phobos/std/range.d

5531 lines
142 KiB
D

// Written in the D programming language.
/**
This module defines a few useful _range incarnations. Credit for some
of the ideas in building this module goes to $(WEB
fantascienza.net/leonardo/so/, Leonardo Maffi).
Source: $(PHOBOSSRC std/_range.d)
Macros:
WIKI = Phobos/StdRange
Copyright: Copyright Andrei Alexandrescu 2008-.
License: $(WEB boost.org/LICENSE_1_0.txt, Boost License 1.0).
Authors: $(WEB erdani.org, Andrei Alexandrescu), David Simcha
*/
module std.range;
public import std.array;
import std.algorithm, std.conv, std.exception, std.functional, std.intrinsic,
std.random, std.traits, std.typecons, std.typetuple;
// For testing only. This code is included in a string literal to be included
// in whatever module it's needed in, so that each module that uses it can be
// tested individually, without needing to link to std.range.
enum dummyRanges = q{
// Used with the dummy ranges for testing higher order ranges.
enum RangeType {
Input,
Forward,
Bidirectional,
Random
}
enum Length {
Yes,
No
}
enum ReturnBy {
Reference,
Value
}
// Range that's useful for testing other higher order ranges,
// can be parametrized with attributes. It just dumbs down an array of
// numbers 1..10.
struct DummyRange(ReturnBy _r, Length _l, RangeType _rt) {
// These enums are so that the template params are visible outside
// this instantiation.
enum r = _r;
enum l = _l;
enum rt = _rt;
uint[] arr = [1U, 2U, 3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U];
void reinit() {
// Workaround for DMD bug 4378
arr = [1U, 2U, 3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U];
}
void popFront() {
arr = arr[1..$];
}
@property bool empty() {
return arr.length == 0;
}
static if(r == ReturnBy.Reference) {
@property ref uint front() {
return arr[0];
}
@property void front(uint val) {
arr[0] = val;
}
} else {
@property uint front() {
return arr[0];
}
}
static if(rt >= RangeType.Forward) {
@property typeof(this) save() {
return this;
}
}
static if(rt >= RangeType.Bidirectional) {
void popBack() {
arr = arr[0..$ - 1];
}
static if(r == ReturnBy.Reference) {
@property ref uint back() {
return arr[$ - 1];
}
@property void back(uint val) {
arr[$ - 1] = val;
}
} else {
@property uint back() {
return arr[$ - 1];
}
}
}
static if(rt >= RangeType.Random) {
static if(r == ReturnBy.Reference) {
ref uint opIndex(size_t index) {
return arr[index];
}
void opIndexAssign(uint val, size_t index) {
arr[index] = val;
}
} else {
@property uint opIndex(size_t index) {
return arr[index];
}
}
typeof(this) opSlice(size_t lower, size_t upper) {
auto ret = this;
ret.arr = arr[lower..upper];
return ret;
}
}
static if(l == Length.Yes) {
@property size_t length() {
return arr.length;
}
}
}
enum dummyLength = 10;
alias TypeTuple!(
DummyRange!(ReturnBy.Reference, Length.Yes, RangeType.Forward),
DummyRange!(ReturnBy.Reference, Length.Yes, RangeType.Bidirectional),
DummyRange!(ReturnBy.Reference, Length.Yes, RangeType.Random),
DummyRange!(ReturnBy.Reference, Length.No, RangeType.Forward),
DummyRange!(ReturnBy.Reference, Length.No, RangeType.Bidirectional),
DummyRange!(ReturnBy.Value, Length.Yes, RangeType.Input),
DummyRange!(ReturnBy.Value, Length.Yes, RangeType.Forward),
DummyRange!(ReturnBy.Value, Length.Yes, RangeType.Bidirectional),
DummyRange!(ReturnBy.Value, Length.Yes, RangeType.Random),
DummyRange!(ReturnBy.Value, Length.No, RangeType.Input),
DummyRange!(ReturnBy.Value, Length.No, RangeType.Forward),
DummyRange!(ReturnBy.Value, Length.No, RangeType.Bidirectional)
) AllDummyRanges;
};
version(unittest)
{
import std.container, std.conv, std.math, std.stdio;
mixin(dummyRanges);
// Tests whether forward, bidirectional and random access properties are
// propagated properly from the base range(s) R to the higher order range
// H. Useful in combination with DummyRange for testing several higher
// order ranges.
template propagatesRangeType(H, R...) {
static if(allSatisfy!(isRandomAccessRange, R)) {
enum bool propagatesRangeType = isRandomAccessRange!H;
} else static if(allSatisfy!(isBidirectionalRange, R)) {
enum bool propagatesRangeType = isBidirectionalRange!H;
} else static if(allSatisfy!(isForwardRange, R)) {
enum bool propagatesRangeType = isForwardRange!H;
} else {
enum bool propagatesRangeType = isInputRange!H;
}
}
template propagatesLength(H, R...) {
static if(allSatisfy!(hasLength, R)) {
enum bool propagatesLength = hasLength!H;
} else {
enum bool propagatesLength = !hasLength!H;
}
}
}
/**
Returns $(D true) if $(D R) is an input range. An input range must
define the primitives $(D empty), $(D popFront), and $(D front). The
following code should compile for any input range.
----
R r; // can define a range object
if (r.empty) {} // can test for empty
r.popFront; // can invoke next
auto h = r.front; // can get the front of the range
----
The semantics of an input range (not checkable during compilation) are
assumed to be the following ($(D r) is an object of type $(D R)):
$(UL $(LI $(D r.empty) returns $(D false) iff there is more data
available in the range.) $(LI $(D r.front) returns the current element
in the range. It may return by value or by reference. Calling $(D
r.front) is allowed only if calling $(D r.empty) has, or would have,
returned $(D false).) $(LI $(D r.popFront) advances to the popFront element in
the range. Calling $(D r.popFront) is allowed only if calling $(D r.empty)
has, or would have, returned $(D false).))
*/
template isInputRange(R)
{
enum bool isInputRange = is(typeof(
{
R r; // can define a range object
if (r.empty) {} // can test for empty
r.popFront; // can invoke next
auto h = r.front; // can get the front of the range
}()));
}
unittest
{
struct A {}
static assert(!isInputRange!(A));
struct B
{
void popFront();
bool empty();
int front();
}
static assert(isInputRange!(B));
static assert(isInputRange!(int[]));
static assert(isInputRange!(char[]));
}
/**
Outputs $(D e) to $(D r). The exact effect is dependent upon the two
types. which must be an output range. Several cases are accepted, as
described below. The code snippets are attempted in order, and the
first to compile "wins" and gets evaluated.
$(BOOKTABLE ,
$(TR $(TH Code Snippet) $(TH Scenario))
$(TR $(TD $(D r.put(e);)) $(TD $(D R) specifically defines a method
$(D put) accepting an $(D E).))
$(TR $(TD $(D r.put([ e ]);)) $(TD $(D R) specifically defines a
method $(D put) accepting an $(D E[]).))
$(TR $(TD $(D r.front = e; r.popFront();)) $(TD $(D R) is an input
range and $(D e) is assignable to $(D r.front).))
$(TR $(TD $(D for (; !e.empty; e.popFront()) put(r, e.front);)) $(TD
Copying range $(D E) to range $(D R).))
$(TR $(TD $(D r(e);)) $(TD $(D R) is e.g. a delegate accepting an $(D
E).))
$(TR $(TD $(D r([ e ]);)) $(TD $(D R) is e.g. a $(D delegate)
accepting an $(D E[]).))
)
*/
void put(R, E)(ref R r, E e)
{
static if (hasMember!(R, "put") ||
(isPointer!R && is(pointerTarget!R == struct) &&
hasMember!(pointerTarget!R, "put")))
{
// commit to using the "put" method
static if (!isArray!R && is(typeof(r.put(e))))
{
r.put(e);
}
else static if (!isArray!R && is(typeof(r.put((&e)[0..1]))))
{
r.put((&e)[0..1]);
}
else
{
static assert(false,
"Cannot put a "~E.stringof~" into a "~R.stringof);
}
}
else
{
static if (isInputRange!R)
{
// Commit to using assignment to front
static if (is(typeof(r.front = e, r.popFront())))
{
r.front = e;
r.popFront();
}
else static if (isInputRange!E && is(typeof(put(r, e.front))))
{
for (; !e.empty; e.popFront()) put(r, e.front);
}
else
{
static assert(false,
"Cannot put a "~E.stringof~" into a "~R.stringof);
}
}
else
{
// Commit to using opCall
static if (is(typeof(r(e))))
{
r(e);
}
else static if (is(typeof(r((&e)[0..1]))))
{
r((&e)[0..1]);
}
else
{
static assert(false,
"Cannot put a "~E.stringof~" into a "~R.stringof);
}
}
}
}
unittest
{
struct A {}
static assert(!isInputRange!(A));
struct B
{
void put(int) {}
}
B b;
put(b, 5);
}
unittest
{
int[] a = [1, 2, 3], b = [10, 20];
auto c = a;
put(a, b);
assert(c == [10, 20, 3]);
assert(a == [3]);
}
unittest
{
int[] a = new int[10];
int b;
static assert(isInputRange!(typeof(a)));
put(a, b);
}
unittest
{
void myprint(in char[] s) { }
auto r = &myprint;
put(r, 'a');
}
unittest
{
int[] a = new int[10];
static assert(!__traits(compiles, put(a, 1.0L)));
static assert( __traits(compiles, put(a, 1)));
/*
* a[0] = 65; // OK
* a[0] = 'A'; // OK
* a[0] = "ABC"[0]; // OK
* put(a, "ABC"); // OK
*/
static assert( __traits(compiles, put(a, "ABC")));
}
unittest
{
char[] a = new char[10];
static assert(!__traits(compiles, put(a, 1.0L)));
static assert(!__traits(compiles, put(a, 1)));
// char[] is NOT output range.
static assert(!__traits(compiles, put(a, 'a')));
static assert(!__traits(compiles, put(a, "ABC")));
}
/**
Returns $(D true) if $(D R) is an output range for elements of type
$(D E). An output range can be defined functionally as a range that
supports the operation $(D put(r, e)) as defined above.
*/
template isOutputRange(R, E)
{
enum bool isOutputRange = is(typeof({ R r; E e; put(r, e); }()));
}
unittest
{
void myprint(in char[] s) { writeln('[', s, ']'); }
static assert(isOutputRange!(typeof(&myprint), char));
auto app = appender!string();
string s;
static assert( isOutputRange!(Appender!string, string));
static assert( isOutputRange!(Appender!string*, string));
static assert(!isOutputRange!(Appender!string, int));
static assert(!isOutputRange!(char[], char));
static assert(!isOutputRange!(wchar[], wchar));
static assert( isOutputRange!(dchar[], char));
static assert( isOutputRange!(dchar[], wchar));
static assert( isOutputRange!(dchar[], dchar));
}
/**
Returns $(D true) if $(D R) is a forward range. A forward range is an
input range that can save "checkpoints" by simply copying it to
another value of the same type. Notable examples of input ranges that
are $(I not) forward ranges are file/socket ranges; copying such a
range will not save the position in the stream, and they most likely
reuse an internal buffer as the entire stream does not sit in
memory. Subsequently, advancing either the original or the copy will
advance the stream, so the copies are not independent. The following
code should compile for any forward range.
----
static assert(isInputRange!(R));
R r1;
R r2 = r1; // can copy a range to another
----
The semantics of a forward range (not checkable during compilation)
are the same as for an input range, with the additional requirement
that backtracking must be possible by saving a copy of the range
object.
*/
template isForwardRange(R)
{
enum bool isForwardRange = isInputRange!(R) && is(typeof(
{
R r1;
R r2 = r1.save; // can call "save" against a range
// object
}()));
}
unittest
{
static assert(!isForwardRange!(int));
static assert(isForwardRange!(int[]));
}
/**
Returns $(D true) if $(D R) is a bidirectional range. A bidirectional
range is a forward range that also offers the primitives $(D back) and
$(D popBack). The following code should compile for any bidirectional
range.
----
R r;
static assert(isForwardRange!(R)); // range is an input range
r.popBack; // can invoke popBack
auto t = r.back; // can get the back of the range
----
The semantics of a bidirectional range (not checkable during compilation)
are assumed to be the following ($(D r) is an object of type $(D R)):
$(UL $(LI $(D r.back) returns (possibly a reference to) the last
element in the range. Calling $(D r.back) is allowed only if calling
$(D r.empty) has, or would have, returned $(D false).))
*/
template isBidirectionalRange(R)
{
enum bool isBidirectionalRange = isForwardRange!(R) && is(typeof(
{
R r;
r.popBack; // can invoke popBack
auto h = r.back; // can get the back of the range
}()));
}
unittest
{
struct A {}
static assert(!isBidirectionalRange!(A));
struct B
{
void popFront();
bool empty();
int front();
}
static assert(!isBidirectionalRange!(B));
struct C
{
@property bool empty();
@property C save();
void popFront();
@property int front();
void popBack();
@property int back();
}
static assert(isBidirectionalRange!(C));
static assert(isBidirectionalRange!(int[]));
static assert(isBidirectionalRange!(char[]));
}
/**
Returns $(D true) if $(D R) is a random-access range. A random-access
range is a bidirectional range that also offers the primitive $(D
opIndex), OR an infinite forward range that offers $(D opIndex). In
either case, the range must either offer $(D length) or be
infinite. The following code should compile for any random-access
range.
----
R r;
static assert(isForwardRange!(R)); // range is forward
static assert(isBidirectionalRange!(R) || isInfinite!(R));
// range is bidirectional or infinite
auto e = r[1]; // can index
----
The semantics of a random-access range (not checkable during
compilation) are assumed to be the following ($(D r) is an object of
type $(D R)):
$(UL $(LI $(D r.opIndex(n)) returns a reference to the $(D n)th
element in the range.))
*/
template isRandomAccessRange(R)
{
enum bool isRandomAccessRange =
(isBidirectionalRange!R || isForwardRange!R && isInfinite!R)
&& is(typeof(R.init[1]))
&& !isNarrowString!R
&& (hasLength!R || isInfinite!R);
}
unittest
{
struct A {}
static assert(!isRandomAccessRange!(A));
struct B
{
void popFront();
bool empty();
int front();
}
static assert(!isRandomAccessRange!(B));
struct C
{
void popFront();
bool empty();
int front();
void popBack();
int back();
}
static assert(!isRandomAccessRange!(C));
struct D
{
bool empty();
@property D save();
int front();
void popFront();
int back();
void popBack();
ref int opIndex(uint);
@property size_t length();
//int opSlice(uint, uint);
}
static assert(isRandomAccessRange!(D));
static assert(isRandomAccessRange!(int[]));
}
/**
Returns $(D true) iff the range supports the $(D moveFront) primitive, as
well as $(D moveBack) and $(D moveAt) if it's a bidirectional or random access
range. These may be explicitly implemented, or may work via the default
behavior of the module level functions $(D moveFront) and friends.
*/
template hasMobileElements(R)
{
enum bool hasMobileElements = is(typeof({
R r;
return moveFront(r);
})) && (!isBidirectionalRange!R || is(typeof({
R r;
return moveBack(r);
}))) && (!isRandomAccessRange!R || is(typeof({
R r;
return moveAt(r, 0);
})));
}
unittest {
static struct HasPostblit {
this(this) {}
}
auto nonMobile = map!"a"(repeat(HasPostblit.init));
static assert(!hasMobileElements!(typeof(nonMobile)));
static assert(hasMobileElements!(int[]));
static assert(hasMobileElements!(typeof(iota(1000))));
}
/**
The element type of $(D R). $(D R) does not have to be a range. The
element type is determined as the type yielded by $(D r.front) for an
object $(D r) or type $(D R). For example, $(D ElementType!(T[])) is
$(D T).
*/
template ElementType(R)
{
//alias typeof({ R r; return front(r[]); }()) ElementType;
static if (is(typeof({return R.init.front();}()) T))
alias T ElementType;
else
alias void ElementType;
}
unittest
{
enum XYZ : string { a = "foo" };
auto x = front(XYZ.a);
static assert(is(ElementType!(XYZ) : dchar));
immutable char[3] a = "abc";
static assert(is(ElementType!(typeof(a)) : dchar));
int[] i;
static assert(is(ElementType!(typeof(i)) : int));
void[] buf;
static assert(is(ElementType!(typeof(buf)) : void));
}
/**
Returns $(D true) if $(D R) is a forward range and has swappable
elements. The following code should compile for any random-access
range.
----
R r;
static assert(isForwardRange!(R)); // range is forward
swap(r.front, r.front); // can swap elements of the range
----
*/
template hasSwappableElements(R)
{
enum bool hasSwappableElements = isForwardRange!(R) && is(typeof(
{
R r;
swap(r.front, r.front); // can swap elements of the range
}()));
}
unittest
{
static assert(!hasSwappableElements!(const int[]));
static assert(!hasSwappableElements!(const(int)[]));
static assert(hasSwappableElements!(int[]));
//static assert(hasSwappableElements!(char[]));
}
/**
Returns $(D true) if $(D R) is a forward range and has mutable
elements. The following code should compile for any random-access
range.
----
R r;
static assert(isForwardRange!(R)); // range is forward
auto e = r.front;
r.front = e; // can assign elements of the range
----
*/
template hasAssignableElements(R)
{
enum bool hasAssignableElements = isForwardRange!(R) && is(typeof(
{
R r;
static assert(isForwardRange!(R)); // range is forward
auto e = r.front;
r.front = e; // can assign elements of the range
}()));
}
unittest
{
static assert(!hasAssignableElements!(const int[]));
static assert(!hasAssignableElements!(const(int)[]));
static assert(hasAssignableElements!(int[]));
}
/**
Tests whether $(D R) has lvalue elements. These are defined as elements that
can be passed by reference and have their address taken.
*/
template hasLvalueElements(R)
{
enum bool hasLvalueElements =
is(typeof(&R.init.front()) == ElementType!(R)*);
}
unittest {
static assert(hasLvalueElements!(int[]));
static assert(!hasLvalueElements!(typeof(iota(3))));
}
/**
Returns $(D true) if $(D R) has a $(D length) member that returns an
integral type. $(D R) does not have to be a range. Note that $(D
length) is an optional primitive as no range must implement it. Some
ranges do not store their length explicitly, some cannot compute it
without actually exhausting the range (e.g. socket streams), and some
other ranges may be infinite.
*/
template hasLength(R)
{
enum bool hasLength = is(typeof(R.init.length) : ulong) &&
!isNarrowString!R;
}
unittest
{
static assert(hasLength!(int[]));
struct A { ulong length; }
static assert(hasLength!(A));
struct B { size_t length() { return 0; } }
static assert(!hasLength!(B));
struct C { @property size_t length() { return 0; } }
static assert(hasLength!(C));
}
/**
Returns $(D true) if $(D Range) is an infinite input range. An
infinite input range is an input range that has a statically-defined
enumerated member called $(D empty) that is always $(D false), for
example:
----
struct InfiniteRange
{
enum bool empty = false;
...
}
----
*/
template isInfinite(Range)
{
static if (isInputRange!Range && is(char[1 + Range.empty]))
enum bool isInfinite = !Range.empty;
else
enum bool isInfinite = false;
}
unittest
{
assert(!isInfinite!(int[]));
assert(isInfinite!(Repeat!(int)));
}
/**
Returns $(D true) if $(D Range) offers a slicing operator with
integral boundaries, that in turn returns an input range type. The
following code should compile for $(D hasSlicing) to be $(D true):
----
Range r;
auto s = r[1 .. 2];
static assert(isInputRange!(typeof(s)));
----
*/
template hasSlicing(Range)
{
enum bool hasSlicing = is(typeof(
{
Range r;
auto s = r[1 .. 2];
static assert(isInputRange!(typeof(s)));
}()));
}
unittest
{
static assert(hasSlicing!(int[]));
struct A { int opSlice(uint, uint); }
static assert(!hasSlicing!(A));
struct B { int[] opSlice(uint, uint); }
static assert(hasSlicing!(B));
}
/**
This is a best-effort implementation of $(D length) for any kind of
range.
If $(D hasLength!(Range)), simply returns $(D range.length) without
checking $(D upTo).
Otherwise, walks the range through its length and returns the number
of elements seen. Performes $(BIGOH n) evaluations of $(D range.empty)
and $(D range.popFront), where $(D n) is the effective length of $(D
range). The $(D upTo) parameter is useful to "cut the losses" in case
the interest is in seeing whether the range has at least some number
of elements. If the parameter $(D upTo) is specified, stops if $(D
upTo) steps have been taken and returns $(D upTo).
*/
size_t walkLength(Range)(Range range, size_t upTo = size_t.max)
if (isInputRange!(Range))
{
static if (isRandomAccessRange!Range && hasLength!Range)
{
return range.length;
}
else
{
size_t result;
for (; result < upTo && !range.empty; range.popFront) ++result;
return result;
}
}
unittest
{
int[] a = [ 1, 2, 3 ];
assert(walkLength(a) == 3);
assert(walkLength(a, 0) == 3);
}
private template isRetro(R)
{
static if (is(R R1 == Retro!R2, R2))
{
enum isRetro = true;
}
else
{
enum isRetro = false;
}
}
/**
Iterates a bidirectional range backwards.
Example:
----
int[] a = [ 1, 2, 3, 4, 5 ];
assert(equal(retro(a), [ 5, 4, 3, 2, 1 ][]));
----
*/
struct Retro(Range) if (isBidirectionalRange!(Unqual!Range) && !isRetro!Range)
{
private:
alias Unqual!Range R;
R _input;
enum bool byRef = is(typeof(&(R.init.front())));
static if(isRandomAccessRange!R && hasLength!R)
{
size_t retroIndex(size_t n)
{
return _input.length - n - 1;
}
}
public:
alias R Source;
/**
Forwards to $(D _input.empty).
*/
@property bool empty()
{
return _input.empty;
}
/**
Returns a copy of $(D this).
*/
@property Retro save()
{
return Retro(_input.save);
}
/**
Forwards to $(D _input.back).
*/
@property auto ref front()
{
return _input.back;
}
/**
Forwards to $(D _input.popBack).
*/
void popFront()
{
_input.popBack();
}
/**
Forwards to $(D moveBack(_input))
*/
static if(is(typeof(.moveBack(_input))))
{
ElementType!R moveFront()
{
return .moveBack(_input);
}
}
/**
Forwards to $(D _input.front).
*/
@property auto ref back()
{
return _input.front;
}
/**
Forwards to $(D _input.popFront).
*/
void popBack()
{
_input.popFront;
}
/**
Forwards to $(D moveFront(_input)).
*/
static if(is(typeof(.moveFront(_input))))
{
ElementType!R moveBack()
{
return .moveFront(_input);
}
}
/**
Support for assignment.
*/
static if(hasAssignableElements!R)
{
@property auto front(ElementType!R val)
{
_input.back = val;
}
@property auto back(ElementType!R val)
{
_input.front = val;
}
}
/**
Forwards to $(D _input[_input.length - n + 1]). Defined only if $(D R)
is a random access range and if $(D R) defines $(D R.length).
*/
static if (isRandomAccessRange!(R) && hasLength!(R))
{
auto ref opIndex(size_t n)
{
return _input[retroIndex(n)];
}
static if(hasAssignableElements!R)
{
void opIndexAssign(ElementType!R val, size_t n)
{
_input[retroIndex(n)] = val;
}
}
static if(is(typeof(.moveAt(_input, 0))))
{
ElementType!R moveAt(size_t index)
{
return .moveAt(_input, retroIndex(index));
}
}
static if (hasSlicing!R)
typeof(this) opSlice(size_t a, size_t b)
{
return typeof(this)(_input[_input.length - b .. _input.length - a]);
}
}
/**
Range primitive operation that returns the length of the
range. Forwards to $(D _input.length) and is defined only if $(D
hasLength!(R)).
*/
static if (hasLength!R || isNarrowString!R)
@property size_t length()
{
return _input.length;
}
}
template Retro(R) if (isRetro!R)
{
alias R.Source Retro;
}
/// Ditto
Retro!(R) retro(R)(R input) if (isBidirectionalRange!(Unqual!R))
{
static if (isRetro!R)
return input._input;
else
return Retro!(R)(input);
}
unittest
{
static assert(isBidirectionalRange!(Retro!string));
int[] a;
static assert(is(typeof(a) == typeof(retro(retro(a)))));
static assert(isRandomAccessRange!(Retro!(int[])));
void test(int[] input, int[] witness)
{
auto r = retro(input);
assert(r.front == witness.front);
assert(r.back == witness.back);
assert(equal(r, witness));
}
test([ 1 ], [ 1 ]);
test([ 1, 2 ], [ 2, 1 ]);
test([ 1, 2, 3 ], [ 3, 2, 1 ]);
test([ 1, 2, 3, 4 ], [ 4, 3, 2, 1 ]);
test([ 1, 2, 3, 4, 5 ], [ 5, 4, 3, 2, 1 ]);
test([ 1, 2, 3, 4, 5, 6 ], [ 6, 5, 4, 3, 2, 1 ]);
// static assert(is(Retro!(immutable int[])));
immutable foo = [1,2,3].idup;
retro(foo);
foreach(DummyType; AllDummyRanges) {
static if(!isBidirectionalRange!DummyType) {
static assert(!__traits(compiles, Retro!DummyType));
} else {
DummyType dummyRange;
dummyRange.reinit();
auto myRetro = retro(dummyRange);
static assert(propagatesRangeType!(typeof(myRetro), DummyType));
assert(myRetro.front == 10);
assert(myRetro.back == 1);
assert(myRetro.moveFront() == 10);
assert(myRetro.moveBack() == 1);
static if(isRandomAccessRange!DummyType && hasLength!DummyType) {
assert(myRetro[0] == myRetro.front);
assert(myRetro.moveAt(2) == 8);
static if(DummyType.r == ReturnBy.Reference) {
{
myRetro[9]++;
scope(exit) myRetro[9]--;
assert(dummyRange[0] == 2);
myRetro.front++;
scope(exit) myRetro.front--;
assert(myRetro.front == 11);
myRetro.back++;
scope(exit) myRetro.back--;
assert(myRetro.back == 3);
}
{
myRetro.front = 0xFF;
scope(exit) myRetro.front = 10;
assert(dummyRange.back == 0xFF);
myRetro.back = 0xBB;
scope(exit) myRetro.back = 1;
assert(dummyRange.front == 0xBB);
myRetro[1] = 11;
scope(exit) myRetro[1] = 8;
assert(dummyRange[8] == 11);
}
}
}
}
}
}
/**
Iterates range $(D r) with stride $(D n). If the range is a
random-access range, moves by indexing into the range; otehrwise,
moves by successive calls to $(D popFront).
Example:
----
int[] a = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ];
assert(equal(stride(a, 3), [ 1, 4, 7, 10 ][]));
----
*/
struct Stride(Range) if (isInputRange!(Unqual!Range))
{
private:
alias Unqual!Range R;
R _input;
size_t _n;
public:
/**
Initializes the stride.
*/
this(R input, size_t n)
{
_input = input;
_n = n;
static if (hasLength!(R))
{
auto slack = _input.length % _n;
if (slack)
{
slack--;
} else if(input.length > 0)
{
slack = min(n, input.length) - 1;
} else
{
slack = 0;
}
if (!slack) return;
static if (isRandomAccessRange!(R) && hasSlicing!(R))
{
_input = _input[0 .. _input.length - slack];
}
else static if(isBidirectionalRange!(R))
{
foreach (i; 0 .. slack)
{
if (_input.empty) break;
_input.popBack;
}
}
}
}
/**
Returns $(D this).
*/
static if(isForwardRange!(R))
{
@property Stride save()
{
return Stride(_input.save, _n);
}
}
/**
Forwards to $(D _input.empty).
*/
static if(isInfinite!R)
{
enum bool empty = false;
}
else
{
@property bool empty()
{
return _input.empty;
}
}
/**
Forwards to $(D _input.front).
*/
@property auto ref front()
{
return _input.front;
}
/**
Forwards to $(D moveFront(_input)).
*/
static if(is(typeof(.moveFront(_input))))
{
ElementType!R moveFront()
{
return .moveFront(_input);
}
}
static if(hasAssignableElements!R)
{
@property auto front(ElementType!R val)
{
_input.front = val;
}
}
/**
@@@
*/
void popFront()
{
static if (isRandomAccessRange!(R) && hasLength!(R) && hasSlicing!(R))
{
_input = _input[
_n < _input.length ? _n : _input.length
.. _input.length];
}
else
foreach (i; 0 .. _n)
{
_input.popFront;
if (_input.empty) break;
}
}
/**
Forwards to $(D _input.popBack).
*/
static if (isBidirectionalRange!(R) && hasLength!(R))
void popBack()
{
assert(_input.length >= 1);
static if (isRandomAccessRange!(R) && hasSlicing!(R))
{
if(_input.length < _n) {
_input = _input[0 .. 0];
} else {
_input = _input[0 .. _input.length - _n];
}
}
else
{
foreach (i; 0 .. _n)
{
if (_input.empty) break;
_input.popBack;
}
}
}
/**
Forwards to $(D _input.back) after getting rid of any slack items.
*/
static if(isBidirectionalRange!(R) && hasLength!(R))
{
@property auto ref back()
{
return _input.back;
}
/**
Forwards to $(D moveBack(_input)).
*/
static if(is(typeof(.moveBack(_input))))
{
ElementType!R moveBack()
{
return .moveBack(_input);
}
}
static if(hasAssignableElements!R)
{
@property auto back(ElementType!R val)
{
_input.back = val;
}
}
}
/**
Forwards to $(D _input[_input.length - n + 1]). Defined only if $(D R)
is a random access range and if $(D R) defines $(D R.length).
*/
static if (isRandomAccessRange!(R) && hasLength!(R))
{
auto ref opIndex(size_t n)
{
return _input[_n * n];
}
/**
Forwards to $(D moveAt(_input, n)).
*/
static if(is(typeof(.moveAt(_input, 0))))
{
ElementType!R moveAt(size_t n)
{
return .moveAt(_input, _n * n);
}
}
static if(hasAssignableElements!R)
{
void opIndexAssign(ElementType!R val, size_t n)
{
_input[_n * n] = val;
}
}
}
/**
Support slicing of the $(D Stride), if the underlying range supports this.
*/
static if(hasSlicing!R && hasLength!R)
typeof(this) opSlice(size_t lower, size_t upper)
{
assert(upper >= lower && upper <= length);
immutable translatedLower = lower * _n;
immutable translatedUpper = (upper == 0) ? 0 :
(upper * _n - (_n - 1));
return typeof(this)(_input[translatedLower..translatedUpper], _n);
}
/**
Range primitive operation that returns the length of the
range. Forwards to $(D _input.length) and is defined only if $(D
hasLength!(R)).
*/
static if (hasLength!(R))
@property size_t length()
{
return (_input.length + _n - 1) / _n;
}
}
/// Ditto
Stride!(R) stride(R)(R input, size_t n)
if (isInputRange!(Unqual!R))
{
enforce(n > 0);
return Stride!(R)(input, n);
}
unittest
{
static assert(isRandomAccessRange!(Stride!(int[])));
void test(size_t n, int[] input, int[] witness)
{
assert(equal(stride(input, n), witness));
}
test(1, [], []);
int[] arr = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
test(1, arr, arr);
test(2, arr, [1, 3, 5, 7, 9]);
test(3, arr, [1, 4, 7, 10]);
test(4, arr, [1, 5, 9]);
// Test slicing.
auto s1 = stride(arr, 1);
assert(equal(s1[1..4], [2, 3, 4]));
assert(s1[1..4].length == 3);
assert(equal(s1[1..5], [2, 3, 4, 5]));
assert(s1[1..5].length == 4);
assert(s1[0..0].empty);
auto s2 = stride(arr, 2);
assert(equal(s2[0..2], [1,3]));
assert(s2[0..2].length == 2);
assert(equal(s2[1..5], [3, 5, 7, 9]));
assert(s2[1..5].length == 4);
assert(s2[0..0].empty);
// Test fix for Bug 5035
auto m = [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]; // 3 rows, 4 columns
auto col = stride(m, 4);
assert(equal(col, [1, 1, 1]));
assert(equal(retro(col), [1, 1, 1]));
static assert(is(Stride!(immutable int[])));
// Check for infiniteness propagation.
static assert(isInfinite!(typeof(stride(repeat(1), 3))));
foreach(DummyType; AllDummyRanges) {
DummyType dummyRange;
dummyRange.reinit();
auto myStride = stride(dummyRange, 4);
// Should fail if no length and bidirectional b/c there's no way
// to know how much slack we have.
static if(hasLength!DummyType || !isBidirectionalRange!DummyType) {
static assert(propagatesRangeType!(typeof(myStride), DummyType));
}
assert(myStride.front == 1);
assert(myStride.moveFront() == 1);
assert(equal(myStride, [1, 5, 9]));
static if(hasLength!DummyType) {
assert(myStride.length == 3);
}
static if(isBidirectionalRange!DummyType && hasLength!DummyType) {
assert(myStride.back == 9);
assert(myStride.moveBack() == 9);
}
static if(isRandomAccessRange!DummyType && hasLength!DummyType) {
assert(myStride[0] == 1);
assert(myStride[1] == 5);
assert(myStride.moveAt(1) == 5);
assert(myStride[2] == 9);
static assert(hasSlicing!(typeof(myStride)));
}
static if(DummyType.r == ReturnBy.Reference) {
// Make sure reference is propagated.
{
myStride.front++;
scope(exit) myStride.front--;
assert(dummyRange.front == 2);
}
{
myStride.front = 4;
scope(exit) myStride.front = 1;
assert(dummyRange.front == 4);
}
static if(isBidirectionalRange!DummyType && hasLength!DummyType) {
{
myStride.back++;
scope(exit) myStride.back--;
assert(myStride.back == 10);
}
{
myStride.back = 111;
scope(exit) myStride.back = 9;
assert(myStride.back == 111);
}
static if(isRandomAccessRange!DummyType) {
{
myStride[1]++;
scope(exit) myStride[1]--;
assert(dummyRange[4] == 6);
}
{
myStride[1] = 55;
scope(exit) myStride[1] = 5;
assert(dummyRange[4] == 55);
}
}
}
}
}
}
/**
Spans multiple ranges in sequence. The function $(D chain) takes any
number of ranges and returns a $(D Chain!(R1, R2,...)) object. The
ranges may be different, but they must have the same element type. The
result is a range that offers the $(D front), $(D popFront), and $(D empty)
primitives. If all input ranges offer random access and $(D length),
$(D Chain) offers them as well.
If only one range is offered to $(D Chain) or $(D chain), the $(D Chain)
type exits the picture by aliasing itself directly to that range's
type.
Example:
----
int[] arr1 = [ 1, 2, 3, 4 ];
int[] arr2 = [ 5, 6 ];
int[] arr3 = [ 7 ];
auto s = chain(arr1, arr2, arr3);
assert(s.length == 7);
assert(s[5] == 6);
assert(equal(s, [1, 2, 3, 4, 5, 6, 7][]));
----
*/
template Chain(R...)
if(allSatisfy!(isInputRange, staticMap!(Unqual, R)))
{
static if (R.length > 1)
alias ChainImpl!(R) Chain;
else
alias R[0] Chain;
}
struct ChainImpl(Ranges...)
{
private:
alias staticMap!(Unqual, Ranges) R;
alias CommonType!(staticMap!(.ElementType, R)) RvalueElementType;
private template sameET(A)
{
enum sameET = is(.ElementType!(A) == RvalueElementType);
}
enum bool allSameType = allSatisfy!(sameET, R);
// This doesn't work yet
static if (allSameType)
alias ref RvalueElementType ElementType;
else
alias RvalueElementType ElementType;
static if(allSameType && allSatisfy!(hasLvalueElements, R))
{
static ref RvalueElementType fixRef(ref RvalueElementType val)
{
return val;
}
}
else
{
static RvalueElementType fixRef(RvalueElementType val)
{
return val;
}
}
Tuple!(R) _input;
public:
this(R input)
{
foreach (i, v; input)
{
_input[i] = v;
}
}
static if(anySatisfy!(isInfinite, R))
{
// Propagate infiniteness.
enum bool empty = false;
}
else
{
@property bool empty()
{
foreach (i, Unused; R)
{
if (!_input[i].empty) return false;
}
return true;
}
}
static if (allSatisfy!(isForwardRange, R))
@property ChainImpl save()
{
auto result = ChainImpl();
foreach (i, Unused; R)
{
result._input[i] = _input[i].save;
}
return result;
}
void popFront()
{
foreach (i, Unused; R)
{
if (_input[i].empty) continue;
_input[i].popFront;
return;
}
}
@property auto ref front()
{
foreach (i, Unused; R)
{
if (_input[i].empty) continue;
return fixRef(_input[i].front);
}
assert(false);
}
static if (allSameType && allSatisfy!(hasAssignableElements, R))
{
// @@@BUG@@@
//@property void front(T)(T v) if (is(T : RvalueElementType))
// Return type must be auto due to Bug 4706.
@property auto front(RvalueElementType v)
{
foreach (i, Unused; R)
{
if (_input[i].empty) continue;
_input[i].front = v;
return;
}
assert(false);
}
}
static if(allSatisfy!(hasMobileElements, R))
{
RvalueElementType moveFront()
{
foreach (i, Unused; R)
{
if (_input[i].empty) continue;
return .moveFront(_input[i]);
}
assert(false);
}
}
static if (allSatisfy!(isBidirectionalRange, R))
{
@property auto ref back()
{
foreach_reverse (i, Unused; R)
{
if (_input[i].empty) continue;
return fixRef(_input[i].back);
}
assert(false);
}
void popBack()
{
foreach_reverse (i, Unused; R)
{
if (_input[i].empty) continue;
_input[i].popBack;
return;
}
}
static if(allSatisfy!(hasMobileElements, R))
{
RvalueElementType moveBack()
{
foreach_reverse (i, Unused; R)
{
if (_input[i].empty) continue;
return .moveBack(_input[i]);
}
assert(false);
}
}
static if(allSameType && allSatisfy!(hasAssignableElements, R))
{
// Return type must be auto due to extremely strange bug in DMD's
// function overloading.
@property auto back(RvalueElementType v)
{
foreach_reverse (i, Unused; R)
{
if (_input[i].empty) continue;
_input[i].back = v;
return;
}
assert(false);
}
}
}
static if (allSatisfy!(hasLength, R))
@property size_t length()
{
size_t result;
foreach (i, Unused; R)
{
result += _input[i].length;
}
return result;
}
static if (allSatisfy!(isRandomAccessRange, R))
{
auto ref opIndex(size_t index)
{
foreach (i, Range; R)
{
static if(isInfinite!(Range))
{
return _input[i][index];
}
else
{
immutable length = _input[i].length;
if (index < length) return fixRef(_input[i][index]);
index -= length;
}
}
assert(false);
}
static if(allSatisfy!(hasMobileElements, R))
{
RvalueElementType moveAt(size_t index)
{
foreach (i, Range; R)
{
static if(isInfinite!(Range))
{
return .moveAt(_input[i], index);
}
else
{
immutable length = _input[i].length;
if (index < length) return .moveAt(_input[i], index);
index -= length;
}
}
assert(false);
}
}
static if (allSameType && allSatisfy!(hasAssignableElements, R))
void opIndexAssign(ElementType v, size_t index)
{
foreach (i, Range; R)
{
static if(isInfinite!(Range))
{
_input[i][index] = v;
}
else
{
immutable length = _input[i].length;
if (index < length)
{
_input[i][index] = v;
return;
}
index -= length;
}
}
assert(false);
}
}
static if (allSatisfy!(hasLength, R) && allSatisfy!(hasSlicing, R))
ChainImpl opSlice(size_t begin, size_t end)
{
auto result = this;
foreach (i, Unused; R)
{
immutable len = result._input[i].length;
if (len < begin)
{
result._input[i] = result._input[i]
[len .. len];
begin -= len;
}
else
{
result._input[i] = result._input[i]
[begin .. len];
break;
}
}
auto cut = length;
cut = cut <= end ? 0 : cut - end;
foreach_reverse (i, Unused; R)
{
immutable len = result._input[i].length;
if (cut > len)
{
result._input[i] = result._input[i]
[0 .. 0];
cut -= len;
}
else
{
result._input[i] = result._input[i]
[0 .. len - cut];
break;
}
}
return result;
}
}
/// Ditto
Chain!(R) chain(R...)(R input) if(R.length > 0)
{
static if (input.length > 1)
return Chain!(R)(input);
else
return input[0];
}
unittest
{
{
int[] arr1 = [ 1, 2, 3, 4 ];
int[] arr2 = [ 5, 6 ];
int[] arr3 = [ 7 ];
int[] witness = [ 1, 2, 3, 4, 5, 6, 7 ];
auto s1 = chain(arr1);
static assert(isRandomAccessRange!(typeof(s1)));
auto s2 = chain(arr1, arr2);
static assert(isBidirectionalRange!(typeof(s2)));
static assert(isRandomAccessRange!(typeof(s2)));
s2.front = 1;
auto s = chain(arr1, arr2, arr3);
assert(s[5] == 6);
assert(equal(s, witness));
assert(s[5] == 6);
}
{
int[] arr1 = [ 1, 2, 3, 4 ];
int[] witness = [ 1, 2, 3, 4 ];
assert(equal(chain(arr1), witness));
}
{
uint[] foo = [1,2,3,4,5];
uint[] bar = [1,2,3,4,5];
auto c = chain(foo, bar);
c[3] = 42;
assert(c[3] == 42);
assert(c.moveFront() == 1);
assert(c.moveBack() == 5);
assert(c.moveAt(4) == 5);
assert(c.moveAt(5) == 1);
}
// Make sure bug 3311 is fixed. ChainImpl should compile even if not all
// elements are mutable.
auto c = chain( iota(0, 10), iota(0, 10) );
// Test the case where infinite ranges are present.
auto inf = chain([0,1,2][], cycle([4,5,6][]), [7,8,9][]); // infinite range
assert(inf[0] == 0);
assert(inf[3] == 4);
assert(inf[6] == 4);
assert(inf[7] == 5);
static assert(isInfinite!(typeof(inf)));
static assert(is(Chain!(immutable int[], immutable float[])));
// Check that chain at least instantiates and compiles with every possible
// pair of DummyRange types, in either order.
// This test should be uncommented when DMD bug 4379 gets fixed, or if
// you've made sure you've turned off -O. (Bug 4379 is triggered by -O).
/+ foreach(DummyType1; AllDummyRanges) {
DummyType1 dummy1;
foreach(DummyType2; AllDummyRanges) {
DummyType2 dummy2;
auto myChain = chain(dummy1, dummy2);
static assert(
propagatesRangeType!(typeof(myChain), DummyType1, DummyType2)
);
assert(myChain.front == 1);
foreach(i; 0..dummyLength) {
myChain.popFront();
}
assert(myChain.front == 1);
static if(isBidirectionalRange!DummyType1 &&
isBidirectionalRange!DummyType2) {
assert(myChain.back == 10);
}
static if(isRandomAccessRange!DummyType1 &&
isRandomAccessRange!DummyType2) {
assert(myChain[0] == 1);
}
static if(hasLvalueElements!DummyType1 && hasLvalueElements!DummyType2)
{
static assert(hasLvalueElements!(typeof(myChain)));
}
else
{
static assert(!hasLvalueElements!(typeof(myChain)));
}
}
}
+/
}
/**
Iterates a random-access range starting from a given point and
progressively extending left and right from that point. If no initial
point is given, iteration starts from the middle of the
range. Iteration spans the entire range.
Example:
----
int[] a = [ 1, 2, 3, 4, 5 ];
assert(equal(radial(a), [ 3, 4, 2, 5, 1 ][]));
a = [ 1, 2, 3, 4 ];
assert(equal(radial(a), [ 2, 3, 1, 4 ][]));
----
*/
struct Radial(Range)
if(isRandomAccessRange!(Unqual!Range) && hasLength!(Unqual!Range))
{
private:
alias Unqual!Range R;
R _low, _up;
bool _upIsActive;
public:
/**
Takes a range and starts iterating from its median point. Ranges with
an even length start iterating from the element to the left of the
median. The second iterated element, if any, is the one to the right
of the first iterated element. A convenient way to use this
constructor is by calling the helper function $(D radial(input)).
*/
this(R input)
{
auto mid = (input.length + 1) / 2;
_low = input[0 .. mid];
_up = input[mid .. input.length];
}
/**
Takes a range and starts iterating from $(D input[mid]). The second
iterated element, if any, is the one to the right of the first
iterated element. If there is no element to the right of $(D
input[mid]), iteration continues downwards with $(D input[mid - 1])
etc. A convenient way to use this constructor is by calling the helper
function $(D radial(input, startingPoint)).
*/
this(R input, size_t startingPoint)
{
_low = input[0 .. startingPoint + 1];
_up = input[startingPoint + 1 .. input.length];
if (_low.empty) _upIsActive = true;
}
/**
Returns $(D this).
*/
ref Radial opSlice()
{
return this;
}
/**
Range primitive operation that returns $(D true) iff there are no more
elements to be iterated.
*/
@property bool empty()
{
return _low.empty && _up.empty;
}
/**
Range primitive operation that advances the range to its next
element.
*/
void popFront()
{
assert(!empty);
// We started with low active
if (!_upIsActive)
{
// Consumed the low part, now look in the upper part
if (_up.empty)
{
// no more stuff up, attempt to continue in the low area
_low.popBack;
}
else
{
// more stuff available in the upper area
_upIsActive = true;
}
}
else
{
// we consumed both the lower and the upper area, must
// make real progress up there
if (!_up.empty) _up.popFront;
if (!_low.empty) _low.popBack;
if (!_low.empty) _upIsActive = false;
}
}
/**
Range primitive operation that returns the currently iterated
element. Throws if the range is empty.
*/
@property auto ref front()
{
assert(!empty, "Calling front() against an empty "
~typeof(this).stringof);
if (!_upIsActive)
{
assert(!_low.empty);
return _low.back;
}
assert(!_up.empty);
return _up.front;
}
///
static if(hasMobileElements!R)
{
ElementType!R moveFront()
{
assert(!empty, "Calling front() against an empty "
~typeof(this).stringof);
if (!_upIsActive)
{
assert(!_low.empty);
return .moveBack(_low);
}
assert(!_up.empty);
return .moveFront(_up);
}
}
///
static if(hasAssignableElements!R)
{
auto front(ElementType!R val)
{
assert(!empty, "Calling front() against an empty "
~typeof(this).stringof);
if (!_upIsActive)
{
assert(!_low.empty);
_low.back = val;
}
assert(!_up.empty);
_up.front = val;
}
}
///
typeof(this) save()
{
auto ret = this;
ret._low = _low.save;
ret._up = _up.save;
return ret;
}
}
/// Ditto
Radial!(R) radial(R)(R r)
if (isRandomAccessRange!(Unqual!R) && hasLength!(Unqual!R))
{
return Radial!(R)(r);
}
/// Ditto
Radial!(R) radial(R)(R r, size_t startingIndex)
if (isRandomAccessRange!(Unqual!R) && hasLength!(Unqual!R))
{
return Radial!(R)(r, startingIndex);
}
unittest
{
void test(int[] input, int[] witness)
{
enforce(equal(radial(input), witness));
}
test([], []);
test([ 1 ], [ 1 ]);
test([ 1, 2 ], [ 1, 2 ]);
test([ 1, 2, 3 ], [ 2, 3, 1 ]);
test([ 1, 2, 3, 4 ], [ 2, 3, 1, 4 ]);
test([ 1, 2, 3, 4, 5 ], [ 3, 4, 2, 5, 1 ]);
test([ 1, 2, 3, 4, 5, 6 ], [ 3, 4, 2, 5, 1, 6 ]);
int[] a = [ 1, 2, 3, 4, 5 ];
assert(equal(radial(a, 1), [ 2, 3, 1, 4, 5 ][]));
static assert(isForwardRange!(typeof(radial(a, 1))));
auto r = radial([1,2,3,4,5]);
for(auto rr = r.save; !rr.empty; rr.popFront())
{
assert(rr.front == rr.moveFront());
}
r.front = 5;
assert(r.front == 5);
// Test instantiation without lvalue elements.
DummyRange!(ReturnBy.Value, Length.Yes, RangeType.Random) dummy;
assert(equal(radial(dummy, 4), [5, 6, 4, 7, 3, 8, 2, 9, 1, 10]));
static assert(is(Radial!(immutable int[])));
}
/**
Lazily takes only up to $(D n) elements of a range. This is
particulary useful when using with infinite ranges. If the range
offers random access and $(D length), $(D Take) offers them as well.
Example:
----
int[] arr1 = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
auto s = take(arr1, 5);
assert(s.length == 5);
assert(s[4] == 5);
assert(equal(s, [ 1, 2, 3, 4, 5 ][]));
----
*/
struct Take(Range)
if(isInputRange!(Unqual!Range) &&
(!hasSlicing!(Unqual!Range) || isNarrowString!(Unqual!Range)))
{
alias Unqual!Range R;
R original;
private size_t _maxAvailable;
enum bool byRef = is(typeof(&_input.front) == ElementType!(R)*);
public:
alias R Source;
static if (byRef)
alias ref .ElementType!(R) ElementType;
else
alias .ElementType!(R) ElementType;
@property bool empty()
{
return _maxAvailable == 0 || original.empty;
}
static if (isForwardRange!R)
@property Take save()
{
return Take(original.save, _maxAvailable);
}
void popFront()
{
assert(_maxAvailable > 0,
"Attempting to popFront() past the end of a "
~ Take.stringof);
original.popFront;
--_maxAvailable;
}
@property auto ref front()
{
assert(_maxAvailable > 0,
"Attempting to fetch the front of an empty "
~ Take.stringof);
return original.front;
}
static if (hasAssignableElements!R)
@property auto front(ElementType v)
{
// This has to return auto instead of void because of Bug 4706.
original.front = v;
}
static if(hasMobileElements!R)
{
ElementType moveFront()
{
return .moveFront(original);
}
}
static if (isInfinite!(R))
{
@property size_t length() const
{
return _maxAvailable;
}
}
else static if (hasLength!(R))
{
@property size_t length()
{
return min(_maxAvailable, original.length);
}
}
static if (isRandomAccessRange!(R))
{
void popBack()
{
assert(_maxAvailable > 0,
"Attempting to popBack() past the beginning of a "
~ Take.stringof);
--_maxAvailable;
}
@property auto ref back()
{
return original[this.length - 1];
}
auto ref opIndex(size_t index)
{
assert(index < this.length,
"Attempting to index out of the bounds of a "
~ Take.stringof);
return original[index];
}
static if(hasAssignableElements!R)
{
auto back(ElementType v)
{
// This has to return auto instead of void because of Bug 4706.
original[this.length - 1] = v;
}
void opIndexAssign(ElementType v, size_t index)
{
original[index] = v;
}
}
static if(hasMobileElements!R)
{
ElementType moveBack()
{
return .moveAt(original, this.length - 1);
}
ElementType moveAt(size_t index)
{
assert(index < this.length,
"Attempting to index out of the bounds of a "
~ Take.stringof);
return .moveAt(original, index);
}
}
}
Take opSlice() { return this; }
@property size_t maxLength() const
{
return _maxAvailable;
}
}
// This template simply aliases itself to R and is useful for consistency in
// generic code.
template Take(R)
if(isInputRange!(Unqual!R) && hasSlicing!(Unqual!R) && !isNarrowString!(Unqual!R))
{
alias R Take;
}
/// Ditto
R take(R)(R input, size_t n)
if((isInputRange!(Unqual!R) && (!hasSlicing!(Unqual!R) || isNarrowString!(Unqual!R)))
&& is (R T == Take!T))
{
return R(input.original, min(n, input.maxLength));
}
/// Ditto
Take!(R) take(R)(R input, size_t n)
if((isInputRange!(Unqual!R) && (!hasSlicing!(Unqual!R) || isNarrowString!(Unqual!R)))
&& !is (R T == Take!T))
{
return Take!(R)(input, n);
}
/// Ditto
Take!(R) take(R)(R input, size_t n)
if(isInputRange!(Unqual!R) && hasSlicing!(Unqual!R) && !isNarrowString!(Unqual!R))
{
static if (hasLength!R)
{
// @@@BUG@@@
//return input[0 .. min(n, @)];
return input[0 .. min(n, input.length)];
}
else
{
static assert(isInfinite!R,
"Nonsensical finite range with slicing but no length");
return input[0 .. n];
}
}
unittest
{
int[] arr1 = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
auto s = take(arr1, 5);
assert(s.length == 5);
assert(s[4] == 5);
assert(equal(s, [ 1, 2, 3, 4, 5 ][]));
assert(equal(retro(s), [ 5, 4, 3, 2, 1 ][]));
// Test fix for bug 4464.
static assert(is(typeof(s) == Take!(int[])));
static assert(is(typeof(s) == int[]));
// Test using narrow strings.
auto myStr = "This is a string.";
auto takeMyStr = take(myStr, 7);
assert(equal(takeMyStr, "This is"));
// Test fix for bug 5052.
auto takeMyStrAgain = take(takeMyStr, 4);
assert(equal(takeMyStrAgain, "This"));
static assert (is (typeof(takeMyStrAgain) == typeof(takeMyStr)));
takeMyStrAgain = take(takeMyStr, 10);
assert(equal(takeMyStrAgain, "This is"));
foreach(DummyType; AllDummyRanges) {
DummyType dummy;
auto t = take(dummy, 5);
alias typeof(t) T;
static if(isRandomAccessRange!DummyType) {
static assert(isRandomAccessRange!T);
assert(t[4] == 5);
assert(moveAt(t, 1) == t[1]);
assert(t.back == moveBack(t));
} else static if(isForwardRange!DummyType) {
static assert(isForwardRange!T);
}
for(auto tt = t; !tt.empty; tt.popFront())
{
assert(tt.front == moveFront(tt));
}
// Bidirectional ranges can't be propagated properly if they don't
// also have random access.
assert(equal(t, [1,2,3,4,5]));
}
immutable myRepeat = repeat(1);
static assert(is(Take!(typeof(myRepeat))));
}
/**
Eagerly advances $(D r) itself (not a copy) $(D n) times (by calling
$(D r.popFront) $(D n) times). The pass of $(D r) into $(D popFrontN)
is by reference, so the original range is affected. Completes in
$(BIGOH 1) steps for ranges that support slicing, and in $(BIGOH n)
time for all other ranges.
Example:
----
int[] a = [ 1, 2, 3, 4, 5 ];
a.popFrontN(2);
assert(a == [ 3, 4, 5 ]);
----
*/
size_t popFrontN(Range)(ref Range r, size_t n) if (isInputRange!(Range))
{
static if (hasSlicing!(Range) && hasLength!(Range))
{
n = min(n, r.length);
r = r[n .. r.length];
}
else
{
foreach (i; 0 .. n)
{
if (r.empty) return i;
r.popFront;
}
}
return n;
}
unittest
{
int[] a = [ 1, 2, 3, 4, 5 ];
a.popFrontN(2);
assert(a == [ 3, 4, 5 ]);
}
/**
Eagerly reduces $(D r) itself (not a copy) $(D n) times from its right
side (by calling $(D r.popBack) $(D n) times). The pass of $(D r) into
$(D popBackN) is by reference, so the original range is
affected. Completes in $(BIGOH 1) steps for ranges that support
slicing, and in $(BIGOH n) time for all other ranges.
Example:
----
int[] a = [ 1, 2, 3, 4, 5 ];
a.popBackN(2);
assert(a == [ 1, 2, 3 ]);
----
*/
size_t popBackN(Range)(ref Range r, size_t n) if (isInputRange!(Range))
{
static if (hasSlicing!(Range) && hasLength!(Range))
{
auto newLen = n < r.length ? r.length - n : 0;
n = r.length - newLen;
r = r[0 .. newLen];
}
else
{
foreach (i; 0 .. n)
{
if (r.empty) return i;
r.popBack;
}
}
return n;
}
unittest
{
int[] a = [ 1, 2, 3, 4, 5 ];
a.popBackN(2);
assert(a == [ 1, 2, 3 ]);
}
/**
Repeats one value forever. Example:
----
enforce(equal(take(repeat(5), 4), [ 5, 5, 5, 5 ][]));
----
*/
struct Repeat(T)
{
private T _value;
/// Range primitive implementations.
@property ref T front() { return _value; }
/// Ditto
@property ref T back() { return _value; }
/// Ditto
enum bool empty = false;
/// Ditto
void popFront() {}
/// Ditto
void popBack() {}
/// Ditto
@property Repeat!(T) save() { return this; }
/// Ditto
ref T opIndex(size_t) { return _value; }
}
/// Ditto
Repeat!(T) repeat(T)(T value) { return Repeat!(T)(value); }
unittest
{
enforce(equal(take(repeat(5), 4), [ 5, 5, 5, 5 ][]));
static assert(isForwardRange!(Repeat!(uint)));
}
/**
Repeats $(D value) exactly $(D n) times. Equivalent to $(D
take(repeat(value), n)).
*/
Take!(Repeat!T) repeat(T)(T value, size_t n)
{
return take(repeat(value), n);
}
/// Equivalent to $(D repeat(value, n)). Scheduled for deprecation.
Take!(Repeat!T) replicate(T)(T value, size_t n)
{
return repeat(value, n);
}
unittest
{
enforce(equal(repeat(5, 4), [ 5, 5, 5, 5 ][]));
}
/**
Repeats the given forward range ad infinitum. If the original range is
infinite (fact that would make $(D Cycle) the identity application),
$(D Cycle) detects that and aliases itself to the range type
itself. If the original range has random access, $(D Cycle) offers
random access and also offers a constructor taking an initial position
$(D index). $(D Cycle) is specialized for statically-sized arrays,
mostly for performance reasons.
Example:
----
assert(equal(take(cycle([1, 2][]), 5), [ 1, 2, 1, 2, 1 ][]));
----
Tip: This is a great way to implement simple circular buffers.
*/
struct Cycle(Range)
if (isForwardRange!(Unqual!Range) && !isInfinite!(Unqual!Range))
{
alias Unqual!Range R;
static if (isRandomAccessRange!(R) && hasLength!(R))
{
R _original;
size_t _index;
this(R input, size_t index = 0) { _original = input; _index = index; }
/// Range primitive implementations.
@property auto ref front()
{
return _original[_index % _original.length];
}
/// Ditto
static if(hasAssignableElements!R)
{
@property auto front(ElementType!R val)
{
_original[_index % _original.length] = val;
}
}
/// Ditto
enum bool empty = false;
/// Ditto
void popFront() { ++_index; }
auto ref opIndex(size_t n)
{
return _original[(n + _index) % _original.length];
}
/// Ditto
static if(hasAssignableElements!R)
{
auto opIndexAssign(ElementType!R val, size_t n)
{
_original[(n + _index) % _original.length] = val;
}
}
/// Ditto
@property Cycle!(R) save() {
return Cycle!(R)(this._original.save, this._index);
}
}
else
{
R _original, _current;
this(R input) { _original = input; _current = input.save; }
/// Range primitive implementations.
@property auto ref front() { return _current.front; }
/// Ditto
static if(hasAssignableElements!R)
{
@property auto front(ElementType!R val)
{
_current.front = val;
}
}
/// Ditto
static if (isBidirectionalRange!(R))
@property auto ref back() { return _current.back; }
/// Ditto
enum bool empty = false;
/// Ditto
void popFront()
{
_current.popFront;
if (_current.empty) _current = _original;
}
@property Cycle!R save() {
Cycle!R ret;
ret._original = this._original.save;
ret._current = this._current.save;
return ret;
}
}
}
/// Ditto
template Cycle(R) if (isInfinite!R)
{
alias R Cycle;
}
/// Ditto
struct Cycle(R) if (isStaticArray!R)
{
private alias typeof(R[0]) ElementType;
private ElementType* _ptr;
private size_t _index;
this(ref R input, size_t index = 0)
{
_ptr = input.ptr;
_index = index;
}
/// Range primitive implementations.
@property ref ElementType front()
{
return _ptr[_index % R.length];
}
/// Ditto
enum bool empty = false;
/// Ditto
void popFront() { ++_index; }
ref ElementType opIndex(size_t n)
{
return _ptr[(n + _index) % R.length];
}
@property Cycle!(R) save() {
return this;
}
}
/// Ditto
Cycle!R cycle(R)(R input)
if (isForwardRange!(Unqual!R) && !isInfinite!(Unqual!R))
{
return Cycle!(R)(input);
}
/// Ditto
Cycle!R cycle(R)(R input, size_t index)
if (isRandomAccessRange!(Unqual!R) && !isInfinite!(Unqual!R))
{
return Cycle!R(input, index);
}
/// Ditto
Cycle!(R) cycle(R)(R input) if (isInfinite!(R))
{
return input;
}
/// Ditto
Cycle!(R) cycle(R)(ref R input, size_t index = 0) if (isStaticArray!R)
{
return Cycle!(R)(input, index);
}
unittest
{
assert(equal(take(cycle([1, 2][]), 5), [ 1, 2, 1, 2, 1 ][]));
static assert(isForwardRange!(Cycle!(uint[])));
int[3] a = [ 1, 2, 3 ];
static assert(isStaticArray!(typeof(a)));
auto c = cycle(a);
assert(a.ptr == c._ptr);
assert(equal(take(cycle(a), 5), [ 1, 2, 3, 1, 2 ][]));
static assert(isForwardRange!(typeof(c)));
// Make sure ref is getting propagated properly.
int[] nums = [1,2,3];
auto c2 = cycle(nums);
c2[3]++;
assert(nums[0] == 2);
static assert(is(Cycle!(immutable int[])));
foreach(DummyType; AllDummyRanges) {
static if(isForwardRange!(DummyType)) {
DummyType dummy;
auto cy = cycle(dummy);
static assert(isForwardRange!(typeof(cy)));
auto t = take(cy, 20);
assert(equal(t, [1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10]));
static if(hasAssignableElements!DummyType)
{
{
cy.front = 66;
scope(exit) cy.front = 1;
assert(dummy.front == 66);
}
static if(isRandomAccessRange!DummyType)
{
{
cy[10] = 66;
scope(exit) cy[10] = 1;
assert(dummy.front == 66);
}
}
}
}
}
}
unittest // For infinite ranges
{
struct InfRange
{
void popFront() { }
int front() { return 0; }
enum empty = false;
}
InfRange i;
auto c = cycle(i);
assert (c == i);
}
/**
Iterate several ranges in lockstep. The element type is a proxy tuple
that allows accessing the current element in the $(D n)th range by
using $(D e[n]).
Example:
----
int[] a = [ 1, 2, 3 ];
string[] b = [ "a", "b", "c" ];
// prints 1:a 2:b 3:c
foreach (e; zip(a, b))
{
write(e[0], ':', e[1], ' ');
}
----
$(D Zip) offers the lowest range facilities of all components, e.g. it
offers random access iff all ranges offer random access, and also
offers mutation and swapping if all ranges offer it. Due to this, $(D
Zip) is extremely powerful because it allows manipulating several
ranges in lockstep. For example, the following code sorts two arrays
in parallel:
----
int[] a = [ 1, 2, 3 ];
string[] b = [ "a", "b", "c" ];
sort!("a[0] > b[0]")(zip(a, b));
assert(a == [ 3, 2, 1 ]);
assert(b == [ "c", "b", "a" ]);
----
*/
struct Zip(Ranges...)
if(Ranges.length && allSatisfy!(isInputRange, staticMap!(Unqual, Ranges)))
{
alias staticMap!(Unqual, Ranges) R;
Tuple!R ranges;
alias Tuple!(staticMap!(.ElementType, R)) ElementType;
StoppingPolicy stoppingPolicy = StoppingPolicy.shortest;
/**
Builds an object. Usually this is invoked indirectly by using the
$(XREF range,zip) function.
*/
this(R rs, StoppingPolicy s = StoppingPolicy.shortest)
{
stoppingPolicy = s;
foreach (i, Unused; R)
{
ranges[i] = rs[i];
}
}
/**
Returns $(D true) if the range is at end. The test depends on the
stopping policy.
*/
static if(allSatisfy!(isInfinite, R))
{
// BUG: Doesn't propagate infiniteness if only some ranges are infinite
// and s == StoppingPolicy.longest. This isn't fixable in the
// current design since StoppingPolicy is known only at runtime.
enum bool empty = false;
}
else
{
bool empty()
{
final switch (stoppingPolicy)
{
case StoppingPolicy.shortest:
foreach (i, Unused; R)
{
if (ranges[i].empty) return true;
}
break;
case StoppingPolicy.longest:
foreach (i, Unused; R)
{
if (!ranges[i].empty) return false;
}
break;
case StoppingPolicy.requireSameLength:
foreach (i, Unused; R[1 .. $])
{
enforce(ranges[0].empty ==
ranges.field[i + 1].empty,
"Inequal-length ranges passed to Zip");
}
break;
}
return false;
}
}
static if (allSatisfy!(isForwardRange, R))
@property Zip save()
{
Zip result;
result.stoppingPolicy = stoppingPolicy;
foreach (i, Unused; R)
{
result.ranges[i] = ranges[i].save;
}
return result;
}
/**
Returns the current iterated element.
*/
@property ElementType front()
{
ElementType result = void;
foreach (i, Unused; R)
{
if (!ranges[i].empty)
{
emplace(&result[i], ranges[i].front);
}
else
{
emplace(&result[i]);
}
}
return result;
}
static if (allSatisfy!(hasAssignableElements, R))
{
/**
Sets the front of all iterated ranges.
*/
@property void front(ElementType v)
{
foreach (i, Unused; R)
{
if (!ranges[i].empty)
{
ranges[i].front = v[i];
}
}
}
}
/**
Moves out the front.
*/
static if(allSatisfy!(hasMobileElements, R))
{
ElementType moveFront()
{
ElementType result = void;
foreach (i, Unused; R)
{
if (!ranges[i].empty)
{
emplace(&result[i], .moveFront(ranges[i]));
}
else
{
emplace(&result[i]);
}
}
return result;
}
}
/**
Returns the rightmost element.
*/
static if(allSatisfy!(isBidirectionalRange, R))
{
@property ElementType back()
{
ElementType result = void;
foreach (i, Unused; R)
{
if (!ranges[i].empty)
{
emplace(&result[i], ranges[i].back);
}
else
{
emplace(&result[i]);
}
}
return result;
}
/**
Moves out the back.
*/
static if (allSatisfy!(hasMobileElements, R))
{
@property ElementType moveBack()
{
ElementType result = void;
foreach (i, Unused; R)
{
if (!ranges[i].empty)
{
emplace(&result[i], .moveBack(ranges[i]));
}
else
{
emplace(&result[i]);
}
}
return result;
}
}
/**
Returns the current iterated element.
*/
static if(allSatisfy!(hasAssignableElements, R))
{
@property void back(ElementType v)
{
foreach (i, Unused; R)
{
if (!ranges[i].empty)
{
ranges[i].back = v[i];
}
}
}
}
}
/**
Advances to the popFront element in all controlled ranges.
*/
void popFront()
{
final switch (stoppingPolicy)
{
case StoppingPolicy.shortest:
foreach (i, Unused; R)
{
assert(!ranges[i].empty);
ranges[i].popFront();
}
break;
case StoppingPolicy.longest:
foreach (i, Unused; R)
{
if (!ranges[i].empty) ranges[i].popFront();
}
break;
case StoppingPolicy.requireSameLength:
foreach (i, Unused; R)
{
enforce(!ranges[i].empty, "Invalid Zip object");
ranges[i].popFront();
}
break;
}
}
static if(allSatisfy!(isBidirectionalRange, R))
/**
Calls $(D popBack) for all controlled ranges.
*/
void popBack()
{
final switch (stoppingPolicy)
{
case StoppingPolicy.shortest:
foreach (i, Unused; R)
{
assert(!ranges[i].empty);
ranges[i].popBack();
}
break;
case StoppingPolicy.longest:
foreach (i, Unused; R)
{
if (!ranges[i].empty) ranges[i].popBack();
}
break;
case StoppingPolicy.requireSameLength:
foreach (i, Unused; R)
{
enforce(!ranges[0].empty, "Invalid Zip object");
ranges[i].popBack();
}
break;
}
}
/**
Returns the length of this range. Defined only if all ranges define
$(D length).
*/
static if (allSatisfy!(hasLength, R))
@property size_t length()
{
auto result = ranges[0].length;
if (stoppingPolicy == StoppingPolicy.requireSameLength)
return result;
foreach (i, Unused; R[1 .. $])
{
if (stoppingPolicy == StoppingPolicy.shortest)
{
result = min(ranges.field[i + 1].length, result);
}
else
{
assert(stoppingPolicy == StoppingPolicy.longest);
result = max(ranges.field[i + 1].length, result);
}
}
return result;
}
/**
Returns a slice of the range. Defined only if all range define
slicing.
*/
static if (allSatisfy!(hasSlicing, R))
Zip opSlice(size_t from, size_t to)
{
Zip result = void;
emplace(&result.stoppingPolicy, stoppingPolicy);
foreach (i, Unused; R)
{
emplace(&result.ranges[i], ranges[i][from .. to]);
}
return result;
}
static if (allSatisfy!(isRandomAccessRange, R))
{
/**
Returns the $(D n)th element in the composite range. Defined if all
ranges offer random access.
*/
ElementType opIndex(size_t n)
{
ElementType result = void;
foreach (i, Range; R)
{
emplace(&result[i], ranges[i][n]);
}
return result;
}
static if (allSatisfy!(hasAssignableElements, R))
{
/**
Assigns to the $(D n)th element in the composite range. Defined if
all ranges offer random access.
*/
void opIndexAssign(ElementType v, size_t n)
{
foreach (i, Range; R)
{
ranges[i][n] = v[i];
}
}
}
/**
Destructively reads the $(D n)th element in the composite
range. Defined if all ranges offer random access.
*/
static if(allSatisfy!(hasMobileElements, R))
{
ElementType moveAt(size_t n)
{
ElementType result = void;
foreach (i, Range; R)
{
emplace(&result[i], .moveAt(ranges[i], n));
}
return result;
}
}
}
}
/// Ditto
Zip!(R) zip(R...)(R ranges)
if (allSatisfy!(isInputRange, staticMap!(Unqual, R)))
{
return Zip!(R)(ranges);
}
/// Ditto
Zip!(R) zip(R...)(StoppingPolicy sp, R ranges)
if(allSatisfy!(isInputRange, staticMap!(Unqual, R)))
{
return Zip!(R)(ranges, sp);
}
/**
Dictates how iteration in a $(D Zip) should stop. By default stop at
the end of the shortest of all ranges.
*/
enum StoppingPolicy
{
/// Stop when the shortest range is exhausted
shortest,
/// Stop when the longest range is exhausted
longest,
/// Require that all ranges are equal
requireSameLength,
}
unittest
{
int[] a = [ 1, 2, 3 ];
float[] b = [ 1., 2, 3 ];
foreach (e; zip(a, b))
{
assert(e[0] == e[1]);
}
swap(a[0], a[1]);
auto z = zip(a, b);
//swap(z.front(), z.back());
sort!("a[0] < b[0]")(zip(a, b));
assert(a == [1, 2, 3]);
assert(b == [2., 1, 3]);
// Test stopping policies with both value and reference.
auto a1 = [1, 2];
auto a2 = [1, 2, 3];
auto stuff = tuple(tuple(a1, a2),
tuple(filter!"a"(a1), filter!"a"(a2)));
// Test infiniteness propagation.
static assert(isInfinite!(typeof(zip(repeat(1), repeat(1)))));
alias Zip!(immutable int[], immutable float[]) FOO;
foreach(t; stuff.expand) {
auto arr1 = t[0];
auto arr2 = t[1];
auto zShortest = zip(arr1, arr2);
assert(equal(map!"a[0]"(zShortest), [1, 2]));
assert(equal(map!"a[1]"(zShortest), [1, 2]));
try {
auto zSame = zip(StoppingPolicy.requireSameLength, arr1, arr2);
foreach(elem; zSame) {}
assert(0);
} catch { /* It's supposed to throw.*/ }
auto zLongest = zip(StoppingPolicy.requireSameLength, arr1, arr2);
assert(!zLongest.ranges[0].empty);
assert(!zLongest.ranges[1].empty);
zLongest.popFront();
zLongest.popFront();
assert(zLongest.ranges[0].empty);
assert(!zLongest.ranges[1].empty);
}
// Doesn't work yet. Issues w/ emplace.
// static assert(is(Zip!(immutable int[], immutable float[])));
// These unittests pass, but make the compiler consume an absurd amount
// of RAM and time. Therefore, they should only be run if explicitly
// uncommented when making changes to Zip. Also, running them using
// make -fwin32.mak unittest makes the compiler completely run out of RAM.
// You need to test just this module.
/+
foreach(DummyType1; AllDummyRanges) {
DummyType1 d1;
foreach(DummyType2; AllDummyRanges) {
DummyType2 d2;
auto r = zip(d1, d2);
assert(equal(map!"a[0]"(r), [1,2,3,4,5,6,7,8,9,10]));
assert(equal(map!"a[1]"(r), [1,2,3,4,5,6,7,8,9,10]));
static if(isForwardRange!DummyType1 && isForwardRange!DummyType2) {
static assert(isForwardRange!(typeof(r)));
}
static if(isBidirectionalRange!DummyType1 &&
isBidirectionalRange!DummyType2) {
static assert(isBidirectionalRange!(typeof(r)));
}
static if(isRandomAccessRange!DummyType1 &&
isRandomAccessRange!DummyType2) {
static assert(isRandomAccessRange!(typeof(r)));
}
}
}
+/
}
unittest
{
auto a = [5,4,3,2,1];
auto b = [3,1,2,5,6];
auto z = zip(a, b);
sort!"a[0] < b[0]"(z);
}
/* CTFE function to generate opApply loop for Lockstep.*/
private string lockstepApply(Ranges...)(bool withIndex) if(Ranges.length > 0)
{
// Since there's basically no way to make this code readable as-is, I've
// included formatting to make the generated code look "normal" when
// printed out via pragma(msg).
string ret = "int opApply(scope int delegate(";
if(withIndex)
{
ret ~= "ref size_t, ";
}
foreach(ti, dummy; Ranges)
{
ret ~= "ref ElementType!(Ranges[" ~ to!string(ti) ~ "]), ";
}
// Remove trailing ,
ret = ret[0..$ - 2];
ret ~= ") dg) {\n";
// Shallow copy _ranges to be consistent w/ regular foreach.
ret ~= "\tauto ranges = _ranges;\n";
ret ~= "\tint res;\n";
if(withIndex)
{
ret ~= "\tsize_t index = 0;\n";
}
// For every range not offering ref return, declare a variable to statically
// copy to so we have lvalue access.
foreach(ti, Range; Ranges)
{
static if(!hasLvalueElements!Range) {
// Don't have lvalue access.
ret ~= "\tElementType!(R[" ~ to!string(ti) ~ "]) front" ~
to!string(ti) ~ ";\n";
}
}
// Check for emptiness.
ret ~= "\twhile("; //someEmpty) {\n";
foreach(ti, Unused; Ranges) {
ret ~= "!ranges[" ~ to!string(ti) ~ "].empty && ";
}
// Strip trailing &&
ret = ret[0..$ - 4];
ret ~= ") {\n";
// Populate the dummy variables for everything that doesn't have lvalue
// elements.
foreach(ti, Range; Ranges)
{
static if(!hasLvalueElements!Range)
{
immutable tiString = to!string(ti);
ret ~= "\t\tfront" ~ tiString ~ " = ranges["
~ tiString ~ "].front;\n";
}
}
// Create code to call the delegate.
ret ~= "\t\tres = dg(";
if(withIndex)
{
ret ~= "index, ";
}
foreach(ti, Range; Ranges)
{
static if(hasLvalueElements!Range)
{
ret ~= "ranges[" ~ to!string(ti) ~ "].front, ";
}
else
{
ret ~= "front" ~ to!string(ti) ~ ", ";
}
}
// Remove trailing ,
ret = ret[0..$ - 2];
ret ~= ");\n";
ret ~= "\t\tif(res) break;\n";
foreach(ti, Range; Ranges)
{
ret ~= "\t\tranges[" ~ to!(string)(ti) ~ "].popFront();\n";
}
if(withIndex)
{
ret ~= "\t\tindex++;\n";
}
ret ~= "\t}\n";
ret ~= "\tif(_s == StoppingPolicy.requireSameLength) enforceAllEmpty();\n";
ret ~= "\treturn res;\n}";
return ret;
}
/**
Iterate multiple ranges in lockstep using a $(D foreach) loop. If only a single
range is passed in, the $(D Lockstep) aliases itself away. If the
ranges are of different lengths and $(D s) == $(D StoppingPolicy.shortest)
stop after the shortest range is empty. If the ranges are of different
lengths and $(D s) == $(D StoppingPolicy.requireSameLength), throw an
exception. $(D s) may not be $(D StoppingPolicy.longest), and passing this
will throw an exception.
BUGS: If a range does not offer lvalue access, but $(D ref) is used in the
$(D foreach) loop, it will be silently accepted but any modifications
to the variable will not be propagated to the underlying range.
Examples:
---
auto arr1 = [1,2,3,4,5];
auto arr2 = [6,7,8,9,10];
foreach(ref a, ref b; lockstep(arr1, arr2))
{
a += b;
}
assert(arr1 == [7,9,11,13,15]);
// Lockstep also supports iterating with an index variable:
foreach(index, a, b; lockstep(arr1, arr2)) {
writefln("Index %s: a = %s, b = %s", index, a, b);
}
---
*/
struct Lockstep(Ranges...)
if(Ranges.length > 1 && allSatisfy!(isInputRange, staticMap!(Unqual, Ranges)))
{
private:
alias staticMap!(Unqual, Ranges) R;
R _ranges;
StoppingPolicy _s;
void enforceAllEmpty() {
foreach(range; _ranges) {
enforce(range.empty);
}
}
public:
this(R ranges, StoppingPolicy s = StoppingPolicy.shortest)
{
_ranges = ranges;
enforce(s != StoppingPolicy.longest,
"Can't use StoppingPolicy.Longest on Lockstep.");
this._s = s;
}
mixin(lockstepApply!(Ranges)(false));
mixin(lockstepApply!(Ranges)(true));
}
// For generic programming, make sure Lockstep!(Range) is well defined for a
// single range.
template Lockstep(Range)
{
alias Range Lockstep;
}
version(ddoc)
{
/// Ditto
Lockstep!(Ranges) lockstep(Ranges...)(Ranges ranges) { assert(0); }
/// Ditto
Lockstep!(Ranges) lockstep(Ranges...)(Ranges ranges, StoppingPolicy s)
{
assert(0);
}
}
else
{
// Work around DMD bugs 4676, 4652.
auto lockstep(Args...)(Args args)
if(allSatisfy!(isInputRange, staticMap!(Unqual, Args)) || (
allSatisfy!(isInputRange, staticMap!(Unqual, Args[0..$ - 1])) &&
is(Args[$ - 1] == StoppingPolicy))
)
{
static if(is(Args[$ - 1] == StoppingPolicy))
{
alias args[0..$ - 1] ranges;
alias Args[0..$ - 1] Ranges;
alias args[$ - 1] stoppingPolicy;
}
else
{
alias Args Ranges;
alias args ranges;
auto stoppingPolicy = StoppingPolicy.shortest;
}
static if(Ranges.length > 1)
{
return Lockstep!(Ranges)(ranges, stoppingPolicy);
}
else
{
return ranges[0];
}
}
}
unittest {
// The filters are to make these the lowest common forward denominator ranges,
// i.e. w/o ref return, random access, length, etc.
auto foo = filter!"a"([1,2,3,4,5]);
immutable bar = [6f,7f,8f,9f,10f].idup;
auto l = lockstep(foo, bar);
// Should work twice. These are forward ranges with implicit save.
foreach(i; 0..2) {
uint[] res1;
float[] res2;
foreach(a, ref b; l) {
res1 ~= a;
res2 ~= b;
}
assert(res1 == [1,2,3,4,5]);
assert(res2 == [6,7,8,9,10]);
assert(bar == [6f,7f,8f,9f,10f]);
}
// Doc example.
auto arr1 = [1,2,3,4,5];
auto arr2 = [6,7,8,9,10];
foreach(ref a, ref b; lockstep(arr1, arr2))
{
a += b;
}
assert(arr1 == [7,9,11,13,15]);
// Make sure StoppingPolicy.requireSameLength throws.
arr2.popBack;
auto ls = lockstep(arr1, arr2, StoppingPolicy.requireSameLength);
try {
foreach(a, b; ls) {}
assert(0);
} catch {}
// Just make sure 1-range case instantiates. This hangs the compiler
// when no explicit stopping policy is specified due to Bug 4652.
auto stuff = lockstep([1,2,3,4,5], StoppingPolicy.shortest);
// Test with indexing.
uint[] res1;
float[] res2;
size_t[] indices;
foreach(i, a, b; lockstep(foo, bar))
{
indices ~= i;
res1 ~= a;
res2 ~= b;
}
assert(indices == to!(size_t[])([0, 1, 2, 3, 4]));
assert(res1 == [1,2,3,4,5]);
assert(res2 == [6f,7f,8f,9f,10f]);
// Make sure we've worked around the relevant compiler bugs and this at least
// compiles w/ >2 ranges.
lockstep(foo, foo, foo);
}
/**
Creates a mathematical sequence given the initial values and a
recurrence function that computes the popFront value from the existing
values. The sequence comes in the form of an infinite forward
range. The type $(D Recurrence) itself is seldom used directly; most
often, recurrences are obtained by calling the function $(D
recurrence).
When calling $(D recurrence), the function that computes the next
value is specified as a template argument, and the initial values in
the recurrence are passed as regular arguments. For example, in a
Fibonacci sequence, there are two initial values (and therefore a
state size of 2) because computing the popFront Fibonacci value needs the
past two values.
If the function is passed in string form, the state has name $(D "a")
and the zero-based index in the recurrence has name $(D "n"). The
given string must return the desired value for $(D a[n]) given $(D a[n
- 1]), $(D a[n - 2]), $(D a[n - 3]),..., $(D a[n - stateSize]). The
state size is dictated by the number of arguments passed to the call
to $(D recurrence). The $(D Recurrence) class itself takes care of
managing the recurrence's state and shifting it appropriately.
Example:
----
// a[0] = 1, a[1] = 1, and compute a[n+1] = a[n-1] + a[n]
auto fib = recurrence!("a[n-1] + a[n-2]")(1, 1);
// print the first 10 Fibonacci numbers
foreach (e; take(fib, 10)) { writeln(e); }
// print the first 10 factorials
foreach (e; take(recurrence!("a[n-1] * n")(1), 10)) { writeln(e); }
----
*/
struct Recurrence(alias fun, StateType, size_t stateSize)
{
StateType[stateSize] _state;
size_t _n;
this(StateType[stateSize] initial) { _state = initial; }
void popFront()
{
// The cast here is reasonable because fun may cause integer
// promotion, but needs to return a StateType to make its operation
// closed. Therefore, we have no other choice.
_state[_n % stateSize] = cast(StateType) binaryFun!(fun, "a", "n")(
cycle(_state), _n + stateSize);
++_n;
}
@property StateType front()
{
return _state[_n % stateSize];
}
@property typeof(this) save()
{
return this;
}
enum bool empty = false;
}
/// Ditto
Recurrence!(fun, CommonType!(State), State.length)
recurrence(alias fun, State...)(State initial)
{
CommonType!(State)[State.length] state;
foreach (i, Unused; State)
{
state[i] = initial[i];
}
return typeof(return)(state);
}
unittest
{
auto fib = recurrence!("a[n-1] + a[n-2]")(1, 1);
static assert(isForwardRange!(typeof(fib)));
int[] witness = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ];
//foreach (e; take(fib, 10)) writeln(e);
assert(equal(take(fib, 10), witness));
foreach (e; take(fib, 10)) {}//writeln(e);
//writeln(s.front);
auto fact = recurrence!("n * a[n-1]")(1);
assert( equal(take(fact, 10), [1, 1, 2, 2*3, 2*3*4, 2*3*4*5, 2*3*4*5*6,
2*3*4*5*6*7, 2*3*4*5*6*7*8, 2*3*4*5*6*7*8*9][]) );
auto piapprox = recurrence!("a[n] + (n & 1 ? 4. : -4.) / (2 * n + 3)")(4.);
foreach (e; take(piapprox, 20)) {}//writeln(e);
// Thanks to yebblies for this test and the associated fix
auto r = recurrence!"a[n-2]"(1, 2);
witness = [1, 2, 1, 2, 1];
assert(equal(take(r, 5), witness));
}
/**
$(D Sequence) is similar to $(D Recurrence) except that iteration is
presented in the so-called $(WEB en.wikipedia.org/wiki/Closed_form,
closed form). This means that the $(D n)th element in the series is
computable directly from the initial values and $(D n) itself. This
implies that the interface offered by $(D Sequence) is a random-access
range, as opposed to the regular $(D Recurrence), which only offers
forward iteration.
The state of the sequence is stored as a $(D Tuple) so it can be
heterogeneous.
Example:
----
// a[0] = 1, a[1] = 2, a[n] = a[0] + n * a[1]
auto odds = sequence!("a[0] + n * a[1]")(1, 2);
----
*/
struct Sequence(alias fun, State)
{
private:
alias binaryFun!(fun, "a", "n") compute;
alias typeof(compute(State.init, cast(size_t) 1)) ElementType;
State _state;
size_t _n;
ElementType _cache;
public:
this(State initial, size_t n = 0)
{
this._state = initial;
this._n = n;
this._cache = compute(this._state, this._n);
}
@property ElementType front()
{
//return ElementType.init;
return this._cache;
}
ElementType moveFront()
{
return move(this._cache);
}
void popFront()
{
this._cache = compute(this._state, ++this._n);
}
ElementType opIndex(size_t n)
{
//return ElementType.init;
return compute(this._state, n + this._n);
}
enum bool empty = false;
@property Sequence save() { return this; }
}
/// Ditto
Sequence!(fun, Tuple!(State)) sequence
(alias fun, State...)(State args)
{
return typeof(return)(tuple(args));
}
unittest
{
// alias Sequence!("a[0] += a[1]",
// Tuple!(int, int)) Gen;
// Gen x = Gen(tuple(0, 5));
// foreach (e; take(x, 15))
// {}//writeln(e);
auto y = Sequence!("a[0] + n * a[1]", Tuple!(int, int))
(tuple(0, 4));
static assert(isForwardRange!(typeof(y)));
//@@BUG
//auto y = sequence!("a[0] + n * a[1]")(0, 4);
//foreach (e; take(y, 15))
{}//writeln(e);
auto odds = Sequence!("a[0] + n * a[1]", Tuple!(int, int))(
tuple(1, 2));
for(int currentOdd = 1; currentOdd <= 21; currentOdd += 2) {
assert(odds.front == odds[0]);
assert(odds[0] == currentOdd);
odds.popFront();
}
}
unittest
{
// documentation example
auto odds = sequence!("a[0] + n * a[1]")(1, 2);
assert(odds.front == 1);
odds.popFront();
assert(odds.front == 3);
odds.popFront();
assert(odds.front == 5);
}
/**
Returns a range that goes through the numbers $(D begin), $(D begin +
step), $(D begin + 2 * step), $(D ...), up to and excluding $(D
end). The range offered is a random access range. The two-arguments
version has $(D step = 1).
Example:
----
auto r = iota(0, 10, 1);
assert(equal(r, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][]));
r = iota(0, 11, 3);
assert(equal(r, [0, 3, 6, 9][]));
assert(r[2] == 6);
auto rf = iota(0.0, 0.5, 0.1);
assert(approxEqual(rf, [0.0, 0.1, 0.2, 0.3, 0.4]));
----
*/
Iota!(CommonType!(Unqual!B, Unqual!E), S) iota(B, E, S)(B begin, E end, S step)
if (is(typeof((E.init - B.init) + 1 * S.init)))
{
return Iota!(CommonType!(Unqual!B, Unqual!E), S)(begin, end, step);
}
/// Ditto
Iota!(CommonType!(Unqual!B, Unqual!E), uint) iota(B, E)(B begin, E end)
{
return iota(begin, end, 1u);
}
/// Ditto
Iota!(Unqual!E, uint) iota(E)(E end)
{
E begin = 0;
return iota(begin, end, 1u);
}
// Iota for integers and pointers
/// Ditto
struct Iota(N, S) if ((isIntegral!N || isPointer!N) && isIntegral!S) {
private N current, pastLast;
private S step;
this(N current, N pastLast, S step)
{
enforce((current <= pastLast && step > 0) ||
(current >= pastLast && step < 0));
this.current = current;
this.step = step;
if (step > 0)
{
this.pastLast = pastLast - 1;
this.pastLast -= (this.pastLast - current) % step;
}
else
{
this.pastLast = pastLast + 1;
this.pastLast += (this.pastLast - current) % step;
}
this.pastLast += step;
}
/// Ditto
@property bool empty() const { return current == pastLast; }
/// Ditto
@property N front() { return current; }
/// Ditto
alias front moveFront;
/// Ditto
void popFront()
{
current += step;
}
/// Ditto
@property N back() { return pastLast - step; }
/// Ditto
alias back moveBack;
/// Ditto
void popBack()
{
pastLast -= step;
}
/// Ditto
@property Iota save() { return this; }
/// Ditto
N opIndex(size_t n)
{
// Just cast to N here because doing so gives overflow behavior
// consistent with calling popFront() n times.
return cast(N) (current + step * n);
}
/// Ditto
typeof(this) opSlice()
{
return this;
}
/// Ditto
typeof(this) opSlice(size_t lower, size_t upper)
{
assert(upper >= lower && upper <= this.length);
auto ret = this;
ret.current += lower * step;
ret.pastLast -= (this.length - upper) * step;
return ret;
}
/// Ditto
@property Select!(max(N.sizeof, S.sizeof) > size_t.sizeof, ulong, size_t)
length() const
{
return (pastLast - current) / step;
}
}
// Iota for floating-point numbers
/// Ditto
struct Iota(N, S) if (isFloatingPoint!N && isNumeric!S) {
private N start;
private S step;
private size_t index, count;
this(N start, N end, S step)
{
this.start = start;
this.step = step;
enforce(step != 0);
immutable fcount = (end - start) / step;
enforce(fcount >= 0, "iota: incorrect startup parameters");
count = to!size_t(fcount);
auto pastEnd = start + count * step;
if (step > 0)
{
if (pastEnd < end) ++count;
assert(start + count * step >= end);
}
else
{
if (pastEnd > end) ++count;
assert(start + count * step <= end);
}
}
/// Range primitives
@property bool empty() const { return index == count; }
/// Ditto
@property N front() { return start + step * index; }
/// Ditto
alias front moveFront;
/// Ditto
void popFront()
{
assert(!empty);
++index;
}
/// Ditto
@property N back()
{
assert(!empty);
return start + step * (count - 1);
}
/// Ditto
alias back moveBack;
/// Ditto
void popBack()
{
assert(!empty);
--count;
}
/// Ditto
@property Iota save() { return this; }
/// Ditto
N opIndex(size_t n)
{
assert(n < count);
return start + step * (n + index);
}
/// Ditto
typeof(this) opSlice()
{
return this;
}
/// Ditto
typeof(this) opSlice(size_t lower, size_t upper)
{
assert(upper >= lower && upper <= count);
auto ret = this;
ret.index += lower;
ret.count = upper - lower + ret.index;
return ret;
}
/// Ditto
@property size_t length() const
{
return count - index;
}
}
unittest
{
auto r = iota(0, 10, 1);
assert(equal(r, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][]));
auto rSlice = r[2..8];
assert(equal(rSlice, [2, 3, 4, 5, 6, 7]));
rSlice.popFront();
assert(rSlice[0] == rSlice.front);
assert(rSlice.front == 3);
rSlice.popBack();
assert(rSlice[rSlice.length - 1] == rSlice.back);
assert(rSlice.back == 6);
rSlice = r[0..4];
assert(equal(rSlice, [0, 1, 2, 3]));
auto rr = iota(10);
assert(equal(rr, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][]));
r = iota(0, -10, -1);
assert(equal(r, [0, -1, -2, -3, -4, -5, -6, -7, -8, -9][]));
rSlice = r[3..9];
assert(equal(rSlice, [-3, -4, -5, -6, -7, -8]));
r = iota(0, 11, 3);
assert(equal(r, [0, 3, 6, 9][]));
assert(r[2] == 6);
rSlice = r[1..3];
assert(equal(rSlice, [3, 6]));
int[] a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
auto r1 = iota(a.ptr, a.ptr + a.length, 1);
assert(r1.front == a.ptr);
assert(r1.back == a.ptr + a.length - 1);
auto rf = iota(0.0, 0.5, 0.1);
//foreach (e; rf) writeln(e);
assert(approxEqual(rf, [0.0, 0.1, 0.2, 0.3, 0.4][]));
assert(rf.length == 5);
rf.popFront();
assert(rf.length == 4);
auto rfSlice = rf[1..4];
assert(rfSlice.length == 3);
assert(approxEqual(rfSlice, [0.2, 0.3, 0.4]));
rfSlice.popFront();
assert(approxEqual(rfSlice[0], 0.3));
rf.popFront();
assert(rf.length == 3);
rfSlice = rf[1..3];
assert(rfSlice.length == 2);
assert(approxEqual(rfSlice, [0.3, 0.4]));
assert(approxEqual(rfSlice[0], 0.3));
// With something just above 0.5
rf = iota(0.0, nextUp(0.5), 0.1);
//foreach (e; rf) writeln(e);
assert(approxEqual(rf, [0.0, 0.1, 0.2, 0.3, 0.4, 0.5][]));
rf.popBack();
assert(rf[rf.length - 1] == rf.back);
assert(approxEqual(rf.back, 0.4));
assert(rf.length == 5);
// going down
rf = iota(0.0, -0.5, -0.1);
//foreach (e; rf) writeln(e);
assert(approxEqual(rf, [0.0, -0.1, -0.2, -0.3, -0.4][]));
rfSlice = rf[2..5];
assert(approxEqual(rfSlice, [-0.2, -0.3, -0.4]));
rf = iota(0.0, nextDown(-0.5), -0.1);
//foreach (e; rf) writeln(e);
assert(approxEqual(rf, [0.0, -0.1, -0.2, -0.3, -0.4, -0.5][]));
// iota of longs
auto rl = iota(5_000_000L);
assert(rl.length == 5_000_000L);
}
unittest
{
auto idx = new size_t[100];
copy(iota(0, idx.length), idx);
}
/**
Options for the $(D FrontTransversal) and $(D Transversal) ranges
(below).
*/
enum TransverseOptions
{
/**
When transversed, the elements of a range of ranges are assumed to
have different lengths (e.g. a jagged array).
*/
assumeJagged, //default
/**
The transversal enforces that the elements of a range of ranges have
all the same length (e.g. an array of arrays, all having the same
length). Checking is done once upon construction of the transversal
range.
*/
enforceNotJagged,
/**
The transversal assumes, without verifying, that the elements of a
range of ranges have all the same length. This option is useful if
checking was already done from the outside of the range.
*/
assumeNotJagged,
}
/**
Given a range of ranges, iterate transversally through the first
elements of each of the enclosed ranges.
Example:
----
int[][] x = new int[][2];
x[0] = [1, 2];
x[1] = [3, 4];
auto ror = frontTransversal(x);
assert(equal(ror, [ 1, 3 ][]));
---
*/
struct FrontTransversal(Ror,
TransverseOptions opt = TransverseOptions.assumeJagged)
{
alias Unqual!(Ror) RangeOfRanges;
alias typeof(RangeOfRanges.init.front().front()) ElementType;
private void prime()
{
static if (opt == TransverseOptions.assumeJagged)
{
while (!_input.empty && _input.front.empty)
{
_input.popFront;
}
static if (isBidirectionalRange!RangeOfRanges)
{
while (!_input.empty && _input.back.empty)
{
_input.popBack;
}
}
}
}
/**
Construction from an input.
*/
this(RangeOfRanges input)
{
_input = input;
prime;
static if (opt == TransverseOptions.enforceNotJagged)
// (isRandomAccessRange!RangeOfRanges
// && hasLength!(.ElementType!RangeOfRanges))
{
if (empty) return;
immutable commonLength = _input.front.length;
foreach (e; _input)
{
enforce(e.length == commonLength);
}
}
}
/**
Forward range primitives.
*/
static if(isInfinite!RangeOfRanges)
{
enum bool empty = false;
}
else
{
@property bool empty()
{
return _input.empty;
}
}
/// Ditto
@property auto ref front()
{
assert(!empty);
return _input.front.front;
}
/// Ditto
static if(hasMobileElements!(.ElementType!RangeOfRanges))
{
ElementType moveFront()
{
return .moveFront(_input.front);
}
}
static if(hasAssignableElements!(.ElementType!RangeOfRanges))
{
@property auto front(ElementType val)
{
_input.front.front = val;
}
}
/// Ditto
void popFront()
{
assert(!empty);
_input.popFront;
prime;
}
/// Ditto
static if(isForwardRange!RangeOfRanges)
{
@property typeof(this) save()
{
auto ret = this;
ret._input = _input.save;
return ret;
}
}
static if (isBidirectionalRange!RangeOfRanges)
{
/**
Bidirectional primitives. They are offered if $(D
isBidirectionalRange!RangeOfRanges).
*/
@property auto ref back()
{
assert(!empty);
return _input.back.front;
}
/// Ditto
void popBack()
{
assert(!empty);
_input.popBack;
prime;
}
/// Ditto
static if(hasMobileElements!(.ElementType!RangeOfRanges))
{
ElementType moveBack()
{
return .moveFront(_input.back);
}
}
static if(hasAssignableElements!(.ElementType!RangeOfRanges))
{
@property auto back(ElementType val)
{
_input.back.front = val;
}
}
}
static if (isRandomAccessRange!RangeOfRanges &&
(opt == TransverseOptions.assumeNotJagged ||
opt == TransverseOptions.enforceNotJagged))
{
/**
Random-access primitive. It is offered if $(D
isRandomAccessRange!RangeOfRanges && (opt ==
TransverseOptions.assumeNotJagged || opt ==
TransverseOptions.enforceNotJagged)).
*/
auto ref opIndex(size_t n)
{
return _input[n].front;
}
/// Ditto
static if(hasMobileElements!(.ElementType!RangeOfRanges))
{
ElementType moveAt(size_t n)
{
return .moveFront(_input[n]);
}
}
/// Ditto
static if(hasAssignableElements!(.ElementType!RangeOfRanges))
{
void opIndexAssign(ElementType val, size_t n)
{
_input[n].front = val;
}
}
/**
Slicing if offered if $(D RangeOfRanges) supports slicing and all the
conditions for supporting indexing are met.
*/
static if(hasSlicing!RangeOfRanges)
{
typeof(this) opSlice(size_t lower, size_t upper)
{
return typeof(this)(_input[lower..upper]);
}
}
}
auto opSlice() { return this; }
private:
RangeOfRanges _input;
}
/// Ditto
FrontTransversal!(RangeOfRanges, opt) frontTransversal(
TransverseOptions opt = TransverseOptions.assumeJagged,
RangeOfRanges)
(RangeOfRanges rr)
{
return typeof(return)(rr);
}
unittest {
static assert(is(FrontTransversal!(immutable int[][])));
foreach(DummyType; AllDummyRanges) {
auto dummies =
[DummyType.init, DummyType.init, DummyType.init, DummyType.init];
foreach(i, ref elem; dummies) {
// Just violate the DummyRange abstraction to get what I want.
elem.arr = elem.arr[i..$ - (3 - i)];
}
auto ft = frontTransversal!(TransverseOptions.assumeNotJagged)(dummies);
static if(isForwardRange!DummyType) {
static assert(isForwardRange!(typeof(ft)));
}
assert(equal(ft, [1, 2, 3, 4]));
// Test slicing.
assert(equal(ft[0..2], [1, 2]));
assert(equal(ft[1..3], [2, 3]));
assert(ft.front == ft.moveFront());
assert(ft.back == ft.moveBack());
assert(ft.moveAt(1) == ft[1]);
// Test infiniteness propagation.
static assert(isInfinite!(typeof(frontTransversal(repeat("foo")))));
static if(DummyType.r == ReturnBy.Reference) {
{
ft.front++;
scope(exit) ft.front--;
assert(dummies.front.front == 2);
}
{
ft.front = 5;
scope(exit) ft.front = 1;
assert(dummies[0].front == 5);
}
{
ft.back = 88;
scope(exit) ft.back = 4;
assert(dummies.back.front == 88);
}
{
ft[1] = 99;
scope(exit) ft[1] = 2;
assert(dummies[1].front == 99);
}
}
}
}
/**
Given a range of ranges, iterate transversally through the the $(D
n)th element of each of the enclosed ranges. All elements of the
enclosing range must offer random access.
Example:
----
int[][] x = new int[][2];
x[0] = [1, 2];
x[1] = [3, 4];
auto ror = transversal(x, 1);
assert(equal(ror, [ 2, 4 ][]));
---
*/
struct Transversal(Ror,
TransverseOptions opt = TransverseOptions.assumeJagged)
{
private alias Unqual!Ror RangeOfRanges;
private alias ElementType!RangeOfRanges InnerRange;
private alias ElementType!InnerRange E;
private void prime()
{
static if (opt == TransverseOptions.assumeJagged)
{
while (!_input.empty && _input.front.length <= _n)
{
_input.popFront;
}
static if (isBidirectionalRange!RangeOfRanges)
{
while (!_input.empty && _input.back.length <= _n)
{
_input.popBack;
}
}
}
}
/**
Construction from an input and an index.
*/
this(RangeOfRanges input, size_t n)
{
_input = input;
_n = n;
prime;
static if (opt == TransverseOptions.enforceNotJagged)
{
if (empty) return;
immutable commonLength = _input.front.length;
foreach (e; _input)
{
enforce(e.length == commonLength);
}
}
}
/**
Forward range primitives.
*/
static if(isInfinite!(RangeOfRanges))
{
enum bool empty = false;
}
else
{
@property bool empty()
{
return _input.empty;
}
}
/// Ditto
@property auto ref front()
{
assert(!empty);
return _input.front[_n];
}
/// Ditto
static if(hasMobileElements!InnerRange)
{
E moveFront()
{
return .moveAt(_input.front, _n);
}
}
/// Ditto
static if(hasAssignableElements!InnerRange)
{
@property auto front(E val)
{
_input.front[_n] = val;
}
}
/// Ditto
void popFront()
{
assert(!empty);
_input.popFront;
prime;
}
/// Ditto
static if(isForwardRange!RangeOfRanges)
{
@property typeof(this) save()
{
auto ret = this;
ret._input = _input.save;
return ret;
}
}
static if (isBidirectionalRange!RangeOfRanges)
{
/**
Bidirectional primitives. They are offered if $(D
isBidirectionalRange!RangeOfRanges).
*/
@property auto ref back()
{
return _input.back[_n];
}
/// Ditto
void popBack()
{
assert(!empty);
_input.popBack;
prime;
}
/// Ditto
static if(hasMobileElements!InnerRange)
{
E moveBack()
{
return .moveAt(_input.back, _n);
}
}
/// Ditto
static if(hasAssignableElements!InnerRange)
{
@property auto back(E val)
{
_input.back[_n] = val;
}
}
}
static if (isRandomAccessRange!RangeOfRanges &&
(opt == TransverseOptions.assumeNotJagged ||
opt == TransverseOptions.enforceNotJagged))
{
/**
Random-access primitive. It is offered if $(D
isRandomAccessRange!RangeOfRanges && (opt ==
TransverseOptions.assumeNotJagged || opt ==
TransverseOptions.enforceNotJagged)).
*/
auto ref opIndex(size_t n)
{
return _input[n][_n];
}
/// Ditto
static if(hasMobileElements!InnerRange)
{
E moveAt(size_t n)
{
return .moveAt(_input[n], _n);
}
}
/// Ditto
static if(hasAssignableElements!InnerRange)
{
void opIndexAssign(E val, size_t n)
{
_input[n][_n] = val;
}
}
/**
Slicing if offered if $(D RangeOfRanges) supports slicing and all the
conditions for supporting indexing are met.
*/
static if(hasSlicing!RangeOfRanges)
{
typeof(this) opSlice(size_t lower, size_t upper)
{
return typeof(this)(_input[lower..upper], _n);
}
}
}
auto opSlice() { return this; }
private:
RangeOfRanges _input;
size_t _n;
}
/// Ditto
Transversal!(RangeOfRanges, opt) transversal
(TransverseOptions opt = TransverseOptions.assumeJagged, RangeOfRanges)
(RangeOfRanges rr, size_t n)
{
return typeof(return)(rr, n);
}
unittest
{
int[][] x = new int[][2];
x[0] = [ 1, 2 ];
x[1] = [3, 4];
auto ror = transversal!(TransverseOptions.assumeNotJagged)(x, 1);
auto witness = [ 2, 4 ];
uint i;
foreach (e; ror) assert(e == witness[i++]);
assert(i == 2);
static assert(is(Transversal!(immutable int[][])));
// Make sure ref, assign is being propagated.
{
ror.front++;
scope(exit) ror.front--;
assert(x[0][1] == 3);
}
{
ror.front = 5;
scope(exit) ror.front = 2;
assert(x[0][1] == 5);
assert(ror.moveFront == 5);
}
{
ror.back = 999;
scope(exit) ror.back = 4;
assert(x[1][1] == 999);
assert(ror.moveBack == 999);
}
{
ror[0] = 999;
scope(exit) ror[0] = 2;
assert(x[0][1] == 999);
assert(ror.moveAt(0) == 999);
}
// Test w/o ref return.
alias DummyRange!(ReturnBy.Value, Length.Yes, RangeType.Random) D;
auto drs = [D.init, D.init];
foreach(num; 0..10) {
auto t = transversal!(TransverseOptions.enforceNotJagged)(drs, num);
assert(t[0] == t[1]);
assert(t[1] == num + 1);
}
static assert(isInfinite!(typeof(transversal(repeat([1,2,3]), 1))));
// Test slicing.
auto mat = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]];
auto mat1 = transversal!(TransverseOptions.assumeNotJagged)(mat, 1)[1..3];
assert(mat1[0] == 6);
assert(mat1[1] == 10);
}
struct Transposed(RangeOfRanges)
{
//alias typeof(map!"a.front"(RangeOfRanges.init)) ElementType;
this(RangeOfRanges input)
{
this._input = input;
}
@property auto front()
{
return map!"a.front"(_input);
}
void popFront()
{
foreach (ref e; _input)
{
if (e.empty) continue;
e.popFront;
}
}
// ElementType opIndex(size_t n)
// {
// return _input[n].front;
// }
@property bool empty()
{
foreach (e; _input)
if (!e.empty) return false;
return true;
}
@property Transposed save()
{
return Transposed(_input.save);
}
auto opSlice() { return this; }
private:
RangeOfRanges _input;
}
auto transposed(RangeOfRanges)(RangeOfRanges rr)
{
return Transposed!RangeOfRanges(rr);
}
unittest
{
int[][] x = new int[][2];
x[0] = [1, 2];
x[1] = [3, 4];
auto tr = transposed(x);
int[][] witness = [ [ 1, 3 ], [ 2, 4 ] ];
uint i;
foreach (e; tr)
{
assert(array(e) == witness[i++]);
}
}
/**
Moves the front of $(D r) out and returns it. Leaves $(D r.front) in a
destroyable state that does not allocate any resources (usually equal
to its $(D .init) value).
*/
ElementType!R moveFront(R)(R r)
{
static if(is(typeof(&r.moveFront))) {
return r.moveFront();
} else static if(!hasElaborateCopyConstructor!(ElementType!(R))) {
return r.front;
} else static if(is(typeof(&r.front()) == ElementType!R*)) {
return move(r.front);
} else {
static assert(0,
"Cannot move front of a range with a postblit and an rvalue front.");
}
}
unittest
{
struct R
{
ref int front() { static int x = 42; return x; }
this(this){}
}
R r;
assert(moveFront(r) == 42);
}
/**
Moves the back of $(D r) out and returns it. Leaves $(D r.back) in a
destroyable state that does not allocate any resources (usually equal
to its $(D .init) value).
*/
ElementType!R moveBack(R)(R r)
{
static if(is(typeof(&r.moveBack))) {
return r.moveBack();
} else static if(!hasElaborateCopyConstructor!(ElementType!(R))) {
return r.back;
} else static if(is(typeof(&r.back()) == ElementType!R*)) {
return move(r.back);
} else {
static assert(0,
"Cannot move back of a range with a postblit and an rvalue back.");
}
}
unittest
{
struct TestRange
{
int payload;
@property bool empty() { return false; }
@property TestRange save() { return this; }
@property ref int front() { return payload; }
@property ref int back() { return payload; }
void popFront() { }
void popBack() { }
}
static assert(isBidirectionalRange!TestRange);
TestRange r;
auto x = moveBack(r);
}
/**
Moves element at index $(D i) of $(D r) out and returns it. Leaves $(D
r.front) in a destroyable state that does not allocate any resources
(usually equal to its $(D .init) value).
*/
ElementType!R moveAt(R)(R r, size_t i)
{
static if(is(typeof(&r.moveAt))) {
return r.moveAt(i);
} else static if(!hasElaborateCopyConstructor!(ElementType!(R))) {
return r[i];
} else static if(is(typeof(&r[i]) == ElementType!R*)) {
return move(r[i]);
} else {
static assert(0,
"Cannot move element of a range with a postblit and rvalue elements.");
}
}
unittest
{
auto a = [ 1, 2, 3 ];
assert(moveFront(a) == 1);
// define a perfunctory input range
struct InputRange
{
@property bool empty() { return false; }
@property int front() { return 42; }
void popFront() {}
int moveFront() { return 43; }
}
InputRange r;
assert(moveFront(r) == 43);
foreach(DummyType; AllDummyRanges) {
auto d = DummyType.init;
assert(moveFront(d) == 1);
static if(isBidirectionalRange!DummyType) {
assert(moveBack(d) == 10);
}
static if(isRandomAccessRange!DummyType) {
assert(moveAt(d, 2) == 3);
}
}
}
/**These interfaces are intended to provide virtual function-based wrappers
* around input ranges with element type E. This is useful where a well-defined
* binary interface is required, such as when a DLL function or virtual function
* needs to accept a generic range as a parameter. Note that
* $(D isInputRange) and friends check for conformance to structural
* interfaces, not for implementation of these $(D interface) types.
*
* Examples:
* ---
* class UsesRanges {
* void useRange(InputRange range) {
* // Function body.
* }
* }
*
* // Create a range type.
* auto squares = map!"a * a"(iota(10));
*
* // Wrap it in an interface.
* auto squaresWrapped = inputRangeObject(squares);
*
* // Use it.
* auto usesRanges = new UsesRanges;
* usesRanges.useRange(squaresWrapped);
* ---
*
* Limitations:
*
* These interfaces are not capable of forwarding $(D ref) access to elements.
*
* Infiniteness of the wrapped range is not propagated.
*
* Length is not propagated in the case of non-random access ranges.
*
*/
interface InputRange(E) {
///
@property E front();
///
E moveFront();
///
void popFront();
///
@property bool empty();
/* Measurements of the benefits of using opApply instead of range primitives
* for foreach, using timings for iterating over an iota(100_000_000) range
* with an empty loop body, using the same hardware in each case:
*
* Bare Iota struct, range primitives: 278 milliseconds
* InputRangeObject, opApply: 436 milliseconds (1.57x penalty)
* InputRangeObject, range primitives: 877 milliseconds (3.15x penalty)
*/
/**$(D foreach) iteration uses opApply, since one delegate call per loop
* iteration is faster than three virtual function calls.
*
* BUGS: If a $(D ref) variable is provided as the loop variable,
* changes made to the loop variable will not be propagated to the
* underlying range. If the address of the loop variable is escaped,
* undefined behavior will result. This is related to DMD bug 2443.
*/
int opApply(int delegate(ref E));
/// Ditto
int opApply(int delegate(ref size_t, ref E));
}
/**Interface for a forward range of type $(D E).*/
interface ForwardRange(E) : InputRange!E {
///
@property ForwardRange!E save();
}
/**Interface for a bidirectional range of type $(D E).*/
interface BidirectionalRange(E) : ForwardRange!(E) {
///
@property BidirectionalRange!E save();
///
@property E back();
///
E moveBack();
///
void popBack();
}
/**Interface for a finite random access range of type $(D E).*/
interface RandomAccessFinite(E) : BidirectionalRange!(E) {
///
@property RandomAccessFinite!E save();
///
E opIndex(size_t);
///
E moveAt(size_t);
///
@property size_t length();
// Can't support slicing until issues with requiring slicing for all
// finite random access ranges are fully resolved.
version(none) {
///
RandomAccessFinite!E opSlice(size_t, size_t);
}
}
/**Interface for an infinite random access range of type $(D E).*/
interface RandomAccessInfinite(E) : ForwardRange!E {
///
E moveAt(size_t);
///
@property RandomAccessInfinite!E save();
///
E opIndex(size_t);
}
/**Adds assignable elements to InputRange.*/
interface InputAssignable(E) : InputRange!E {
///
@property void front(E newVal);
}
/**Adds assignable elements to ForwardRange.*/
interface ForwardAssignable(E) : InputAssignable!E, ForwardRange!E {
///
@property ForwardAssignable!E save();
}
/**Adds assignable elements to BidirectionalRange.*/
interface BidirectionalAssignable(E) : ForwardAssignable!E, BidirectionalRange!E {
///
@property BidirectionalAssignable!E save();
///
@property void back(E newVal);
}
/**Adds assignable elements to RandomAccessFinite.*/
interface RandomFiniteAssignable(E) : RandomAccessFinite!E, BidirectionalAssignable!E {
///
@property RandomFiniteAssignable!E save();
///
void opIndexAssign(E val, size_t index);
}
/**Interface for an output range of type $(D E). Usage is similar to the
* $(D InputRange) interface and descendants.*/
interface OutputRange(E) {
///
void put(E);
}
// CTFE function that generates mixin code for one put() method for each
// type E.
private string putMethods(E...)() {
string ret;
foreach(ti, Unused; E) {
ret ~= "void put(E[" ~ to!string(ti) ~ "] e) { .put(_range, e); }";
}
return ret;
}
/**Implements the $(D OutputRange) interface for all types E and wraps the
* $(D put) method for each type $(D E) in a virtual function.
*/
class OutputRangeObject(R, E...) : staticMap!(OutputRange, E) {
// @BUG 4689: There should be constraints on this template class, but
// DMD won't let me put them in.
private R _range;
this(R range) {
this._range = range;
}
mixin(putMethods!E());
}
/**Returns the interface type that best matches $(D R).*/
template MostDerivedInputRange(R) if(isInputRange!(Unqual!R)) {
alias MostDerivedInputRangeImpl!(Unqual!R).ret MostDerivedInputRange;
}
private template MostDerivedInputRangeImpl(R) {
private alias ElementType!R E;
static if(isRandomAccessRange!R) {
static if(isInfinite!R) {
alias RandomAccessInfinite!E ret;
} else static if(hasAssignableElements!R) {
alias RandomFiniteAssignable!E ret;
} else {
alias RandomAccessFinite!E ret;
}
} else static if(isBidirectionalRange!R) {
static if(hasAssignableElements!R) {
alias BidirectionalAssignable!E ret;
} else {
alias BidirectionalRange!E ret;
}
} else static if(isForwardRange!R) {
static if(hasAssignableElements!R) {
alias ForwardAssignable!E ret;
} else {
alias ForwardRange!E ret;
}
} else {
static if(hasAssignableElements!R) {
alias InputAssignable!E ret;
} else {
alias InputRange!E ret;
}
}
}
/**Implements the most derived interface that $(D R) works with and wraps
* all relevant range primitives in virtual functions. If $(D R) is already
* derived from the $(D InputRange) interface, aliases itself away.
*/
template InputRangeObject(R) if(isInputRange!(Unqual!R)) {
static if(is(R : InputRange!(ElementType!R))) {
alias R InputRangeObject;
} else static if(!is(Unqual!R == R)) {
alias InputRangeObject!(Unqual!R) InputRangeObject;
} else {
///
class InputRangeObject : MostDerivedInputRange!(R) {
private R _range;
private alias ElementType!R E;
this(R range) {
this._range = range;
}
@property E front() { return _range.front; }
E moveFront() {
return .moveFront(_range);
}
void popFront() { _range.popFront(); }
@property bool empty() { return _range.empty; }
static if(isForwardRange!R) {
@property typeof(this) save() {
return new typeof(this)(_range.save);
}
}
static if(hasAssignableElements!R) {
@property void front(E newVal) {
_range.front = newVal;
}
}
static if(isBidirectionalRange!R) {
@property E back() { return _range.back; }
@property E moveBack() {
return .moveBack(_range);
}
@property void popBack() { return _range.back; }
static if(hasAssignableElements!R) {
@property void back(E newVal) {
_range.back = newVal;
}
}
}
static if(isRandomAccessRange!R) {
E opIndex(size_t index) {
return _range[index];
}
E moveAt(size_t index) {
return .moveAt(_range, index);
}
static if(hasAssignableElements!R) {
void opIndexAssign(E val, size_t index) {
_range[index] = val;
}
}
static if(!isInfinite!R) {
@property size_t length() {
return _range.length;
}
// Can't support slicing until all the issues with
// requiring slicing support for finite random access
// ranges are resolved.
version(none) {
typeof(this) opSlice(size_t lower, size_t upper) {
return new typeof(this)(_range[lower..upper]);
}
}
}
}
// Optimization: One delegate call is faster than three virtual
// function calls. Use opApply for foreach syntax.
int opApply(int delegate(ref E) dg) {
int res;
for(auto r = _range; !r.empty; r.popFront()) {
// Work around Bug 2443. This is slightly unsafe, but
// probably not in any way that matters in practice.
auto front = r.front;
res = dg(front);
if(res) break;
}
return res;
}
int opApply(int delegate(ref size_t, ref E) dg) {
int res;
size_t i = 0;
for(auto r = _range; !r.empty; r.popFront()) {
// Work around Bug 2443. This is slightly unsafe, but
// probably not in any way that matters in practice.
auto front = r.front;
res = dg(i, front);
if(res) break;
i++;
}
return res;
}
}
}
}
/**Convenience function for creating a $(D InputRangeObject) of the proper type.*/
InputRangeObject!R inputRangeObject(R)(R range) if(isInputRange!R) {
static if(is(R : InputRange!(ElementType!R))) {
return range;
} else {
return new InputRangeObject!R(range);
}
}
/**Convenience function for creating a $(D OutputRangeObject) with a base range
* of type $(D R) that accepts types $(D E).
Examples:
---
uint[] outputArray;
auto app = appender(&outputArray);
auto appWrapped = outputRangeObject!(uint, uint[])(app);
static assert(is(typeof(appWrapped) : OutputRange!(uint[])));
static assert(is(typeof(appWrapped) : OutputRange!(uint)));
---
*/
template outputRangeObject(E...) {
///
OutputRangeObject!(R, E) outputRangeObject(R)(R range) {
return new OutputRangeObject!(R, E)(range);
}
}
unittest {
static void testEquality(R)(iInputRange r1, R r2) {
assert(equal(r1, r2));
}
auto arr = [1,2,3,4];
RandomFiniteAssignable!int arrWrapped = inputRangeObject(arr);
static assert(isRandomAccessRange!(typeof(arrWrapped)));
// static assert(hasSlicing!(typeof(arrWrapped)));
static assert(hasLength!(typeof(arrWrapped)));
arrWrapped[0] = 0;
assert(arr[0] == 0);
assert(arr.moveFront == 0);
assert(arr.moveBack == 4);
assert(arr.moveAt(1) == 2);
foreach(elem; arrWrapped) {}
foreach(i, elem; arrWrapped) {}
assert(inputRangeObject(arrWrapped) is arrWrapped);
foreach(DummyType; AllDummyRanges) {
auto d = DummyType.init;
static assert(propagatesRangeType!(DummyType,
typeof(inputRangeObject(d))));
static assert(propagatesRangeType!(DummyType,
MostDerivedInputRange!DummyType));
InputRange!uint wrapped = inputRangeObject(d);
assert(equal(wrapped, d));
}
// Test output range stuff.
auto app = appender!(uint[])();
auto appWrapped = outputRangeObject!(uint, uint[])(app);
static assert(is(typeof(appWrapped) : OutputRange!(uint[])));
static assert(is(typeof(appWrapped) : OutputRange!(uint)));
appWrapped.put(1);
appWrapped.put([2, 3]);
assert(app.data.length == 3);
assert(equal(app.data, [1,2,3]));
}
/**
Represents a sorted random-access range. In addition to the regular
range primitives, supports fast operations using binary search. To
obtain a $(D SortedRange) from an unsorted range $(D r), use $(XREF
algorithm, sort) which sorts $(D r) in place and returns the
corresponding $(D SortedRange). To construct a $(D SortedRange) from a
range $(D r) that is known to be already sorted, use $(D assumeSorted)
described below.
Example:
----
auto a = [ 1, 2, 3, 42, 52, 64 ];
auto r = assumeSorted(a);
assert(r.canFind(3));
assert(!r.canFind(32));
auto r1 = sort!"a > b"(a);
assert(r1.canFind(3));
assert(!r1.canFind(32));
assert(r1.release() == [ 64, 52, 42, 3, 2, 1 ]);
----
$(D SortedRange) could accept ranges weaker than random-access, but it
is unable to provide interesting functionality for them. Therefore,
$(D SortedRange) is currently restricted to random-access ranges.
No copy of the original range is ever made. If the underlying range is
changed concurrently with its corresponding $(D SortedRange) in ways
that break its sortedness, $(D SortedRange) will work erratically.
Example:
----
auto a = [ 1, 2, 3, 42, 52, 64 ];
auto r = assumeSorted(a);
assert(r.canFind(42));
swap(a[2], a[5]); // illegal to break sortedness of original range
assert(!r.canFind(42)); // passes although it shouldn't
----
*/
struct SortedRange(Range, alias pred = "a < b")
if(isRandomAccessRange!(Unqual!Range))
{
alias Unqual!Range R;
private R _input;
this(R input)
{
this._input = input;
debug
{
// Check the sortedness of the input
if (this._input.length < 2) return;
immutable size_t msb = bsr(this._input.length) + 1;
assert(msb > 0 && msb <= this._input.length);
immutable step = this._input.length / msb;
static MinstdRand gen;
immutable start = uniform(0, step, gen);
auto st = stride(this._input, step);
assert(isSorted!pred(st), text(st));
}
}
/// Range primitives.
@property bool empty() //const
{
return this._input.empty;
}
/// Ditto
@property typeof(this) save()
{
typeof(this) result;
result._input = this._input.save;
return result;
}
/// Ditto
@property ElementType!R front()
{
return this._input.front;
}
/// Ditto
void popFront()
{
this._input.popFront();
}
/// Ditto
@property ElementType!R back()
{
return this._input.back;
}
/// Ditto
void popBack()
{
this._input.popBack();
}
/// Ditto
ElementType!R opIndex(size_t i)
{
return this._input[i];
}
/// Ditto
typeof(this) opSlice(size_t a, size_t b)
{
typeof(this) result;
result._input = this._input[a .. b]; // skip checking
return result;
}
/// Ditto
@property size_t length() //const
{
return this._input.length;
}
/**
Releases the controlled range and returns it.
*/
R release()
{
return move(this._input);
}
// lowerBound
/**
This function assumes that range $(D r) consists of a subrange $(D r1)
of elements $(D e1) for which $(D pred(e1, value)) is $(D true),
followed by a subrange $(D r2) of elements $(D e2) for which $(D
pred(e2, value)) is $(D false). Using this assumption, $(D lowerBound)
uses binary search to find $(D r1), i.e. the left subrange on which
$(D pred) is always $(D true). Performs $(BIGOH log(r.length))
evaluations of $(D pred). The precondition is not verified because it
would deteriorate function's complexity. It is possible that the types
of $(D value) and $(D ElementType!(Range)) are different, if the
predicate accepts them. See also STL's $(WEB
sgi.com/tech/stl/lower_bound.html, lower_bound).
Precondition: $(D find!(not!(pred))(r, value).length +
find!(pred)(retro(r), value).length == r.length)
Example:
----
auto a = assumeSorted([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]);
auto p = a.lowerBound(4);
assert(p.release == [ 0, 1, 2, 3 ]);
----
*/
typeof(this) lowerBound(V)(V value)
{
size_t first = 0, count = this._input.length;
while (count > 0)
{
immutable step = count / 2;
auto it = first + step;
if (binaryFun!(pred)(this._input[it], value))
{
first = it + 1;
count -= step + 1;
}
else
{
count = step;
}
}
return this[0 .. first];
}
// upperBound
/**
This function assumes that range $(D r) consists of a subrange $(D r1)
of elements $(D e1) for which $(D pred(value, e1)) is $(D false),
followed by a subrange $(D r2) of elements $(D e2) for which $(D
pred(value, e2)) is $(D true). (Note the differences in subrange
definition and argument order for $(D pred) compared to $(D
lowerBound).) Using this assumption, $(D upperBound) uses binary
search to find $(D r2), i.e. the right subrange on which $(D pred) is
always $(D true). Performs $(BIGOH log(r.length)) evaluations of $(D
pred). The precondition is not verified because it would deteriorate
function's complexity. It is possible that the types of $(D value) and
$(D ElementType!(Range)) are different, if the predicate accepts
them. See also STL's $(WEB sgi.com/tech/stl/lower_bound.html,
upper_bound).
Precondition: $(D find!(pred)(r, value).length +
find!(not!(pred))(retro(r), value).length == r.length)
Example:
----
auto a = assumeSorted([ 1, 2, 3, 3, 3, 4, 4, 5, 6 ]);
auto p = a.upperBound(3);
assert(p == [4, 4, 5, 6]);
----
*/
typeof(this) upperBound(V)(V value)
{
size_t first = 0;
size_t count = length;
while (count > 0)
{
auto step = count / 2;
auto it = first + step;
if (!binaryFun!(pred)(value, this[it]))
{
first = it + 1;
count -= step + 1;
}
else count = step;
}
return this[first .. length];
}
// equalRange
/**
Assuming a range satisfying both preconditions for $(D
lowerBound!(pred)(r, value)) and $(D upperBound!(pred)(r, value)), the
call $(D equalRange!(pred)(r, v)) returns the subrange containing all
elements $(D e) for which both $(D pred(e, value)) and $(D pred(value,
e)) evaluate to $(D false). Performs $(BIGOH log(r.length))
evaluations of $(D pred). See also STL's $(WEB
sgi.com/tech/stl/equal_range.html, equal_range).
Precondition: $(D find!(not!(pred))(r, value).length +
find!(pred)(retro(r), value).length == r.length) && $(D find!(pred)(r,
value).length + find!(not!(pred))(retro(r), value).length == r.length)
Example:
----
auto a = [ 1, 2, 3, 3, 3, 4, 4, 5, 6 ];
auto r = equalRange(a, 3);
assert(r == [ 3, 3, 3 ]);
----
*/
typeof(this) equalRange(V)(V value)
{
auto left = lowerBound(value);
auto right = this[left.length .. length].upperBound(value);
return this[left.length .. length - right.length];
}
// canFind
/**
Returns $(D true) if and only if $(D value) can be found in $(D
range), which is assumed to be sorted. Performs $(BIGOH log(r.length))
evaluations of $(D pred). See also STL's $(WEB
sgi.com/tech/stl/binary_search.html, binary_search).
*/
bool canFind(V)(V value)
{
auto lb = this.lowerBound(value);
return lb.length < length &&
!binaryFun!pred(value, this[lb.length]);
}
}
// Doc examples
unittest
{
auto a = [ 1, 2, 3, 42, 52, 64 ];
auto r = assumeSorted(a);
assert(r.canFind(3));
assert(!r.canFind(32));
auto r1 = sort!"a > b"(a);
assert(r1.canFind(3));
assert(!r1.canFind(32));
assert(r1.release() == [ 64, 52, 42, 3, 2, 1 ]);
}
unittest
{
// Check for small arrays
int[] a;
auto r = assumeSorted(a);
a = [ 1 ];
r = assumeSorted(a);
a = [ 1, 2 ];
r = assumeSorted(a);
a = [ 1, 2, 3 ];
r = assumeSorted(a);
}
unittest
{
auto a = [ 1, 2, 3, 42, 52, 64 ];
auto r = assumeSorted(a);
assert(r.canFind(42));
swap(a[2], a[5]); // illegal to break sortedness of original range
assert(!r.canFind(42)); // passes although it shouldn't
}
/**
Assumes $(D r) is sorted by predicate $(D pred) and returns the
corresponding $(D SortedRange!(pred, R)) having $(D r) as support. To
keep the checking costs low, the cost is $(BIGOH(1)) in release mode
(no checks for sortedness are performed). In debug mode, a few random
elements of $(D r) are checked for sortedness. The size of the sample
is proportional $(BIGOH log(r.length)). That way, checking has no
effect on the complexity of subsequent operations specific to sorted
ranges (such as binary search). The probability of an arbitrary
unsorted range failing the test is very high (however, an
almost-sorted range is likely to pass it). To check for sortedness at
cost $(BIGOH n), use $(XREF algorithm, isSorted).
*/
auto assumeSorted(alias pred = "a < b", R)(R r)
if(isRandomAccessRange!(Unqual!R))
{
return SortedRange!(R, pred)(r);
}
unittest
{
static assert(isRandomAccessRange!(SortedRange!(int[])));
// scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ];
auto p = assumeSorted(a).lowerBound(4);
assert(equal(p, [0, 1, 2, 3]));
p = assumeSorted(a).lowerBound(5);
assert(equal(p, [0, 1, 2, 3, 4]));
p = assumeSorted(a).lowerBound(6);
assert(equal(p, [ 0, 1, 2, 3, 4, 5]));
}
unittest
{
// scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 1, 2, 3, 3, 3, 4, 4, 5, 6 ];
auto p = assumeSorted(a).upperBound(3);
assert(equal(p, [4, 4, 5, 6 ]));
}
unittest
{
// scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done.");
int[] a = [ 1, 2, 3, 3, 3, 4, 4, 5, 6 ];
auto p = assumeSorted(a).equalRange(3);
assert(equal(p, [ 3, 3, 3 ]), text(p));
p = assumeSorted(a).equalRange(4);
assert(equal(p, [ 4, 4 ]), text(p));
p = assumeSorted(a).equalRange(2);
assert(equal(p, [ 2 ]));
}
unittest
{
// scope(success) writeln("unittest @", __FILE__, ":",
// __LINE__, " done.");
int[] a = [ 1, 2, 3, 3, 3, 4, 4, 5, 6 ];
if (a.length)
{
auto b = a[a.length / 2];
//auto r = sort(a);
//assert(r.canFind(b));
}
}
unittest
{
auto a = [ 5, 7, 34, 345, 677 ];
auto r = assumeSorted(a);
a = null;
r = assumeSorted(a);
a = [ 1 ];
r = assumeSorted(a);
bool ok = true;
try
{
auto r2 = assumeSorted([ 677, 345, 34, 7, 5 ]);
debug ok = false;
}
catch (Throwable)
{
}
assert(ok);
}