phobos/std/math.d
Don Clugston cde0563c68 Added NaN payload functions (from Tango).
Removed std.math.nan, which was a no-op.
2009-02-26 10:02:43 +00:00

3081 lines
91 KiB
D

// Written in the D programming language
/**
* Macros:
* WIKI = Phobos/StdMath
*
* TABLE_SV = <table border=1 cellpadding=4 cellspacing=0>
* <caption>Special Values</caption>
* $0</table>
* SVH = $(TR $(TH $1) $(TH $2))
* SV = $(TR $(TD $1) $(TD $2))
*
* NAN = $(RED NAN)
* SUP = <span style="vertical-align:super;font-size:smaller">$0</span>
* GAMMA = &#915;
* THETA = &theta;
* INTEGRAL = &#8747;
* INTEGRATE = $(BIG &#8747;<sub>$(SMALL $1)</sub><sup>$2</sup>)
* POWER = $1<sup>$2</sup>
* SUB = $1<sub>$2</sub>
* BIGSUM = $(BIG &Sigma; <sup>$2</sup><sub>$(SMALL $1)</sub>)
* CHOOSE = $(BIG &#40;) <sup>$(SMALL $1)</sup><sub>$(SMALL $2)</sub> $(BIG &#41;)
* PLUSMN = &plusmn;
* INFIN = &infin;
* PLUSMNINF = &plusmn;&infin;
* PI = &pi;
* LT = &lt;
* GT = &gt;
* SQRT = &radix;
* HALF = &frac12;
*/
/*
* Authors:
* Walter Bright, Don Clugston
* Copyright:
* Copyright (c) 2001-2005 by Digital Mars,
* All Rights Reserved,
* www.digitalmars.com
* License:
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* <ul>
* <li> The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* </li>
* <li> Altered source versions must be plainly marked as such, and must not
* be misrepresented as being the original software.
* </li>
* <li> This notice may not be removed or altered from any source
* distribution.
* </li>
* </ul>
*/
module(system) std.math;
//debug=math; // uncomment to turn on debugging printf's
private import std.stdio;
private import std.c.stdio;
private import std.string;
private import std.c.math;
private import std.traits;
version(GNU){
// GDC can't actually do inline asm.
} else version(D_InlineAsm_X86) {
version = Naked_D_InlineAsm_X86;
} else version(LDC) {
import ldc.intrinsics;
version(X86)
{
version = LDC_X86;
}
}
private:
/*
* The following IEEE 'real' formats are currently supported:
* 64 bit Big-endian 'double' (eg PowerPC)
* 128 bit Big-endian 'quadruple' (eg SPARC)
* 64 bit Little-endian 'double' (eg x86-SSE2)
* 80 bit Little-endian, with implied bit 'real80' (eg x87, Itanium).
* 128 bit Little-endian 'quadruple' (not implemented on any known processor!)
*
* Non-IEEE 128 bit Big-endian 'doubledouble' (eg PowerPC) has partial support
*/
version(LittleEndian) {
static assert(real.mant_dig == 53 || real.mant_dig==64
|| real.mant_dig == 113,
"Only 64-bit, 80-bit, and 128-bit reals"
" are supported for LittleEndian CPUs");
} else {
static assert(real.mant_dig == 53 || real.mant_dig==106
|| real.mant_dig == 113,
"Only 64-bit and 128-bit reals are supported for BigEndian CPUs."
" double-double reals have partial support");
}
// Constants used for extracting the components of the representation.
// They supplement the built-in floating point properties.
template floatTraits(T) {
// EXPMASK is a ushort mask to select the exponent portion (without sign)
// POW2MANTDIG = pow(2, real.mant_dig) is the value such that
// (smallest_denormal)*POW2MANTDIG == real.min
// EXPPOS_SHORT is the index of the exponent when represented as a ushort array.
// SIGNPOS_BYTE is the index of the sign when represented as a ubyte array.
static if (T.mant_dig == 24) { // float
enum ushort EXPMASK = 0x7F80;
enum ushort EXPBIAS = 0x3F00;
enum uint EXPMASK_INT = 0x7F80_0000;
enum uint MANTISSAMASK_INT = 0x007F_FFFF;
enum real POW2MANTDIG = 0x1p+24;
version(LittleEndian) {
enum EXPPOS_SHORT = 1;
} else {
enum EXPPOS_SHORT = 0;
}
} else static if (T.mant_dig == 53) { // double, or real==double
enum ushort EXPMASK = 0x7FF0;
enum ushort EXPBIAS = 0x3FE0;
enum uint EXPMASK_INT = 0x7FF0_0000;
enum uint MANTISSAMASK_INT = 0x000F_FFFF; // for the MSB only
enum real POW2MANTDIG = 0x1p+53;
version(LittleEndian) {
enum EXPPOS_SHORT = 3;
enum SIGNPOS_BYTE = 7;
} else {
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
} else static if (T.mant_dig == 64) { // real80
enum ushort EXPMASK = 0x7FFF;
enum ushort EXPBIAS = 0x3FFE;
enum real POW2MANTDIG = 0x1p+63;
version(LittleEndian) {
enum EXPPOS_SHORT = 4;
enum SIGNPOS_BYTE = 9;
} else {
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
} else static if (real.mant_dig == 113){ // quadruple
enum ushort EXPMASK = 0x7FFF;
enum real POW2MANTDIG = 0x1p+113;
version(LittleEndian) {
enum EXPPOS_SHORT = 7;
enum SIGNPOS_BYTE = 15;
} else {
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
} else static if (real.mant_dig == 106) { // doubledouble
enum ushort EXPMASK = 0x7FF0;
enum real POW2MANTDIG = 0x1p+53; // doubledouble denormals are strange
// and the exponent byte is not unique
version(LittleEndian) {
enum EXPPOS_SHORT = 7; // [3] is also an exp short
enum SIGNPOS_BYTE = 15;
} else {
enum EXPPOS_SHORT = 0; // [4] is also an exp short
enum SIGNPOS_BYTE = 0;
}
}
}
// These apply to all floating-point types
version(LittleEndian) {
enum MANTISSA_LSB = 0;
enum MANTISSA_MSB = 1;
} else {
enum MANTISSA_LSB = 1;
enum MANTISSA_MSB = 0;
}
public:
class NotImplemented : Error
{
this(string msg)
{
super(msg ~ " not implemented");
}
}
enum real E = 2.7182818284590452354L; /** e */ // 3.32193 fldl2t
enum real LOG2T = 0x1.a934f0979a3715fcp+1; /** $(SUB log, 2)10 */ // 1.4427 fldl2e
enum real LOG2E = 0x1.71547652b82fe178p+0; /** $(SUB log, 2)e */ // 0.30103 fldlg2
enum real LOG2 = 0x1.34413509f79fef32p-2; /** $(SUB log, 10)2 */
enum real LOG10E = 0.43429448190325182765; /** $(SUB log, 10)e */
enum real LN2 = 0x1.62e42fefa39ef358p-1; /** ln 2 */ // 0.693147 fldln2
enum real LN10 = 2.30258509299404568402; /** ln 10 */
enum real PI = 0x1.921fb54442d1846ap+1; /** $(_PI) */ // 3.14159 fldpi
enum real PI_2 = 1.57079632679489661923; /** $(PI) / 2 */
enum real PI_4 = 0.78539816339744830962; /** $(PI) / 4 */
enum real M_1_PI = 0.31830988618379067154; /** 1 / $(PI) */
enum real M_2_PI = 0.63661977236758134308; /** 2 / $(PI) */
enum real M_2_SQRTPI = 1.12837916709551257390; /** 2 / $(SQRT)$(PI) */
enum real SQRT2 = 1.41421356237309504880; /** $(SQRT)2 */
enum real SQRT1_2 = 0.70710678118654752440; /** $(SQRT)$(HALF) */
/*
Octal versions:
PI/64800 0.00001 45530 36176 77347 02143 15351 61441 26767
PI/180 0.01073 72152 11224 72344 25603 54276 63351 22056
PI/8 0.31103 75524 21026 43021 51423 06305 05600 67016
SQRT(1/PI) 0.44067 27240 41233 33210 65616 51051 77327 77303
2/PI 0.50574 60333 44710 40522 47741 16537 21752 32335
PI/4 0.62207 73250 42055 06043 23046 14612 13401 56034
SQRT(2/PI) 0.63041 05147 52066 24106 41762 63612 00272 56161
PI 3.11037 55242 10264 30215 14230 63050 56006 70163
LOG2 0.23210 11520 47674 77674 61076 11263 26013 37111
*/
/***********************************
* Calculates the absolute value
*
* For complex numbers, abs(z) = sqrt( $(POWER z.re, 2) + $(POWER z.im, 2) )
* = hypot(z.re, z.im).
*/
Num abs(Num)(Num x) if (is(typeof(Num >= 0)) && is(typeof(-Num)) &&
!(is(Num* : const(ifloat*)) || is(Num* : const(idouble*))
|| is(Num* : const(ireal*))))
{
static if (isFloatingPoint!(Num))
return fabs(x);
else
return x>=0 ? x : -x;
}
auto abs(Num)(Num z)
if (is(Num* : const(cfloat*)) || is(Num* : const(cdouble*))
|| is(Num* : const(creal*)))
{
return hypot(z.re, z.im);
}
/** ditto */
real abs(Num)(Num y)
if (is(Num* : const(ifloat*)) || is(Num* : const(idouble*))
|| is(Num* : const(ireal*)))
{
return fabs(y.im);
}
unittest
{
assert(isIdentical(abs(-0.0L), 0.0L));
assert(isnan(abs(real.nan)));
assert(abs(-real.infinity) == real.infinity);
assert(abs(-3.2Li) == 3.2L);
assert(abs(71.6Li) == 71.6L);
assert(abs(-56) == 56);
assert(abs(2321312L) == 2321312L);
assert(abs(-1+1i) == sqrt(2.0));
}
/***********************************
* Complex conjugate
*
* conj(x + iy) = x - iy
*
* Note that z * conj(z) = $(POWER z.re, 2) - $(POWER z.im, 2)
* is always a real number
*/
creal conj(creal z)
{
return z.re - z.im*1i;
}
/** ditto */
ireal conj(ireal y)
{
return -y;
}
unittest
{
assert(conj(7 + 3i) == 7-3i);
ireal z = -3.2Li;
assert(conj(z) == -z);
}
/***********************************
* Returns cosine of x. x is in radians.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH cos(x)) $(TH invalid?))
* $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes) )
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) $(TD yes) )
* )
* Bugs:
* Results are undefined if |x| >= $(POWER 2,64).
*/
pure nothrow real cos(real x); /* intrinsic */
/***********************************
* Returns sine of x. x is in radians.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH sin(x)) $(TH invalid?))
* $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no))
* $(TR $(TD $(PLUSMNINF)) $(TD $(NAN)) $(TD yes))
* )
* Bugs:
* Results are undefined if |x| >= $(POWER 2,64).
*/
pure nothrow real sin(real x); /* intrinsic */
/***********************************
* sine, complex and imaginary
*
* sin(z) = sin(z.re)*cosh(z.im) + cos(z.re)*sinh(z.im)i
*
* If both sin($(THETA)) and cos($(THETA)) are required,
* it is most efficient to use expi($(THETA)).
*/
creal sin(creal z)
{
creal cs = expi(z.re);
creal csh = coshisinh(z.im);
return cs.im * csh.re + cs.re * csh.im * 1i;
}
/** ditto */
ireal sin(ireal y)
{
return cosh(y.im)*1i;
}
unittest
{
assert(sin(0.0+0.0i) == 0.0);
assert(sin(2.0+0.0i) == sin(2.0L) );
}
/***********************************
* cosine, complex and imaginary
*
* cos(z) = cos(z.re)*cosh(z.im) - sin(z.re)*sinh(z.im)i
*/
creal cos(creal z)
{
creal cs = expi(z.re);
creal csh = coshisinh(z.im);
return cs.re * csh.re - cs.im * csh.im * 1i;
}
/** ditto */
real cos(ireal y)
{
return cosh(y.im);
}
unittest{
assert(cos(0.0+0.0i)==1.0);
assert(cos(1.3L+0.0i)==cos(1.3L));
// @@@FAILS
//assert(cos(5.2Li)== cosh(5.2L));
}
/****************************************************************************
* Returns tangent of x. x is in radians.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH tan(x)) $(TH invalid?))
* $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no))
* $(TR $(TD $(PLUSMNINF)) $(TD $(NAN)) $(TD yes))
* )
*/
pure nothrow real tan(real x)
{
version(Naked_D_InlineAsm_X86) {
asm
{
fld x[EBP] ; // load theta
fxam ; // test for oddball values
fstsw AX ;
sahf ;
jc trigerr ; // x is NAN, infinity, or empty
// 387's can handle denormals
SC18: fptan ;
fstp ST(0) ; // dump X, which is always 1
fstsw AX ;
sahf ;
jnp Lret ; // C2 = 1 (x is out of range)
// Do argument reduction to bring x into range
fldpi ;
fxch ;
SC17: fprem1 ;
fstsw AX ;
sahf ;
jp SC17 ;
fstp ST(1) ; // remove pi from stack
jmp SC18 ;
trigerr:
jnp Lret ; // if theta is NAN, return theta
fstp ST(0) ; // dump theta
}
return real.nan;
Lret:
;
} else {
return stdc.math.tanl(x);
}
}
unittest
{
static real vals[][2] = // angle,tan
[
[ 0, 0],
[ .5, .5463024898],
[ 1, 1.557407725],
[ 1.5, 14.10141995],
[ 2, -2.185039863],
[ 2.5,-.7470222972],
[ 3, -.1425465431],
[ 3.5, .3745856402],
[ 4, 1.157821282],
[ 4.5, 4.637332055],
[ 5, -3.380515006],
[ 5.5,-.9955840522],
[ 6, -.2910061914],
[ 6.5, .2202772003],
[ 10, .6483608275],
// special angles
[ PI_4, 1],
//[ PI_2, real.infinity],
[ 3*PI_4, -1],
[ PI, 0],
[ 5*PI_4, 1],
//[ 3*PI_2, -real.infinity],
[ 7*PI_4, -1],
[ 2*PI, 0],
// overflow
[ real.infinity, real.nan],
[ real.nan, real.nan],
//[ 1e+100, real.nan],
];
int i;
for (i = 0; i < vals.length; i++)
{
real x = vals[i][0];
real r = vals[i][1];
real t = tan(x);
//printf("tan(%Lg) = %Lg, should be %Lg\n", x, t, r);
assert(mfeq(r, t, .0000001));
x = -x;
r = -r;
t = tan(x);
//printf("tan(%Lg) = %Lg, should be %Lg\n", x, t, r);
assert(mfeq(r, t, .0000001));
}
}
/***************
* Calculates the arc cosine of x,
* returning a value ranging from -$(PI)/2 to $(PI)/2.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH acos(x)) $(TH invalid?))
* $(TR $(TD $(GT)1.0) $(TD $(NAN)) $(TD yes))
* $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD yes))
* $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes))
* )
*/
float acos(float x) { return std.c.math.acosf(x); }
/// ditto
double acos(double x) { return std.c.math.acos(x); }
/// ditto
real acos(real x) { return std.c.math.acosl(x); }
/***************
* Calculates the arc sine of x,
* returning a value ranging from -$(PI)/2 to $(PI)/2.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH asin(x)) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no))
* $(TR $(TD $(GT)1.0) $(TD $(NAN)) $(TD yes))
* $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD yes))
* )
*/
float asin(float x) { return std.c.math.asinf(x); }
/// ditto
double asin(double x) { return std.c.math.asin(x); }
/// ditto
real asin(real x) { return std.c.math.asinl(x); }
/***************
* Calculates the arc tangent of x,
* returning a value ranging from -$(PI)/2 to $(PI)/2.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH atan(x)) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no))
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) $(TD yes))
* )
*/
float atan(float x) { return std.c.math.atanf(x); }
/// ditto
double atan(double x) { return std.c.math.atan(x); }
/// ditto
real atan(real x) { return std.c.math.atanl(x); }
/***************
* Calculates the arc tangent of y / x,
* returning a value ranging from -$(PI) to $(PI).
*
* $(TABLE_SV
* $(TR $(TH y) $(TH x) $(TH atan(y, x)))
* $(TR $(TD $(NAN)) $(TD anything) $(TD $(NAN)) )
* $(TR $(TD anything) $(TD $(NAN)) $(TD $(NAN)) )
* $(TR $(TD $(PLUSMN)0.0) $(TD $(GT)0.0) $(TD $(PLUSMN)0.0) )
* $(TR $(TD $(PLUSMN)0.0) $(TD +0.0) $(TD $(PLUSMN)0.0) )
* $(TR $(TD $(PLUSMN)0.0) $(TD $(LT)0.0) $(TD $(PLUSMN)$(PI)))
* $(TR $(TD $(PLUSMN)0.0) $(TD -0.0) $(TD $(PLUSMN)$(PI)))
* $(TR $(TD $(GT)0.0) $(TD $(PLUSMN)0.0) $(TD $(PI)/2) )
* $(TR $(TD $(LT)0.0) $(TD $(PLUSMN)0.0) $(TD -$(PI)/2) )
* $(TR $(TD $(GT)0.0) $(TD $(INFIN)) $(TD $(PLUSMN)0.0) )
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD anything) $(TD $(PLUSMN)$(PI)/2))
* $(TR $(TD $(GT)0.0) $(TD -$(INFIN)) $(TD $(PLUSMN)$(PI)) )
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(INFIN)) $(TD $(PLUSMN)$(PI)/4))
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD -$(INFIN)) $(TD $(PLUSMN)3$(PI)/4))
* )
*/
float atan2(float y, float x) { return std.c.math.atan2f(y,x); }
/// ditto
double atan2(double y, double x) { return std.c.math.atan2(y,x); }
/// ditto
real atan2(real y, real x) { return std.c.math.atan2l(y,x); }
/***********************************
* Calculates the hyperbolic cosine of x.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH cosh(x)) $(TH invalid?))
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)0.0) $(TD no) )
* )
*/
real cosh(real x) {
// cosh = (exp(x)+exp(-x))/2.
// The naive implementation works correctly.
real y = exp(x);
return (y + 1.0/y) * 0.5;
}
/***********************************
* Calculates the hyperbolic sine of x.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH sinh(x)) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no))
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)$(INFIN)) $(TD no))
* )
*/
real sinh(real x)
{
// sinh(x) = (exp(x)-exp(-x))/2;
// Very large arguments could cause an overflow, but
// the maximum value of x for which exp(x) + exp(-x)) != exp(x)
// is x = 0.5 * (real.mant_dig) * LN2. // = 22.1807 for real80.
if (fabs(x) > real.mant_dig * LN2) {
return copysign(0.5 * exp(fabs(x)), x);
}
real y = expm1(x);
return 0.5 * y / (y+1) * (y+2);
}
/***********************************
* Calculates the hyperbolic tangent of x.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH tanh(x)) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) )
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)1.0) $(TD no))
* )
*/
real tanh(real x)
{
// tanh(x) = (exp(x) - exp(-x))/(exp(x)+exp(-x))
if (fabs(x) > real.mant_dig * LN2) {
return copysign(1, x);
}
real y = expm1(2*x);
return y / (y + 2);
}
private:
/* Returns cosh(x) + I * sinh(x)
* Only one call to exp() is performed.
*/
creal coshisinh(real x)
{
// See comments for cosh, sinh.
if (fabs(x) > real.mant_dig * LN2) {
real y = exp(fabs(x));
return y*0.5 + 0.5i * copysign(y, x);
} else {
real y = expm1(x);
return (y + 1.0 + 1.0/(y+1.0)) * 0.5 + 0.5i * y / (y+1) * (y+2);
}
}
unittest {
creal c = coshisinh(3.0);
assert(c.re == cosh(3.0));
assert(c.im == sinh(3.0));
}
public:
/***********************************
* Calculates the inverse hyperbolic cosine of x.
*
* Mathematically, acosh(x) = log(x + sqrt( x*x - 1))
*
* $(TABLE_DOMRG
* $(DOMAIN 1..$(INFIN))
* $(RANGE 1..log(real.max), $(INFIN)) )
* $(TABLE_SV
* $(SVH x, acosh(x) )
* $(SV $(NAN), $(NAN) )
* $(SV <1, $(NAN) )
* $(SV 1, 0 )
* $(SV +$(INFIN),+$(INFIN))
* )
*/
real acosh(real x)
{
if (x > 1/real.epsilon)
return LN2 + log(x);
else
return log(x + sqrt(x*x - 1));
}
unittest
{
assert(isnan(acosh(0.9)));
assert(isnan(acosh(real.nan)));
assert(acosh(1)==0.0);
assert(acosh(real.infinity) == real.infinity);
}
/***********************************
* Calculates the inverse hyperbolic sine of x.
*
* Mathematically,
* ---------------
* asinh(x) = log( x + sqrt( x*x + 1 )) // if x >= +0
* asinh(x) = -log(-x + sqrt( x*x + 1 )) // if x <= -0
* -------------
*
* $(TABLE_SV
* $(SVH x, asinh(x) )
* $(SV $(NAN), $(NAN) )
* $(SV $(PLUSMN)0, $(PLUSMN)0 )
* $(SV $(PLUSMN)$(INFIN),$(PLUSMN)$(INFIN))
* )
*/
real asinh(real x)
{
if (fabs(x) > 1 / real.epsilon) { // beyond this point, x*x + 1 == x*x
return copysign(LN2 + log(fabs(x)), x);
} else {
// sqrt(x*x + 1) == 1 + x * x / ( 1 + sqrt(x*x + 1) )
return copysign(log1p(fabs(x) + x*x / (1 + sqrt(x*x + 1)) ), x);
}
}
unittest
{
assert(isIdentical(asinh(0.0), 0.0));
assert(isIdentical(asinh(-0.0), -0.0));
assert(asinh(real.infinity) == real.infinity);
assert(asinh(-real.infinity) == -real.infinity);
assert(isnan(asinh(real.nan)));
}
/***********************************
* Calculates the inverse hyperbolic tangent of x,
* returning a value from ranging from -1 to 1.
*
* Mathematically, atanh(x) = log( (1+x)/(1-x) ) / 2
*
*
* $(TABLE_DOMRG
* $(DOMAIN -$(INFIN)..$(INFIN))
* $(RANGE -1..1) )
* $(TABLE_SV
* $(SVH x, acosh(x) )
* $(SV $(NAN), $(NAN) )
* $(SV $(PLUSMN)0, $(PLUSMN)0)
* $(SV -$(INFIN), -0)
* )
*/
real atanh(real x)
{
// log( (1+x)/(1-x) ) == log ( 1 + (2*x)/(1-x) )
return 0.5 * log1p( 2 * x / (1 - x) );
}
unittest
{
assert(isIdentical(atanh(0.0), 0.0));
assert(isIdentical(atanh(-0.0),-0.0));
assert(isnan(atanh(real.nan)));
assert(isnan(atanh(-real.infinity)));
}
/*****************************************
* Returns x rounded to a long value using the current rounding mode.
* If the integer value of x is
* greater than long.max, the result is
* indeterminate.
*/
pure nothrow long rndtol(real x); /* intrinsic */
/*****************************************
* Returns x rounded to a long value using the FE_TONEAREST rounding mode.
* If the integer value of x is
* greater than long.max, the result is
* indeterminate.
*/
extern (C) real rndtonl(real x);
/***************************************
* Compute square root of x.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH sqrt(x)) $(TH invalid?))
* $(TR $(TD -0.0) $(TD -0.0) $(TD no))
* $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD yes))
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no))
* )
*/
pure nothrow
{
float sqrt(float x); /* intrinsic */
double sqrt(double x); /* intrinsic */ /// ditto
real sqrt(real x); /* intrinsic */ /// ditto
}
creal sqrt(creal z)
{
creal c;
real x,y,w,r;
if (z == 0)
{
c = 0 + 0i;
}
else
{
real z_re = z.re;
real z_im = z.im;
x = fabs(z_re);
y = fabs(z_im);
if (x >= y)
{
r = y / x;
w = sqrt(x) * sqrt(0.5 * (1 + sqrt(1 + r * r)));
}
else
{
r = x / y;
w = sqrt(y) * sqrt(0.5 * (r + sqrt(1 + r * r)));
}
if (z_re >= 0)
{
c = w + (z_im / (w + w)) * 1.0i;
}
else
{
if (z_im < 0)
w = -w;
c = z_im / (w + w) + w * 1.0i;
}
}
return c;
}
/**
* Calculates e$(SUP x).
*
* $(TABLE_SV
* $(TR $(TH x) $(TH e$(SUP x)) )
* $(TD +$(INFIN)) $(TD +$(INFIN)) )
* $(TD -$(INFIN)) $(TD +0.0) )
* $(TR $(TD $(NAN)) $(TD $(NAN)) )
* )
*/
real exp(real x) {
version(Naked_D_InlineAsm_X86) {
// e^x = 2^(LOG2E*x)
// (This is valid because the overflow & underflow limits for exp
// and exp2 are so similar).
return exp2(LOG2E*x);
} else {
return std.c.math.exp(x);
}
}
/**
* Calculates the value of the natural logarithm base (e)
* raised to the power of x, minus 1.
*
* For very small x, expm1(x) is more accurate
* than exp(x)-1.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH e$(SUP x)-1) )
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) )
* $(TD +$(INFIN)) $(TD +$(INFIN)) )
* $(TD -$(INFIN)) $(TD -1.0) )
* $(TR $(TD $(NAN)) $(TD $(NAN)) )
* )
*/
real expm1(real x)
{
version(Naked_D_InlineAsm_X86) {
enum { PARAMSIZE = (real.sizeof+3)&(0xFFFF_FFFC) } // always a multiple of 4
asm {
/* expm1() for x87 80-bit reals, IEEE754-2008 conformant.
* Author: Don Clugston.
*
* expm1(x) = 2^(rndint(y))* 2^(y-rndint(y)) - 1 where y = LN2*x.
* = 2rndy * 2ym1 + 2rndy - 1, where 2rndy = 2^(rndint(y))
* and 2ym1 = (2^(y-rndint(y))-1).
* If 2rndy < 0.5*real.epsilon, result is -1.
* Implementation is otherwise the same as for exp2()
*/
naked;
fld real ptr [ESP+4] ; // x
mov AX, [ESP+4+8]; // AX = exponent and sign
sub ESP, 12+8; // Create scratch space on the stack
// [ESP,ESP+2] = scratchint
// [ESP+4..+6, +8..+10, +10] = scratchreal
// set scratchreal mantissa = 1.0
mov dword ptr [ESP+8], 0;
mov dword ptr [ESP+8+4], 0x80000000;
and AX, 0x7FFF; // drop sign bit
cmp AX, 0x401D; // avoid InvalidException in fist
jae L_extreme;
fldl2e;
fmul ; // y = x*log2(e)
fist dword ptr [ESP]; // scratchint = rndint(y)
fisub dword ptr [ESP]; // y - rndint(y)
// and now set scratchreal exponent
mov EAX, [ESP];
add EAX, 0x3fff;
jle short L_largenegative;
cmp EAX,0x8000;
jge short L_largepositive;
mov [ESP+8+8],AX;
f2xm1; // 2^(y-rndint(y)) -1
fld real ptr [ESP+8] ; // 2^rndint(y)
fmul ST(1), ST;
fld1;
fsubp ST(1), ST;
fadd;
add ESP,12+8;
ret PARAMSIZE;
L_extreme: // Extreme exponent. X is very large positive, very
// large negative, infinity, or NaN.
fxam;
fstsw AX;
test AX, 0x0400; // NaN_or_zero, but we already know x!=0
jz L_was_nan; // if x is NaN, returns x
test AX, 0x0200;
jnz L_largenegative;
L_largepositive:
// Set scratchreal = real.max.
// squaring it will create infinity, and set overflow flag.
mov word ptr [ESP+8+8], 0x7FFE;
fstp ST(0), ST;
fld real ptr [ESP+8]; // load scratchreal
fmul ST(0), ST; // square it, to create havoc!
L_was_nan:
add ESP,12+8;
ret PARAMSIZE;
L_largenegative:
fstp ST(0), ST;
fld1;
fchs; // return -1. Underflow flag is not set.
add ESP,12+8;
ret PARAMSIZE;
}
} else {
return std.c.math.expm1(x);
}
}
/**
* Calculates 2$(SUP x).
*
* $(TABLE_SV
* $(TR $(TH x) $(TH exp2(x) )
* $(TD +$(INFIN)) $(TD +$(INFIN)) )
* $(TD -$(INFIN)) $(TD +0.0) )
* $(TR $(TD $(NAN)) $(TD $(NAN)) )
* )
*/
real exp2(real x)
{
version(Naked_D_InlineAsm_X86) {
enum { PARAMSIZE = (real.sizeof+3)&(0xFFFF_FFFC) } // always a multiple of 4
asm {
/* exp2() for x87 80-bit reals, IEEE754-2008 conformant.
* Author: Don Clugston.
*
* exp2(x) = 2^(rndint(x))* 2^(y-rndint(x))
* The trick for high performance is to avoid the fscale(28cycles on core2),
* frndint(19 cycles), leaving f2xm1(19 cycles) as the only slow instruction.
*
* We can do frndint by using fist. BUT we can't use it for huge numbers,
* because it will set the Invalid Operation flag is overflow or NaN occurs.
* Fortunately, whenever this happens the result would be zero or infinity.
*
* We can perform fscale by directly poking into the exponent. BUT this doesn't
* work for the (very rare) cases where the result is subnormal. So we fall back
* to the slow method in that case.
*/
naked;
fld real ptr [ESP+4] ; // x
mov AX, [ESP+4+8]; // AX = exponent and sign
sub ESP, 12+8; // Create scratch space on the stack
// [ESP,ESP+2] = scratchint
// [ESP+4..+6, +8..+10, +10] = scratchreal
// set scratchreal mantissa = 1.0
mov dword ptr [ESP+8], 0;
mov dword ptr [ESP+8+4], 0x80000000;
and AX, 0x7FFF; // drop sign bit
cmp AX, 0x401D; // avoid InvalidException in fist
jae L_extreme;
fist dword ptr [ESP]; // scratchint = rndint(x)
fisub dword ptr [ESP]; // x - rndint(x)
// and now set scratchreal exponent
mov EAX, [ESP];
add EAX, 0x3fff;
jle short L_subnormal;
cmp EAX,0x8000;
jge short L_overflow;
mov [ESP+8+8],AX;
L_normal:
f2xm1;
fld1;
fadd; // 2^(x-rndint(x))
fld real ptr [ESP+8] ; // 2^rndint(x)
add ESP,12+8;
fmulp ST(1), ST;
ret PARAMSIZE;
L_subnormal:
// Result will be subnormal.
// In this rare case, the simple poking method doesn't work.
// The speed doesn't matter, so use the slow fscale method.
fild dword ptr [ESP]; // scratchint
fld1;
fscale;
fstp real ptr [ESP+8]; // scratchreal = 2^scratchint
fstp ST(0),ST; // drop scratchint
jmp L_normal;
L_extreme: // Extreme exponent. X is very large positive, very
// large negative, infinity, or NaN.
fxam;
fstsw AX;
test AX, 0x0400; // NaN_or_zero, but we already know x!=0
jz L_was_nan; // if x is NaN, returns x
// set scratchreal = real.min
// squaring it will return 0, setting underflow flag
mov word ptr [ESP+8+8], 1;
test AX, 0x0200;
jnz L_waslargenegative;
L_overflow:
// Set scratchreal = real.max.
// squaring it will create infinity, and set overflow flag.
mov word ptr [ESP+8+8], 0x7FFE;
L_waslargenegative:
fstp ST(0), ST;
fld real ptr [ESP+8]; // load scratchreal
fmul ST(0), ST; // square it, to create havoc!
L_was_nan:
add ESP,12+8;
ret PARAMSIZE;
}
} else {
return std.c.math.exp2(x);
}
}
unittest{
assert(exp2(0.5L)== SQRT2);
assert(exp2(8L) == 256.0);
assert(exp2(-9L)== 1.0L/512.0);
assert(exp(3) == E*E*E);
}
/**
* Calculate cos(y) + i sin(y).
*
* On many CPUs (such as x86), this is a very efficient operation;
* almost twice as fast as calculating sin(y) and cos(y) separately,
* and is the preferred method when both are required.
*/
creal expi(real y)
{
version(D_InlineAsm_X86)
{
asm
{
fld y;
fsincos;
fxch ST(1), ST(0);
}
}
else
{
return cos(y) + sin(y)*1i;
}
}
unittest
{
assert(expi(1.3e5L) == cos(1.3e5L) + sin(1.3e5L) * 1i);
assert(expi(0.0L) == 1L + 0.0Li);
}
/*********************************************************************
* Separate floating point value into significand and exponent.
*
* Returns:
* Calculate and return $(I x) and $(I exp) such that
* value =$(I x)*2$(SUP exp) and
* .5 $(LT)= |$(I x)| $(LT) 1.0
*
* $(I x) has same sign as value.
*
* $(TABLE_SV
* $(TR $(TH value) $(TH returns) $(TH exp))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD 0))
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD int.max))
* $(TR $(TD -$(INFIN)) $(TD -$(INFIN)) $(TD int.min))
* $(TR $(TD $(PLUSMN)$(NAN)) $(TD $(PLUSMN)$(NAN)) $(TD int.min))
* )
*/
real frexp(real value, out int exp)
{
ushort* vu = cast(ushort*)&value;
long* vl = cast(long*)&value;
uint ex;
alias floatTraits!(real) F;
ex = vu[F.EXPPOS_SHORT] & F.EXPMASK;
static if (real.mant_dig == 64) { // real80
if (ex) { // If exponent is non-zero
if (ex == F.EXPMASK) { // infinity or NaN
if (*vl & 0x7FFF_FFFF_FFFF_FFFF) { // NaN
*vl |= 0xC000_0000_0000_0000; // convert NaNS to NaNQ
exp = int.min;
} else if (vu[F.EXPPOS_SHORT] & 0x8000) { // negative infinity
exp = int.min;
} else { // positive infinity
exp = int.max;
}
} else {
exp = ex - F.EXPBIAS;
vu[F.EXPPOS_SHORT] =
cast(ushort)((0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FFE);
}
} else if (!*vl) {
// value is +-0.0
exp = 0;
} else {
// denormal
int i = -0x3FFD;
do {
i--;
*vl <<= 1;
} while (*vl > 0);
exp = i;
vu[F.EXPPOS_SHORT] =
cast(ushort)((0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FFE);
}
} else static if (real.mant_dig == 113) { // quadruple
if (ex) { // If exponent is non-zero
if (ex == F.EXPMASK) { // infinity or NaN
if (vl[MANTISSA_LSB] |
( vl[MANTISSA_MSB] & 0x0000_FFFF_FFFF_FFFF)) { // NaN
// convert NaNS to NaNQ
vl[MANTISSA_MSB] |= 0x0000_8000_0000_0000;
exp = int.min;
} else if (vu[F.EXPPOS_SHORT] & 0x8000) { // negative infinity
exp = int.min;
} else { // positive infinity
exp = int.max;
}
} else {
exp = ex - F.EXPBIAS;
vu[F.EXPPOS_SHORT] =
cast(ushort)((0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FFE);
}
} else if ((vl[MANTISSA_LSB]
|(vl[MANTISSA_MSB] & 0x0000_FFFF_FFFF_FFFF)) == 0) {
// value is +-0.0
exp = 0;
} else {
// denormal
value *= F.POW2MANTDIG;
ex = vu[F.EXPPOS_SHORT] & F.EXPMASK;
exp = ex - F.EXPBIAS - 113;
vu[F.EXPPOS_SHORT] =
cast(ushort)((0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FFE);
}
} else static if (real.mant_dig==53) { // real is double
if (ex) { // If exponent is non-zero
if (ex == F.EXPMASK) { // infinity or NaN
if (*vl == 0x7FF0_0000_0000_0000) { // positive infinity
exp = int.max;
} else if (*vl == 0xFFF0_0000_0000_0000) { // negative infinity
exp = int.min;
} else { // NaN
*vl |= 0x0008_0000_0000_0000; // convert NaNS to NaNQ
exp = int.min;
}
} else {
exp = (ex - F.EXPBIAS) >>> 4;
vu[F.EXPPOS_SHORT] = cast(ushort)((0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FE0);
}
} else if (!(*vl & 0x7FFF_FFFF_FFFF_FFFF)) {
// value is +-0.0
exp = 0;
} else {
// denormal
ushort sgn;
sgn = cast(ushort)((0x8000 & vu[F.EXPPOS_SHORT])| 0x3FE0);
*vl &= 0x7FFF_FFFF_FFFF_FFFF;
int i = -0x3FD+11;
do {
i--;
*vl <<= 1;
} while (*vl > 0);
exp = i;
vu[F.EXPPOS_SHORT] = sgn;
}
} else { //static if(real.mant_dig==106) // doubledouble
throw new NotImplemented("frexp");
}
return value;
}
unittest
{
static real vals[][3] = // x,frexp,exp
[
[0.0, 0.0, 0],
[-0.0, -0.0, 0],
[1.0, .5, 1],
[-1.0, -.5, 1],
[2.0, .5, 2],
[double.min/2.0, .5, -1022],
[real.infinity,real.infinity,int.max],
[-real.infinity,-real.infinity,int.min],
[real.nan,real.nan,int.min],
[-real.nan,-real.nan,int.min],
];
int i;
for (i = 0; i < vals.length; i++) {
real x = vals[i][0];
real e = vals[i][1];
int exp = cast(int)vals[i][2];
int eptr;
real v = frexp(x, eptr);
// printf("frexp(%La) = %La, should be %La, eptr = %d, should be %d\n",
// x, v, e, eptr, exp);
assert(isIdentical(e, v));
assert(exp == eptr);
}
static if (real.mant_dig == 64) {
static real extendedvals[][3] = [ // x,frexp,exp
[0x1.a5f1c2eb3fe4efp+73, 0x1.A5F1C2EB3FE4EFp-1, 74], // normal
[0x1.fa01712e8f0471ap-1064, 0x1.fa01712e8f0471ap-1, -1063],
[real.min, .5, -16381],
[real.min/2.0L, .5, -16382] // denormal
];
for (i = 0; i < extendedvals.length; i++) {
real x = extendedvals[i][0];
real e = extendedvals[i][1];
int exp = cast(int)extendedvals[i][2];
int eptr;
real v = frexp(x, eptr);
assert(isIdentical(e, v));
assert(exp == eptr);
}
}
}
/******************************************
* Extracts the exponent of x as a signed integral value.
*
* If x is not a special value, the result is the same as
* $(D cast(int)logb(x)).
*
* $(TABLE_SV
* $(TR $(TH x) $(TH ilogb(x)) $(TH Range error?))
* $(TR $(TD 0) $(TD FP_ILOGB0) $(TD yes))
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD int.max) $(TD no))
* $(TR $(TD $(NAN)) $(TD FP_ILOGBNAN) $(TD no))
* )
*/
int ilogb(real x) { return std.c.math.ilogbl(x); }
alias std.c.math.FP_ILOGB0 FP_ILOGB0;
alias std.c.math.FP_ILOGBNAN FP_ILOGBNAN;
/*******************************************
* Compute n * 2$(SUP exp)
* References: frexp
*/
pure nothrow real ldexp(real n, int exp); /* intrinsic */
/**************************************
* Calculate the natural logarithm of x.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH log(x)) $(TH divide by 0?) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no))
* $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes))
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no))
* )
*/
real log(real x) { return std.c.math.logl(x); }
/**************************************
* Calculate the base-10 logarithm of x.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH log10(x)) $(TH divide by 0?) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no))
* $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes))
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no))
* )
*/
real log10(real x) { return std.c.math.log10l(x); }
/******************************************
* Calculates the natural logarithm of 1 + x.
*
* For very small x, log1p(x) will be more accurate than
* log(1 + x).
*
* $(TABLE_SV
* $(TR $(TH x) $(TH log1p(x)) $(TH divide by 0?) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) $(TD no))
* $(TR $(TD -1.0) $(TD -$(INFIN)) $(TD yes) $(TD no))
* $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD no) $(TD yes))
* $(TR $(TD +$(INFIN)) $(TD -$(INFIN)) $(TD no) $(TD no))
* )
*/
real log1p(real x) { return std.c.math.log1pl(x); }
/***************************************
* Calculates the base-2 logarithm of x:
* $(SUB log, 2)x
*
* $(TABLE_SV
* $(TR $(TH x) $(TH log2(x)) $(TH divide by 0?) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no) )
* $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes) )
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no) )
* )
*/
real log2(real x) { return std.c.math.log2l(x); }
/*****************************************
* Extracts the exponent of x as a signed integral value.
*
* If x is subnormal, it is treated as if it were normalized.
* For a positive, finite x:
*
* 1 $(LT)= $(I x) * FLT_RADIX$(SUP -logb(x)) $(LT) FLT_RADIX
*
* $(TABLE_SV
* $(TR $(TH x) $(TH logb(x)) $(TH divide by 0?) )
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD +$(INFIN)) $(TD no))
* $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) )
* )
*/
real logb(real x) { return std.c.math.logbl(x); }
/************************************
* Calculates the remainder from the calculation x/y.
* Returns:
* The value of x - i * y, where i is the number of times that y can
* be completely subtracted from x. The result has the same sign as x.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH y) $(TH modf(x, y)) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD not 0.0) $(TD $(PLUSMN)0.0) $(TD no))
* $(TR $(TD $(PLUSMNINF)) $(TD anything) $(TD $(NAN)) $(TD yes))
* $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD $(NAN)) $(TD yes))
* $(TR $(TD !=$(PLUSMNINF)) $(TD $(PLUSMNINF)) $(TD x) $(TD no))
* )
*/
real modf(real x, inout real y) { return std.c.math.modfl(x,&y); }
/*************************************
* Efficiently calculates x * 2$(SUP n).
*
* scalbn handles underflow and overflow in
* the same fashion as the basic arithmetic operators.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH scalb(x)))
* $(TR $(TD $(PLUSMNINF)) $(TD $(PLUSMNINF)) )
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) )
* )
*/
real scalbn(real x, int n)
{
version(D_InlineAsm_X86) {
// scalbnl is not supported on DMD-Windows, so use asm.
asm {
fild n;
fld x;
fscale;
fstp ST(1), ST;
}
} else {
return std.c.math.scalbnl(x, n);
}
}
unittest {
assert(scalbn(-real.infinity, 5) == -real.infinity);
}
/***************
* Calculates the cube root of x.
*
* $(TABLE_SV
* $(TR $(TH $(I x)) $(TH cbrt(x)) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) )
* $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes) )
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)$(INFIN)) $(TD no) )
* )
*/
real cbrt(real x) { return std.c.math.cbrtl(x); }
/*******************************
* Returns |x|
*
* $(TABLE_SV
* $(TR $(TH x) $(TH fabs(x)))
* $(TR $(TD $(PLUSMN)0.0) $(TD +0.0) )
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD +$(INFIN)) )
* )
*/
pure nothrow real fabs(real x); /* intrinsic */
/***********************************************************************
* Calculates the length of the
* hypotenuse of a right-angled triangle with sides of length x and y.
* The hypotenuse is the value of the square root of
* the sums of the squares of x and y:
*
* sqrt($(POW x, 2) + $(POW y, 2))
*
* Note that hypot(x, y), hypot(y, x) and
* hypot(x, -y) are equivalent.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH y) $(TH hypot(x, y)) $(TH invalid?))
* $(TR $(TD x) $(TD $(PLUSMN)0.0) $(TD |x|) $(TD no))
* $(TR $(TD $(PLUSMNINF)) $(TD y) $(TD +$(INFIN)) $(TD no))
* $(TR $(TD $(PLUSMNINF)) $(TD $(NAN)) $(TD +$(INFIN)) $(TD no))
* )
*/
real hypot(real x, real y)
{
/*
* This is based on code from:
* Cephes Math Library Release 2.1: January, 1989
* Copyright 1984, 1987, 1989 by Stephen L. Moshier
* Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
enum int PRECL = 32;
enum int MAXEXPL = real.max_exp; //16384;
enum int MINEXPL = real.min_exp; //-16384;
real xx, yy, b, re, im;
int ex, ey, e;
// Note, hypot(INFINITY, NAN) = INFINITY.
if (isinf(x) || isinf(y))
return real.infinity;
if (isnan(x))
return x;
if (isnan(y))
return y;
re = fabs(x);
im = fabs(y);
if (re == 0.0)
return im;
if (im == 0.0)
return re;
// Get the exponents of the numbers
xx = frexp(re, ex);
yy = frexp(im, ey);
// Check if one number is tiny compared to the other
e = ex - ey;
if (e > PRECL)
return re;
if (e < -PRECL)
return im;
// Find approximate exponent e of the geometric mean.
e = (ex + ey) >> 1;
// Rescale so mean is about 1
xx = ldexp(re, -e);
yy = ldexp(im, -e);
// Hypotenuse of the right triangle
b = sqrt(xx * xx + yy * yy);
// Compute the exponent of the answer.
yy = frexp(b, ey);
ey = e + ey;
// Check it for overflow and underflow.
if (ey > MAXEXPL + 2)
{
//return __matherr(_OVERFLOW, INFINITY, x, y, "hypotl");
return real.infinity;
}
if (ey < MINEXPL - 2)
return 0.0;
// Undo the scaling
b = ldexp(b, e);
return b;
}
unittest
{
static real vals[][3] = // x,y,hypot
[
[ 0, 0, 0],
[ 0, -0, 0],
[ 3, 4, 5],
[ -300, -400, 500],
[ real.min, real.min, 0x1.6a09e667f3bcc908p-16382L],
[ real.max/2, real.max/2, 0x1.6a09e667f3bcc908p+16383L],
[ real.infinity, real.nan, real.infinity],
[ real.nan, real.nan, real.nan],
];
for (int i = 0; i < vals.length; i++)
{
real x = vals[i][0];
real y = vals[i][1];
real z = vals[i][2];
real h = hypot(x, y);
assert(isIdentical(z, h));
}
}
/**********************************
* Returns the error function of x.
*
* <img src="erf.gif" alt="error function">
*/
real erf(real x) { return std.c.math.erfl(x); }
/**********************************
* Returns the complementary error function of x, which is 1 - erf(x).
*
* <img src="erfc.gif" alt="complementary error function">
*/
real erfc(real x) { return std.c.math.erfcl(x); }
/***********************************
* Natural logarithm of gamma function.
*
* Returns the base e (2.718...) logarithm of the absolute
* value of the gamma function of the argument.
*
* For reals, lgamma is equivalent to log(fabs(gamma(x))).
*
* $(TABLE_SV
* $(TR $(TH x) $(TH lgamma(x)) $(TH invalid?))
* $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes))
* $(TR $(TD integer <= 0) $(TD +$(INFIN)) $(TD yes))
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD +$(INFIN)) $(TD no))
* )
*/
/* Documentation prepared by Don Clugston */
real lgamma(real x)
{
return std.c.math.lgammal(x);
// Use etc.gamma.lgamma for those C systems that are missing it
}
/***********************************
* The Gamma function, $(GAMMA)(x)
*
* $(GAMMA)(x) is a generalisation of the factorial function
* to real and complex numbers.
* Like x!, $(GAMMA)(x+1) = x*$(GAMMA)(x).
*
* Mathematically, if z.re > 0 then
* $(GAMMA)(z) = $(INTEGRATE 0, $(INFIN)) $(POWER t, z-1)$(POWER e, -t) dt
*
* $(TABLE_SV
* $(TR $(TH x) $(TH $(GAMMA)(x)) $(TH invalid?))
* $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMNINF)) $(TD yes))
* $(TR $(TD integer $(GT)0) $(TD (x-1)!) $(TD no))
* $(TR $(TD integer $(LT)0) $(TD $(NAN)) $(TD yes))
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no))
* $(TR $(TD -$(INFIN)) $(TD $(NAN)) $(TD yes))
* )
*
* References:
* $(LINK http://en.wikipedia.org/wiki/Gamma_function),
* $(LINK http://www.netlib.org/cephes/ldoubdoc.html#gamma)
*/
real tgamma(real x)
{
return std.c.math.tgammal(x);
// Use etc.gamma.tgamma for those C systems that are missing it
}
/**************************************
* Returns the value of x rounded upward to the next integer
* (toward positive infinity).
*/
real ceil(real x) { return std.c.math.ceill(x); }
/**************************************
* Returns the value of x rounded downward to the next integer
* (toward negative infinity).
*/
real floor(real x) { return std.c.math.floorl(x); }
/******************************************
* Rounds x to the nearest integer value, using the current rounding
* mode.
*
* Unlike the rint functions, nearbyint does not raise the
* FE_INEXACT exception.
*/
real nearbyint(real x) { return std.c.math.nearbyintl(x); }
/**********************************
* Rounds x to the nearest integer value, using the current rounding
* mode.
* If the return value is not equal to x, the FE_INEXACT
* exception is raised.
* $(B nearbyint) performs
* the same operation, but does not set the FE_INEXACT exception.
*/
pure nothrow real rint(real x); /* intrinsic */
/***************************************
* Rounds x to the nearest integer value, using the current rounding
* mode.
*
* This is generally the fastest method to convert a floating-point number
* to an integer. Note that the results from this function
* depend on the rounding mode, if the fractional part of x is exactly 0.5.
* If using the default rounding mode (ties round to even integers)
* lrint(4.5) == 4, lrint(5.5)==6.
*/
long lrint(real x)
{
version (Posix)
return std.c.math.llrintl(x);
else version(D_InlineAsm_X86)
{
long n;
asm
{
fld x;
fistp n;
}
return n;
}
else
throw new NotImplemented("lrint");
}
/*******************************************
* Return the value of x rounded to the nearest integer.
* If the fractional part of x is exactly 0.5, the return value is rounded to
* the even integer.
*/
real round(real x) { return std.c.math.roundl(x); }
/**********************************************
* Return the value of x rounded to the nearest integer.
*
* If the fractional part of x is exactly 0.5, the return value is rounded
* away from zero.
*
* Note: Not supported on windows
*/
long lround(real x)
{
version (Posix)
return std.c.math.llroundl(x);
else
throw new NotImplemented("lround");
}
/****************************************************
* Returns the integer portion of x, dropping the fractional portion.
*
* This is also known as "chop" rounding.
*/
real trunc(real x) { return std.c.math.truncl(x); }
/****************************************************
* Calculate the remainder x REM y, following IEC 60559.
*
* REM is the value of x - y * n, where n is the integer nearest the exact
* value of x / y.
* If |n - x / y| == 0.5, n is even.
* If the result is zero, it has the same sign as x.
* Otherwise, the sign of the result is the sign of x / y.
* Precision mode has no effect on the remainder functions.
*
* remquo returns n in the parameter n.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH y) $(TH remainder(x, y)) $(TH n) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD not 0.0) $(TD $(PLUSMN)0.0) $(TD 0.0) $(TD no))
* $(TR $(TD $(PLUSMNINF)) $(TD anything) $(TD $(NAN)) $(TD ?) $(TD yes))
* $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD $(NAN)) $(TD ?) $(TD yes))
* $(TR $(TD != $(PLUSMNINF)) $(TD $(PLUSMNINF)) $(TD x) $(TD ?) $(TD no))
* )
*
* Note: remquo not supported on windows
*/
real remainder(real x, real y) { return std.c.math.remainderl(x, y); }
real remquo(real x, real y, out int n) /// ditto
{
version (Posix)
return std.c.math.remquol(x, y, &n);
else
throw new NotImplemented("remquo");
}
/*********************************
* Returns !=0 if e is a NaN.
*/
int isnan(real x)
{
alias floatTraits!(real) F;
static if (real.mant_dig==53) { // double
ulong* p = cast(ulong *)&x;
return (*p & 0x7FF0_0000_0000_0000 == 0x7FF0_0000_0000_0000)
&& *p & 0x000F_FFFF_FFFF_FFFF;
} else static if (real.mant_dig==64) { // real80
ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
ulong* ps = cast(ulong *)&x;
return e == F.EXPMASK &&
*ps & 0x7FFF_FFFF_FFFF_FFFF; // not infinity
} else static if (real.mant_dig==113) { // quadruple
ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
ulong* ps = cast(ulong *)&x;
return e == F.EXPMASK &&
(ps[MANTISSA_LSB] | (ps[MANTISSA_MSB]& 0x0000_FFFF_FFFF_FFFF))!=0;
} else {
return x!=x;
}
}
unittest
{
assert(isnan(float.nan));
assert(isnan(-double.nan));
assert(isnan(real.nan));
assert(!isnan(53.6));
assert(!isnan(float.infinity));
}
/*********************************
* Returns !=0 if e is finite (not infinite or $(NAN)).
*/
int isfinite(real e)
{
alias floatTraits!(real) F;
ushort* pe = cast(ushort *)&e;
return (pe[F.EXPPOS_SHORT] & F.EXPMASK) != F.EXPMASK;
}
unittest
{
assert(isfinite(1.23));
assert(!isfinite(double.infinity));
assert(!isfinite(float.nan));
}
/*********************************
* Returns !=0 if x is normalized (not zero, subnormal, infinite, or $(NAN)).
*/
/* Need one for each format because subnormal floats might
* be converted to normal reals.
*/
int isnormal(X)(X x)
{
alias floatTraits!(X) F;
static if(real.mant_dig==106) { // doubledouble
// doubledouble is normal if the least significant part is normal.
return isnormal((cast(double*)&x)[MANTISSA_LSB]);
} else {
ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
return (e != F.EXPMASK && e!=0);
}
}
unittest
{
float f = 3;
double d = 500;
real e = 10e+48;
assert(isnormal(f));
assert(isnormal(d));
assert(isnormal(e));
f = d = e = 0;
assert(!isnormal(f));
assert(!isnormal(d));
assert(!isnormal(e));
assert(!isnormal(real.infinity));
assert(isnormal(-real.max));
assert(!isnormal(real.min/4));
}
/*********************************
* Is number subnormal? (Also called "denormal".)
* Subnormals have a 0 exponent and a 0 most significant mantissa bit.
*/
/* Need one for each format because subnormal floats might
* be converted to normal reals.
*/
int issubnormal(float f)
{
uint *p = cast(uint *)&f;
return (*p & 0x7F80_0000) == 0 && *p & 0x007F_FFFF;
}
unittest
{
float f = 3.0;
for (f = 1.0; !issubnormal(f); f /= 2)
assert(f != 0);
}
/// ditto
int issubnormal(double d)
{
uint *p = cast(uint *)&d;
return (p[MANTISSA_MSB] & 0x7FF0_0000) == 0
&& (p[MANTISSA_LSB] || p[MANTISSA_MSB] & 0x000F_FFFF);
}
unittest
{
double f;
for (f = 1; !issubnormal(f); f /= 2)
assert(f != 0);
}
/// ditto
int issubnormal(real x)
{
alias floatTraits!(real) F;
static if (real.mant_dig == 53) { // double
return issubnormal(cast(double)x);
} else static if (real.mant_dig == 113) { // quadruple
ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
long* ps = cast(long *)&x;
return (e == 0 &&
(((ps[MANTISSA_LSB]|(ps[MANTISSA_MSB]& 0x0000_FFFF_FFFF_FFFF))) !=0));
} else static if (real.mant_dig==64) { // real80
ushort* pe = cast(ushort *)&x;
long* ps = cast(long *)&x;
return (pe[F.EXPPOS_SHORT] & F.EXPMASK) == 0 && *ps > 0;
} else { // double double
return issubnormal((cast(double*)&x)[MANTISSA_MSB]);
}
}
unittest
{
real f;
for (f = 1; !issubnormal(f); f /= 2)
assert(f != 0);
}
/*********************************
* Return !=0 if e is $(PLUSMN)$(INFIN).
*/
int isinf(real x)
{
alias floatTraits!(real) F;
static if (real.mant_dig == 53) { // double
return ((*cast(ulong *)&x) & 0x7FFF_FFFF_FFFF_FFFF)
== 0x7FF8_0000_0000_0000;
} else static if(real.mant_dig == 106) { //doubledouble
return (((cast(ulong *)&x)[MANTISSA_MSB]) & 0x7FFF_FFFF_FFFF_FFFF)
== 0x7FF8_0000_0000_0000;
} else static if (real.mant_dig == 113) { // quadruple
long* ps = cast(long *)&x;
return (ps[MANTISSA_LSB] == 0)
&& (ps[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_0000_0000_0000;
} else { // real80
ushort e = cast(ushort)(F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]);
ulong* ps = cast(ulong *)&x;
return e == F.EXPMASK && *ps == 0x8000_0000_0000_0000;
}
}
unittest
{
assert(isinf(float.infinity));
assert(!isinf(float.nan));
assert(isinf(double.infinity));
assert(isinf(-real.infinity));
assert(isinf(-1.0 / 0.0));
}
/*********************************
* Is the binary representation of x identical to y?
*
* Same as ==, except that positive and negative zero are not identical,
* and two $(NAN)s are identical if they have the same 'payload'.
*/
bool isIdentical(real x, real y)
{
// We're doing a bitwise comparison so the endianness is irrelevant.
long* pxs = cast(long *)&x;
long* pys = cast(long *)&y;
static if (real.mant_dig == 53){ //double
return pxs[0] == pys[0];
} else static if (real.mant_dig == 113 || real.mant_dig==106) {
// quadruple or doubledouble
return pxs[0] == pys[0] && pxs[1] == pys[1];
} else { // real80
ushort* pxe = cast(ushort *)&x;
ushort* pye = cast(ushort *)&y;
return pxe[4] == pye[4] && pxs[0] == pys[0];
}
}
/*********************************
* Return 1 if sign bit of e is set, 0 if not.
*/
int signbit(real x)
{
return ((cast(ubyte *)&x)[floatTraits!(real).SIGNPOS_BYTE] & 0x80) != 0;
}
unittest
{
debug (math) printf("math.signbit.unittest\n");
assert(!signbit(float.nan));
assert(signbit(-float.nan));
assert(!signbit(168.1234));
assert(signbit(-168.1234));
assert(!signbit(0.0));
assert(signbit(-0.0));
}
/*********************************
* Return a value composed of to with from's sign bit.
*/
real copysign(real to, real from)
{
ubyte* pto = cast(ubyte *)&to;
const ubyte* pfrom = cast(ubyte *)&from;
alias floatTraits!(real) F;
pto[F.SIGNPOS_BYTE] &= 0x7F;
pto[F.SIGNPOS_BYTE] |= pfrom[F.SIGNPOS_BYTE] & 0x80;
return to;
}
unittest
{
real e;
e = copysign(21, 23.8);
assert(e == 21);
e = copysign(-21, 23.8);
assert(e == 21);
e = copysign(21, -23.8);
assert(e == -21);
e = copysign(-21, -23.8);
assert(e == -21);
e = copysign(real.nan, -23.8);
assert(isnan(e) && signbit(e));
}
/*********************************
Returns $(D -1) if $(D x < 0), $(D x) if $(D x == 0), $(D 1) if
$(D x > 0), and $(NAN) if x==$(NAN).
*/
F sgn(F)(F x)
{
// @@@TODO@@@: make this faster
return x > 0 ? 1 : x < 0 ? -1 : x;
}
unittest
{
debug (math) printf("math.sgn.unittest\n");
assert(sgn(168.1234) == 1);
assert(sgn(-168.1234) == -1);
assert(sgn(0.0) == 0);
assert(sgn(-0.0) == 0);
}
// Functions for NaN payloads
/*
* A 'payload' can be stored in the significand of a $(NAN). One bit is required
* to distinguish between a quiet and a signalling $(NAN). This leaves 22 bits
* of payload for a float; 51 bits for a double; 62 bits for an 80-bit real;
* and 111 bits for a 128-bit quad.
*/
/**
* Create a quiet $(NAN), storing an integer inside the payload.
*
* For 80-bit or 128-bit reals, the largest possible payload is 0x3FFF_FFFF_FFFF_FFFF.
* For doubles, it is 0x3_FFFF_FFFF_FFFF.
* For floats, it is 0x3F_FFFF.
*/
pure nothrow real NaN(ulong payload)
{
static if (real.mant_dig == 64) { //real80
ulong v = 3; // implied bit = 1, quiet bit = 1
} else {
ulong v = 2; // no implied bit. quiet bit = 1
}
ulong a = payload;
// 22 Float bits
ulong w = a & 0x3F_FFFF;
a -= w;
v <<=22;
v |= w;
a >>=22;
// 29 Double bits
v <<=29;
w = a & 0xFFF_FFFF;
v |= w;
a -= w;
a >>=29;
static if (real.mant_dig == 53) { // double
v |=0x7FF0_0000_0000_0000;
real x;
* cast(ulong *)(&x) = v;
return x;
} else {
v <<=11;
a &= 0x7FF;
v |= a;
real x = real.nan;
// Extended real bits
static if (real.mant_dig==113) { //quadruple
v<<=1; // there's no implicit bit
version(LittleEndian) {
*cast(ulong*)(6+cast(ubyte*)(&x)) = v;
} else {
*cast(ulong*)(2+cast(ubyte*)(&x)) = v;
}
} else { // real80
* cast(ulong *)(&x) = v;
}
return x;
}
}
/**
* Extract an integral payload from a $(NAN).
*
* Returns:
* the integer payload as a ulong.
*
* For 80-bit or 128-bit reals, the largest possible payload is 0x3FFF_FFFF_FFFF_FFFF.
* For doubles, it is 0x3_FFFF_FFFF_FFFF.
* For floats, it is 0x3F_FFFF.
*/
pure nothrow ulong getNaNPayload(real x)
{
// assert(isNaN(x));
static if (real.mant_dig == 53) {
ulong m = *cast(ulong *)(&x);
// Make it look like an 80-bit significand.
// Skip exponent, and quiet bit
m &= 0x0007_FFFF_FFFF_FFFF;
m <<= 10;
} else static if (real.mant_dig==113) { // quadruple
version(LittleEndian) {
ulong m = *cast(ulong*)(6+cast(ubyte*)(&x));
} else {
ulong m = *cast(ulong*)(2+cast(ubyte*)(&x));
}
m>>=1; // there's no implicit bit
} else {
ulong m = *cast(ulong *)(&x);
}
// ignore implicit bit and quiet bit
ulong f = m & 0x3FFF_FF00_0000_0000L;
ulong w = f >>> 40;
w |= (m & 0x00FF_FFFF_F800L) << (22 - 11);
w |= (m & 0x7FF) << 51;
return w;
}
debug(UnitTest) {
unittest {
real nan4 = NaN(0x789_ABCD_EF12_3456);
static if (real.mant_dig == 64 || real.mant_dig==113) {
assert (getNaNPayload(nan4) == 0x789_ABCD_EF12_3456);
} else {
assert (getNaNPayload(nan4) == 0x1_ABCD_EF12_3456);
}
double nan5 = nan4;
assert (getNaNPayload(nan5) == 0x1_ABCD_EF12_3456);
float nan6 = nan4;
assert (getNaNPayload(nan6) == 0x12_3456);
nan4 = NaN(0xFABCD);
assert (getNaNPayload(nan4) == 0xFABCD);
nan6 = nan4;
assert (getNaNPayload(nan6) == 0xFABCD);
nan5 = NaN(0x100_0000_0000_3456);
assert(getNaNPayload(nan5) == 0x0000_0000_3456);
}
}
/**
* Calculate the next largest floating point value after x.
*
* Return the least number greater than x that is representable as a real;
* thus, it gives the next point on the IEEE number line.
*
* $(TABLE_SV
* $(SVH x, nextUp(x) )
* $(SV -$(INFIN), -real.max )
* $(SV $(PLUSMN)0.0, real.min*real.epsilon )
* $(SV real.max, $(INFIN) )
* $(SV $(INFIN), $(INFIN) )
* $(SV $(NAN), $(NAN) )
* )
*
* Remarks:
* This function is included in the forthcoming IEEE 754R standard.
*/
real nextUp(real x)
{
alias floatTraits!(real) F;
static if (real.mant_dig == 53) { // double
return nextUp(cast(double)x);
} else static if(real.mant_dig==113) { // quadruple
ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
if (e == F.EXPMASK) { // NaN or Infinity
if (x == -real.infinity) return -real.max;
return x; // +Inf and NaN are unchanged.
}
ulong* ps = cast(ulong *)&e;
if (ps[MANTISSA_LSB] & 0x8000_0000_0000_0000) { // Negative number
if (ps[MANTISSA_LSB] == 0
&& ps[MANTISSA_MSB] == 0x8000_0000_0000_0000) {
// it was negative zero, change to smallest subnormal
ps[MANTISSA_LSB] = 0x0000_0000_0000_0001;
ps[MANTISSA_MSB] = 0;
return x;
}
--*ps;
if (ps[MANTISSA_LSB]==0) --ps[MANTISSA_MSB];
} else { // Positive number
++ps[MANTISSA_LSB];
if (ps[MANTISSA_LSB]==0) ++ps[MANTISSA_MSB];
}
return x;
} else static if(real.mant_dig==64){ // real80
// For 80-bit reals, the "implied bit" is a nuisance...
ushort *pe = cast(ushort *)&x;
ulong *ps = cast(ulong *)&x;
if ((pe[F.EXPPOS_SHORT] & F.EXPMASK) == F.EXPMASK) {
// First, deal with NANs and infinity
if (x == -real.infinity) return -real.max;
return x; // +Inf and NaN are unchanged.
}
if (pe[F.EXPPOS_SHORT] & 0x8000) {
// Negative number -- need to decrease the significand
--*ps;
// Need to mask with 0x7FFF... so subnormals are treated correctly.
if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_FFFF_FFFF_FFFF) {
if (pe[F.EXPPOS_SHORT] == 0x8000) { // it was negative zero
*ps = 1;
pe[F.EXPPOS_SHORT] = 0; // smallest subnormal.
return x;
}
--pe[F.EXPPOS_SHORT];
if (pe[F.EXPPOS_SHORT] == 0x8000) {
return x; // it's become a subnormal, implied bit stays low.
}
*ps = 0xFFFF_FFFF_FFFF_FFFF; // set the implied bit
return x;
}
return x;
} else {
// Positive number -- need to increase the significand.
// Works automatically for positive zero.
++*ps;
if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0) {
// change in exponent
++pe[F.EXPPOS_SHORT];
*ps = 0x8000_0000_0000_0000; // set the high bit
}
}
return x;
} else { // doubledouble
assert(0, "Not implemented");
}
}
/** ditto */
double nextUp(double x)
{
ulong *ps = cast(ulong *)&x;
if ((*ps & 0x7FF0_0000_0000_0000) == 0x7FF0_0000_0000_0000) {
// First, deal with NANs and infinity
if (x == -x.infinity) return -x.max;
return x; // +INF and NAN are unchanged.
}
if (*ps & 0x8000_0000_0000_0000) { // Negative number
if (*ps == 0x8000_0000_0000_0000) { // it was negative zero
*ps = 0x0000_0000_0000_0001; // change to smallest subnormal
return x;
}
--*ps;
} else { // Positive number
++*ps;
}
return x;
}
/** ditto */
float nextUp(float x)
{
uint *ps = cast(uint *)&x;
if ((*ps & 0x7F80_0000) == 0x7F80_0000) {
// First, deal with NANs and infinity
if (x == -x.infinity) return -x.max;
return x; // +INF and NAN are unchanged.
}
if (*ps & 0x8000_0000) { // Negative number
if (*ps == 0x8000_0000) { // it was negative zero
*ps = 0x0000_0001; // change to smallest subnormal
return x;
}
--*ps;
} else { // Positive number
++*ps;
}
return x;
}
/**
* Calculate the next smallest floating point value before x.
*
* Return the greatest number less than x that is representable as a real;
* thus, it gives the previous point on the IEEE number line.
*
* $(TABLE_SV
* $(SVH x, nextDown(x) )
* $(SV $(INFIN), real.max )
* $(SV $(PLUSMN)0.0, -real.min*real.epsilon )
* $(SV -real.max, -$(INFIN) )
* $(SV -$(INFIN), -$(INFIN) )
* $(SV $(NAN), $(NAN) )
* )
*
* Remarks:
* This function is included in the forthcoming IEEE 754R standard.
*/
real nextDown(real x)
{
return -nextUp(-x);
}
/** ditto */
double nextDown(double x)
{
return -nextUp(-x);
}
/** ditto */
float nextDown(float x)
{
return -nextUp(-x);
}
unittest {
assert( nextDown(1.0 + real.epsilon) == 1.0);
}
/******************************************
* Calculates the next representable value after x in the direction of y.
*
* If y > x, the result will be the next largest floating-point value;
* if y < x, the result will be the next smallest value.
* If x == y, the result is y.
*
* Remarks:
* This function is not generally very useful; it's almost always better to use
* the faster functions nextUp() or nextDown() instead.
*
* IEEE 754 requirements not implemented on Windows:
* The FE_INEXACT and FE_OVERFLOW exceptions will be raised if x is finite and
* the function result is infinite. The FE_INEXACT and FE_UNDERFLOW
* exceptions will be raised if the function value is subnormal, and x is
* not equal to y.
*/
real nextafter(real x, real y)
{
version (Windows) {
if (x==y) return y;
return (y>x) ? nextUp(x) : nextDown(x);
} else {
return std.c.math.nextafterl(x, y);
}
}
/// ditto
float nextafter(float x, float y)
{
version (Windows) {
if (x==y) return y;
return (y>x) ? nextUp(x) : nextDown(x);
} else {
return std.c.math.nextafterf(x, y);
}
}
/// ditto
double nextafter(double x, double y)
{
version (Windows) {
if (x==y) return y;
return (y>x) ? nextUp(x) : nextDown(x);
} else {
return std.c.math.nextafter(x, y);
}
}
unittest
{
float a = 1;
assert(is(typeof(nextafter(a, a)) == float));
assert(nextafter(a, a.infinity) > a);
double b = 2;
assert(is(typeof(nextafter(b, b)) == double));
assert(nextafter(b, b.infinity) > b);
real c = 3;
assert(is(typeof(nextafter(c, c)) == real));
assert(nextafter(c, c.infinity) > c);
}
//real nexttoward(real x, real y) { return std.c.math.nexttowardl(x, y); }
/*******************************************
* Returns the positive difference between x and y.
* Returns:
* $(TABLE_SV
* $(TR $(TH x, y) $(TH fdim(x, y)))
* $(TR $(TD x $(GT) y) $(TD x - y))
* $(TR $(TD x $(LT)= y) $(TD +0.0))
* )
*/
real fdim(real x, real y) { return (x > y) ? x - y : +0.0; }
/****************************************
* Returns the larger of x and y.
*/
real fmax(real x, real y) { return x > y ? x : y; }
/****************************************
* Returns the smaller of x and y.
*/
real fmin(real x, real y) { return x < y ? x : y; }
/**************************************
* Returns (x * y) + z, rounding only once according to the
* current rounding mode.
*
* BUGS: Not currently implemented - rounds twice.
*/
real fma(real x, real y, real z) { return (x * y) + z; }
/*******************************************************************
* Fast integral powers.
*/
F pow(F)(F x, uint n) if (isFloatingPoint!(F))
{
if (n > int.max)
{
assert(n >> 1 <= int.max);
// must reduce n so we can call the pow(real, int) overload
invariant result = pow(x*x, cast(int) (n >> 1));
return (n & 1)
? result * x // odd power
: result;
}
return pow(x, cast(int) n);
}
/// Ditto
F pow(F)(F x, int n) if (isFloatingPoint!(F))
{
real p = 1.0, v = void;
if (n < 0)
{
switch (n)
{
case -1:
return 1 / x;
case -2:
return 1 / (x * x);
default:
}
n = -n;
v = p / x;
}
else
{
switch (n)
{
case 0:
return 1.0;
case 1:
return x;
case 2:
return x * x;
default:
}
v = x;
}
while (1)
{
if (n & 1)
p *= v;
n >>= 1;
if (!n)
break;
v *= v;
}
return p;
}
/*********************************************
* Calculates x$(SUP y).
*
* $(TABLE_SV
* $(TR $(TH x) $(TH y) $(TH pow(x, y))
* $(TH div 0) $(TH invalid?))
* $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD 1.0)
* $(TD no) $(TD no) )
* $(TR $(TD |x| $(GT) 1) $(TD +$(INFIN)) $(TD +$(INFIN))
* $(TD no) $(TD no) )
* $(TR $(TD |x| $(LT) 1) $(TD +$(INFIN)) $(TD +0.0)
* $(TD no) $(TD no) )
* $(TR $(TD |x| $(GT) 1) $(TD -$(INFIN)) $(TD +0.0)
* $(TD no) $(TD no) )
* $(TR $(TD |x| $(LT) 1) $(TD -$(INFIN)) $(TD +$(INFIN))
* $(TD no) $(TD no) )
* $(TR $(TD +$(INFIN)) $(TD $(GT) 0.0) $(TD +$(INFIN))
* $(TD no) $(TD no) )
* $(TR $(TD +$(INFIN)) $(TD $(LT) 0.0) $(TD +0.0)
* $(TD no) $(TD no) )
* $(TR $(TD -$(INFIN)) $(TD odd integer $(GT) 0.0) $(TD -$(INFIN))
* $(TD no) $(TD no) )
* $(TR $(TD -$(INFIN)) $(TD $(GT) 0.0, not odd integer) $(TD +$(INFIN))
* $(TD no) $(TD no))
* $(TR $(TD -$(INFIN)) $(TD odd integer $(LT) 0.0) $(TD -0.0)
* $(TD no) $(TD no) )
* $(TR $(TD -$(INFIN)) $(TD $(LT) 0.0, not odd integer) $(TD +0.0)
* $(TD no) $(TD no) )
* $(TR $(TD $(PLUSMN)1.0) $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN))
* $(TD no) $(TD yes) )
* $(TR $(TD $(LT) 0.0) $(TD finite, nonintegral) $(TD $(NAN))
* $(TD no) $(TD yes))
* $(TR $(TD $(PLUSMN)0.0) $(TD odd integer $(LT) 0.0) $(TD $(PLUSMNINF))
* $(TD yes) $(TD no) )
* $(TR $(TD $(PLUSMN)0.0) $(TD $(LT) 0.0, not odd integer) $(TD +$(INFIN))
* $(TD yes) $(TD no))
* $(TR $(TD $(PLUSMN)0.0) $(TD odd integer $(GT) 0.0) $(TD $(PLUSMN)0.0)
* $(TD no) $(TD no) )
* $(TR $(TD $(PLUSMN)0.0) $(TD $(GT) 0.0, not odd integer) $(TD +0.0)
* $(TD no) $(TD no) )
* )
*/
F pow(F)(F x, F y) if (isFloatingPoint!(F))
{
version (linux) // C pow() often does not handle special values correctly
{
if (isnan(y))
return y;
if (y == 0)
return 1; // even if x is $(NAN)
if (isnan(x) && y != 0)
return x;
if (isinf(y))
{
if (fabs(x) > 1)
{
if (signbit(y))
return +0.0;
else
return F.infinity;
}
else if (fabs(x) == 1)
{
return F.nan;
}
else // < 1
{
if (signbit(y))
return F.infinity;
else
return +0.0;
}
}
if (isinf(x))
{
if (signbit(x))
{ long i;
i = cast(long)y;
if (y > 0)
{
if (i == y && i & 1)
return -F.infinity;
else
return F.infinity;
}
else if (y < 0)
{
if (i == y && i & 1)
return -0.0;
else
return +0.0;
}
}
else
{
if (y > 0)
return F.infinity;
else if (y < 0)
return +0.0;
}
}
if (x == 0.0)
{
if (signbit(x))
{ long i;
i = cast(long)y;
if (y > 0)
{
if (i == y && i & 1)
return -0.0;
else
return +0.0;
}
else if (y < 0)
{
if (i == y && i & 1)
return -F.infinity;
else
return F.infinity;
}
}
else
{
if (y > 0)
return +0.0;
else if (y < 0)
return F.infinity;
}
}
}
return std.c.math.powl(x, y);
}
unittest
{
real x = 46;
assert(pow(x,0) == 1.0);
assert(pow(x,1) == x);
assert(pow(x,2) == x * x);
assert(pow(x,3) == x * x * x);
assert(pow(x,8) == (x * x) * (x * x) * (x * x) * (x * x));
assert(pow(x, -1) == 1 / x);
assert(pow(x, -2) == 1 / (x * x));
assert(pow(x, -3) == 1 / (x * x * x));
assert(pow(x, -8) == 1 / ((x * x) * (x * x) * (x * x) * (x * x)));
}
/****************************************
* Simple function to compare two floating point values
* to a specified precision.
* Returns:
* 1 match
* 0 nomatch
*/
private int mfeq(real x, real y, real precision)
{
if (x == y)
return 1;
if (isnan(x))
return isnan(y);
if (isnan(y))
return 0;
return fabs(x - y) <= precision;
}
/**************************************
* To what precision is x equal to y?
*
* Returns: the number of mantissa bits which are equal in x and y.
* eg, 0x1.F8p+60 and 0x1.F1p+60 are equal to 5 bits of precision.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH y) $(TH feqrel(x, y)))
* $(TR $(TD x) $(TD x) $(TD real.mant_dig))
* $(TR $(TD x) $(TD $(GT)= 2*x) $(TD 0))
* $(TR $(TD x) $(TD $(LT)= x/2) $(TD 0))
* $(TR $(TD $(NAN)) $(TD any) $(TD 0))
* $(TR $(TD any) $(TD $(NAN)) $(TD 0))
* )
*/
int feqrel(X)(X x, X y)
{
/* Public Domain. Author: Don Clugston, 18 Aug 2005.
*/
static assert(is(X==real) || is(X==double) || is(X==float),
"Only float, double, and real are supported by feqrel");
static if (X.mant_dig == 106) { // doubledouble.
if (cast(double*)(&x)[MANTISSA_MSB] == cast(double*)(&y)[MANTISSA_MSB]) {
return double.mant_dig
+ feqrel(cast(double*)(&x)[MANTISSA_LSB],
cast(double*)(&y)[MANTISSA_LSB]);
} else {
return feqrel(cast(double*)(&x)[MANTISSA_MSB],
cast(double*)(&y)[MANTISSA_MSB]);
}
} else static if (X.mant_dig==64 || X.mant_dig==113 || X.mant_dig==53) {
if (x == y) return X.mant_dig; // ensure diff!=0, cope with INF.
X diff = fabs(x - y);
ushort *pa = cast(ushort *)(&x);
ushort *pb = cast(ushort *)(&y);
ushort *pd = cast(ushort *)(&diff);
alias floatTraits!(X) F;
// The difference in abs(exponent) between x or y and abs(x-y)
// is equal to the number of significand bits of x which are
// equal to y. If negative, x and y have different exponents.
// If positive, x and y are equal to 'bitsdiff' bits.
// AND with 0x7FFF to form the absolute value.
// To avoid out-by-1 errors, we subtract 1 so it rounds down
// if the exponents were different. This means 'bitsdiff' is
// always 1 lower than we want, except that if bitsdiff==0,
// they could have 0 or 1 bits in common.
static if (X.mant_dig==64 || X.mant_dig==113) { // real80 or quadruple
int bitsdiff = ( ((pa[F.EXPPOS_SHORT] & F.EXPMASK)
+ (pb[F.EXPPOS_SHORT] & F.EXPMASK) - 1) >> 1)
- pd[F.EXPPOS_SHORT];
} else static if (X.mant_dig==53) { // double
int bitsdiff = (( ((pa[F.EXPPOS_SHORT]&0x7FF0)
+ (pb[F.EXPPOS_SHORT]&0x7FF0)-0x10)>>1)
- (pd[F.EXPPOS_SHORT]&0x7FF0))>>4;
}
if (pd[F.EXPPOS_SHORT] == 0)
{ // Difference is denormal
// For denormals, we need to add the number of zeros that
// lie at the start of diff's significand.
// We do this by multiplying by 2^real.mant_dig
diff *= F.POW2MANTDIG;
return bitsdiff + X.mant_dig - pd[F.EXPPOS_SHORT];
}
if (bitsdiff > 0)
return bitsdiff + 1; // add the 1 we subtracted before
// Avoid out-by-1 errors when factor is almost 2.
static if (X.mant_dig==64 || X.mant_dig==113) { // real80 or quadruple
return (bitsdiff == 0) ? (pa[F.EXPPOS_SHORT] == pb[F.EXPPOS_SHORT]) : 0;
} else static if (X.mant_dig==53) { // double
if (bitsdiff == 0
&& !((pa[F.EXPPOS_SHORT] ^ pb[F.EXPPOS_SHORT])& F.EXPMASK)) {
return 1;
} else return 0;
}
} else {
throw new NotImplemented("feqrel");
}
}
unittest
{
// Exact equality
assert(feqrel(real.max,real.max)==real.mant_dig);
assert(feqrel(0.0L,0.0L)==real.mant_dig);
assert(feqrel(7.1824L,7.1824L)==real.mant_dig);
assert(feqrel(real.infinity,real.infinity)==real.mant_dig);
// a few bits away from exact equality
real w=1;
for (int i=1; i<real.mant_dig-1; ++i) {
assert(feqrel(1+w*real.epsilon,1.0L)==real.mant_dig-i);
assert(feqrel(1-w*real.epsilon,1.0L)==real.mant_dig-i);
assert(feqrel(1.0L,1+(w-1)*real.epsilon)==real.mant_dig-i+1);
w*=2;
}
assert(feqrel(1.5+real.epsilon,1.5L)==real.mant_dig-1);
assert(feqrel(1.5-real.epsilon,1.5L)==real.mant_dig-1);
assert(feqrel(1.5-real.epsilon,1.5+real.epsilon)==real.mant_dig-2);
assert(feqrel(real.min/8,real.min/17)==3);;
// Numbers that are close
assert(feqrel(0x1.Bp+84, 0x1.B8p+84)==5);
assert(feqrel(0x1.8p+10, 0x1.Cp+10)==2);
assert(feqrel(1.5*(1-real.epsilon), 1.0L)==2);
assert(feqrel(1.5, 1.0)==1);
assert(feqrel(2*(1-real.epsilon), 1.0L)==1);
// Factors of 2
assert(feqrel(real.max,real.infinity)==0);
assert(feqrel(2*(1-real.epsilon), 1.0L)==1);
assert(feqrel(1.0, 2.0)==0);
assert(feqrel(4.0, 1.0)==0);
// Extreme inequality
assert(feqrel(real.nan,real.nan)==0);
assert(feqrel(0.0L,-real.nan)==0);
assert(feqrel(real.nan,real.infinity)==0);
assert(feqrel(real.infinity,-real.infinity)==0);
assert(feqrel(-real.max,real.infinity)==0);
assert(feqrel(real.max,-real.max)==0);
}
package: // Not public yet
/* Return the value that lies halfway between x and y on the IEEE number line.
*
* Formally, the result is the arithmetic mean of the binary significands of x
* and y, multiplied by the geometric mean of the binary exponents of x and y.
* x and y must have the same sign, and must not be NaN.
* Note: this function is useful for ensuring O(log n) behaviour in algorithms
* involving a 'binary chop'.
*
* Special cases:
* If x and y are within a factor of 2, (ie, feqrel(x, y) > 0), the return value
* is the arithmetic mean (x + y) / 2.
* If x and y are even powers of 2, the return value is the geometric mean,
* ieeeMean(x, y) = sqrt(x * y).
*
*/
T ieeeMean(T)(T x, T y)
in {
// both x and y must have the same sign, and must not be NaN.
assert(signbit(x) == signbit(y));
assert(x<>=0 && y<>=0);
}
body {
// Runtime behaviour for contract violation:
// If signs are opposite, or one is a NaN, return 0.
if (!((x>=0 && y>=0) || (x<=0 && y<=0))) return 0.0;
// The implementation is simple: cast x and y to integers,
// average them (avoiding overflow), and cast the result back to a floating-point number.
alias floatTraits!(real) F;
T u;
static if (T.mant_dig==64) { // real80
// There's slight additional complexity because they are actually
// 79-bit reals...
ushort *ue = cast(ushort *)&u;
ulong *ul = cast(ulong *)&u;
ushort *xe = cast(ushort *)&x;
ulong *xl = cast(ulong *)&x;
ushort *ye = cast(ushort *)&y;
ulong *yl = cast(ulong *)&y;
// Ignore the useless implicit bit. (Bonus: this prevents overflows)
ulong m = ((*xl) & 0x7FFF_FFFF_FFFF_FFFFL) + ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL);
ushort e = (xe[F.EXPPOS_SHORT] & F.EXPMASK)
+ (ye[F.EXPPOS_SHORT] & F.EXPMASK);
if (m & 0x8000_0000_0000_0000L) {
++e;
m &= 0x7FFF_FFFF_FFFF_FFFFL;
}
// Now do a multi-byte right shift
uint c = e & 1; // carry
e >>= 1;
m >>>= 1;
if (c) m |= 0x4000_0000_0000_0000L; // shift carry into significand
if (e) *ul = m | 0x8000_0000_0000_0000L; // set implicit bit...
else *ul = m; // ... unless exponent is 0 (denormal or zero).
ue[4]= e | (xe[F.EXPPOS_SHORT]& 0x8000); // restore sign bit
} else static if(T.mant_dig == 113) { //quadruple
// This would be trivial if 'ucent' were implemented...
ulong *ul = cast(ulong *)&u;
ulong *xl = cast(ulong *)&x;
ulong *yl = cast(ulong *)&y;
// Multi-byte add, then multi-byte right shift.
ulong mh = ((xl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL)
+ (yl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL));
// Discard the lowest bit (to avoid overflow)
ulong ml = (xl[MANTISSA_LSB]>>>1) + (yl[MANTISSA_LSB]>>>1);
// add the lowest bit back in, if necessary.
if (xl[MANTISSA_LSB] & yl[MANTISSA_LSB] & 1) {
++ml;
if (ml==0) ++mh;
}
mh >>>=1;
ul[MANTISSA_MSB] = mh | (xl[MANTISSA_MSB] & 0x8000_0000_0000_0000);
ul[MANTISSA_LSB] = ml;
} else static if (T.mant_dig == double.mant_dig) {
ulong *ul = cast(ulong *)&u;
ulong *xl = cast(ulong *)&x;
ulong *yl = cast(ulong *)&y;
ulong m = (((*xl) & 0x7FFF_FFFF_FFFF_FFFFL)
+ ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL)) >>> 1;
m |= ((*xl) & 0x8000_0000_0000_0000L);
*ul = m;
} else static if (T.mant_dig == float.mant_dig) {
uint *ul = cast(uint *)&u;
uint *xl = cast(uint *)&x;
uint *yl = cast(uint *)&y;
uint m = (((*xl) & 0x7FFF_FFFF) + ((*yl) & 0x7FFF_FFFF)) >>> 1;
m |= ((*xl) & 0x8000_0000);
*ul = m;
} else {
assert(0, "Not implemented");
}
return u;
}
unittest {
assert(ieeeMean(-0.0,-1e-20)<0);
assert(ieeeMean(0.0,1e-20)>0);
assert(ieeeMean(1.0L,4.0L)==2L);
assert(ieeeMean(2.0*1.013,8.0*1.013)==4*1.013);
assert(ieeeMean(-1.0L,-4.0L)==-2L);
assert(ieeeMean(-1.0,-4.0)==-2);
assert(ieeeMean(-1.0f,-4.0f)==-2f);
assert(ieeeMean(-1.0,-2.0)==-1.5);
assert(ieeeMean(-1*(1+8*real.epsilon),-2*(1+8*real.epsilon))
==-1.5*(1+5*real.epsilon));
assert(ieeeMean(0x1p60,0x1p-10)==0x1p25);
static if (real.mant_dig==64) { // x87, 80-bit reals
assert(ieeeMean(1.0L,real.infinity)==0x1p8192L);
assert(ieeeMean(0.0L,real.infinity)==1.5);
}
assert(ieeeMean(0.5*real.min*(1-4*real.epsilon),0.5*real.min)
== 0.5*real.min*(1-2*real.epsilon));
}
public:
/***********************************
* Evaluate polynomial A(x) = $(SUB a, 0) + $(SUB a, 1)x + $(SUB a, 2)$(POWER x,2)
* + $(SUB a,3)$(POWER x,3); ...
*
* Uses Horner's rule A(x) = $(SUB a, 0) + x($(SUB a, 1) + x($(SUB a, 2)
* + x($(SUB a, 3) + ...)))
* Params:
* A = array of coefficients $(SUB a, 0), $(SUB a, 1), etc.
*/
real poly(real x, const real[] A)
in
{
assert(A.length > 0);
}
body
{
version (D_InlineAsm_X86)
{
version (Windows)
{
// BUG: This code assumes a frame pointer in EBP.
asm // assembler by W. Bright
{
// EDX = (A.length - 1) * real.sizeof
mov ECX,A[EBP] ; // ECX = A.length
dec ECX ;
lea EDX,[ECX][ECX*8] ;
add EDX,ECX ;
add EDX,A+4[EBP] ;
fld real ptr [EDX] ; // ST0 = coeff[ECX]
jecxz return_ST ;
fld x[EBP] ; // ST0 = x
fxch ST(1) ; // ST1 = x, ST0 = r
align 4 ;
L2: fmul ST,ST(1) ; // r *= x
fld real ptr -10[EDX] ;
sub EDX,10 ; // deg--
faddp ST(1),ST ;
dec ECX ;
jne L2 ;
fxch ST(1) ; // ST1 = r, ST0 = x
fstp ST(0) ; // dump x
align 4 ;
return_ST: ;
;
}
}
else version (linux)
{
asm // assembler by W. Bright
{
// EDX = (A.length - 1) * real.sizeof
mov ECX,A[EBP] ; // ECX = A.length
dec ECX ;
lea EDX,[ECX*8] ;
lea EDX,[EDX][ECX*4] ;
add EDX,A+4[EBP] ;
fld real ptr [EDX] ; // ST0 = coeff[ECX]
jecxz return_ST ;
fld x[EBP] ; // ST0 = x
fxch ST(1) ; // ST1 = x, ST0 = r
align 4 ;
L2: fmul ST,ST(1) ; // r *= x
fld real ptr -12[EDX] ;
sub EDX,12 ; // deg--
faddp ST(1),ST ;
dec ECX ;
jne L2 ;
fxch ST(1) ; // ST1 = r, ST0 = x
fstp ST(0) ; // dump x
align 4 ;
return_ST: ;
;
}
}
else version (OSX)
{
asm // assembler by W. Bright
{
// EDX = (A.length - 1) * real.sizeof
mov ECX,A[EBP] ; // ECX = A.length
dec ECX ;
lea EDX,[ECX*8] ;
add EDX,EDX ;
add EDX,A+4[EBP] ;
fld real ptr [EDX] ; // ST0 = coeff[ECX]
jecxz return_ST ;
fld x[EBP] ; // ST0 = x
fxch ST(1) ; // ST1 = x, ST0 = r
align 4 ;
L2: fmul ST,ST(1) ; // r *= x
fld real ptr -16[EDX] ;
sub EDX,16 ; // deg--
faddp ST(1),ST ;
dec ECX ;
jne L2 ;
fxch ST(1) ; // ST1 = r, ST0 = x
fstp ST(0) ; // dump x
align 4 ;
return_ST: ;
;
}
}
else
{
static assert(0);
}
}
else
{
int i = A.length - 1;
real r = A[i];
while (--i >= 0)
{
r *= x;
r += A[i];
}
return r;
}
}
unittest
{
debug (math) printf("math.poly.unittest\n");
real x = 3.1;
static real pp[] = [56.1, 32.7, 6];
assert( poly(x, pp) == (56.1L + (32.7L + 6L * x) * x) );
}
/**
Computes whether $(D lhs) is approximately equal to $(D rhs)
admitting a maximum relative difference $(D maxRelDiff) and a
maximum absolute difference $(D maxAbsDiff).
*/
bool approxEqual(T, U, V)(T lhs, U rhs, V maxRelDiff, V maxAbsDiff = 0)
{
static if (isArray!(T)) {
invariant n = lhs.length;
static if (isArray!(U)) {
// Two arrays
assert(n == rhs.length);
for (uint i = 0; i != n; ++i) {
if (!approxEqual(lhs[i], rhs[i], maxRelDiff, maxAbsDiff))
return false;
}
} else {
// lhs is array, rhs is number
for (uint i = 0; i != n; ++i) {
if (!approxEqual(lhs[i], rhs, maxRelDiff, maxAbsDiff))
return false;
}
}
return true;
} else {
static if (isArray!(U)) {
// lhs is number, rhs is array
return approxEqual(rhs, lhs, maxRelDiff);
} else {
// two numbers
//static assert(is(T : real) && is(U : real));
if (rhs == 0) {
return (lhs == 0 ? 0 : 1) <= maxRelDiff;
}
return fabs((lhs - rhs) / rhs) <= maxRelDiff
|| maxAbsDiff != 0 && fabs(lhs - rhs) < maxAbsDiff;
}
}
}
/**
Returns $(D approxEqual(lhs, rhs, 0.01)).
*/
bool approxEqual(T, U)(T lhs, U rhs) {
return approxEqual(lhs, rhs, 0.01);
}
unittest
{
assert(approxEqual(1.0, 1.0099));
assert(!approxEqual(1.0, 1.011));
float[] arr1 = [ 1.0, 2.0, 3.0 ];
double[] arr2 = [ 1.001, 1.999, 3 ];
assert(approxEqual(arr1, arr2));
}