack.length - needle.length;
for (size_t hpos = 0; hpos <= limit; )
{
size_t npos = needle.length - 1;
while (pred(needle[npos], haystack[npos+hpos]))
{
if (npos == 0) return haystack[hpos .. $];
--npos;
}
hpos += max(skip[npos], npos - occurrence(haystack[npos+hpos]));
}
return haystack[$ .. $];
}
@property size_t length()
{
return needle.length;
}
}
/// Ditto
BoyerMooreFinder!(binaryFun!(pred), Range) boyerMooreFinder
(alias pred = "a == b", Range)
(Range needle) if (isRandomAccessRange!(Range) || isSomeString!Range)
{
return typeof(return)(needle);
}
// Oddly this is not disabled by bug 4759
Range1 find(Range1, alias pred, Range2)(
Range1 haystack, BoyerMooreFinder!(pred, Range2) needle)
{
return needle.beFound(haystack);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
string h = "/homes/aalexand/d/dmd/bin/../lib/libphobos.a(dmain2.o)"
"(.gnu.linkonce.tmain+0x74): In function `main' undefined reference"
" to `_Dmain':";
string[] ns = ["libphobos", "function", " undefined", "`", ":"];
foreach (n ; ns) {
auto p = find(h, boyerMooreFinder(n));
assert(!p.empty);
}
int[] a = [ -1, 0, 1, 2, 3, 4, 5 ];
int[] b = [ 1, 2, 3 ];
//writeln(find(a, boyerMooreFinder(b)));
assert(find(a, boyerMooreFinder(b)) == [ 1, 2, 3, 4, 5 ]);
assert(find(b, boyerMooreFinder(a)).empty);
}
/**
Advances the input range $(D haystack) by calling $(D haystack.popFront)
until either $(D pred(haystack.front)), or $(D
haystack.empty). Performs $(BIGOH haystack.length) evaluations of $(D
pred). See also $(WEB sgi.com/tech/stl/find_if.html, STL's find_if).
To find the last element of a bidirectional $(D haystack) satisfying
$(D pred), call $(D find!(pred)(retro(haystack))). See also $(XREF
range, retro).
Example:
----
auto arr = [ 1, 2, 3, 4, 1 ];
assert(find!("a > 2")(arr) == [ 3, 4, 1 ]);
// with predicate alias
bool pred(int x) { return x + 1 > 1.5; }
assert(find!(pred)(arr) == arr);
----
*/
Range find(alias pred, Range)(Range haystack) if (isInputRange!(Range))
{
alias unaryFun!(pred) predFun;
for (; !haystack.empty && !predFun(haystack.front); haystack.popFront)
{
}
return haystack;
}
unittest
{
//scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 1, 2, 3 ];
assert(find!("a > 2")(a) == [3]);
bool pred(int x) { return x + 1 > 1.5; }
assert(find!(pred)(a) == a);
}
// findSkip
/**
* If $(D needle) occurs in $(D haystack), positions $(D haystack)
* right after the first occurrence of $(D needle) and returns $(D
* true). Otherwise, leaves $(D haystack) as is and returns $(D
* false).
*
* Example:
----
string s = "abcdef";
assert(findSkip("abcdef", "cd") && s == "ef");
s = "abcdef";
assert(!findSkip("abcdef", "cxd") && s == "abcdef");
assert(findSkip("abcdef", "def") && s.empty);
----
*/
bool findSkip(alias pred = "a == b", R1, R2)(ref R1 haystack, R2 needle)
if (isForwardRange!R1 && isForwardRange!R2
&& is(typeof(binaryFun!pred(haystack.front, needle.front))))
{
auto parts = findSplit!pred(haystack, needle);
if (parts[1].empty) return false;
// found
haystack = parts[2];
return true;
}
unittest
{
string s = "abcdef";
assert(findSkip(s, "cd") && s == "ef");
s = "abcdef";
assert(!findSkip(s, "cxd") && s == "abcdef");
s = "abcdef";
assert(findSkip(s, "def") && s.empty);
}
/**
These functions find the first occurrence of $(D needle) in $(D
haystack) and then split $(D haystack) as follows.
$(D findSplit) returns a tuple $(D result) containing $(I three)
ranges. $(D result[0]) is the portion of $(D haystack) before $(D
needle), $(D result[1]) is the portion of $(D haystack) that matches
$(D needle), and $(D result[2]) is the portion of $(D haystack) after
the match.
$(D findSplitBefore) returns a tuple $(D result) containing two
ranges. $(D result[0]) is the portion of $(D haystack) before $(D
needle), and $(D result[1]) is the balance of $(D haystack) starting
with the match. If $(D needle) was not found, $(D result[0])
comprehends $(D haystack) entirely and $(D result[1]) is empty.
$(D findSplitAfter) returns a tuple $(D result) containing two ranges.
$(D result[0]) is the portion of $(D haystack) up to and including the
match, and $(D result[1]) is the balance of $(D haystack) starting
after the match. If $(D needle) was not found, $(D result[0]) is empty
and $(D result[1]) is $(D haystack).
In all cases, the concatenation of the returned ranges spans the
entire $(D haystack).
If $(D haystack) is a random-access range, all three components of the
tuple have the same type as $(D haystack). Otherwise, $(D haystack)
must be a forward range and the type of $(D result[0]) and $(D
result[1]) is the same as $(XREF range,takeExactly).
Example:
----
auto a = [ 1, 2, 3, 4, 5, 6, 7, 8 ];
auto r = findSplit(a, [9, 1]);
assert(r[0] == a);
assert(r[1].empty);
assert(r[2].empty);
r = findSplit(a, [ 3, 4 ]);
assert(r[0] == a[0 .. 2]);
assert(r[1] == a[2 .. 4]);
assert(r[2] == a[4 .. $]);
auto r1 = findSplitBefore(a, [ 7, 8 ]);
assert(r1[0] == a[0 .. 6]);
assert(r1[1] == a[6 .. $]);
auto r1 = findSplitAfter(a, [ 7, 8 ]);
assert(r1[0] == a);
assert(r1[1].empty);
----
*/
auto findSplit(alias pred = "a == b", R1, R2)(R1 haystack, R2 needle)
if (isForwardRange!R1 && isForwardRange!R2)
{
static if (isSomeString!R1 && isSomeString!R2
|| isRandomAccessRange!R1 && hasLength!R2)
{
auto balance = find!pred(haystack, needle);
immutable pos1 = haystack.length - balance.length;
immutable pos2 = balance.empty ? pos1 : pos1 + needle.length;
return tuple(haystack[0 .. pos1],
haystack[pos1 .. pos2],
haystack[pos2 .. haystack.length]);
}
else
{
auto original = haystack.save;
auto h = haystack.save;
auto n = needle.save;
size_t pos1, pos2;
while (!n.empty && !h.empty)
{
if (binaryFun!pred(h.front, n.front))
{
h.popFront();
n.popFront();
++pos2;
}
else
{
haystack.popFront();
n = needle.save;
h = haystack.save;
pos2 = ++pos1;
}
}
return tuple(takeExactly(original, pos1),
takeExactly(haystack, pos2 - pos1),
h);
}
}
/// Ditto
auto findSplitBefore(alias pred = "a == b", R1, R2)(R1 haystack, R2 needle)
if (isForwardRange!R1 && isForwardRange!R2)
{
static if (isSomeString!R1 && isSomeString!R2
|| isRandomAccessRange!R1 && hasLength!R2)
{
auto balance = find!pred(haystack, needle);
immutable pos = haystack.length - balance.length;
return tuple(haystack[0 .. pos], haystack[pos .. haystack.length]);
}
else
{
auto original = haystack.save;
auto h = haystack.save;
auto n = needle.save;
size_t pos;
while (!n.empty && !h.empty)
{
if (binaryFun!pred(h.front, n.front))
{
h.popFront();
n.popFront();
}
else
{
haystack.popFront();
n = needle.save;
h = haystack.save;
++pos;
}
}
return tuple(takeExactly(original, pos), haystack);
}
}
/// Ditto
auto findSplitAfter(alias pred = "a == b", R1, R2)(R1 haystack, R2 needle)
if (isForwardRange!R1 && isForwardRange!R2)
{
static if (isSomeString!R1 && isSomeString!R2
|| isRandomAccessRange!R1 && hasLength!R2)
{
auto balance = find!pred(haystack, needle);
immutable pos = balance.empty ? 0 : haystack.length - balance.length + needle.length;
return tuple(haystack[0 .. pos], haystack[pos .. haystack.length]);
}
else
{
auto original = haystack.save;
auto h = haystack.save;
auto n = needle.save;
size_t pos1, pos2;
while (!n.empty)
{
if (h.empty)
{
// Failed search
return tuple(takeExactly(original, 0), original);
}
if (binaryFun!pred(h.front, n.front))
{
h.popFront();
n.popFront();
++pos2;
}
else
{
haystack.popFront();
n = needle.save;
h = haystack.save;
pos2 = ++pos1;
}
}
return tuple(takeExactly(original, pos2), h);
}
}
unittest
{
auto a = [ 1, 2, 3, 4, 5, 6, 7, 8 ];
auto r = findSplit(a, [9, 1]);
assert(r[0] == a);
assert(r[1].empty);
assert(r[2].empty);
r = findSplit(a, [3]);
assert(r[0] == a[0 .. 2]);
assert(r[1] == a[2 .. 3]);
assert(r[2] == a[3 .. $]);
auto r1 = findSplitBefore(a, [9, 1]);
assert(r1[0] == a);
assert(r1[1].empty);
r1 = findSplitBefore(a, [3, 4]);
assert(r1[0] == a[0 .. 2]);
assert(r1[1] == a[2 .. $]);
r1 = findSplitAfter(a, [9, 1]);
assert(r1[0].empty);
assert(r1[1] == a);
r1 = findSplitAfter(a, [3, 4]);
assert(r1[0] == a[0 .. 4]);
assert(r1[1] == a[4 .. $]);
}
unittest
{
auto a = [ 1, 2, 3, 4, 5, 6, 7, 8 ];
auto fwd = filter!"a > 0"(a);
auto r = findSplit(fwd, [9, 1]);
assert(equal(r[0], a));
assert(r[1].empty);
assert(r[2].empty);
r = findSplit(fwd, [3]);
assert(equal(r[0], a[0 .. 2]));
assert(equal(r[1], a[2 .. 3]));
assert(equal(r[2], a[3 .. $]));
auto r1 = findSplitBefore(fwd, [9, 1]);
assert(equal(r1[0], a));
assert(r1[1].empty);
r1 = findSplitBefore(fwd, [3, 4]);
assert(equal(r1[0], a[0 .. 2]));
assert(equal(r1[1], a[2 .. $]));
r1 = findSplitAfter(fwd, [9, 1]);
assert(r1[0].empty);
assert(equal(r1[1], a));
r1 = findSplitAfter(fwd, [3, 4]);
assert(equal(r1[0], a[0 .. 4]));
assert(equal(r1[1], a[4 .. $]));
}
/**
If $(D haystack) supports slicing, returns the smallest number $(D n)
such that $(D haystack[n .. $].startsWith!pred(needle)). Oherwise,
returns the smallest $(D n) such that after $(D n) calls to $(D
haystack.popFront), $(D haystack.startsWith!pred(needle)). If no such
number could be found, return $(D -1).
*/
sizediff_t countUntil(alias pred = "a == b", R1, R2)(R1 haystack, R2 needle)
if (is(typeof(startsWith!pred(haystack, needle))))
{
static if (isNarrowString!R1)
{
// Narrow strings are handled a bit differently
auto length = haystack.length;
for (; !haystack.empty; haystack.popFront)
{
if (startsWith!pred(haystack, needle))
{
return length - haystack.length;
}
}
}
else
{
typeof(return) result;
for (; !haystack.empty; ++result, haystack.popFront())
{
if (startsWith!pred(haystack, needle)) return result;
}
}
return -1;
}
/**
* Same as $(D countUntil). This symbol has been scheduled for
* deprecation because it is easily confused with the homonym function
* in $(D std.string).
*/
sizediff_t indexOf(alias pred = "a == b", R1, R2)(R1 haystack, R2 needle)
if (is(typeof(startsWith!pred(haystack, needle))))
{
pragma(msg, "std.algorithm.indexOf has been scheduled for deprecation."
" You may want to use std.algorithm.countUntil instead.");
return countUntil!pred(haystack, needle);
}
/**
Interval option specifier for $(D until) (below) and others.
*/
enum OpenRight
{
no, /// Interval is closed to the right (last element included)
yes /// Interval is open to the right (last element is not included)
}
/**
Lazily iterates $(D range) until value $(D sentinel) is found, at
which point it stops.
Example:
----
int[] a = [ 1, 2, 4, 7, 7, 2, 4, 7, 3, 5];
assert(equal(a.until(7), [1, 2, 4][]));
assert(equal(a.until(7, OpenRight.no), [1, 2, 4, 7][]));
----
*/
struct Until(alias pred, Range, Sentinel) if (isInputRange!Range)
{
private Range _input;
static if (!is(Sentinel == void))
private Sentinel _sentinel;
// mixin(bitfields!(
// OpenRight, "_openRight", 1,
// bool, "_done", 1,
// uint, "", 6));
// OpenRight, "_openRight", 1,
// bool, "_done", 1,
OpenRight _openRight;
bool _done;
static if (!is(Sentinel == void))
this(Range input, Sentinel sentinel,
OpenRight openRight = OpenRight.yes)
{
_input = input;
_sentinel = sentinel;
_openRight = openRight;
_done = _input.empty || openRight && predSatisfied();
}
else
this(Range input, OpenRight openRight = OpenRight.yes)
{
_input = input;
_openRight = openRight;
_done = _input.empty || openRight && predSatisfied();
}
@property bool empty()
{
return _done;
}
@property ElementType!Range front()
{
assert(!empty);
return _input.front;
}
bool predSatisfied()
{
static if (is(Sentinel == void))
return unaryFun!pred(_input.front);
else
return startsWith!pred(_input, _sentinel);
}
void popFront()
{
assert(!empty);
if (!_openRight)
{
if (predSatisfied())
{
_done = true;
return;
}
_input.popFront;
_done = _input.empty;
}
else
{
_input.popFront;
_done = _input.empty || predSatisfied;
}
}
static if (!is(Sentinel == void))
@property Until save()
{
Until result;
result._input = _input.save;
result._sentinel = _sentinel;
result._openRight = _openRight;
result._done = _done;
return result;
}
else
@property Until save()
{
Until result;
result._input = _input.save;
result._openRight = _openRight;
result._done = _done;
return result;
}
}
/// Ditto
Until!(pred, Range, Sentinel)
until(alias pred = "a == b", Range, Sentinel)
(Range range, Sentinel sentinel, OpenRight openRight = OpenRight.yes)
if (!is(Sentinel == OpenRight))
{
return typeof(return)(range, sentinel, openRight);
}
/// Ditto
Until!(pred, Range, void)
until(alias pred, Range)
(Range range, OpenRight openRight = OpenRight.yes)
{
return typeof(return)(range, openRight);
}
unittest
{
//scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 1, 2, 4, 7, 7, 2, 4, 7, 3, 5];
static assert(isForwardRange!(typeof(a.until(7))));
static assert(isForwardRange!(typeof(until!"a == 2"(a, OpenRight.no))));
assert(equal(a.until(7), [1, 2, 4][]));
assert(equal(a.until([7, 2]), [1, 2, 4, 7][]));
assert(equal(a.until(7, OpenRight.no), [1, 2, 4, 7][]));
assert(equal(until!"a == 2"(a, OpenRight.no), [1, 2][]));
}
/**
If the range $(D doesThisStart) starts with $(I any) of the $(D
withOneOfThese) ranges or elements, returns 1 if it starts with $(D
withOneOfThese[0]), 2 if it starts with $(D withOneOfThese[1]), and so
on. If no match, returns 0.
Example:
----
assert(startsWith("abc", ""));
assert(startsWith("abc", "a"));
assert(!startsWith("abc", "b"));
assert(startsWith("abc", 'a', "b") == 1);
assert(startsWith("abc", "b", "a") == 2);
assert(startsWith("abc", "a", "a") == 1);
assert(startsWith("abc", "x", "a", "b") == 2);
assert(startsWith("abc", "x", "aa", "ab") == 3);
assert(startsWith("abc", "x", "aaa", "sab") == 0);
assert(startsWith("abc", "x", "aaa", "a", "sab") == 3);
----
*/
uint startsWith(alias pred = "a == b", Range, Ranges...)
(Range doesThisStart, Ranges withOneOfThese)
if (Ranges.length > 1 && isInputRange!Range
&& is(typeof(.startsWith!pred(doesThisStart, withOneOfThese[0]))
: bool)
&& is(typeof(.startsWith!pred(doesThisStart, withOneOfThese[1 .. $]))
: uint))
{
alias doesThisStart lhs;
alias withOneOfThese rhs;
// Make one pass looking for empty ranges
foreach (i, Unused; Ranges)
{
// Empty range matches everything
static if (!is(typeof(binaryFun!pred(lhs.front, rhs[i])) : bool))
{
if (rhs[i].empty) return i + 1;
}
}
for (; !lhs.empty; lhs.popFront())
{
foreach (i, Unused; Ranges)
{
static if (is(typeof(binaryFun!pred(lhs.front, rhs[i])) : bool))
{
// Single-element
if (binaryFun!pred(lhs.front, rhs[i]))
{
// found, but continue to account for one-element
// range matches (consider startsWith("ab", "a",
// 'a') should return 1, not 2).
continue;
}
}
else
{
if (binaryFun!pred(lhs.front, rhs[i].front))
{
continue;
}
}
// This code executed on failure to match
// Out with this guy, check for the others
uint result = startsWith!pred(lhs, rhs[0 .. i], rhs[i + 1 .. $]);
if (result > i) ++result;
return result;
}
// If execution reaches this point, then the front matches for all
// rhs ranges. What we need to do now is to lop off the front of
// all ranges involved and recurse.
foreach (i, Unused; Ranges)
{
static if (is(typeof(binaryFun!pred(lhs.front, rhs[i])) : bool))
{
// Test has passed in the previous loop
return i + 1;
}
else
{
rhs[i].popFront();
if (rhs[i].empty) return i + 1;
}
}
}
return 0;
}
/// Ditto
bool startsWith(alias pred = "a == b", R1, R2)
(R1 doesThisStart, R2 withThis)
if (isInputRange!R1 && isInputRange!R2
&& is(typeof(binaryFun!pred(doesThisStart.front, withThis.front))
: bool))
{
// Special case for two arrays
static if (isArray!R1 && isArray!R2)
{
alias doesThisStart haystack;
alias withThis needle;
//writeln("Matching: ", haystack, " with ", needle);
if (haystack.length < needle.length) return 0;
foreach (j; 0 .. needle.length)
{
if (!binaryFun!pred(needle[j], haystack[j]))
// not found
return false;
}
// found!
return true;
}
else
{
static if (hasLength!R1 && hasLength!R2)
{
if (doesThisStart.length < withThis.length) return false;
}
if (withThis.empty) return true;
for (; !doesThisStart.empty; doesThisStart.popFront())
{
if (!binaryFun!pred(doesThisStart.front, withThis.front))
break;
withThis.popFront();
if (withThis.empty) return true;
}
return false;
}
}
/// Ditto
bool startsWith(alias pred = "a == b", R, E)
(R doesThisStart, E withThis)
if (isInputRange!R && is(typeof(binaryFun!pred(doesThisStart.front, withThis))
: bool))
{
return doesThisStart.empty
? false
: binaryFun!pred(doesThisStart.front, withThis);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
bool x = startsWith("ab", "a");
assert(startsWith("abc", ""));
assert(startsWith("abc", "a"));
assert(!startsWith("abc", "b"));
assert(!startsWith("abc", "b", "bc", "abcd", "xyz"));
assert(startsWith("abc", "a", "b") == 1);
assert(startsWith("abc", "b", "a") == 2);
assert(startsWith("abc", "a", 'a') == 1);
assert(startsWith("abc", 'a', "a") == 1);
assert(startsWith("abc", "x", "a", "b") == 2);
assert(startsWith("abc", "x", "aa", "ab") == 3);
assert(startsWith("abc", "x", "aaa", "sab") == 0);
assert(startsWith("abc", 'a'));
assert(!startsWith("abc", "sab"));
assert(startsWith("abc", 'x', "aaa", 'a', "sab") == 3);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
assert(!startsWith("abc", 'x', 'n', 'b'));
assert(startsWith("abc", 'x', 'n', 'a') == 3);
}
/**
If $(D startsWith(r1, r2)), consume the corresponding elements off $(D
r1) and return $(D true). Otherwise, leave $(D r1) unchanged and
return $(D false).
*/
bool skipOver(alias pred = "a == b", R1, R2)(ref R1 r1, R2 r2)
if (is(typeof(binaryFun!pred(r1.front, r2.front))))
{
auto r = r1.save;
while (!r2.empty && !r.empty && binaryFun!pred(r.front, r2.front))
{
r.popFront();
r2.popFront();
}
return r2.empty ? (r1 = r, true) : false;
}
unittest
{
//scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done.");
auto s1 = "Hello world";
assert(!skipOver(s1, "Ha"));
assert(s1 == "Hello world");
assert(skipOver(s1, "Hell") && s1 == "o world");
}
/**
Checks whether a range starts with an element, and if so, consume that
element off $(D r) and return $(D true). Otherwise, leave $(D r)
unchanged and return $(D false).
*/
bool skipOver(alias pred = "a == b", R, E)(ref R r, E e)
if (is(typeof(binaryFun!pred(r.front, e))))
{
return binaryFun!pred(r.front, e)
? (r.popFront(), true)
: false;
}
unittest {
auto s1 = "Hello world";
assert(!skipOver(s1, "Ha"));
assert(s1 == "Hello world");
assert(skipOver(s1, "Hell") && s1 == "o world");
}
/* (Not yet documented.)
Consume all elements from $(D r) that are equal to one of the elements
$(D es).
*/
void skipAll(alias pred = "a == b", R, Es...)(ref R r, Es es)
//if (is(typeof(binaryFun!pred(r1.front, es[0]))))
{
loop:
for (; !r.empty; r.popFront())
{
foreach (i, E; Es)
{
if (binaryFun!pred(r.front, es[i]))
{
continue loop;
}
}
break;
}
}
unittest
{
//scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done.");
auto s1 = "Hello world";
skipAll(s1, 'H', 'e');
assert(s1 == "llo world");
}
/**
The reciprocal of $(D startsWith).
Example:
----
assert(endsWith("abc", ""));
assert(!endsWith("abc", "b"));
assert(endsWith("abc", "a", 'c') == 2);
assert(endsWith("abc", "c", "a") == 1);
assert(endsWith("abc", "c", "c") == 1);
assert(endsWith("abc", "x", "c", "b") == 2);
assert(endsWith("abc", "x", "aa", "bc") == 3);
assert(endsWith("abc", "x", "aaa", "sab") == 0);
assert(endsWith("abc", "x", "aaa", 'c', "sab") == 3);
----
*/
uint
endsWith(alias pred = "a == b", Range, Ranges...)
(Range doesThisEnd, Ranges withOneOfThese)
if (isInputRange!(Range) && Ranges.length > 0
&& is(typeof(binaryFun!pred(doesThisEnd.back, withOneOfThese[0].back))))
{
alias doesThisEnd lhs;
alias withOneOfThese rhs;
// Special case for two arrays
static if (Ranges.length == 1 && isArray!Range && isArray!(Ranges[0])
&& is(typeof(binaryFun!(pred)(lhs[0], rhs[0][0]))))
{
if (lhs.length < rhs[0].length) return 0;
auto k = lhs.length - rhs[0].length;
foreach (j; 0 .. rhs[0].length)
{
if (!binaryFun!(pred)(rhs[0][j], lhs[j + k]))
// not found
return 0u;
}
// found!
return 1u;
}
else
{
// Make one pass looking for empty ranges
foreach (i, Unused; Ranges)
{
// Empty range matches everything
if (rhs[i].empty) return i + 1;
}
bool mismatch[Ranges.length];
for (; !lhs.empty; lhs.popBack)
{
foreach (i, Unused; Ranges)
{
if (mismatch[i]) continue;
if (binaryFun!pred(lhs.back, rhs[i].back))
{
// Stay in the game
rhs[i].popBack();
// Done with success if exhausted
if (rhs[i].empty) return i + 1;
}
else
{
// Out
mismatch[i] = true;
}
}
}
return 0;
}
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
assert(endsWith("abc", ""));
assert(!endsWith("abc", "a"));
assert(!endsWith("abc", 'a'));
assert(!endsWith("abc", "b"));
assert(endsWith("abc", "a", "c") == 2);
assert(endsWith("abc", 'a', 'c') == 2);
assert(endsWith("abc", "c", "a") == 1);
assert(endsWith("abc", "c", "c") == 1);
assert(endsWith("abc", "x", "c", "b") == 2);
assert(endsWith("abc", "x", "aa", "bc") == 3);
assert(endsWith("abc", "x", "aaa", "sab") == 0);
assert(endsWith("abc", "x", "aaa", "c", "sab") == 3);
// string a = "abc";
// immutable(char[1]) b = "c";
// assert(wyda(a, b));
}
/**
Checks whether $(D doesThisEnd) starts with one of the individual
elements $(D withOneOfThese) according to $(D pred).
Example:
----
assert(endsWith("abc", 'x', 'c', 'a') == 2);
----
*/
uint endsWith(alias pred = "a == b", Range, Elements...)
(Range doesThisEnd, Elements withOneOfThese)
if (isInputRange!Range && Elements.length > 0
&& is(typeof(binaryFun!pred(doesThisEnd.front, withOneOfThese[0]))))
{
if (doesThisEnd.empty) return 0;
auto back = doesThisEnd.back;
foreach (i, Unused; Elements)
{
if (binaryFun!pred(back, withOneOfThese[i])) return i + 1;
}
return 0;
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
assert(!startsWith("abc", 'x', 'n', 'b'));
assert(startsWith("abc", 'x', 'n', 'a') == 3);
}
// findAdjacent
/**
Advances $(D r) until it finds the first two adjacent elements $(D a),
$(D b) that satisfy $(D pred(a, b)). Performs $(BIGOH r.length)
evaluations of $(D pred). See also $(WEB
sgi.com/tech/stl/adjacent_find.html, STL's adjacent_find).
Example:
----
int[] a = [ 11, 10, 10, 9, 8, 8, 7, 8, 9 ];
auto r = findAdjacent(a);
assert(r == [ 10, 10, 9, 8, 8, 7, 8, 9 ]);
p = findAdjacent!("a < b")(a);
assert(p == [ 7, 8, 9 ]);
----
*/
Range findAdjacent(alias pred = "a == b", Range)(Range r)
if (isForwardRange!(Range))
{
auto ahead = r;
if (!ahead.empty)
{
for (ahead.popFront; !ahead.empty; r.popFront, ahead.popFront)
{
if (binaryFun!(pred)(r.front, ahead.front)) return r;
}
}
return ahead;
}
unittest
{
//scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 11, 10, 10, 9, 8, 8, 7, 8, 9 ];
auto p = findAdjacent(a);
assert(p == [10, 10, 9, 8, 8, 7, 8, 9 ]);
p = findAdjacent!("a < b")(a);
assert(p == [7, 8, 9]);
// empty
a = [];
p = findAdjacent(a);
assert(p.empty);
// not found
a = [ 1, 2, 3, 4, 5 ];
p = findAdjacent(a);
assert(p.empty);
p = findAdjacent!"a > b"(a);
assert(p.empty);
}
// findAmong
/**
Advances $(D seq) by calling $(D seq.popFront) until either $(D
find!(pred)(choices, seq.front)) is $(D true), or $(D seq) becomes
empty. Performs $(BIGOH seq.length * choices.length) evaluations of
$(D pred). See also $(WEB sgi.com/tech/stl/find_first_of.html, STL's
find_first_of).
Example:
----
int[] a = [ -1, 0, 1, 2, 3, 4, 5 ];
int[] b = [ 3, 1, 2 ];
assert(findAmong(a, b) == a[2 .. $]);
----
*/
Range1 findAmong(alias pred = "a == b", Range1, Range2)(
Range1 seq, Range2 choices)
if (isInputRange!Range1 && isForwardRange!Range2)
{
for (; !seq.empty && find!pred(choices, seq.front).empty; seq.popFront)
{
}
return seq;
}
unittest
{
//scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ -1, 0, 2, 1, 2, 3, 4, 5 ];
int[] b = [ 1, 2, 3 ];
assert(findAmong(a, b) == [2, 1, 2, 3, 4, 5 ]);
assert(findAmong(b, [ 4, 6, 7 ][]).empty);
assert(findAmong!("a==b")(a, b).length == a.length - 2);
assert(findAmong!("a==b")(b, [ 4, 6, 7 ][]).empty);
}
// count
/**
The first version counts the number of elements $(D x) in $(D r) for
which $(D pred(x, value)) is $(D true). $(D pred) defaults to
equality. Performs $(BIGOH r.length) evaluations of $(D pred).
The second version returns the number of times $(D needle) occurs in
$(D haystack). Throws an exception if $(D needle.empty), as the _count
of the empty range in any range would be infinite. Overlapped counts
are not considered, for example $(D count("aaa", "aa")) is $(D 1), not
$(D 2).
The third version counts the elements for which $(D pred(x)) is $(D
true). Performs $(BIGOH r.length) evaluations of $(D pred).
Example:
----
// count elements in range
int[] a = [ 1, 2, 4, 3, 2, 5, 3, 2, 4 ];
assert(count(a, 2) == 3);
assert(count!("a > b")(a, 2) == 5);
// count range in range
assert(count("abcadfabf", "ab") == 2);
assert(count("ababab", "abab") == 1);
assert(count("ababab", "abx") == 0);
// count predicate in range
assert(count!("a > 1")(a) == 8);
----
*/
size_t count(alias pred = "a == b", Range, E)(Range r, E value)
if (isInputRange!Range && is(typeof(binaryFun!pred(r.front, value)) == bool))
{
bool pred2(ElementType!(Range) a) { return binaryFun!pred(a, value); }
return count!(pred2)(r);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 1, 2, 4, 3, 2, 5, 3, 2, 4 ];
assert(count(a, 2) == 3, text(count(a, 2)));
assert(count!("a > b")(a, 2) == 5, text(count!("a > b")(a, 2)));
// check strings
assert(count("日本語") == 3);
assert(count("日本語"w) == 3);
assert(count("日本語"d) == 3);
assert(count!("a == '日'")("日本語") == 1);
assert(count!("a == '本'")("日本語"w) == 1);
assert(count!("a == '語'")("日本語"d) == 1);
}
unittest
{
debug(std_algorithm) printf("algorithm.count.unittest\n");
string s = "This is a fofofof list";
string sub = "fof";
assert(count(s, sub) == 2);
}
/// Ditto
size_t count(alias pred = "a == b", R1, R2)(R1 haystack, R2 needle)
if (isInputRange!R1 && isForwardRange!R2 && is(typeof(binaryFun!pred(haystack, needle)) == bool))
{
enforce(!needle.empty, "Cannot count occurrences of an empty range");
size_t result;
for (; findSkip!pred(haystack, needle); ++result)
{
}
return result;
}
unittest
{
assert(count("abcadfabf", "ab") == 2);
assert(count("ababab", "abab") == 1);
assert(count("ababab", "abx") == 0);
}
/// Ditto
size_t count(alias pred = "true", Range)(Range r) if (isInputRange!(Range))
{
size_t result;
for (; !r.empty; r.popFront())
{
if (unaryFun!pred(r.front)) ++result;
}
return result;
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 1, 2, 4, 3, 2, 5, 3, 2, 4 ];
assert(count!("a == 3")(a) == 2);
}
// balancedParens
/**
Checks whether $(D r) has "balanced parentheses", i.e. all instances
of $(D lPar) are closed by corresponding instances of $(D rPar). The
parameter $(D maxNestingLevel) controls the nesting level allowed. The
most common uses are the default or $(D 0). In the latter case, no
nesting is allowed.
Example:
----
auto s = "1 + (2 * (3 + 1 / 2)";
assert(!balancedParens(s, '(', ')'));
s = "1 + (2 * (3 + 1) / 2)";
assert(balancedParens(s, '(', ')'));
s = "1 + (2 * (3 + 1) / 2)";
assert(!balancedParens(s, '(', ')', 1));
s = "1 + (2 * 3 + 1) / (2 - 5)";
assert(balancedParens(s, '(', ')', 1));
----
*/
bool balancedParens(Range, E)(Range r, E lPar, E rPar,
size_t maxNestingLevel = size_t.max)
if (isInputRange!(Range) && is(typeof(r.front == lPar)))
{
size_t count;
for (; !r.empty; r.popFront())
{
if (r.front == lPar)
{
if (count > maxNestingLevel) return false;
++count;
}
else if (r.front == rPar)
{
if (!count) return false;
--count;
}
}
return count == 0;
}
unittest
{
auto s = "1 + (2 * (3 + 1 / 2)";
assert(!balancedParens(s, '(', ')'));
s = "1 + (2 * (3 + 1) / 2)";
assert(balancedParens(s, '(', ')'));
s = "1 + (2 * (3 + 1) / 2)";
assert(!balancedParens(s, '(', ')', 0));
s = "1 + (2 * 3 + 1) / (2 - 5)";
assert(balancedParens(s, '(', ')', 0));
}
// equal
/**
Returns $(D true) if and only if the two ranges compare equal element
for element, according to binary predicate $(D pred). The ranges may
have different element types, as long as $(D pred(a, b)) evaluates to
$(D bool) for $(D a) in $(D r1) and $(D b) in $(D r2). Performs
$(BIGOH min(r1.length, r2.length)) evaluations of $(D pred). See also
$(WEB sgi.com/tech/stl/_equal.html, STL's _equal).
Example:
----
int[] a = [ 1, 2, 4, 3 ];
assert(!equal(a, a[1..$]));
assert(equal(a, a));
// different types
double[] b = [ 1., 2, 4, 3];
assert(!equal(a, b[1..$]));
assert(equal(a, b));
// predicated: ensure that two vectors are approximately equal
double[] c = [ 1.005, 2, 4, 3];
assert(equal!(approxEqual)(b, c));
----
*/
bool equal(alias pred = "a == b", Range1, Range2)(Range1 r1, Range2 r2)
if (isInputRange!(Range1) && isInputRange!(Range2)
&& is(typeof(binaryFun!pred(r1.front, r2.front))))
{
for (; !r1.empty; r1.popFront(), r2.popFront())
{
if (r2.empty) return false;
if (!binaryFun!(pred)(r1.front, r2.front)) return false;
}
return r2.empty;
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 1, 2, 4, 3];
assert(!equal(a, a[1..$]));
assert(equal(a, a));
// test with different types
double[] b = [ 1., 2, 4, 3];
assert(!equal(a, b[1..$]));
assert(equal(a, b));
// predicated
double[] c = [ 1.005, 2, 4, 3];
assert(equal!(approxEqual)(b, c));
// utf-8 strings
assert(equal("æøå", "æøå"));
}
// cmp
/**********************************
Performs three-way lexicographical comparison on two input ranges
according to predicate $(D pred). Iterating $(D r1) and $(D r2) in
lockstep, $(D cmp) compares each element $(D e1) of $(D r1) with the
corresponding element $(D e2) in $(D r2). If $(D binaryFun!pred(e1,
e2)), $(D cmp) returns a negative value. If $(D binaryFun!pred(e2,
e1)), $(D cmp) returns a positive value. If one of the ranges has been
finished, $(D cmp) returns a negative value if $(D r1) has fewer
elements than $(D r2), a positive value if $(D r1) has more elements
than $(D r2), and $(D 0) if the ranges have the same number of
elements.
If the ranges are strings, $(D cmp) performs UTF decoding
appropriately and compares the ranges one code point at a time.
*/
int cmp(alias pred = "a < b", R1, R2)(R1 r1, R2 r2)
if (isInputRange!R1 && isInputRange!R2 && !(isSomeString!R1 && isSomeString!R2))
{
for (;; r1.popFront(), r2.popFront())
{
if (r1.empty) return -r2.empty;
if (r2.empty) return r1.empty;
auto a = r1.front, b = r2.front;
if (binaryFun!pred(a, b)) return -1;
if (binaryFun!pred(b, a)) return 1;
}
}
// Specialization for strings (for speed purposes)
int cmp(alias pred = "a < b", R1, R2)(R1 r1, R2 r2) if (isSomeString!R1 && isSomeString!R2)
{
enum isLessThan = is(pred : string) && pred == "a < b";
// For speed only
static int threeWay(size_t a, size_t b)
{
static if (size_t.sizeof == int.sizeof && isLessThan)
return a - b;
else
return binaryFun!pred(b, a) ? 1 : binaryFun!pred(a, b) ? -1 : 0;
}
// For speed only
// @@@BUG@@@ overloading should be allowed for nested functions
static int threeWayInt(int a, int b)
{
static if (isLessThan)
return a - b;
else
return binaryFun!pred(b, a) ? 1 : binaryFun!pred(a, b) ? -1 : 0;
}
static if (typeof(r1[0]).sizeof == typeof(r2[0]).sizeof && isLessThan)
{
static if (typeof(r1[0]).sizeof == 1)
{
immutable len = min(r1.length, r2.length);
immutable result = std.c.string.memcmp(r1.ptr, r2.ptr, len);
if (result) return result;
}
else
{
auto p1 = r1.ptr, p2 = r2.ptr,
pEnd = p1 + min(r1.length, r2.length);
for (; p1 != pEnd; ++p1, ++p2)
{
if (*p1 != *p2) return threeWayInt(cast(int) *p1, cast(int) *p2);
}
}
return threeWay(r1.length, r2.length);
}
else
{
for (size_t i1, i2;;)
{
if (i1 == r1.length) return threeWay(i2, r2.length);
if (i2 == r2.length) return threeWay(r1.length, i1);
immutable c1 = std.utf.decode(r1, i1),
c2 = std.utf.decode(r2, i2);
if (c1 != c2) return threeWayInt(cast(int) c1, cast(int) c2);
}
}
}
unittest
{
int result;
debug(string) printf("string.cmp.unittest\n");
result = cmp("abc", "abc");
assert(result == 0);
// result = cmp(null, null);
// assert(result == 0);
result = cmp("", "");
assert(result == 0);
result = cmp("abc", "abcd");
assert(result < 0);
result = cmp("abcd", "abc");
assert(result > 0);
result = cmp("abc"d, "abd");
assert(result < 0);
result = cmp("bbc", "abc"w);
assert(result > 0);
result = cmp("aaa", "aaaa"d);
assert(result < 0);
result = cmp("aaaa", "aaa"d);
assert(result > 0);
result = cmp("aaa", "aaa"d);
assert(result == 0);
}
// MinType
template MinType(T...)
{
static assert(T.length >= 2);
static if (T.length == 2)
{
static if (!is(typeof(T[0].min)))
alias CommonType!(T[0 .. 2]) MinType;
else static if (mostNegative!(T[1]) < mostNegative!(T[0]))
alias T[1] MinType;
else static if (mostNegative!(T[1]) > mostNegative!(T[0]))
alias T[0] MinType;
else static if (T[1].max < T[0].max)
alias T[1] MinType;
else
alias T[0] MinType;
}
else
{
alias MinType!(MinType!(T[0 .. 2]), T[2 .. $]) MinType;
}
}
// min
/**
Returns the minimum of the passed-in values. The type of the result is
computed by using $(XREF traits, CommonType).
*/
MinType!(T1, T2, T) min(T1, T2, T...)(T1 a, T2 b, T xs)
{
static if (T.length == 0)
{
static if (isIntegral!(T1) && isIntegral!(T2)
&& (mostNegative!(T1) < 0) != (mostNegative!(T2) < 0))
static if (mostNegative!(T1) < 0)
immutable chooseB = b < a && a > 0;
else
immutable chooseB = b < a || b < 0;
else
immutable chooseB = b < a;
return cast(typeof(return)) (chooseB ? b : a);
}
else
{
return min(min(a, b), xs);
}
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int a = 5;
short b = 6;
double c = 2;
auto d = min(a, b);
assert(is(typeof(d) == int));
assert(d == 5);
auto e = min(a, b, c);
assert(is(typeof(e) == double));
assert(e == 2);
// mixed signedness test
a = -10;
uint f = 10;
static assert(is(typeof(min(a, f)) == int));
assert(min(a, f) == -10);
}
// MaxType
template MaxType(T...)
{
static assert(T.length >= 2);
static if (T.length == 2)
{
static if (!is(typeof(T[0].min)))
alias CommonType!(T[0 .. 2]) MaxType;
else static if (T[1].max > T[0].max)
alias T[1] MaxType;
else
alias T[0] MaxType;
}
else
{
alias MaxType!(MaxType!(T[0], T[1]), T[2 .. $]) MaxType;
}
}
// max
/**
Returns the maximum of the passed-in values. The type of the result is
computed by using $(XREF traits, CommonType).
Example:
----
int a = 5;
short b = 6;
double c = 2;
auto d = max(a, b);
assert(is(typeof(d) == int));
assert(d == 6);
auto e = min(a, b, c);
assert(is(typeof(e) == double));
assert(e == 2);
----
*/
MaxType!(T1, T2, T) max(T1, T2, T...)(T1 a, T2 b, T xs)
{
static if (T.length == 0)
{
static if (isIntegral!(T1) && isIntegral!(T2)
&& (mostNegative!(T1) < 0) != (mostNegative!(T2) < 0))
static if (mostNegative!(T1) < 0)
immutable chooseB = b > a || a < 0;
else
immutable chooseB = b > a && b > 0;
else
immutable chooseB = b > a;
return cast(typeof(return)) (chooseB ? b : a);
}
else
{
return max(max(a, b), xs);
}
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int a = 5;
short b = 6;
double c = 2;
auto d = max(a, b);
assert(is(typeof(d) == int));
assert(d == 6);
auto e = max(a, b, c);
assert(is(typeof(e) == double));
assert(e == 6);
// mixed sign
a = -5;
uint f = 5;
static assert(is(typeof(max(a, f)) == uint));
assert(max(a, f) == 5);
}
/**
Returns the minimum element of a range together with the number of
occurrences. The function can actually be used for counting the
maximum or any other ordering predicate (that's why $(D maxCount) is
not provided).
Example:
----
int[] a = [ 2, 3, 4, 1, 2, 4, 1, 1, 2 ];
// Minimum is 1 and occurs 3 times
assert(minCount(a) == tuple(1, 3));
// Maximum is 4 and occurs 2 times
assert(minCount!("a > b")(a) == tuple(4, 2));
----
*/
Tuple!(ElementType!(Range), size_t)
minCount(alias pred = "a < b", Range)(Range range)
{
if (range.empty) return typeof(return)();
auto p = &(range.front());
size_t occurrences = 1;
for (range.popFront; !range.empty; range.popFront)
{
if (binaryFun!(pred)(*p, range.front)) continue;
if (binaryFun!(pred)(range.front, *p))
{
// change the min
p = &(range.front());
occurrences = 1;
}
else
{
++occurrences;
}
}
return tuple(*p, occurrences);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 2, 3, 4, 1, 2, 4, 1, 1, 2 ];
assert(minCount(a) == tuple(1, 3));
assert(minCount!("a > b")(a) == tuple(4, 2));
int[][] b = [ [4], [2, 4], [4], [4] ];
auto c = minCount!("a[0] < b[0]")(b);
assert(c == tuple([2, 4], 1), text(c[0]));
}
// minPos
/**
Returns the position of the minimum element of forward range $(D
range), i.e. a subrange of $(D range) starting at the position of its
smallest element and with the same ending as $(D range). The function
can actually be used for counting the maximum or any other ordering
predicate (that's why $(D maxPos) is not provided).
Example:
----
int[] a = [ 2, 3, 4, 1, 2, 4, 1, 1, 2 ];
// Minimum is 1 and first occurs in position 3
assert(minPos(a) == [ 1, 2, 4, 1, 1, 2 ]);
// Maximum is 4 and first occurs in position 2
assert(minPos!("a > b")(a) == [ 4, 1, 2, 4, 1, 1, 2 ]);
----
*/
Range minPos(alias pred = "a < b", Range)(Range range)
{
if (range.empty) return range;
auto result = range;
for (range.popFront; !range.empty; range.popFront)
{
if (binaryFun!(pred)(result.front, range.front)
|| !binaryFun!(pred)(range.front, result.front)) continue;
// change the min
result = range;
}
return result;
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 2, 3, 4, 1, 2, 4, 1, 1, 2 ];
// Minimum is 1 and first occurs in position 3
assert(minPos(a) == [ 1, 2, 4, 1, 1, 2 ]);
// Maximum is 4 and first occurs in position 5
assert(minPos!("a > b")(a) == [ 4, 1, 2, 4, 1, 1, 2 ]);
}
// mismatch
/**
Sequentially compares elements in $(D r1) and $(D r2) in lockstep, and
stops at the first mismatch (according to $(D pred), by default
equality). Returns a tuple with the reduced ranges that start with the
two mismatched values. Performs $(BIGOH min(r1.length, r2.length))
evaluations of $(D pred). See also $(WEB
sgi.com/tech/stl/_mismatch.html, STL's _mismatch).
Example:
----
int[] x = [ 1, 5, 2, 7, 4, 3 ];
double[] y = [ 1., 5, 2, 7.3, 4, 8 ];
auto m = mismatch(x, y);
assert(m[0] == x[3 .. $]);
assert(m[1] == y[3 .. $]);
----
*/
Tuple!(Range1, Range2)
mismatch(alias pred = "a == b", Range1, Range2)(Range1 r1, Range2 r2)
if (isInputRange!(Range1) && isInputRange!(Range2))
{
for (; !r1.empty && !r2.empty; r1.popFront(), r2.popFront())
{
if (!binaryFun!(pred)(r1.front, r2.front)) break;
}
return tuple(r1, r2);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
// doc example
int[] x = [ 1, 5, 2, 7, 4, 3 ];
double[] y = [ 1., 5, 2, 7.3, 4, 8 ];
auto m = mismatch(x, y);
assert(m[0] == [ 7, 4, 3 ]);
assert(m[1] == [ 7.3, 4, 8 ]);
int[] a = [ 1, 2, 3 ];
int[] b = [ 1, 2, 4, 5 ];
auto mm = mismatch(a, b);
assert(mm[0] == [3]);
assert(mm[1] == [4, 5]);
}
// levenshteinDistance
/**
Encodes $(WEB realityinteractive.com/rgrzywinski/archives/000249.html,
edit operations) necessary to transform one sequence into
another. Given sequences $(D s) (source) and $(D t) (target), a
sequence of $(D EditOp) encodes the steps that need to be taken to
convert $(D s) into $(D t). For example, if $(D s = "cat") and $(D
"cars"), the minimal sequence that transforms $(D s) into $(D t) is:
skip two characters, replace 't' with 'r', and insert an 's'. Working
with edit operations is useful in applications such as spell-checkers
(to find the closest word to a given misspelled word), approximate
searches, diff-style programs that compute the difference between
files, efficient encoding of patches, DNA sequence analysis, and
plagiarism detection.
*/
enum EditOp : char
{
/** Current items are equal; no editing is necessary. */
none = 'n',
/** Substitute current item in target with current item in source. */
substitute = 's',
/** Insert current item from the source into the target. */
insert = 'i',
/** Remove current item from the target. */
remove = 'r'
}
struct Levenshtein(Range, alias equals, CostType = size_t)
{
void deletionIncrement(CostType n)
{
_deletionIncrement = n;
InitMatrix();
}
void insertionIncrement(CostType n)
{
_insertionIncrement = n;
InitMatrix();
}
CostType distance(Range s, Range t)
{
auto slen = walkLength(s), tlen = walkLength(t);
AllocMatrix(slen + 1, tlen + 1);
foreach (i; 1 .. rows)
{
auto sfront = s.front;
s.popFront();
auto tt = t;
foreach (j; 1 .. cols)
{
auto cSub = _matrix[i - 1][j - 1]
+ (equals(sfront, tt.front) ? 0 : _substitutionIncrement);
tt.popFront();
auto cIns = _matrix[i][j - 1] + _insertionIncrement;
auto cDel = _matrix[i - 1][j] + _deletionIncrement;
switch (min_index(cSub, cIns, cDel)) {
case 0:
_matrix[i][j] = cSub;
break;
case 1:
_matrix[i][j] = cIns;
break;
default:
_matrix[i][j] = cDel;
break;
}
}
}
return _matrix[slen][tlen];
}
EditOp[] path(Range s, Range t)
{
distance(s, t);
return path();
}
EditOp[] path()
{
EditOp[] result;
size_t i = rows - 1, j = cols - 1;
// restore the path
while (i || j) {
auto cIns = j == 0 ? CostType.max : _matrix[i][j - 1];
auto cDel = i == 0 ? CostType.max : _matrix[i - 1][j];
auto cSub = i == 0 || j == 0
? CostType.max
: _matrix[i - 1][j - 1];
switch (min_index(cSub, cIns, cDel)) {
case 0:
result ~= _matrix[i - 1][j - 1] == _matrix[i][j]
? EditOp.none
: EditOp.substitute;
--i;
--j;
break;
case 1:
result ~= EditOp.insert;
--j;
break;
default:
result ~= EditOp.remove;
--i;
break;
}
}
reverse(result);
return result;
}
private:
CostType _deletionIncrement = 1,
_insertionIncrement = 1,
_substitutionIncrement = 1;
CostType[][] _matrix;
size_t rows, cols;
void AllocMatrix(size_t r, size_t c) {
rows = r;
cols = c;
if (!_matrix || _matrix.length < r || _matrix[0].length < c) {
delete _matrix;
_matrix = new CostType[][](r, c);
InitMatrix();
}
}
void InitMatrix() {
foreach (i, row; _matrix) {
row[0] = i * _deletionIncrement;
}
if (!_matrix) return;
for (auto i = 0u; i != _matrix[0].length; ++i) {
_matrix[0][i] = i * _insertionIncrement;
}
}
static uint min_index(CostType i0, CostType i1, CostType i2)
{
if (i0 <= i1)
{
return i0 <= i2 ? 0 : 2;
}
else
{
return i1 <= i2 ? 1 : 2;
}
}
}
/**
Returns the $(WEB wikipedia.org/wiki/Levenshtein_distance, Levenshtein
distance) between $(D s) and $(D t). The Levenshtein distance computes
the minimal amount of edit operations necessary to transform $(D s)
into $(D t). Performs $(BIGOH s.length * t.length) evaluations of $(D
equals) and occupies $(BIGOH s.length * t.length) storage.
Example:
----
assert(levenshteinDistance("cat", "rat") == 1);
assert(levenshteinDistance("parks", "spark") == 2);
assert(levenshteinDistance("kitten", "sitting") == 3);
// ignore case
assert(levenshteinDistance!("toupper(a) == toupper(b)")
("parks", "SPARK") == 2);
----
*/
size_t levenshteinDistance(alias equals = "a == b", Range1, Range2)
(Range1 s, Range2 t)
if (isForwardRange!(Range1) && isForwardRange!(Range2))
{
Levenshtein!(Range1, binaryFun!(equals), size_t) lev;
return lev.distance(s, t);
}
/**
Returns the Levenshtein distance and the edit path between $(D s) and
$(D t).
Example:
---
string a = "Saturday", b = "Sunday";
auto p = levenshteinDistanceAndPath(a, b);
assert(p[0] == 3);
assert(equal(p[1], "nrrnsnnn"));
---
*/
Tuple!(size_t, EditOp[])
levenshteinDistanceAndPath(alias equals = "a == b", Range1, Range2)
(Range1 s, Range2 t)
if (isForwardRange!(Range1) && isForwardRange!(Range2))
{
Levenshtein!(Range1, binaryFun!(equals)) lev;
auto d = lev.distance(s, t);
return tuple(d, lev.path);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
assert(levenshteinDistance("a", "a") == 0);
assert(levenshteinDistance("a", "b") == 1);
assert(levenshteinDistance("aa", "ab") == 1);
assert(levenshteinDistance("aa", "abc") == 2);
assert(levenshteinDistance("Saturday", "Sunday") == 3);
assert(levenshteinDistance("kitten", "sitting") == 3);
//lev.deletionIncrement = 2;
//lev.insertionIncrement = 100;
string a = "Saturday", b = "Sunday";
auto p = levenshteinDistanceAndPath(a, b);
assert(cast(string) p[1] == "nrrnsnnn");
}
// copy
/**
Copies the content of $(D source) into $(D target) and returns the
remaining (unfilled) part of $(D target). See also $(WEB
sgi.com/tech/stl/_copy.html, STL's _copy). If a behavior similar to
$(WEB sgi.com/tech/stl/copy_backward.html, STL's copy_backward) is
needed, use $(D copy(retro(source), retro(target))). See also $(XREF
range, retro).
Example:
----
int[] a = [ 1, 5 ];
int[] b = [ 9, 8 ];
int[] c = new int[a.length + b.length + 10];
auto d = copy(b, copy(a, c));
assert(c[0 .. a.length + b.length] == a ~ b);
assert(d.length == 10);
----
As long as the target range elements support assignment from source
range elements, different types of ranges are accepted.
Example:
----
float[] a = [ 1.0f, 5 ];
double[] b = new double[a.length];
auto d = copy(a, b);
----
To copy at most $(D n) elements from range $(D a) to range $(D b), you
may want to use $(D copy(take(a, n), b)). To copy those elements from
range $(D a) that satisfy predicate $(D pred) to range $(D b), you may
want to use $(D copy(filter!(pred)(a), b)).
Example:
----
int[] a = [ 1, 5, 8, 9, 10, 1, 2, 0 ];
auto b = new int[a.length];
auto c = copy(filter!("(a & 1) == 1")(a), b);
assert(b[0 .. $ - c.length] == [ 1, 5, 9, 1 ]);
----
*/
Range2 copy(Range1, Range2)(Range1 source, Range2 target)
if (isInputRange!Range1 && isOutputRange!(Range2, ElementType!Range1))
{
for (; !source.empty; source.popFront())
{
put(target, source.front);
}
return target;
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
{
int[] a = [ 1, 5 ];
int[] b = [ 9, 8 ];
int[] c = new int[a.length + b.length + 10];
auto d = copy(b, copy(a, c));
assert(c[0 .. a.length + b.length] == a ~ b);
assert(d.length == 10);
}
{
int[] a = [ 1, 5 ];
int[] b = [ 9, 8 ];
auto e = copy(filter!("a > 1")(a), b);
assert(b[0] == 5 && e.length == 1);
}
}
// swapRanges
/**
Swaps all elements of $(D r1) with successive elements in $(D r2).
Returns a tuple containing the remainder portions of $(D r1) and $(D
r2) that were not swapped (one of them will be empty). The ranges may
be of different types but must have the same element type and support
swapping.
Example:
----
int[] a = [ 100, 101, 102, 103 ];
int[] b = [ 0, 1, 2, 3 ];
auto c = swapRanges(a[1 .. 3], b[2 .. 4]);
assert(c[0].empty && c[1].empty);
assert(a == [ 100, 2, 3, 103 ]);
assert(b == [ 0, 1, 101, 102 ]);
----
*/
Tuple!(Range1, Range2)
swapRanges(Range1, Range2)(Range1 r1, Range2 r2)
if (isInputRange!(Range1) && isInputRange!(Range2)
&& hasSwappableElements!(Range1) && hasSwappableElements!(Range2)
&& is(ElementType!(Range1) == ElementType!(Range2)))
{
for (; !r1.empty && !r2.empty; r1.popFront, r2.popFront)
{
swap(r1.front, r2.front);
}
return tuple(r1, r2);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 100, 101, 102, 103 ];
int[] b = [ 0, 1, 2, 3 ];
auto c = swapRanges(a[1 .. 3], b[2 .. 4]);
assert(c[0].empty && c[1].empty);
assert(a == [ 100, 2, 3, 103 ]);
assert(b == [ 0, 1, 101, 102 ]);
}
// reverse
/**
Reverses $(D r) in-place. Performs $(D r.length) evaluations of $(D
swap). See also $(WEB sgi.com/tech/stl/_reverse.html, STL's _reverse).
Example:
----
int[] arr = [ 1, 2, 3 ];
reverse(arr);
assert(arr == [ 3, 2, 1 ]);
----
*/
void reverse(Range)(Range r)
if (isBidirectionalRange!(Range) && hasSwappableElements!(Range))
{
while (!r.empty)
{
swap(r.front, r.back);
r.popFront;
if (r.empty) break;
r.popBack;
}
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] range = null;
reverse(range);
range = [ 1 ];
reverse(range);
assert(range == [1]);
range = [1, 2];
reverse(range);
assert(range == [2, 1]);
range = [1, 2, 3];
reverse(range);
assert(range == [3, 2, 1]);
}
// bringToFront
/**
The $(D bringToFront) function has considerable flexibility and
usefulness. It can rotate elements in one buffer left or right, swap
buffers of equal length, and even move elements across disjoint
buffers of different types and different lengths.
$(D bringToFront) takes two ranges $(D front) and $(D back), which may
be of different types. Considering the concatenation of $(D front) and
$(D back) one unified range, $(D bringToFront) rotates that unified
range such that all elements in $(D back) are brought to the beginning
of the unified range. The relative ordering of elements in $(D front)
and $(D back), respectively, remains unchanged.
The simplest use of $(D bringToFront) is for rotating elements in a
buffer. For example:
----
auto arr = [4, 5, 6, 7, 1, 2, 3];
bringToFront(arr[0 .. 4], arr[4 .. $]);
assert(arr == [ 1, 2, 3, 4, 5, 6, 7 ]);
----
The $(D front) range may actually "step over" the $(D back)
range. This is very useful with forward ranges that cannot compute
comfortably right-bounded subranges like $(D arr[0 .. 4]) above. In
the example below, $(D r2) is a right subrange of $(D r1).
----
auto list = SList!(int)(4, 5, 6, 7, 1, 2, 3);
auto r1 = list[];
auto r2 = list[]; popFrontN(r2, 4);
assert(equal(r2, [ 1, 2, 3 ]));
bringToFront(r1, r2);
assert(equal(list[], [ 1, 2, 3, 4, 5, 6, 7 ]));
----
Elements can be swapped across ranges of different types:
----
auto list = SList!(int)(4, 5, 6, 7);
auto vec = [ 1, 2, 3 ];
bringToFront(list[], vec);
assert(equal(list[], [ 1, 2, 3, 4 ]));
assert(equal(vec, [ 5, 6, 7 ]));
----
Performs $(BIGOH max(front.length, back.length)) evaluations of $(D
swap). See also $(WEB sgi.com/tech/stl/_rotate.html, STL's rotate).
Preconditions:
Either $(D front) and $(D back) are disjoint, or $(D back) is
reachable from $(D front) and $(D front) is not reachable from $(D
back).
Returns:
The number of elements brought to the front, i.e., the length of $(D
back).
*/
size_t bringToFront(Range1, Range2)(Range1 front, Range2 back)
if (isInputRange!Range1 && isForwardRange!Range2)
{
enum bool sameHeadExists = is(typeof(front.sameHead(back)));
size_t result;
for (bool semidone; !front.empty && !back.empty; )
{
static if (sameHeadExists)
{
if (front.sameHead(back)) break; // shortcut
}
// Swap elements until front and/or back ends.
auto back0 = back.save;
size_t nswaps;
do
{
static if (sameHeadExists)
{
// Detect the stepping-over condition.
if (front.sameHead(back0)) back0 = back.save;
}
swapFront(front, back);
++nswaps;
front.popFront();
back.popFront();
}
while (!front.empty && !back.empty);
if (!semidone) result += nswaps;
// Now deal with the remaining elements.
if (back.empty)
{
if (front.empty) break;
// Right side was shorter, which means that we've brought
// all the back elements to the front.
semidone = true;
// Next pass: bringToFront(front, back0) to adjust the rest.
back = back0;
}
else
{
assert(front.empty);
// Left side was shorter. Let's step into the back.
static if (is(Range1 == Take!Range2))
{
front = take(back0, nswaps);
}
else
{
immutable subresult = bringToFront(take(back0, nswaps),
back);
if (!semidone) result += subresult;
break; // done
}
}
}
return result;
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
// doc example
{
int[] arr = [4, 5, 6, 7, 1, 2, 3];
auto p = bringToFront(arr[0 .. 4], arr[4 .. $]);
assert(p == arr.length - 4);
assert(arr == [ 1, 2, 3, 4, 5, 6, 7 ], text(arr));
}
{
auto list = SList!(int)(4, 5, 6, 7, 1, 2, 3);
auto r1 = list[];
auto r2 = list[]; popFrontN(r2, 4);
assert(equal(r2, [ 1, 2, 3 ]));
bringToFront(r1, r2);
assert(equal(list[], [ 1, 2, 3, 4, 5, 6, 7 ]));
}
{
auto list = SList!(int)(4, 5, 6, 7);
auto vec = [ 1, 2, 3 ];
bringToFront(list[], vec);
assert(equal(list[], [ 1, 2, 3, 4 ]));
assert(equal(vec, [ 5, 6, 7 ]));
}
// a more elaborate test
{
auto rnd = Random(unpredictableSeed);
int[] a = new int[uniform(100, 200, rnd)];
int[] b = new int[uniform(100, 200, rnd)];
foreach (ref e; a) e = uniform(-100, 100, rnd);
foreach (ref e; b) e = uniform(-100, 100, rnd);
int[] c = a ~ b;
// writeln("a= ", a);
// writeln("b= ", b);
auto n = bringToFront(c[0 .. a.length], c[a.length .. $]);
//writeln("c= ", c);
assert(n == b.length);
assert(c == b ~ a, text(c, "\n", a, "\n", b));
}
// different types, moveFront, no sameHead
{
static struct R(T)
{
T[] data;
size_t i;
@property
{
R save() { return this; }
bool empty() { return i >= data.length; }
T front() { return data[i]; }
T front(real e) { return data[i] = cast(T) e; }
alias front moveFront;
}
void popFront() { ++i; }
}
auto a = R!int([1, 2, 3, 4, 5]);
auto b = R!real([6, 7, 8, 9]);
auto n = bringToFront(a, b);
assert(n == 4);
assert(a.data == [6, 7, 8, 9, 1]);
assert(b.data == [2, 3, 4, 5]);
}
// front steps over back
{
int[] arr, r1, r2;
// back is shorter
arr = [4, 5, 6, 7, 1, 2, 3];
r1 = arr;
r2 = arr[4 .. $];
bringToFront(r1, r2) == 3 || assert(0);
assert(equal(arr, [1, 2, 3, 4, 5, 6, 7]));
// front is shorter
arr = [5, 6, 7, 1, 2, 3, 4];
r1 = arr;
r2 = arr[3 .. $];
bringToFront(r1, r2) == 4 || assert(0);
assert(equal(arr, [1, 2, 3, 4, 5, 6, 7]));
}
}
// SwapStrategy
/**
Defines the swapping strategy for algorithms that need to swap
elements in a range (such as partition and sort). The strategy
concerns the swapping of elements that are not the core concern of the
algorithm. For example, consider an algorithm that sorts $(D [ "abc",
"b", "aBc" ]) according to $(D toupper(a) < toupper(b)). That
algorithm might choose to swap the two equivalent strings $(D "abc")
and $(D "aBc"). That does not affect the sorting since both $(D [
"abc", "aBc", "b" ]) and $(D [ "aBc", "abc", "b" ]) are valid
outcomes.
Some situations require that the algorithm must NOT ever change the
relative ordering of equivalent elements (in the example above, only
$(D [ "abc", "aBc", "b" ]) would be the correct result). Such
algorithms are called $(B stable). If the ordering algorithm may swap
equivalent elements discretionarily, the ordering is called $(B
unstable).
Yet another class of algorithms may choose an intermediate tradeoff by
being stable only on a well-defined subrange of the range. There is no
established terminology for such behavior; this library calls it $(B
semistable).
Generally, the $(D stable) ordering strategy may be more costly in
time and/or space than the other two because it imposes additional
constraints. Similarly, $(D semistable) may be costlier than $(D
unstable). As (semi-)stability is not needed very often, the ordering
algorithms in this module parameterized by $(D SwapStrategy) all
choose $(D SwapStrategy.unstable) as the default.
*/
enum SwapStrategy
{
/**
Allows freely swapping of elements as long as the output
satisfies the algorithm's requirements.
*/
unstable,
/**
In algorithms partitioning ranges in two, preserve relative
ordering of elements only to the left of the partition point.
*/
semistable,
/**
Preserve the relative ordering of elements to the largest
extent allowed by the algorithm's requirements.
*/
stable,
}
/**
Eliminates elements at given offsets from $(D range) and returns the
shortened range. In the simplest call, one element is removed.
----
int[] a = [ 3, 5, 7, 8 ];
assert(remove(a, 1) == [ 3, 7, 8 ]);
assert(a == [ 3, 7, 8, 8 ]);
----
In the case above the element at offset $(D 1) is removed and $(D
remove) returns the range smaller by one element. The original array
has remained of the same length because all functions in $(D
std.algorithm) only change $(I content), not $(I topology). The value
$(D 8) is repeated because $(XREF algorithm, move) was invoked to move
elements around and on integers $(D move) simply copies the source to
the destination. To replace $(D a) with the effect of the removal,
simply assign $(D a = remove(a, 1)). The slice will be rebound to the
shorter array and the operation completes with maximal efficiency.
Multiple indices can be passed into $(D remove). In that case,
elements at the respective indices are all removed. The indices must
be passed in increasing order, otherwise an exception occurs.
----
int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
assert(remove(a, 1, 3, 5) ==
[ 0, 2, 4, 6, 7, 8, 9, 10 ]);
----
(Note how all indices refer to slots in the $(I original) array, not
in the array as it is being progressively shortened.) Finally, any
combination of integral offsets and tuples composed of two integral
offsets can be passed in.
----
int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
assert(remove(a, 1, tuple(3, 5), 9) == [ 0, 2, 6, 7, 8, 10 ]);
----
In this case, the slots at positions 1, 3, 4, and 9 are removed from
the array. The tuple passes in a range closed to the left and open to
the right (consistent with built-in slices), e.g. $(D tuple(3, 5))
means indices $(D 3) and $(D 4) but not $(D 5).
If the need is to remove some elements in the range but the order of
the remaining elements does not have to be preserved, you may want to
pass $(D SwapStrategy.unstable) to $(D remove).
----
int[] a = [ 0, 1, 2, 3 ];
assert(remove!(SwapStrategy.unstable)(a, 1) == [ 0, 3, 2 ]);
----
In the case above, the element at slot $(D 1) is removed, but replaced
with the last element of the range. Taking advantage of the relaxation
of the stability requirement, $(D remove) moved elements from the end
of the array over the slots to be removed. This way there is less data
movement to be done which improves the execution time of the function.
The function $(D remove) works on any forward range. The moving
strategy is (listed from fastest to slowest): $(UL $(LI If $(D s ==
SwapStrategy.unstable && isRandomAccessRange!Range &&
hasLength!Range), then elements are moved from the end of the range
into the slots to be filled. In this case, the absolute minimum of
moves is performed.) $(LI Otherwise, if $(D s ==
SwapStrategy.unstable && isBidirectionalRange!Range &&
hasLength!Range), then elements are still moved from the end of the
range, but time is spent on advancing between slots by repeated calls
to $(D range.popFront).) $(LI Otherwise, elements are moved incrementally
towards the front of $(D range); a given element is never moved
several times, but more elements are moved than in the previous
cases.))
*/
Range remove
(SwapStrategy s = SwapStrategy.stable, Range, Offset...)
(Range range, Offset offset)
if (isBidirectionalRange!Range && hasLength!Range && s != SwapStrategy.stable
&& Offset.length >= 1)
{
enum bool tupleLeft = is(typeof(offset[0][0]))
&& is(typeof(offset[0][1]));
enum bool tupleRight = is(typeof(offset[$ - 1][0]))
&& is(typeof(offset[$ - 1][1]));
static if (!tupleLeft)
{
alias offset[0] lStart;
auto lEnd = lStart + 1;
}
else
{
auto lStart = offset[0][0];
auto lEnd = offset[0][1];
}
static if (!tupleRight)
{
alias offset[$ - 1] rStart;
auto rEnd = rStart + 1;
}
else
{
auto rStart = offset[$ - 1][0];
auto rEnd = offset[$ - 1][1];
}
// Begin. Test first to see if we need to remove the rightmost
// element(s) in the range. In that case, life is simple - chop
// and recurse.
if (rEnd == range.length)
{
// must remove the last elements of the range
range.popBackN(rEnd - rStart);
static if (Offset.length > 1)
{
return .remove!(s, Range, Offset[0 .. $ - 1])
(range, offset[0 .. $ - 1]);
}
else
{
return range;
}
}
// Ok, there are "live" elements at the end of the range
auto t = range;
auto lDelta = lEnd - lStart, rDelta = rEnd - rStart;
auto rid = min(lDelta, rDelta);
foreach (i; 0 .. rid)
{
move(range.back, t.front);
range.popBack;
t.popFront;
}
if (rEnd - rStart == lEnd - lStart)
{
// We got rid of both left and right
static if (Offset.length > 2)
{
return .remove!(s, Range, Offset[1 .. $ - 1])
(range, offset[1 .. $ - 1]);
}
else
{
return range;
}
}
else if (rEnd - rStart < lEnd - lStart)
{
// We got rid of the entire right subrange
static if (Offset.length > 2)
{
return .remove!(s, Range)
(range, tuple(lStart + rid, lEnd),
offset[1 .. $ - 1]);
}
else
{
auto tmp = tuple(lStart + rid, lEnd);
return .remove!(s, Range, typeof(tmp))
(range, tmp);
}
}
else
{
// We got rid of the entire left subrange
static if (Offset.length > 2)
{
return .remove!(s, Range)
(range, offset[1 .. $ - 1],
tuple(rStart, lEnd - rid));
}
else
{
auto tmp = tuple(rStart, lEnd - rid);
return .remove!(s, Range, typeof(tmp))
(range, tmp);
}
}
}
// Ditto
Range remove
(SwapStrategy s = SwapStrategy.stable, Range, Offset...)
(Range range, Offset offset)
if ((isForwardRange!Range && !isBidirectionalRange!Range
|| !hasLength!Range || s == SwapStrategy.stable)
&& Offset.length >= 1)
{
auto result = range;
auto src = range, tgt = range;
size_t pos;
foreach (i; offset)
{
static if (is(typeof(i[0])) && is(typeof(i[1])))
{
auto from = i[0], delta = i[1] - i[0];
}
else
{
auto from = i;
enum delta = 1;
}
assert(pos <= from);
for (; pos < from; ++pos, src.popFront, tgt.popFront)
{
move(src.front, tgt.front);
}
// now skip source to the "to" position
src.popFrontN(delta);
pos += delta;
foreach (j; 0 .. delta) result.popBack;
}
// leftover move
moveAll(src, tgt);
return result;
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
//writeln(remove!(SwapStrategy.stable)(a, 1));
a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
assert(remove!(SwapStrategy.stable)(a, 1) ==
[ 0, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]);
a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
assert(remove!(SwapStrategy.unstable)(a, 0, 10) ==
[ 9, 1, 2, 3, 4, 5, 6, 7, 8 ]);
a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
assert(remove!(SwapStrategy.unstable)(a, 0, tuple(9, 11)) ==
[ 8, 1, 2, 3, 4, 5, 6, 7 ]);
a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
//writeln(remove!(SwapStrategy.stable)(a, 1, 5));
a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
assert(remove!(SwapStrategy.stable)(a, 1, 5) ==
[ 0, 2, 3, 4, 6, 7, 8, 9, 10 ]);
a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
//writeln(remove!(SwapStrategy.stable)(a, 1, 3, 5));
a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
assert(remove!(SwapStrategy.stable)(a, 1, 3, 5)
== [ 0, 2, 4, 6, 7, 8, 9, 10]);
a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
//writeln(remove!(SwapStrategy.stable)(a, 1, tuple(3, 5)));
a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
assert(remove!(SwapStrategy.stable)(a, 1, tuple(3, 5))
== [ 0, 2, 5, 6, 7, 8, 9, 10]);
}
/**
Reduces the length of the bidirectional range $(D range) by only
keeping elements that satisfy $(D pred). If $(D s =
SwapStrategy.unstable), elements are moved from the right end of the
range over the elements to eliminate. If $(D s = SwapStrategy.stable)
(the default), elements are moved progressively to front such that
their relative order is preserved. Returns the tail portion of the
range that was moved.
Example:
----
int[] a = [ 1, 2, 3, 2, 3, 4, 5, 2, 5, 6 ];
assert(a[0 .. $ - remove!("a == 2")(a).length] == [ 1, 3, 3, 4, 5, 5, 6 ]);
----
*/
Range remove(alias pred, SwapStrategy s = SwapStrategy.stable, Range)
(Range range)
if (isBidirectionalRange!Range)
{
auto result = range;
static if (s != SwapStrategy.stable)
{
for (;!range.empty;)
{
if (!unaryFun!(pred)(range.front))
{
range.popFront;
continue;
}
move(range.back, range.front);
range.popBack;
result.popBack;
}
}
else
{
auto tgt = range;
for (; !range.empty; range.popFront)
{
if (unaryFun!(pred)(range.front))
{
// yank this guy
result.popBack;
continue;
}
// keep this guy
move(range.front, tgt.front);
tgt.popFront;
}
}
return result;
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 1, 2, 3, 2, 3, 4, 5, 2, 5, 6 ];
assert(remove!("a == 2", SwapStrategy.unstable)(a) ==
[ 1, 6, 3, 5, 3, 4, 5 ]);
a = [ 1, 2, 3, 2, 3, 4, 5, 2, 5, 6 ];
//writeln(remove!("a != 2", SwapStrategy.stable)(a));
assert(remove!("a == 2", SwapStrategy.stable)(a) ==
[ 1, 3, 3, 4, 5, 5, 6 ]);
}
// eliminate
/* *
Reduces $(D r) by overwriting all elements $(D x) that satisfy $(D
pred(x)). Returns the reduced range.
Example:
----
int[] arr = [ 1, 2, 3, 4, 5 ];
// eliminate even elements
auto r = eliminate!("(a & 1) == 0")(arr);
assert(r == [ 1, 3, 5 ]);
assert(arr == [ 1, 3, 5, 4, 5 ]);
----
*/
// Range eliminate(alias pred,
// SwapStrategy ss = SwapStrategy.unstable,
// alias move = .move,
// Range)(Range r)
// {
// alias Iterator!(Range) It;
// static void assignIter(It a, It b) { move(*b, *a); }
// return range(begin(r), partitionold!(not!(pred), ss, assignIter, Range)(r));
// }
// unittest
// {
// int[] arr = [ 1, 2, 3, 4, 5 ];
// // eliminate even elements
// auto r = eliminate!("(a & 1) == 0")(arr);
// assert(find!("(a & 1) == 0")(r).empty);
// }
/* *
Reduces $(D r) by overwriting all elements $(D x) that satisfy $(D
pred(x, v)). Returns the reduced range.
Example:
----
int[] arr = [ 1, 2, 3, 2, 4, 5, 2 ];
// keep elements different from 2
auto r = eliminate(arr, 2);
assert(r == [ 1, 3, 4, 5 ]);
assert(arr == [ 1, 3, 4, 5, 4, 5, 2 ]);
----
*/
// Range eliminate(alias pred = "a == b",
// SwapStrategy ss = SwapStrategy.semistable,
// Range, Value)(Range r, Value v)
// {
// alias Iterator!(Range) It;
// bool comp(typeof(*It) a) { return !binaryFun!(pred)(a, v); }
// static void assignIterB(It a, It b) { *a = *b; }
// return range(begin(r),
// partitionold!(comp,
// ss, assignIterB, Range)(r));
// }
// unittest
// {
// int[] arr = [ 1, 2, 3, 2, 4, 5, 2 ];
// // keep elements different from 2
// auto r = eliminate(arr, 2);
// assert(r == [ 1, 3, 4, 5 ]);
// assert(arr == [ 1, 3, 4, 5, 4, 5, 2 ]);
// }
// partition
/**
Partitions a range in two using $(D pred) as a
predicate. Specifically, reorders the range $(D r = [left,
right$(RPAREN)) using $(D swap) such that all elements $(D i) for
which $(D pred(i)) is $(D true) come before all elements $(D j) for
which $(D pred(j)) returns $(D false).
Performs $(BIGOH r.length) (if unstable or semistable) or $(BIGOH
r.length * log(r.length)) (if stable) evaluations of $(D less) and $(D
swap). The unstable version computes the minimum possible evaluations
of $(D swap) (roughly half of those performed by the semistable
version).
See also STL's $(WEB sgi.com/tech/stl/_partition.html, _partition) and
$(WEB sgi.com/tech/stl/stable_partition.html, stable_partition).
Returns:
The right part of $(D r) after partitioning.
If $(D ss == SwapStrategy.stable), $(D partition) preserves the
relative ordering of all elements $(D a), $(D b) in $(D r) for which
$(D pred(a) == pred(b)). If $(D ss == SwapStrategy.semistable), $(D
partition) preserves the relative ordering of all elements $(D a), $(D
b) in the left part of $(D r) for which $(D pred(a) == pred(b)).
Example:
----
auto Arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
auto arr = Arr.dup;
static bool even(int a) { return (a & 1) == 0; }
// Partition arr such that even numbers come first
auto r = partition!(even)(arr);
// Now arr is separated in evens and odds.
// Numbers may have become shuffled due to instability
assert(r == arr[5 .. $]);
assert(count!(even)(arr[0 .. 5]) == 5);
assert(find!(even)(r).empty);
// Can also specify the predicate as a string.
// Use 'a' as the predicate argument name
arr[] = Arr[];
r = partition!(q{(a & 1) == 0})(arr);
assert(r == arr[5 .. $]);
// Now for a stable partition:
arr[] = Arr[];
r = partition!(q{(a & 1) == 0}, SwapStrategy.stable)(arr);
// Now arr is [2 4 6 8 10 1 3 5 7 9], and r points to 1
assert(arr == [2, 4, 6, 8, 10, 1, 3, 5, 7, 9] && r == arr[5 .. $]);
// In case the predicate needs to hold its own state, use a delegate:
arr[] = Arr[];
int x = 3;
// Put stuff greater than 3 on the left
bool fun(int a) { return a > x; }
r = partition!(fun, SwapStrategy.semistable)(arr);
// Now arr is [4 5 6 7 8 9 10 2 3 1] and r points to 2
assert(arr == [4, 5, 6, 7, 8, 9, 10, 2, 3, 1] && r == arr[7 .. $]);
----
*/
Range partition(alias predicate,
SwapStrategy ss = SwapStrategy.unstable, Range)(Range r)
if ((ss == SwapStrategy.stable && isRandomAccessRange!(Range))
|| (ss != SwapStrategy.stable && isForwardRange!(Range)))
{
alias unaryFun!(predicate) pred;
if (r.empty) return r;
static if (ss == SwapStrategy.stable)
{
if (r.length == 1)
{
if (pred(r.front)) r.popFront;
return r;
}
const middle = r.length / 2;
alias .partition!(pred, ss, Range) recurse;
auto lower = recurse(r[0 .. middle]);
auto upper = recurse(r[middle .. $]);
bringToFront(lower, r[middle .. r.length - upper.length]);
return r[r.length - lower.length - upper.length .. r.length];
}
else static if (ss == SwapStrategy.semistable)
{
for (; !r.empty; r.popFront)
{
// skip the initial portion of "correct" elements
if (pred(r.front)) continue;
// hit the first "bad" element
auto result = r;
for (r.popFront; !r.empty; r.popFront)
{
if (!pred(r.front)) continue;
swap(result.front, r.front);
result.popFront;
}
return result;
}
return r;
}
else // ss == SwapStrategy.unstable
{
// Inspired from www.stepanovpapers.com/PAM3-partition_notes.pdf,
// section "Bidirectional Partition Algorithm (Hoare)"
auto result = r;
for (;;)
{
for (;;)
{
if (r.empty) return result;
if (!pred(r.front)) break;
r.popFront;
result.popFront;
}
// found the left bound
assert(!r.empty);
for (;;)
{
if (pred(r.back)) break;
r.popBack;
if (r.empty) return result;
}
// found the right bound, swap & make progress
static if (is(typeof(swap(r.front, r.back))))
{
swap(r.front, r.back);
}
else
{
auto t1 = moveFront(r), t2 = moveBack(r);
r.front = t2;
r.back = t1;
}
r.popFront;
result.popFront;
r.popBack;
}
}
}
unittest // partition
{
auto Arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
auto arr = Arr.dup;
static bool even(int a) { return (a & 1) == 0; }
// Partition a such that even numbers come first
auto p1 = partition!(even)(arr);
// Now arr is separated in evens and odds.
assert(p1 == arr[5 .. $], text(p1));
assert(count!(even)(arr[0 .. $ - p1.length]) == p1.length);
assert(find!(even)(p1).empty);
// Notice that numbers have become shuffled due to instability
arr[] = Arr[];
// Can also specify the predicate as a string.
// Use 'a' as the predicate argument name
p1 = partition!(q{(a & 1) == 0})(arr);
assert(p1 == arr[5 .. $]);
// Same result as above. Now for a stable partition:
arr[] = Arr[];
p1 = partition!(q{(a & 1) == 0}, SwapStrategy.stable)(arr);
// Now arr is [2 4 6 8 10 1 3 5 7 9], and p points to 1
assert(arr == [2, 4, 6, 8, 10, 1, 3, 5, 7, 9], text(arr));
assert(p1 == arr[5 .. $], text(p1));
// In case the predicate needs to hold its own state, use a delegate:
arr[] = Arr[];
int x = 3;
// Put stuff greater than 3 on the left
bool fun(int a) { return a > x; }
p1 = partition!(fun, SwapStrategy.semistable)(arr);
// Now arr is [4 5 6 7 8 9 10 2 3 1] and p points to 2
assert(arr == [4, 5, 6, 7, 8, 9, 10, 2, 3, 1] && p1 == arr[7 .. $]);
// test with random data
auto a = rndstuff!(int)();
partition!(even)(a);
assert(isPartitioned!(even)(a));
auto b = rndstuff!(string);
partition!(`a.length < 5`)(b);
assert(isPartitioned!(`a.length < 5`)(b));
}
/**
Returns $(D true) if $(D r) is partitioned according to predicate $(D
pred).
Example:
----
int[] r = [ 1, 3, 5, 7, 8, 2, 4, ];
assert(isPartitioned!("a & 1")(r));
----
*/
bool isPartitioned(alias pred, Range)(Range r)
if (isForwardRange!(Range))
{
for (; !r.empty; r.popFront)
{
if (unaryFun!(pred)(r.front)) continue;
for (r.popFront; !r.empty; r.popFront)
{
if (unaryFun!(pred)(r.front)) return false;
}
break;
}
return true;
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] r = [ 1, 3, 5, 7, 8, 2, 4, ];
assert(isPartitioned!("a & 1")(r));
}
// topN
/**
Reorders the range $(D r) using $(D swap) such that $(D r[nth]) refers
to the element that would fall there if the range were fully
sorted. In addition, it also partitions $(D r) such that all elements
$(D e1) from $(D r[0]) to $(D r[nth]) satisfy $(D !less(r[nth], e1)),
and all elements $(D e2) from $(D r[nth]) to $(D r[r.length]) satisfy
$(D !less(e2, r[nth])). Effectively, it finds the nth smallest
(according to $(D less)) elements in $(D r). Performs $(BIGOH
r.length) (if unstable) or $(BIGOH r.length * log(r.length)) (if
stable) evaluations of $(D less) and $(D swap). See also $(WEB
sgi.com/tech/stl/nth_element.html, STL's nth_element).
Example:
----
int[] v = [ 25, 7, 9, 2, 0, 5, 21 ];
auto n = 4;
topN!(less)(v, n);
assert(v[n] == 9);
// Equivalent form:
topN!("a < b")(v, n);
assert(v[n] == 9);
----
BUGS:
Stable topN has not been implemented yet.
*/
void topN(alias less = "a < b",
SwapStrategy ss = SwapStrategy.unstable,
Range)(Range r, size_t nth)
if (isRandomAccessRange!(Range) && hasLength!Range)
{
static assert(ss == SwapStrategy.unstable,
"Stable topN not yet implemented");
while (r.length > nth)
{
auto pivot = r.length / 2;
swap(r[pivot], r.back);
assert(!binaryFun!(less)(r.back, r.back));
bool pred(ElementType!(Range) a)
{
return binaryFun!(less)(a, r.back);
}
auto right = partition!(pred, ss)(r);
assert(right.length >= 1);
swap(right.front, r.back);
pivot = r.length - right.length;
if (pivot == nth)
{
return;
}
if (pivot < nth)
{
++pivot;
r = r[pivot .. $];
nth -= pivot;
}
else
{
assert(pivot < r.length);
r = r[0 .. pivot];
}
}
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
//scope(failure) writeln(stderr, "Failure testing algorithm");
//auto v = ([ 25, 7, 9, 2, 0, 5, 21 ]).dup;
int[] v = [ 7, 6, 5, 4, 3, 2, 1, 0 ];
sizediff_t n = 3;
topN!("a < b")(v, n);
assert(reduce!max(v[0 .. n]) <= v[n]);
assert(reduce!min(v[n + 1 .. $]) >= v[n]);
//
v = ([3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5]).dup;
n = 3;
topN(v, n);
assert(reduce!max(v[0 .. n]) <= v[n]);
assert(reduce!min(v[n + 1 .. $]) >= v[n]);
//
v = ([3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5]).dup;
n = 1;
topN(v, n);
assert(reduce!max(v[0 .. n]) <= v[n]);
assert(reduce!min(v[n + 1 .. $]) >= v[n]);
//
v = ([3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5]).dup;
n = v.length - 1;
topN(v, n);
assert(v[n] == 7);
//
v = ([3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5]).dup;
n = 0;
topN(v, n);
assert(v[n] == 1);
double[][] v1 = [[-10, -5], [-10, -3], [-10, -5], [-10, -4],
[-10, -5], [-9, -5], [-9, -3], [-9, -5],];
// double[][] v1 = [ [-10, -5], [-10, -4], [-9, -5], [-9, -5],
// [-10, -5], [-10, -3], [-10, -5], [-9, -3],];
double[]*[] idx = [ &v1[0], &v1[1], &v1[2], &v1[3], &v1[4], &v1[5], &v1[6],
&v1[7], ];
auto mid = v1.length / 2;
topN!((a, b){ return (*a)[1] < (*b)[1]; })(idx, mid);
foreach (e; idx[0 .. mid]) assert((*e)[1] <= (*idx[mid])[1]);
foreach (e; idx[mid .. $]) assert((*e)[1] >= (*idx[mid])[1]);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = new int[uniform(1, 10000)];
foreach (ref e; a) e = uniform(-1000, 1000);
auto k = uniform(0, a.length);
topN(a, k);
if (k > 0)
{
auto left = reduce!max(a[0 .. k]);
assert(left <= a[k]);
}
if (k + 1 < a.length)
{
auto right = reduce!min(a[k + 1 .. $]);
assert(right >= a[k]);
}
}
/**
Stores the smallest elements of the two ranges in the left-hand range.
*/
void topN(alias less = "a < b",
SwapStrategy ss = SwapStrategy.unstable,
Range1, Range2)(Range1 r1, Range2 r2)
if (isRandomAccessRange!(Range1) && hasLength!Range1 &&
isInputRange!Range2 && is(ElementType!Range1 == ElementType!Range2))
{
static assert(ss == SwapStrategy.unstable,
"Stable topN not yet implemented");
auto heap = BinaryHeap!Range1(r1);
for (; !r2.empty; r2.popFront)
{
heap.conditionalInsert(r2.front);
}
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 5, 7, 2, 6, 7 ];
int[] b = [ 2, 1, 5, 6, 7, 3, 0 ];
topN(a, b);
sort(a);
sort(b);
assert(a == [0, 1, 2, 2, 3]);
}
// sort
/**
Sorts a random-access range according to predicate $(D less). Performs
$(BIGOH r.length * log(r.length)) (if unstable) or $(BIGOH r.length *
log(r.length) * log(r.length)) (if stable) evaluations of $(D less)
and $(D swap). See also STL's $(WEB sgi.com/tech/stl/_sort.html, _sort)
and $(WEB sgi.com/tech/stl/stable_sort.html, stable_sort).
Example:
----
int[] array = [ 1, 2, 3, 4 ];
// sort in descending order
sort!("a > b")(array);
assert(array == [ 4, 3, 2, 1 ]);
// sort in ascending order
sort(array);
assert(array == [ 1, 2, 3, 4 ]);
// sort with a delegate
bool myComp(int x, int y) { return x > y; }
sort!(myComp)(array);
assert(array == [ 4, 3, 2, 1 ]);
// Showcase stable sorting
string[] words = [ "aBc", "a", "abc", "b", "ABC", "c" ];
sort!("toupper(a) < toupper(b)", SwapStrategy.stable)(words);
assert(words == [ "a", "aBc", "abc", "ABC", "b", "c" ]);
----
*/
SortedRange!(Range, less)
sort(alias less = "a < b", SwapStrategy ss = SwapStrategy.unstable,
Range)(Range r)
{
alias binaryFun!(less) lessFun;
static if (is(typeof(lessFun(r.front, r.front)) == bool))
{
sortImpl!(lessFun, ss)(r);
static if(is(typeof(text(r))))
{
enum maxLen = 8;
assert(isSorted!lessFun(r), text("Failed to sort range of type ",
Range.stringof, ". Actual result is: ",
r[0 .. r.length > maxLen ? maxLen : r.length ],
r.length > maxLen ? "..." : ""));
}
else
assert(isSorted!lessFun(r), text("Unable to sort range of type ",
Range.stringof, ": <unable to print elements>"));
}
else
{
static assert(false, "Invalid predicate passed to sort: "~less);
}
return assumeSorted!less(r);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
// sort using delegate
int a[] = new int[100];
auto rnd = Random(unpredictableSeed);
foreach (ref e; a) {
e = uniform(-100, 100, rnd);
}
int i = 0;
bool greater2(int a, int b) { return a + i > b + i; }
bool delegate(int, int) greater = &greater2;
sort!(greater)(a);
assert(isSorted!(greater)(a));
// sort using string
sort!("a < b")(a);
assert(isSorted!("a < b")(a));
// sort using function; all elements equal
foreach (ref e; a) {
e = 5;
}
static bool less(int a, int b) { return a < b; }
sort!(less)(a);
assert(isSorted!(less)(a));
string[] words = [ "aBc", "a", "abc", "b", "ABC", "c" ];
bool lessi(string a, string b) { return toupper(a) < toupper(b); }
sort!(lessi, SwapStrategy.stable)(words);
assert(words == [ "a", "aBc", "abc", "ABC", "b", "c" ]);
// sort using ternary predicate
//sort!("b - a")(a);
//assert(isSorted!(less)(a));
a = rndstuff!(int);
sort(a);
assert(isSorted(a));
auto b = rndstuff!(string);
sort!("tolower(a) < tolower(b)")(b);
assert(isSorted!("toupper(a) < toupper(b)")(b));
}
// @@@BUG1904
/*private*/
size_t getPivot(alias less, Range)(Range r)
{
return r.length / 2;
}
// @@@BUG1904
/*private*/
void optimisticInsertionSort(alias less, Range)(Range r)
{
if (r.length <= 1) return;
for (auto i = 1; i != r.length; )
{
// move to the left to find the insertion point
auto p = i - 1;
for (;;)
{
if (!less(r[i], r[p]))
{
++p;
break;
}
if (p == 0) break;
--p;
}
if (i == p)
{
// already in place
++i;
continue;
}
assert(less(r[i], r[p]));
// move up to see how many we can insert
auto iOld = i, iPrev = i;
++i;
// The code commented below has a darn bug in it.
// while (i != r.length && less(r[i], r[p]) && !less(r[i], r[iPrev]))
// {
// ++i;
// ++iPrev;
// }
// do the insertion
//assert(isSorted!(less)(r[0 .. iOld]));
//assert(isSorted!(less)(r[iOld .. i]));
//assert(less(r[i - 1], r[p]));
//assert(p == 0 || !less(r[i - 1], r[p - 1]));
bringToFront(r[p .. iOld], r[iOld .. i]);
//assert(isSorted!(less)(r[0 .. i]));
}
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
auto rnd = Random(1);
int a[] = new int[uniform(100, 200, rnd)];
foreach (ref e; a) {
e = uniform(-100, 100, rnd);
}
optimisticInsertionSort!(binaryFun!("a < b"), int[])(a);
assert(isSorted(a));
}
// private
void swapAt(R)(R r, size_t i1, size_t i2)
{
static if (is(typeof(&r[i1])))
{
swap(r[i1], r[i2]);
}
else
{
if (i1 == i2) return;
auto t1 = moveAt(r, i1);
auto t2 = moveAt(r, i2);
r[i2] = t1;
r[i1] = t2;
}
}
// @@@BUG1904
/*private*/
void sortImpl(alias less, SwapStrategy ss, Range)(Range r)
{
alias ElementType!(Range) Elem;
enum uint optimisticInsertionSortGetsBetter = 1;
static assert(optimisticInsertionSortGetsBetter >= 1);
while (r.length > optimisticInsertionSortGetsBetter)
{
const pivotIdx = getPivot!(less)(r);
// partition
static if (ss == SwapStrategy.unstable)
{
// partition
swapAt(r, pivotIdx, r.length - 1);
bool pred(ElementType!(Range) a)
{
return less(a, r.back);
}
auto right = partition!(pred, ss)(r);
swapAt(r, r.length - right.length, r.length - 1);
// done with partitioning
if (r.length == right.length)
{
// worst case: *b <= everything (also pivot <= everything)
// avoid quadratic behavior
do r.popFront; while (!r.empty && !less(right.front, r.front));
}
else
{
auto left = r[0 .. r.length - right.length];
right.popFront; // no need to consider right.front,
// it's in the proper place already
if (right.length > left.length)
{
swap(left, right);
}
.sortImpl!(less, ss, Range)(right);
r = left;
}
}
else // handle semistable and stable the same
{
auto pivot = r[pivotIdx];
static assert(ss != SwapStrategy.semistable);
bool pred(Elem a) { return less(a, pivot); }
auto right = partition!(pred, ss)(r);
if (r.length == right.length)
{
// bad, bad pivot. pivot <= everything
// find the first occurrence of the pivot
bool pred1(Elem a) { return !less(pivot, a); }
//auto firstPivotPos = find!(pred1)(r).ptr;
auto pivotSpan = find!(pred1)(r);
assert(!pivotSpan.empty);
assert(!less(pivotSpan.front, pivot)
&& !less(pivot, pivotSpan.front));
// find the last occurrence of the pivot
bool pred2(Elem a) { return less(pivot, a); }
//auto lastPivotPos = find!(pred2)(pivotsRight[1 .. $]).ptr;
auto pivotRunLen = find!(pred2)(pivotSpan[1 .. $]).length;
pivotSpan = pivotSpan[0 .. pivotRunLen + 1];
// now rotate firstPivotPos..lastPivotPos to the front
bringToFront(r, pivotSpan);
r = r[pivotSpan.length .. $];
}
else
{
.sortImpl!(less, ss, Range)(r[0 .. r.length - right.length]);
r = right;
}
}
}
// residual sort
static if (optimisticInsertionSortGetsBetter > 1)
{
optimisticInsertionSort!(less, Range)(r);
}
}
// schwartzSort
/**
Sorts a range using an algorithm akin to the $(WEB
wikipedia.org/wiki/Schwartzian_transform, Schwartzian transform), also
known as the decorate-sort-undecorate pattern in Python and Lisp. (Not
to be confused with $(WEB youtube.com/watch?v=S25Zf8svHZQ, the other
Schwartz).) This function is helpful when the sort comparison includes
an expensive computation. The complexity is the same as that of the
corresponding $(D sort), but $(D schwartzSort) evaluates $(D
transform) only $(D r.length) times (less than half when compared to
regular sorting). The usage can be best illustrated with an example.
Example:
----
uint hashFun(string) { ... expensive computation ... }
string[] array = ...;
// Sort strings by hash, slow
sort!("hashFun(a) < hashFun(b)")(array);
// Sort strings by hash, fast (only computes arr.length hashes):
schwartzSort!(hashFun, "a < b")(array);
----
The $(D schwartzSort) function might require less temporary data and
be faster than the Perl idiom or the decorate-sort-undecorate idiom
present in Python and Lisp. This is because sorting is done in-place
and only minimal extra data (one array of transformed elements) is
created.
To check whether an array was sorted and benefit of the speedup of
Schwartz sorting, a function $(D schwartzIsSorted) is not provided
because the effect can be achieved by calling $(D
isSorted!less(map!transform(r))).
*/
void schwartzSort(alias transform, alias less = "a < b",
SwapStrategy ss = SwapStrategy.unstable, Range)(Range r)
if (isRandomAccessRange!(Range) && hasLength!(Range))
{
alias typeof(transform(r.front)) XformType;
auto xform = new XformType[r.length];
foreach (i, e; r)
{
xform[i] = transform(e);
}
auto z = zip(xform, r);
alias typeof(z.front()) ProxyType;
bool myLess(ProxyType a, ProxyType b)
{
return binaryFun!less(a[0], b[0]);
}
sort!(myLess, ss)(z);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
static double entropy(double[] probs) {
double result = 0;
foreach (p; probs) {
if (!p) continue;
//enforce(p > 0 && p <= 1, "Wrong probability passed to entropy");
result -= p * log2(p);
}
return result;
}
auto lowEnt = ([ 1.0, 0, 0 ]).dup,
midEnt = ([ 0.1, 0.1, 0.8 ]).dup,
highEnt = ([ 0.31, 0.29, 0.4 ]).dup;
double arr[][] = new double[][3];
arr[0] = midEnt;
arr[1] = lowEnt;
arr[2] = highEnt;
schwartzSort!(entropy, q{a > b})(arr);
assert(arr[0] == highEnt);
assert(arr[1] == midEnt);
assert(arr[2] == lowEnt);
assert(isSorted!("a > b")(map!(entropy)(arr)));
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
static double entropy(double[] probs) {
double result = 0;
foreach (p; probs) {
if (!p) continue;
//enforce(p > 0 && p <= 1, "Wrong probability passed to entropy");
result -= p * log2(p);
}
return result;
}
auto lowEnt = ([ 1.0, 0, 0 ]).dup,
midEnt = ([ 0.1, 0.1, 0.8 ]).dup,
highEnt = ([ 0.31, 0.29, 0.4 ]).dup;
double arr[][] = new double[][3];
arr[0] = midEnt;
arr[1] = lowEnt;
arr[2] = highEnt;
schwartzSort!(entropy, q{a < b})(arr);
assert(arr[0] == lowEnt);
assert(arr[1] == midEnt);
assert(arr[2] == highEnt);
assert(isSorted!("a < b")(map!(entropy)(arr)));
}
// partialSort
/**
Reorders the random-access range $(D r) such that the range $(D r[0
.. mid]) is the same as if the entire $(D r) were sorted, and leaves
the range $(D r[mid .. r.length]) in no particular order. Performs
$(BIGOH r.length * log(mid)) evaluations of $(D pred). The
implementation simply calls $(D topN!(less, ss)(r, n)) and then $(D
sort!(less, ss)(r[0 .. n])).
Example:
----
int[] a = [ 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 ];
partialSort(a, 5);
assert(a[0 .. 5] == [ 0, 1, 2, 3, 4 ]);
----
*/
void partialSort(alias less = "a < b", SwapStrategy ss = SwapStrategy.unstable,
Range)(Range r, size_t n)
if (isRandomAccessRange!(Range) && hasLength!(Range) && hasSlicing!(Range))
{
topN!(less, ss)(r, n);
sort!(less, ss)(r[0 .. n]);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 ];
partialSort(a, 5);
assert(a[0 .. 5] == [ 0, 1, 2, 3, 4 ]);
}
// completeSort
/**
Sorts the random-access range $(D chain(lhs, rhs)) according to
predicate $(D less). The left-hand side of the range $(D lhs) is
assumed to be already sorted; $(D rhs) is assumed to be unsorted. The
exact strategy chosen depends on the relative sizes of $(D lhs) and
$(D rhs). Performs $(BIGOH lhs.length + rhs.length * log(rhs.length))
(best case) to $(BIGOH (lhs.length + rhs.length) * log(lhs.length +
rhs.length)) (worst-case) evaluations of $(D swap).
Example:
----
int[] a = [ 1, 2, 3 ];
int[] b = [ 4, 0, 6, 5 ];
completeSort(assumeSorted(a), b);
assert(a == [ 0, 1, 2 ]);
assert(b == [ 3, 4, 5, 6 ]);
----
*/
void completeSort(alias less = "a < b", SwapStrategy ss = SwapStrategy.unstable,
Range1, Range2)(SortedRange!(Range1, less) lhs, Range2 rhs)
if (hasLength!(Range2) && hasSlicing!(Range2))
{
// Probably this algorithm can be optimized by using in-place
// merge
auto lhsOriginal = lhs.release();
foreach (i; 0 .. rhs.length)
{
auto sortedSoFar = chain(lhsOriginal, rhs[0 .. i]);
auto ub = assumeSorted!less(sortedSoFar).upperBound(rhs[i]);
if (!ub.length) continue;
bringToFront(ub.release(), rhs[i .. i + 1]);
}
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 1, 2, 3 ];
int[] b = [ 4, 0, 6, 5 ];
// @@@BUG@@@ The call below should work
// completeSort(assumeSorted(a), b);
completeSort!("a < b", SwapStrategy.unstable, int[], int[])(
assumeSorted(a), b);
assert(a == [ 0, 1, 2 ]);
assert(b == [ 3, 4, 5, 6 ]);
}
// isSorted
/**
Checks whether a forward range is sorted according to the comparison
operation $(D less). Performs $(BIGOH r.length) evaluations of $(D
less).
Example:
----
int[] arr = [4, 3, 2, 1];
assert(!isSorted(arr));
sort(arr);
assert(isSorted(arr));
sort!("a > b")(arr);
assert(isSorted!("a > b")(arr));
----
*/
bool isSorted(alias less = "a < b", Range)(Range r) if (isForwardRange!(Range))
{
// @@@BUG@@@ Should work with inlined predicate
bool pred(ElementType!Range a, ElementType!Range b)
{
return binaryFun!less(b, a);
}
return findAdjacent!pred(r).empty;
}
// makeIndex
/**
Computes an index for $(D r) based on the comparison $(D less). The
index is a sorted array of pointers or indices into the original
range. This technique is similar to sorting, but it is more flexible
because (1) it allows "sorting" of immutable collections, (2) allows
binary search even if the original collection does not offer random
access, (3) allows multiple indexes, each on a different predicate,
and (4) may be faster when dealing with large objects. However, using
an index may also be slower under certain circumstances due to the
extra indirection, and is always larger than a sorting-based solution
because it needs space for the index in addition to the original
collection. The complexity is the same as $(D sort)'s.
$(D makeIndex) overwrites its second argument with the result, but
never reallocates it. If the second argument's length is less than
that of the range indexed, an exception is thrown.
The first overload of $(D makeIndex) writes to a range containing
pointers, and the second writes to a range containing offsets. The
first overload requires $(D Range) to be a forward range, and the
latter requires it to be a random-access range.
Example:
----
immutable(int[]) arr = [ 2, 3, 1, 5, 0 ];
// index using pointers
auto index1 = new immutable(int)*[arr.length];
makeIndex!("a < b")(arr, index1);
assert(isSorted!("*a < *b")(index1));
// index using offsets
auto index2 = new size_t[arr.length];
makeIndex!("a < b")(arr, index2);
assert(isSorted!
((size_t a, size_t b){ return arr[a] < arr[b];})
(index2));
----
*/
void makeIndex(
alias less = "a < b",
SwapStrategy ss = SwapStrategy.unstable,
Range,
RangeIndex)
(Range r, RangeIndex index)
if (isForwardRange!(Range) && isRandomAccessRange!(RangeIndex)
&& is(ElementType!(RangeIndex) : ElementType!(Range)*))
{
// assume collection already ordered
size_t i;
for (; !r.empty; r.popFront, ++i)
index[i] = &(r.front);
enforce(index.length == i);
// sort the index
static bool indirectLess(ElementType!(RangeIndex) a,
ElementType!(RangeIndex) b)
{
return binaryFun!(less)(*a, *b);
}
sort!(indirectLess, ss)(index);
}
/// Ditto
void makeIndex(
alias less = "a < b",
SwapStrategy ss = SwapStrategy.unstable,
Range,
RangeIndex)
(Range r, RangeIndex index)
if (isRandomAccessRange!(Range) && isRandomAccessRange!(RangeIndex)
&& isIntegral!(ElementType!(RangeIndex)))
{
// assume collection already ordered
size_t i;
auto r1 = r;
for (; !r1.empty; r1.popFront, ++i)
index[i] = i;
enforce(index.length == i);
// sort the index
bool indirectLess(ElementType!(RangeIndex) a, ElementType!(RangeIndex) b)
{
return binaryFun!(less)(r[a], r[b]);
}
sort!(indirectLess, ss)(index);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
immutable(int)[] arr = [ 2, 3, 1, 5, 0 ];
// index using pointers
auto index1 = new immutable(int)*[arr.length];
alias typeof(arr) ImmRange;
alias typeof(index1) ImmIndex;
static assert(isForwardRange!(ImmRange));
static assert(isRandomAccessRange!(ImmIndex));
static assert(!isIntegral!(ElementType!(ImmIndex)));
static assert(is(ElementType!(ImmIndex) : ElementType!(ImmRange)*));
makeIndex!("a < b")(arr, index1);
assert(isSorted!("*a < *b")(index1));
// index using offsets
auto index2 = new size_t[arr.length];
makeIndex(arr, index2);
assert(isSorted!
((size_t a, size_t b){ return arr[a] < arr[b];})
(index2));
// index strings using offsets
string[] arr1 = ["I", "have", "no", "chocolate"];
auto index3 = new size_t[arr1.length];
makeIndex(arr1, index3);
assert(isSorted!
((size_t a, size_t b){ return arr1[a] < arr1[b];})
(index3));
}
/**
Specifies whether the output of certain algorithm is desired in sorted
format.
*/
enum SortOutput {
no, /// Don't sort output
yes, /// Sort output
}
void topNIndex(
alias less = "a < b",
SwapStrategy ss = SwapStrategy.unstable,
Range, RangeIndex)(Range r, RangeIndex index, SortOutput sorted = SortOutput.no)
if (isIntegral!(ElementType!(RangeIndex)))
{
if (index.empty) return;
enforce(ElementType!(RangeIndex).max >= index.length,
"Index type too small");
bool indirectLess(ElementType!(RangeIndex) a, ElementType!(RangeIndex) b)
{
return binaryFun!(less)(r[a], r[b]);
}
auto heap = BinaryHeap!(RangeIndex, indirectLess)(index, 0);
foreach (i; 0 .. r.length)
{
heap.conditionalInsert(cast(ElementType!RangeIndex) i);
}
if (sorted == SortOutput.yes)
{
while (!heap.empty) heap.removeFront();
}
}
void topNIndex(
alias less = "a < b",
SwapStrategy ss = SwapStrategy.unstable,
Range, RangeIndex)(Range r, RangeIndex index,
SortOutput sorted = SortOutput.no)
if (is(ElementType!(RangeIndex) == ElementType!(Range)*))
{
if (index.empty) return;
static bool indirectLess(const ElementType!(RangeIndex) a,
const ElementType!(RangeIndex) b)
{
return binaryFun!less(*a, *b);
}
auto heap = BinaryHeap!(RangeIndex, indirectLess)(index, 0);
foreach (i; 0 .. r.length)
{
heap.conditionalInsert(&r[i]);
}
if (sorted == SortOutput.yes)
{
while (!heap.empty) heap.removeFront();
}
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
{
int[] a = [ 10, 8, 9, 2, 4, 6, 7, 1, 3, 5 ];
int*[] b = new int*[5];
topNIndex!("a > b")(a, b, SortOutput.yes);
//foreach (e; b) writeln(*e);
assert(b == [ &a[0], &a[2], &a[1], &a[6], &a[5]]);
}
{
int[] a = [ 10, 8, 9, 2, 4, 6, 7, 1, 3, 5 ];
auto b = new ubyte[5];
topNIndex!("a > b")(a, b, SortOutput.yes);
//foreach (e; b) writeln(e, ":", a[e]);
assert(b == [ cast(ubyte) 0, cast(ubyte)2, cast(ubyte)1, cast(ubyte)6, cast(ubyte)5], text(b));
}
}
/+
// topNIndexImpl
// @@@BUG1904
/*private*/ void topNIndexImpl(
alias less,
bool sortAfter,
SwapStrategy ss,
SRange, TRange)(SRange source, TRange target)
{
alias binaryFun!(less) lessFun;
static assert(ss == SwapStrategy.unstable,
"Stable indexing not yet implemented");
alias Iterator!(SRange) SIter;
alias std.iterator.ElementType!(TRange) TElem;
enum usingInt = isIntegral!(TElem);
static if (usingInt)
{
enforce(source.length <= TElem.max,
"Numeric overflow at risk in computing topNIndexImpl");
}
// types and functions used within
SIter index2iter(TElem a)
{
static if (!usingInt)
return a;
else
return begin(source) + a;
}
bool indirectLess(TElem a, TElem b)
{
return lessFun(*index2iter(a), *index2iter(b));
}
void indirectCopy(SIter from, ref TElem to)
{
static if (!usingInt)
to = from;
else
to = cast(TElem)(from - begin(source));
}
// copy beginning of collection into the target
auto sb = begin(source), se = end(source),
tb = begin(target), te = end(target);
for (; sb != se; ++sb, ++tb)
{
if (tb == te) break;
indirectCopy(sb, *tb);
}
// if the index's size is same as the source size, just quicksort it
// otherwise, heap-insert stuff in it.
if (sb == se)
{
// everything in source is now in target... just sort the thing
static if (sortAfter) sort!(indirectLess, ss)(target);
}
else
{
// heap-insert
te = tb;
tb = begin(target);
target = range(tb, te);
makeHeap!(indirectLess)(target);
// add stuff to heap
for (; sb != se; ++sb)
{
if (!lessFun(*sb, *index2iter(*tb))) continue;
// copy the source over the smallest
indirectCopy(sb, *tb);
heapify!(indirectLess)(target, tb);
}
static if (sortAfter) sortHeap!(indirectLess)(target);
}
}
/**
topNIndex
*/
void topNIndex(
alias less,
SwapStrategy ss = SwapStrategy.unstable,
SRange, TRange)(SRange source, TRange target)
{
return .topNIndexImpl!(less, false, ss)(source, target);
}
/// Ditto
void topNIndex(
string less,
SwapStrategy ss = SwapStrategy.unstable,
SRange, TRange)(SRange source, TRange target)
{
return .topNIndexImpl!(binaryFun!(less), false, ss)(source, target);
}
// partialIndex
/**
Computes an index for $(D source) based on the comparison $(D less)
and deposits the result in $(D target). It is acceptable that $(D
target.length < source.length), in which case only the smallest $(D
target.length) elements in $(D source) get indexed. The target
provides a sorted "view" into $(D source). This technique is similar
to sorting and partial sorting, but it is more flexible because (1) it
allows "sorting" of immutable collections, (2) allows binary search
even if the original collection does not offer random access, (3)
allows multiple indexes, each on a different comparison criterion, (4)
may be faster when dealing with large objects. However, using an index
may also be slower under certain circumstances due to the extra
indirection, and is always larger than a sorting-based solution
because it needs space for the index in addition to the original
collection. The complexity is $(BIGOH source.length *
log(target.length)).
Two types of indexes are accepted. They are selected by simply passing
the appropriate $(D target) argument: $(OL $(LI Indexes of type $(D
Iterator!(Source)), in which case the index will be sorted with the
predicate $(D less(*a, *b));) $(LI Indexes of an integral type
(e.g. $(D size_t)), in which case the index will be sorted with the
predicate $(D less(source[a], source[b])).))
Example:
----
immutable arr = [ 2, 3, 1 ];
int* index[3];
partialIndex(arr, index);
assert(*index[0] == 1 && *index[1] == 2 && *index[2] == 3);
assert(isSorted!("*a < *b")(index));
----
*/
void partialIndex(
alias less,
SwapStrategy ss = SwapStrategy.unstable,
SRange, TRange)(SRange source, TRange target)
{
return .topNIndexImpl!(less, true, ss)(source, target);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
immutable arr = [ 2, 3, 1 ];
auto index = new immutable(int)*[3];
partialIndex!(binaryFun!("a < b"))(arr, index);
assert(*index[0] == 1 && *index[1] == 2 && *index[2] == 3);
assert(isSorted!("*a < *b")(index));
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
static bool less(int a, int b) { return a < b; }
{
string[] x = ([ "c", "a", "b", "d" ]).dup;
// test with integrals
auto index1 = new size_t[x.length];
partialIndex!(q{a < b})(x, index1);
assert(index1[0] == 1 && index1[1] == 2 && index1[2] == 0
&& index1[3] == 3);
// half-sized
index1 = new size_t[x.length / 2];
partialIndex!(q{a < b})(x, index1);
assert(index1[0] == 1 && index1[1] == 2);
// and with iterators
auto index = new string*[x.length];
partialIndex!(q{a < b})(x, index);
assert(isSorted!(q{*a < *b})(index));
assert(*index[0] == "a" && *index[1] == "b" && *index[2] == "c"
&& *index[3] == "d");
}
{
immutable arr = [ 2, 3, 1 ];
auto index = new immutable(int)*[arr.length];
partialIndex!(less)(arr, index);
assert(*index[0] == 1 && *index[1] == 2 && *index[2] == 3);
assert(isSorted!(q{*a < *b})(index));
}
// random data
auto b = rndstuff!(string);
auto index = new string*[b.length];
partialIndex!("toupper(a) < toupper(b)")(b, index);
assert(isSorted!("toupper(*a) < toupper(*b)")(index));
// random data with indexes
auto index1 = new size_t[b.length];
bool cmp(string x, string y) { return toupper(x) < toupper(y); }
partialIndex!(cmp)(b, index1);
bool check(size_t x, size_t y) { return toupper(b[x]) < toupper(b[y]); }
assert(isSorted!(check)(index1));
}
// Commented out for now, needs reimplementation
// // schwartzMakeIndex
// /**
// Similar to $(D makeIndex) but using $(D schwartzSort) to sort the
// index.
// Example:
// ----
// string[] arr = [ "ab", "c", "Ab", "C" ];
// auto index = schwartzMakeIndex!(toupper, less, SwapStrategy.stable)(arr);
// assert(*index[0] == "ab" && *index[1] == "Ab"
// && *index[2] == "c" && *index[2] == "C");
// assert(isSorted!("toupper(*a) < toupper(*b)")(index));
// ----
// */
// Iterator!(Range)[] schwartzMakeIndex(
// alias transform,
// alias less,
// SwapStrategy ss = SwapStrategy.unstable,
// Range)(Range r)
// {
// alias Iterator!(Range) Iter;
// auto result = new Iter[r.length];
// // assume collection already ordered
// size_t i = 0;
// foreach (it; begin(r) .. end(r))
// {
// result[i++] = it;
// }
// // sort the index
// alias typeof(transform(*result[0])) Transformed;
// static bool indirectLess(Transformed a, Transformed b)
// {
// return less(a, b);
// }
// static Transformed indirectTransform(Iter a)
// {
// return transform(*a);
// }
// schwartzSort!(indirectTransform, less, ss)(result);
// return result;
// }
// /// Ditto
// Iterator!(Range)[] schwartzMakeIndex(
// alias transform,
// string less = q{a < b},
// SwapStrategy ss = SwapStrategy.unstable,
// Range)(Range r)
// {
// return .schwartzMakeIndex!(
// transform, binaryFun!(less), ss, Range)(r);
// }
// version (wyda) unittest
// {
// string[] arr = [ "D", "ab", "c", "Ab", "C" ];
// auto index = schwartzMakeIndex!(toupper, "a < b",
// SwapStrategy.stable)(arr);
// assert(isSorted!(q{toupper(*a) < toupper(*b)})(index));
// assert(*index[0] == "ab" && *index[1] == "Ab"
// && *index[2] == "c" && *index[3] == "C");
// // random data
// auto b = rndstuff!(string);
// auto index1 = schwartzMakeIndex!(toupper)(b);
// assert(isSorted!("toupper(*a) < toupper(*b)")(index1));
// }
+/
// canFind
/**
Returns $(D true) if and only if $(D value) can be found in $(D
range). Performs $(BIGOH r.length) evaluations of $(D pred). */
bool canFind(alias pred = "a == b", Range, V)(Range range, V value)
if (is(typeof(find!pred(range, value))))
{
return !find!pred(range, value).empty;
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
auto a = rndstuff!(int);
if (a.length)
{
auto b = a[a.length / 2];
assert(canFind(a, b));
}
}
// canFind
/**
Returns $(D true) if and only if a value $(D v) satisfying the
predicate $(D pred) can be found in the forward range $(D
range). Performs $(BIGOH r.length) evaluations of $(D pred).
*/
bool canFind(alias pred, Range)(Range range)
if (is(typeof(find!pred(range))))
{
return !find!pred(range).empty;
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
auto a = [ 1, 2, 0, 4 ];
assert(canFind!"a == 2"(a));
}
// Scheduled for deprecation. Use std.range.SortedRange.canFind.
bool canFindSorted(alias pred = "a < b", Range, V)(Range range, V value) {
pragma(msg, "std.algorithm.canFindSorted is scheduled for " ~
"deprecation. Use std.range.SortedRange.canFind instead.");
return assumeSorted!pred(range).canFind!V(value);
}
// Scheduled for deprecation. Use std.range.SortedRange.lowerBound.
Range lowerBound(alias pred = "a < b", Range, V)(Range range, V value) {
pragma(msg, "std.algorithm.lowerBound is scheduled for " ~
"deprecation. Use std.range.SortedRange.lowerBound instead.");
return assumeSorted!pred(range).lowerBound!V(value).release;
}
// Scheduled for deprecation. Use std.range.SortedRange.upperBound.
Range upperBound(alias pred = "a < b", Range, V)(Range range, V value) {
pragma(msg, "std.algorithm.upperBound is scheduled for " ~
"deprecation. Use std.range.SortedRange.upperBound instead.");
return assumeSorted!pred(range).upperBound!V(value).release;
}
// Scheduled for deprecation. Use std.range.SortedRange.equalRange.
Range equalRange(alias pred = "a < b", Range, V)(Range range, V value) {
pragma(msg, "std.algorithm.equalRange is scheduled for " ~
"deprecation. Use std.range.SortedRange.equalRange instead.");
return assumeSorted!pred(range).equalRange!V(value).release;
}
/**
Copies the top $(D n) elements of the input range $(D source) into the
random-access range $(D target), where $(D n =
target.length). Elements of $(D source) are not touched. If $(D
sorted) is $(D true), the target is sorted. Otherwise, the target
respects the $(WEB en.wikipedia.org/wiki/Binary_heap, heap property).
Example:
----
int[] a = [ 10, 16, 2, 3, 1, 5, 0 ];
int[] b = new int[3];
topNCopy(a, b, true);
assert(b == [ 0, 1, 2 ]);
----
*/
TRange topNCopy(alias less = "a < b", SRange, TRange)
(SRange source, TRange target, SortOutput sorted = SortOutput.no)
if (isInputRange!(SRange) && isRandomAccessRange!(TRange)
&& hasLength!(TRange) && hasSlicing!(TRange))
{
if (target.empty) return target;
auto heap = BinaryHeap!(TRange, less)(target, 0);
foreach (e; source) heap.conditionalInsert(e);
auto result = target[0 .. heap.length];
if (sorted == SortOutput.yes)
{
while (!heap.empty) heap.removeFront();
}
return result;
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 10, 16, 2, 3, 1, 5, 0 ];
int[] b = new int[3];
topNCopy(a, b, SortOutput.yes);
assert(b == [ 0, 1, 2 ]);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
auto r = Random(unpredictableSeed);
sizediff_t[] a = new sizediff_t[uniform(1, 1000, r)];
foreach (i, ref e; a) e = i;
randomShuffle(a, r);
auto n = uniform(0, a.length, r);
sizediff_t[] b = new sizediff_t[n];
topNCopy!(binaryFun!("a < b"))(a, b, SortOutput.yes);
assert(isSorted!(binaryFun!("a < b"))(b));
}
/**
Lazily computes the union of two or more ranges $(D rs). The ranges
are assumed to be sorted by $(D less). Elements in the output are not
unique; the length of the output is the sum of the lengths of the
inputs. (The $(D length) member is offered if all ranges also have
length.) The element types of all ranges must have a common type.
Example:
----
int[] a = [ 1, 2, 4, 5, 7, 9 ];
int[] b = [ 0, 1, 2, 4, 7, 8 ];
int[] c = [ 10 ];
assert(setUnion(a, b).length == a.length + b.length);
assert(equal(setUnion(a, b), [0, 1, 1, 2, 2, 4, 4, 5, 7, 7, 8, 9][]));
assert(equal(setUnion(a, c, b),
[0, 1, 1, 2, 2, 4, 4, 5, 7, 7, 8, 9, 10][]));
----
*/
struct SetUnion(alias less = "a < b", Rs...) if (allSatisfy!(isInputRange, Rs))
{
private:
Rs _r;
alias binaryFun!(less) comp;
uint _crt;
void adjustPosition(uint candidate = 0)()
{
static if (candidate == Rs.length)
{
_crt = _crt.max;
}
else
{
if (_r[candidate].empty)
{
adjustPosition!(candidate + 1)();
return;
}
foreach (i, U; Rs[candidate + 1 .. $])
{
enum j = candidate + i + 1;
if (_r[j].empty) continue;
if (comp(_r[j].front, _r[candidate].front))
{
// a new candidate was found
adjustPosition!(j)();
return;
}
}
// Found a successful candidate
_crt = candidate;
}
}
public:
alias CommonType!(staticMap!(.ElementType, Rs)) ElementType;
this(Rs rs)
{
this._r = rs;
adjustPosition();
}
@property bool empty()
{
return _crt == _crt.max;
}
void popFront()
{
// Assumes _crt is correct
assert(!empty);
foreach (i, U; Rs)
{
if (i < _crt) continue;
// found _crt
assert(!_r[i].empty);
_r[i].popFront;
adjustPosition();
return;
}
assert(false);
}
@property ElementType front()
{
assert(!empty);
// Assume _crt is correct
foreach (i, U; Rs)
{
if (i < _crt) continue;
assert(!_r[i].empty);
return _r[i].front;
}
assert(false);
}
static if(allSatisfy!(isForwardRange, Rs))
{
@property typeof(this) save()
{
auto ret = this;
foreach(ti, elem; _r)
{
ret._r[ti] = elem.save;
}
return ret;
}
}
static if (allSatisfy!(hasLength, Rs))
{
@property size_t length()
{
size_t result;
foreach (i, U; Rs)
{
result += _r[i].length;
}
return result;
}
}
}
/// Ditto
SetUnion!(less, Rs) setUnion(alias less = "a < b", Rs...)
(Rs rs)
{
return typeof(return)(rs);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 1, 2, 4, 5, 7, 9 ];
int[] b = [ 0, 1, 2, 4, 7, 8 ];
int[] c = [ 10 ];
//foreach (e; setUnion(a, b)) writeln(e);
assert(setUnion(a, b).length == a.length + b.length);
assert(equal(setUnion(a, b), [0, 1, 1, 2, 2, 4, 4, 5, 7, 7, 8, 9][]));
assert(equal(setUnion(a, c, b),
[0, 1, 1, 2, 2, 4, 4, 5, 7, 7, 8, 9, 10][]));
static assert(isForwardRange!(typeof(setUnion(a, b))));
}
/**
Lazily computes the intersection of two or more input ranges $(D
rs). The ranges are assumed to be sorted by $(D less). The element
types of all ranges must have a common type.
Example:
----
int[] a = [ 1, 2, 4, 5, 7, 9 ];
int[] b = [ 0, 1, 2, 4, 7, 8 ];
int[] c = [ 0, 1, 4, 5, 7, 8 ];
assert(equal(setIntersection(a, a), a));
assert(equal(setIntersection(a, b), [1, 2, 4, 7][]));
assert(equal(setIntersection(a, b, c), [1, 4, 7][]));
----
*/
struct SetIntersection(alias less = "a < b", Rs...)
if (allSatisfy!(isInputRange, Rs))
{
static assert(Rs.length == 2);
private:
Rs _input;
alias binaryFun!(less) comp;
alias CommonType!(staticMap!(.ElementType, Rs)) ElementType;
void adjustPosition()
{
// Positions to the first two elements that are equal
while (!empty)
{
if (comp(_input[0].front, _input[1].front))
{
_input[0].popFront;
}
else if (comp(_input[1].front, _input[0].front))
{
_input[1].popFront;
}
else
{
break;
}
}
}
public:
this(Rs input)
{
this._input = input;
// position to the first element
adjustPosition;
}
@property bool empty()
{
foreach (i, U; Rs)
{
if (_input[i].empty) return true;
}
return false;
}
void popFront()
{
assert(!empty);
assert(!comp(_input[0].front, _input[1].front)
&& !comp(_input[1].front, _input[0].front));
_input[0].popFront;
_input[1].popFront;
adjustPosition;
}
@property ElementType front()
{
assert(!empty);
return _input[0].front;
}
static if(allSatisfy!(isForwardRange, Rs))
{
@property typeof(this) save()
{
auto ret = this;
foreach(ti, elem; _input)
{
ret._input[ti] = elem.save;
}
return ret;
}
}
}
/// Ditto
SetIntersection!(less, Rs) setIntersection(alias less = "a < b", Rs...)
(Rs ranges)
if (allSatisfy!(isInputRange, Rs))
{
return typeof(return)(ranges);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 1, 2, 4, 5, 7, 9 ];
int[] b = [ 0, 1, 2, 4, 7, 8 ];
int[] c = [ 0, 1, 4, 5, 7, 8 ];
//foreach (e; setIntersection(a, b, c)) writeln(e);
assert(equal(setIntersection(a, b), [1, 2, 4, 7][]));
assert(equal(setIntersection(a, a), a));
static assert(isForwardRange!(typeof(setIntersection(a, a))));
// assert(equal(setIntersection(a, b, b, a), [1, 2, 4, 7][]));
// assert(equal(setIntersection(a, b, c), [1, 4, 7][]));
// assert(equal(setIntersection(a, c, b), [1, 4, 7][]));
// assert(equal(setIntersection(b, a, c), [1, 4, 7][]));
// assert(equal(setIntersection(b, c, a), [1, 4, 7][]));
// assert(equal(setIntersection(c, a, b), [1, 4, 7][]));
// assert(equal(setIntersection(c, b, a), [1, 4, 7][]));
}
/**
Lazily computes the difference of $(D r1) and $(D r2). The two ranges
are assumed to be sorted by $(D less). The element types of the two
ranges must have a common type.
Example:
----
int[] a = [ 1, 2, 4, 5, 7, 9 ];
int[] b = [ 0, 1, 2, 4, 7, 8 ];
assert(equal(setDifference(a, b), [5, 9][]));
----
*/
struct SetDifference(alias less = "a < b", R1, R2)
if (isInputRange!(R1) && isInputRange!(R2))
{
private:
R1 r1;
R2 r2;
alias binaryFun!(less) comp;
void adjustPosition()
{
while (!r1.empty)
{
if (r2.empty || comp(r1.front, r2.front)) break;
if (comp(r2.front, r1.front))
{
r2.popFront;
}
else
{
// both are equal
r1.popFront;
r2.popFront;
}
}
}
public:
this(R1 r1, R2 r2)
{
this.r1 = r1;
this.r2 = r2;
// position to the first element
adjustPosition;
}
void popFront()
{
r1.popFront;
adjustPosition;
}
@property ElementType!(R1) front()
{
assert(!empty);
return r1.front;
}
static if(isForwardRange!R1 && isForwardRange!R2)
{
@property typeof(this) save()
{
auto ret = this;
ret.r1 = r1.save;
ret.r2 = r2.save;
return ret;
}
}
bool empty() { return r1.empty; }
}
/// Ditto
SetDifference!(less, R1, R2) setDifference(alias less = "a < b", R1, R2)
(R1 r1, R2 r2)
{
return typeof(return)(r1, r2);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 1, 2, 4, 5, 7, 9 ];
int[] b = [ 0, 1, 2, 4, 7, 8 ];
//foreach (e; setDifference(a, b)) writeln(e);
assert(equal(setDifference(a, b), [5, 9][]));
static assert(isForwardRange!(typeof(setDifference(a, b))));
}
/**
Lazily computes the symmetric difference of $(D r1) and $(D r2),
i.e. the elements that are present in exactly one of $(D r1) and $(D
r2). The two ranges are assumed to be sorted by $(D less), and the
output is also sorted by $(D less). The element types of the two
ranges must have a common type.
Example:
----
int[] a = [ 1, 2, 4, 5, 7, 9 ];
int[] b = [ 0, 1, 2, 4, 7, 8 ];
assert(equal(setSymmetricDifference(a, b), [0, 5, 8, 9][]));
----
*/
struct SetSymmetricDifference(alias less = "a < b", R1, R2)
if (isInputRange!(R1) && isInputRange!(R2))
{
private:
R1 r1;
R2 r2;
//bool usingR2;
alias binaryFun!(less) comp;
void adjustPosition()
{
while (!r1.empty && !r2.empty)
{
if (comp(r1.front, r2.front) || comp(r2.front, r1.front))
{
break;
}
// equal, pop both
r1.popFront;
r2.popFront;
}
}
public:
this(R1 r1, R2 r2)
{
this.r1 = r1;
this.r2 = r2;
// position to the first element
adjustPosition;
}
void popFront()
{
assert(!empty);
if (r1.empty) r2.popFront;
else if (r2.empty) r1.popFront;
else
{
// neither is empty
if (comp(r1.front, r2.front))
{
r1.popFront;
}
else
{
assert(comp(r2.front, r1.front));
r2.popFront;
}
}
adjustPosition;
}
@property ElementType!(R1) front()
{
assert(!empty);
if (r2.empty || !r1.empty && comp(r1.front, r2.front))
{
return r1.front;
}
assert(r1.empty || comp(r2.front, r1.front));
return r2.front;
}
static if(isForwardRange!R1 && isForwardRange!R2)
{
@property typeof(this) save()
{
auto ret = this;
ret.r1 = r1.save;
ret.r2 = r2.save;
return ret;
}
}
ref auto opSlice() { return this; }
@property bool empty() { return r1.empty && r2.empty; }
}
/// Ditto
SetSymmetricDifference!(less, R1, R2)
setSymmetricDifference(alias less = "a < b", R1, R2)
(R1 r1, R2 r2)
{
return typeof(return)(r1, r2);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 1, 2, 4, 5, 7, 9 ];
int[] b = [ 0, 1, 2, 4, 7, 8 ];
//foreach (e; setSymmetricDifference(a, b)) writeln(e);
assert(equal(setSymmetricDifference(a, b), [0, 5, 8, 9][]));
static assert(isForwardRange!(typeof(setSymmetricDifference(a, b))));
}
// Internal random array generators
version(unittest)
{
private enum size_t maxArraySize = 50;
private enum size_t minArraySize = maxArraySize - 1;
private string[] rndstuff(T : string)()
{
static Random rnd;
static bool first = true;
if (first)
{
rnd = Random(unpredictableSeed);
first = false;
}
string[] result =
new string[uniform(minArraySize, maxArraySize, rnd)];
string alpha = "abcdefghijABCDEFGHIJ";
foreach (ref s; result)
{
foreach (i; 0 .. uniform(0u, 20u, rnd))
{
auto j = uniform(0, alpha.length - 1, rnd);
s ~= alpha[j];
}
}
return result;
}
private int[] rndstuff(T : int)()
{
static Random rnd;
static bool first = true;
if (first)
{
rnd = Random(unpredictableSeed);
first = false;
}
int[] result = new int[uniform(minArraySize, maxArraySize, rnd)];
foreach (ref i; result)
{
i = uniform(-100, 100, rnd);
}
return result;
}
private double[] rndstuff(T : double)()
{
double[] result;
foreach (i; rndstuff!(int)())
{
result ~= i / 50.;
}
return result;
}
}
// NWayUnion
/**
Computes the union of multiple sets. The input sets are passed as a
range of ranges and each is assumed to be sorted by $(D
less). Computation is done lazily, one union element at a time. The
complexity of one $(D popFront) operation is $(BIGOH
log(ror.length)). However, the length of $(D ror) decreases as ranges
in it are exhausted, so the complexity of a full pass through $(D
NWayUnion) is dependent on the distribution of the lengths of ranges
contained within $(D ror). If all ranges have the same length $(D n)
(worst case scenario), the complexity of a full pass through $(D
NWayUnion) is $(BIGOH n * ror.length * log(ror.length)), i.e., $(D
log(ror.length)) times worse than just spanning all ranges in
turn. The output comes sorted (unstably) by $(D less).
Warning: Because $(D NWayUnion) does not allocate extra memory, it
will leave $(D ror) modified. Namely, $(D NWayUnion) assumes ownership
of $(D ror) and discretionarily swaps and advances elements of it. If
you want $(D ror) to preserve its contents after the call, you may
want to pass a duplicate to $(D NWayUnion) (and perhaps cache the
duplicate in between calls).
Example:
----
double[][] a =
[
[ 1, 4, 7, 8 ],
[ 1, 7 ],
[ 1, 7, 8],
[ 4 ],
[ 7 ],
];
auto witness = [
1, 1, 1, 4, 4, 7, 7, 7, 7, 8, 8
];
assert(equal(nWayUnion(a), witness[]));
----
*/
struct NWayUnion(alias less, RangeOfRanges)
{
private alias .ElementType!(.ElementType!RangeOfRanges) ElementType;
private alias binaryFun!less comp;
private RangeOfRanges _ror;
static bool compFront(.ElementType!RangeOfRanges a,
.ElementType!RangeOfRanges b)
{
// revert comparison order so we get the smallest elements first
return comp(b.front, a.front);
}
BinaryHeap!(RangeOfRanges, compFront) _heap;
this(RangeOfRanges ror)
{
// Preemptively get rid of all empty ranges in the input
// No need for stability either
_ror = remove!("a.empty", SwapStrategy.unstable)(ror);
//Build the heap across the range
_heap.acquire(_ror);
}
@property bool empty() { return _ror.empty; }
@property ref ElementType front()
{
return _heap.front.front;
}
void popFront()
{
_heap.removeFront();
// let's look at the guy just popped
_ror.back.popFront;
if (_ror.back.empty)
{
_ror.popBack;
// nothing else to do: the empty range is not in the
// heap and not in _ror
return;
}
// Put the popped range back in the heap
_heap.conditionalInsert(_ror.back) || assert(false);
}
}
/// Ditto
NWayUnion!(less, RangeOfRanges) nWayUnion
(alias less = "a < b", RangeOfRanges)
(RangeOfRanges ror)
{
return typeof(return)(ror);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
double[][] a =
[
[ 1, 4, 7, 8 ],
[ 1, 7 ],
[ 1, 7, 8],
[ 4 ],
[ 7 ],
];
auto witness = [
1, 1, 1, 4, 4, 7, 7, 7, 7, 8, 8
];
//foreach (e; nWayUnion(a)) writeln(e);
assert(equal(nWayUnion(a), witness[]));
}
// largestPartialIntersection
/**
Given a range of sorted forward ranges $(D ror), copies to $(D tgt)
the elements that are common to most ranges, along with their number
of occurrences. All ranges in $(D ror) are assumed to be sorted by $(D
less). Only the most frequent $(D tgt.length) elements are returned.
Example:
----
// Figure which number can be found in most arrays of the set of
// arrays below.
double[][] a =
[
[ 1, 4, 7, 8 ],
[ 1, 7 ],
[ 1, 7, 8],
[ 4 ],
[ 7 ],
];
auto b = new Tuple!(double, uint)[1];
largestPartialIntersection(a, b);
// First member is the item, second is the occurrence count
assert(b[0] == tuple(7.0, 4u));
----
$(D 7.0) is the correct answer because it occurs in $(D 4) out of the
$(D 5) inputs, more than any other number. The second member of the
resulting tuple is indeed $(D 4) (recording the number of occurrences
of $(D 7.0)). If more of the top-frequent numbers are needed, just
create a larger $(D tgt) range. In the axample above, creating $(D b)
with length $(D 2) yields $(D tuple(1.0, 3u)) in the second position.
The function $(D largestPartialIntersection) is useful for
e.g. searching an $(LUCKY inverted index) for the documents most
likely to contain some terms of interest. The complexity of the search
is $(BIGOH n * log(tgt.length)), where $(D n) is the sum of lengths of
all input ranges. This approach is faster than keeping an associative
array of the occurrences and then selecting its top items, and also
requires less memory ($(D largestPartialIntersection) builds its
result directly in $(D tgt) and requires no extra memory).
Warning: Because $(D largestPartialIntersection) does not allocate
extra memory, it will leave $(D ror) modified. Namely, $(D
largestPartialIntersection) assumes ownership of $(D ror) and
discretionarily swaps and advances elements of it. If you want $(D
ror) to preserve its contents after the call, you may want to pass a
duplicate to $(D largestPartialIntersection) (and perhaps cache the
duplicate in between calls).
*/
void largestPartialIntersection
(alias less = "a < b", RangeOfRanges, Range)
(RangeOfRanges ror, Range tgt, SortOutput sorted = SortOutput.no)
{
struct UnitWeights
{
static int opIndex(ElementType!(ElementType!RangeOfRanges)) { return 1; }
}
return largestPartialIntersectionWeighted!less(ror, tgt, UnitWeights(),
sorted);
}
// largestPartialIntersectionWeighted
/**
Similar to $(D largestPartialIntersection), but associates a weight
with each distinct element in the intersection.
Example:
----
// Figure which number can be found in most arrays of the set of
// arrays below, with specific per-element weights
double[][] a =
[
[ 1, 4, 7, 8 ],
[ 1, 7 ],
[ 1, 7, 8],
[ 4 ],
[ 7 ],
];
auto b = new Tuple!(double, uint)[1];
double[double] weights = [ 1:1.2, 4:2.3, 7:1.1, 8:1.1 ];
largestPartialIntersectionWeighted(a, b, weights);
// First member is the item, second is the occurrence count
assert(b[0] == tuple(4.0, 2u));
----
The correct answer in this case is $(D 4.0), which, although only
appears two times, has a total weight $(D 4.6) (three times its weight
$(D 2.3)). The value $(D 7) is weighted with $(D 1.1) and occurs four
times for a total weight $(D 4.4).
*/
void largestPartialIntersectionWeighted
(alias less = "a < b", RangeOfRanges, Range, WeightsAA)
(RangeOfRanges ror, Range tgt, WeightsAA weights, SortOutput sorted = SortOutput.no)
{
if (tgt.empty) return;
alias ElementType!Range InfoType;
bool heapComp(InfoType a, InfoType b)
{
return weights[a[0]] * a[1] > weights[b[0]] * b[1];
}
topNCopy!heapComp(group(nWayUnion!less(ror)), tgt, sorted);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
double[][] a =
[
[ 1, 4, 7, 8 ],
[ 1, 7 ],
[ 1, 7, 8],
[ 4 ],
[ 7 ],
];
auto b = new Tuple!(double, uint)[2];
largestPartialIntersection(a, b, SortOutput.yes);
//sort(b);
//writeln(b);
assert(b == [ tuple(7., 4u), tuple(1., 3u) ][], text(b));
assert(a[0].empty);
}
unittest
{
debug(std_algorithm) scope(success)
writeln("unittest @", __FILE__, ":", __LINE__, " done.");
string[][] a =
[
[ "1", "4", "7", "8" ],
[ "1", "7" ],
[ "1", "7", "8"],
[ "4" ],
[ "7" ],
];
auto b = new Tuple!(string, uint)[2];
largestPartialIntersection(a, b, SortOutput.yes);
//writeln(b);
assert(b == [ tuple("7", 4u), tuple("1", 3u) ][], text(b));
}
unittest
{
//scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done.");
// Figure which number can be found in most arrays of the set of
// arrays below, with specific per-element weights
double[][] a =
[
[ 1, 4, 7, 8 ],
[ 1, 7 ],
[ 1, 7, 8],
[ 4 ],
[ 7 ],
];
auto b = new Tuple!(double, uint)[1];
double[double] weights = [ 1:1.2, 4:2.3, 7:1.1, 8:1.1 ];
largestPartialIntersectionWeighted(a, b, weights);
// First member is the item, second is the occurrence count
//writeln(b[0]);
assert(b[0] == tuple(4.0, 2u));
}