mirror of
https://github.com/dlang/phobos.git
synced 2025-04-27 13:40:20 +03:00

Turn std.container into a package. Delete container.d Remove totalcontainer from package. Create std.container.util.d and reference it from other containers. Correct code coverage for containers. Add containers for unit testing. Make std.container.util public from any module. Move around imports (avoid version(unittest)). Remove irrelevant unittests.
440 lines
13 KiB
D
440 lines
13 KiB
D
module std.container.binaryheap;
|
|
|
|
import std.exception, std.algorithm, std.conv, std.range,
|
|
std.traits, std.typecons;
|
|
public import std.container.util;
|
|
|
|
// BinaryHeap
|
|
/**
|
|
Implements a $(WEB en.wikipedia.org/wiki/Binary_heap, binary heap)
|
|
container on top of a given random-access range type (usually $(D
|
|
T[])) or a random-access container type (usually $(D Array!T)). The
|
|
documentation of $(D BinaryHeap) will refer to the underlying range or
|
|
container as the $(I store) of the heap.
|
|
|
|
The binary heap induces structure over the underlying store such that
|
|
accessing the largest element (by using the $(D front) property) is a
|
|
$(BIGOH 1) operation and extracting it (by using the $(D
|
|
removeFront()) method) is done fast in $(BIGOH log n) time.
|
|
|
|
If $(D less) is the less-than operator, which is the default option,
|
|
then $(D BinaryHeap) defines a so-called max-heap that optimizes
|
|
extraction of the $(I largest) elements. To define a min-heap,
|
|
instantiate BinaryHeap with $(D "a > b") as its predicate.
|
|
|
|
Simply extracting elements from a $(D BinaryHeap) container is
|
|
tantamount to lazily fetching elements of $(D Store) in descending
|
|
order. Extracting elements from the $(D BinaryHeap) to completion
|
|
leaves the underlying store sorted in ascending order but, again,
|
|
yields elements in descending order.
|
|
|
|
If $(D Store) is a range, the $(D BinaryHeap) cannot grow beyond the
|
|
size of that range. If $(D Store) is a container that supports $(D
|
|
insertBack), the $(D BinaryHeap) may grow by adding elements to the
|
|
container.
|
|
*/
|
|
struct BinaryHeap(Store, alias less = "a < b")
|
|
if (isRandomAccessRange!(Store) || isRandomAccessRange!(typeof(Store.init[])))
|
|
{
|
|
// Really weird @@BUG@@: if you comment out the "private:" label below,
|
|
// std.algorithm can't unittest anymore
|
|
//private:
|
|
|
|
// The payload includes the support store and the effective length
|
|
private static struct Data
|
|
{
|
|
Store _store;
|
|
size_t _length;
|
|
}
|
|
private RefCounted!(Data, RefCountedAutoInitialize.no) _payload;
|
|
// Comparison predicate
|
|
private alias comp = binaryFun!(less);
|
|
// Convenience accessors
|
|
private @property ref Store _store()
|
|
{
|
|
assert(_payload.refCountedStore.isInitialized);
|
|
return _payload._store;
|
|
}
|
|
private @property ref size_t _length()
|
|
{
|
|
assert(_payload.refCountedStore.isInitialized);
|
|
return _payload._length;
|
|
}
|
|
|
|
// Asserts that the heap property is respected.
|
|
private void assertValid()
|
|
{
|
|
debug
|
|
{
|
|
if (!_payload.refCountedStore.isInitialized) return;
|
|
if (_length < 2) return;
|
|
for (size_t n = _length - 1; n >= 1; --n)
|
|
{
|
|
auto parentIdx = (n - 1) / 2;
|
|
assert(!comp(_store[parentIdx], _store[n]), text(n));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Assuming the element at index i perturbs the heap property in
|
|
// store r, percolates it down the heap such that the heap
|
|
// property is restored.
|
|
private void percolateDown(Store r, size_t i, size_t length)
|
|
{
|
|
for (;;)
|
|
{
|
|
auto left = i * 2 + 1, right = left + 1;
|
|
if (right == length)
|
|
{
|
|
if (comp(r[i], r[left])) swap(r, i, left);
|
|
return;
|
|
}
|
|
if (right > length) return;
|
|
assert(left < length && right < length);
|
|
auto largest = comp(r[i], r[left])
|
|
? (comp(r[left], r[right]) ? right : left)
|
|
: (comp(r[i], r[right]) ? right : i);
|
|
if (largest == i) return;
|
|
swap(r, i, largest);
|
|
i = largest;
|
|
}
|
|
}
|
|
|
|
// @@@BUG@@@: add private here, std.algorithm doesn't unittest anymore
|
|
/*private*/ void pop(Store store)
|
|
{
|
|
assert(!store.empty, "Cannot pop an empty store.");
|
|
if (store.length == 1) return;
|
|
auto t1 = moveFront(store[]);
|
|
auto t2 = moveBack(store[]);
|
|
store.front = move(t2);
|
|
store.back = move(t1);
|
|
percolateDown(store, 0, store.length - 1);
|
|
}
|
|
|
|
/*private*/ static void swap(Store _store, size_t i, size_t j)
|
|
{
|
|
static if (is(typeof(swap(_store[i], _store[j]))))
|
|
{
|
|
swap(_store[i], _store[j]);
|
|
}
|
|
else static if (is(typeof(_store.moveAt(i))))
|
|
{
|
|
auto t1 = _store.moveAt(i);
|
|
auto t2 = _store.moveAt(j);
|
|
_store[i] = move(t2);
|
|
_store[j] = move(t1);
|
|
}
|
|
else // assume it's a container and access its range with []
|
|
{
|
|
auto t1 = _store[].moveAt(i);
|
|
auto t2 = _store[].moveAt(j);
|
|
_store[i] = move(t2);
|
|
_store[j] = move(t1);
|
|
}
|
|
}
|
|
|
|
public:
|
|
|
|
/**
|
|
Converts the store $(D s) into a heap. If $(D initialSize) is
|
|
specified, only the first $(D initialSize) elements in $(D s)
|
|
are transformed into a heap, after which the heap can grow up
|
|
to $(D r.length) (if $(D Store) is a range) or indefinitely (if
|
|
$(D Store) is a container with $(D insertBack)). Performs
|
|
$(BIGOH min(r.length, initialSize)) evaluations of $(D less).
|
|
*/
|
|
this(Store s, size_t initialSize = size_t.max)
|
|
{
|
|
acquire(s, initialSize);
|
|
}
|
|
|
|
/**
|
|
Takes ownership of a store. After this, manipulating $(D s) may make
|
|
the heap work incorrectly.
|
|
*/
|
|
void acquire(Store s, size_t initialSize = size_t.max)
|
|
{
|
|
_payload.refCountedStore.ensureInitialized();
|
|
_store = move(s);
|
|
_length = min(_store.length, initialSize);
|
|
if (_length < 2) return;
|
|
for (auto i = (_length - 2) / 2; ; )
|
|
{
|
|
this.percolateDown(_store, i, _length);
|
|
if (i-- == 0) break;
|
|
}
|
|
assertValid();
|
|
}
|
|
|
|
/**
|
|
Takes ownership of a store assuming it already was organized as a
|
|
heap.
|
|
*/
|
|
void assume(Store s, size_t initialSize = size_t.max)
|
|
{
|
|
_payload.refCountedStore.ensureInitialized();
|
|
_store = s;
|
|
_length = min(_store.length, initialSize);
|
|
assertValid();
|
|
}
|
|
|
|
/**
|
|
Clears the heap. Returns the portion of the store from $(D 0) up to
|
|
$(D length), which satisfies the $(LUCKY heap property).
|
|
*/
|
|
auto release()
|
|
{
|
|
if (!_payload.refCountedStore.isInitialized)
|
|
{
|
|
return typeof(_store[0 .. _length]).init;
|
|
}
|
|
assertValid();
|
|
auto result = _store[0 .. _length];
|
|
_payload = _payload.init;
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
Returns $(D true) if the heap is _empty, $(D false) otherwise.
|
|
*/
|
|
@property bool empty()
|
|
{
|
|
return !length;
|
|
}
|
|
|
|
/**
|
|
Returns a duplicate of the heap. The underlying store must also
|
|
support a $(D dup) method.
|
|
*/
|
|
@property BinaryHeap dup()
|
|
{
|
|
BinaryHeap result;
|
|
if (!_payload.refCountedStore.isInitialized) return result;
|
|
result.assume(_store.dup, length);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
Returns the _length of the heap.
|
|
*/
|
|
@property size_t length()
|
|
{
|
|
return _payload.refCountedStore.isInitialized ? _length : 0;
|
|
}
|
|
|
|
/**
|
|
Returns the _capacity of the heap, which is the length of the
|
|
underlying store (if the store is a range) or the _capacity of the
|
|
underlying store (if the store is a container).
|
|
*/
|
|
@property size_t capacity()
|
|
{
|
|
if (!_payload.refCountedStore.isInitialized) return 0;
|
|
static if (is(typeof(_store.capacity) : size_t))
|
|
{
|
|
return _store.capacity;
|
|
}
|
|
else
|
|
{
|
|
return _store.length;
|
|
}
|
|
}
|
|
|
|
/**
|
|
Returns a copy of the _front of the heap, which is the largest element
|
|
according to $(D less).
|
|
*/
|
|
@property ElementType!Store front()
|
|
{
|
|
enforce(!empty, "Cannot call front on an empty heap.");
|
|
return _store.front;
|
|
}
|
|
|
|
/**
|
|
Clears the heap by detaching it from the underlying store.
|
|
*/
|
|
void clear()
|
|
{
|
|
_payload = _payload.init;
|
|
}
|
|
|
|
/**
|
|
Inserts $(D value) into the store. If the underlying store is a range
|
|
and $(D length == capacity), throws an exception.
|
|
*/
|
|
size_t insert(ElementType!Store value)
|
|
{
|
|
static if (is(typeof(_store.insertBack(value))))
|
|
{
|
|
_payload.refCountedStore.ensureInitialized();
|
|
if (length == _store.length)
|
|
{
|
|
// reallocate
|
|
_store.insertBack(value);
|
|
}
|
|
else
|
|
{
|
|
// no reallocation
|
|
_store[_length] = value;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// can't grow
|
|
enforce(length < _store.length,
|
|
"Cannot grow a heap created over a range");
|
|
_store[_length] = value;
|
|
}
|
|
|
|
// sink down the element
|
|
for (size_t n = _length; n; )
|
|
{
|
|
auto parentIdx = (n - 1) / 2;
|
|
if (!comp(_store[parentIdx], _store[n])) break; // done!
|
|
// must swap and continue
|
|
swap(_store, parentIdx, n);
|
|
n = parentIdx;
|
|
}
|
|
++_length;
|
|
debug(BinaryHeap) assertValid();
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
Removes the largest element from the heap.
|
|
*/
|
|
void removeFront()
|
|
{
|
|
enforce(!empty, "Cannot call removeFront on an empty heap.");
|
|
if (_length > 1)
|
|
{
|
|
auto t1 = moveFront(_store[]);
|
|
auto t2 = moveAt(_store[], _length - 1);
|
|
_store.front = move(t2);
|
|
_store[_length - 1] = move(t1);
|
|
}
|
|
--_length;
|
|
percolateDown(_store, 0, _length);
|
|
}
|
|
|
|
/// ditto
|
|
alias popFront = removeFront;
|
|
|
|
/**
|
|
Removes the largest element from the heap and returns a copy of
|
|
it. The element still resides in the heap's store. For performance
|
|
reasons you may want to use $(D removeFront) with heaps of objects
|
|
that are expensive to copy.
|
|
*/
|
|
ElementType!Store removeAny()
|
|
{
|
|
removeFront();
|
|
return _store[_length];
|
|
}
|
|
|
|
/**
|
|
Replaces the largest element in the store with $(D value).
|
|
*/
|
|
void replaceFront(ElementType!Store value)
|
|
{
|
|
// must replace the top
|
|
assert(!empty, "Cannot call replaceFront on an empty heap.");
|
|
_store.front = value;
|
|
percolateDown(_store, 0, _length);
|
|
debug(BinaryHeap) assertValid();
|
|
}
|
|
|
|
/**
|
|
If the heap has room to grow, inserts $(D value) into the store and
|
|
returns $(D true). Otherwise, if $(D less(value, front)), calls $(D
|
|
replaceFront(value)) and returns again $(D true). Otherwise, leaves
|
|
the heap unaffected and returns $(D false). This method is useful in
|
|
scenarios where the smallest $(D k) elements of a set of candidates
|
|
must be collected.
|
|
*/
|
|
bool conditionalInsert(ElementType!Store value)
|
|
{
|
|
_payload.refCountedStore.ensureInitialized();
|
|
if (_length < _store.length)
|
|
{
|
|
insert(value);
|
|
return true;
|
|
}
|
|
// must replace the top
|
|
assert(!_store.empty, "Cannot replace front of an empty heap.");
|
|
if (!comp(value, _store.front)) return false; // value >= largest
|
|
_store.front = value;
|
|
percolateDown(_store, 0, _length);
|
|
debug(BinaryHeap) assertValid();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/// Example from "Introduction to Algorithms" Cormen et al, p 146
|
|
unittest
|
|
{
|
|
int[] a = [ 4, 1, 3, 2, 16, 9, 10, 14, 8, 7 ];
|
|
auto h = heapify(a);
|
|
// largest element
|
|
assert(h.front == 16);
|
|
// a has the heap property
|
|
assert(equal(a, [ 16, 14, 10, 8, 7, 9, 3, 2, 4, 1 ]));
|
|
}
|
|
|
|
/// $(D BinaryHeap) implements the standard input range interface, allowing
|
|
/// lazy iteration of the underlying range in descending order.
|
|
unittest
|
|
{
|
|
int[] a = [4, 1, 3, 2, 16, 9, 10, 14, 8, 7];
|
|
auto top5 = heapify(a).take(5);
|
|
assert(top5.equal([16, 14, 10, 9, 8]));
|
|
}
|
|
|
|
/**
|
|
Convenience function that returns a $(D BinaryHeap!Store) object
|
|
initialized with $(D s) and $(D initialSize).
|
|
*/
|
|
BinaryHeap!(Store, less) heapify(alias less = "a < b", Store)(Store s,
|
|
size_t initialSize = size_t.max)
|
|
{
|
|
return BinaryHeap!(Store, less)(s, initialSize);
|
|
}
|
|
|
|
unittest
|
|
{
|
|
{
|
|
// example from "Introduction to Algorithms" Cormen et al., p 146
|
|
int[] a = [ 4, 1, 3, 2, 16, 9, 10, 14, 8, 7 ];
|
|
auto h = heapify(a);
|
|
h = heapify!"a < b"(a);
|
|
assert(h.front == 16);
|
|
assert(a == [ 16, 14, 10, 8, 7, 9, 3, 2, 4, 1 ]);
|
|
auto witness = [ 16, 14, 10, 9, 8, 7, 4, 3, 2, 1 ];
|
|
for (; !h.empty; h.removeFront(), witness.popFront())
|
|
{
|
|
assert(!witness.empty);
|
|
assert(witness.front == h.front);
|
|
}
|
|
assert(witness.empty);
|
|
}
|
|
{
|
|
int[] a = [ 4, 1, 3, 2, 16, 9, 10, 14, 8, 7 ];
|
|
int[] b = new int[a.length];
|
|
BinaryHeap!(int[]) h = BinaryHeap!(int[])(b, 0);
|
|
foreach (e; a)
|
|
{
|
|
h.insert(e);
|
|
}
|
|
assert(b == [ 16, 14, 10, 8, 7, 3, 9, 1, 4, 2 ], text(b));
|
|
}
|
|
}
|
|
|
|
unittest
|
|
{
|
|
// Test range interface.
|
|
int[] a = [4, 1, 3, 2, 16, 9, 10, 14, 8, 7];
|
|
auto h = heapify(a);
|
|
static assert(isInputRange!(typeof(h)));
|
|
assert(h.equal([16, 14, 10, 9, 8, 7, 4, 3, 2, 1]));
|
|
}
|