phobos/std/container/binaryheap.d
Damian Day 0634e408f7 New Container
Turn std.container into a package.

Delete container.d

Remove totalcontainer from package.
Create std.container.util.d and reference it from other containers.
Correct code coverage for containers.

Add containers for unit testing.

Make std.container.util public from any module.
Move around imports (avoid version(unittest)).

Remove irrelevant unittests.
2014-05-28 08:31:22 +01:00

440 lines
13 KiB
D

module std.container.binaryheap;
import std.exception, std.algorithm, std.conv, std.range,
std.traits, std.typecons;
public import std.container.util;
// BinaryHeap
/**
Implements a $(WEB en.wikipedia.org/wiki/Binary_heap, binary heap)
container on top of a given random-access range type (usually $(D
T[])) or a random-access container type (usually $(D Array!T)). The
documentation of $(D BinaryHeap) will refer to the underlying range or
container as the $(I store) of the heap.
The binary heap induces structure over the underlying store such that
accessing the largest element (by using the $(D front) property) is a
$(BIGOH 1) operation and extracting it (by using the $(D
removeFront()) method) is done fast in $(BIGOH log n) time.
If $(D less) is the less-than operator, which is the default option,
then $(D BinaryHeap) defines a so-called max-heap that optimizes
extraction of the $(I largest) elements. To define a min-heap,
instantiate BinaryHeap with $(D "a > b") as its predicate.
Simply extracting elements from a $(D BinaryHeap) container is
tantamount to lazily fetching elements of $(D Store) in descending
order. Extracting elements from the $(D BinaryHeap) to completion
leaves the underlying store sorted in ascending order but, again,
yields elements in descending order.
If $(D Store) is a range, the $(D BinaryHeap) cannot grow beyond the
size of that range. If $(D Store) is a container that supports $(D
insertBack), the $(D BinaryHeap) may grow by adding elements to the
container.
*/
struct BinaryHeap(Store, alias less = "a < b")
if (isRandomAccessRange!(Store) || isRandomAccessRange!(typeof(Store.init[])))
{
// Really weird @@BUG@@: if you comment out the "private:" label below,
// std.algorithm can't unittest anymore
//private:
// The payload includes the support store and the effective length
private static struct Data
{
Store _store;
size_t _length;
}
private RefCounted!(Data, RefCountedAutoInitialize.no) _payload;
// Comparison predicate
private alias comp = binaryFun!(less);
// Convenience accessors
private @property ref Store _store()
{
assert(_payload.refCountedStore.isInitialized);
return _payload._store;
}
private @property ref size_t _length()
{
assert(_payload.refCountedStore.isInitialized);
return _payload._length;
}
// Asserts that the heap property is respected.
private void assertValid()
{
debug
{
if (!_payload.refCountedStore.isInitialized) return;
if (_length < 2) return;
for (size_t n = _length - 1; n >= 1; --n)
{
auto parentIdx = (n - 1) / 2;
assert(!comp(_store[parentIdx], _store[n]), text(n));
}
}
}
// Assuming the element at index i perturbs the heap property in
// store r, percolates it down the heap such that the heap
// property is restored.
private void percolateDown(Store r, size_t i, size_t length)
{
for (;;)
{
auto left = i * 2 + 1, right = left + 1;
if (right == length)
{
if (comp(r[i], r[left])) swap(r, i, left);
return;
}
if (right > length) return;
assert(left < length && right < length);
auto largest = comp(r[i], r[left])
? (comp(r[left], r[right]) ? right : left)
: (comp(r[i], r[right]) ? right : i);
if (largest == i) return;
swap(r, i, largest);
i = largest;
}
}
// @@@BUG@@@: add private here, std.algorithm doesn't unittest anymore
/*private*/ void pop(Store store)
{
assert(!store.empty, "Cannot pop an empty store.");
if (store.length == 1) return;
auto t1 = moveFront(store[]);
auto t2 = moveBack(store[]);
store.front = move(t2);
store.back = move(t1);
percolateDown(store, 0, store.length - 1);
}
/*private*/ static void swap(Store _store, size_t i, size_t j)
{
static if (is(typeof(swap(_store[i], _store[j]))))
{
swap(_store[i], _store[j]);
}
else static if (is(typeof(_store.moveAt(i))))
{
auto t1 = _store.moveAt(i);
auto t2 = _store.moveAt(j);
_store[i] = move(t2);
_store[j] = move(t1);
}
else // assume it's a container and access its range with []
{
auto t1 = _store[].moveAt(i);
auto t2 = _store[].moveAt(j);
_store[i] = move(t2);
_store[j] = move(t1);
}
}
public:
/**
Converts the store $(D s) into a heap. If $(D initialSize) is
specified, only the first $(D initialSize) elements in $(D s)
are transformed into a heap, after which the heap can grow up
to $(D r.length) (if $(D Store) is a range) or indefinitely (if
$(D Store) is a container with $(D insertBack)). Performs
$(BIGOH min(r.length, initialSize)) evaluations of $(D less).
*/
this(Store s, size_t initialSize = size_t.max)
{
acquire(s, initialSize);
}
/**
Takes ownership of a store. After this, manipulating $(D s) may make
the heap work incorrectly.
*/
void acquire(Store s, size_t initialSize = size_t.max)
{
_payload.refCountedStore.ensureInitialized();
_store = move(s);
_length = min(_store.length, initialSize);
if (_length < 2) return;
for (auto i = (_length - 2) / 2; ; )
{
this.percolateDown(_store, i, _length);
if (i-- == 0) break;
}
assertValid();
}
/**
Takes ownership of a store assuming it already was organized as a
heap.
*/
void assume(Store s, size_t initialSize = size_t.max)
{
_payload.refCountedStore.ensureInitialized();
_store = s;
_length = min(_store.length, initialSize);
assertValid();
}
/**
Clears the heap. Returns the portion of the store from $(D 0) up to
$(D length), which satisfies the $(LUCKY heap property).
*/
auto release()
{
if (!_payload.refCountedStore.isInitialized)
{
return typeof(_store[0 .. _length]).init;
}
assertValid();
auto result = _store[0 .. _length];
_payload = _payload.init;
return result;
}
/**
Returns $(D true) if the heap is _empty, $(D false) otherwise.
*/
@property bool empty()
{
return !length;
}
/**
Returns a duplicate of the heap. The underlying store must also
support a $(D dup) method.
*/
@property BinaryHeap dup()
{
BinaryHeap result;
if (!_payload.refCountedStore.isInitialized) return result;
result.assume(_store.dup, length);
return result;
}
/**
Returns the _length of the heap.
*/
@property size_t length()
{
return _payload.refCountedStore.isInitialized ? _length : 0;
}
/**
Returns the _capacity of the heap, which is the length of the
underlying store (if the store is a range) or the _capacity of the
underlying store (if the store is a container).
*/
@property size_t capacity()
{
if (!_payload.refCountedStore.isInitialized) return 0;
static if (is(typeof(_store.capacity) : size_t))
{
return _store.capacity;
}
else
{
return _store.length;
}
}
/**
Returns a copy of the _front of the heap, which is the largest element
according to $(D less).
*/
@property ElementType!Store front()
{
enforce(!empty, "Cannot call front on an empty heap.");
return _store.front;
}
/**
Clears the heap by detaching it from the underlying store.
*/
void clear()
{
_payload = _payload.init;
}
/**
Inserts $(D value) into the store. If the underlying store is a range
and $(D length == capacity), throws an exception.
*/
size_t insert(ElementType!Store value)
{
static if (is(typeof(_store.insertBack(value))))
{
_payload.refCountedStore.ensureInitialized();
if (length == _store.length)
{
// reallocate
_store.insertBack(value);
}
else
{
// no reallocation
_store[_length] = value;
}
}
else
{
// can't grow
enforce(length < _store.length,
"Cannot grow a heap created over a range");
_store[_length] = value;
}
// sink down the element
for (size_t n = _length; n; )
{
auto parentIdx = (n - 1) / 2;
if (!comp(_store[parentIdx], _store[n])) break; // done!
// must swap and continue
swap(_store, parentIdx, n);
n = parentIdx;
}
++_length;
debug(BinaryHeap) assertValid();
return 1;
}
/**
Removes the largest element from the heap.
*/
void removeFront()
{
enforce(!empty, "Cannot call removeFront on an empty heap.");
if (_length > 1)
{
auto t1 = moveFront(_store[]);
auto t2 = moveAt(_store[], _length - 1);
_store.front = move(t2);
_store[_length - 1] = move(t1);
}
--_length;
percolateDown(_store, 0, _length);
}
/// ditto
alias popFront = removeFront;
/**
Removes the largest element from the heap and returns a copy of
it. The element still resides in the heap's store. For performance
reasons you may want to use $(D removeFront) with heaps of objects
that are expensive to copy.
*/
ElementType!Store removeAny()
{
removeFront();
return _store[_length];
}
/**
Replaces the largest element in the store with $(D value).
*/
void replaceFront(ElementType!Store value)
{
// must replace the top
assert(!empty, "Cannot call replaceFront on an empty heap.");
_store.front = value;
percolateDown(_store, 0, _length);
debug(BinaryHeap) assertValid();
}
/**
If the heap has room to grow, inserts $(D value) into the store and
returns $(D true). Otherwise, if $(D less(value, front)), calls $(D
replaceFront(value)) and returns again $(D true). Otherwise, leaves
the heap unaffected and returns $(D false). This method is useful in
scenarios where the smallest $(D k) elements of a set of candidates
must be collected.
*/
bool conditionalInsert(ElementType!Store value)
{
_payload.refCountedStore.ensureInitialized();
if (_length < _store.length)
{
insert(value);
return true;
}
// must replace the top
assert(!_store.empty, "Cannot replace front of an empty heap.");
if (!comp(value, _store.front)) return false; // value >= largest
_store.front = value;
percolateDown(_store, 0, _length);
debug(BinaryHeap) assertValid();
return true;
}
}
/// Example from "Introduction to Algorithms" Cormen et al, p 146
unittest
{
int[] a = [ 4, 1, 3, 2, 16, 9, 10, 14, 8, 7 ];
auto h = heapify(a);
// largest element
assert(h.front == 16);
// a has the heap property
assert(equal(a, [ 16, 14, 10, 8, 7, 9, 3, 2, 4, 1 ]));
}
/// $(D BinaryHeap) implements the standard input range interface, allowing
/// lazy iteration of the underlying range in descending order.
unittest
{
int[] a = [4, 1, 3, 2, 16, 9, 10, 14, 8, 7];
auto top5 = heapify(a).take(5);
assert(top5.equal([16, 14, 10, 9, 8]));
}
/**
Convenience function that returns a $(D BinaryHeap!Store) object
initialized with $(D s) and $(D initialSize).
*/
BinaryHeap!(Store, less) heapify(alias less = "a < b", Store)(Store s,
size_t initialSize = size_t.max)
{
return BinaryHeap!(Store, less)(s, initialSize);
}
unittest
{
{
// example from "Introduction to Algorithms" Cormen et al., p 146
int[] a = [ 4, 1, 3, 2, 16, 9, 10, 14, 8, 7 ];
auto h = heapify(a);
h = heapify!"a < b"(a);
assert(h.front == 16);
assert(a == [ 16, 14, 10, 8, 7, 9, 3, 2, 4, 1 ]);
auto witness = [ 16, 14, 10, 9, 8, 7, 4, 3, 2, 1 ];
for (; !h.empty; h.removeFront(), witness.popFront())
{
assert(!witness.empty);
assert(witness.front == h.front);
}
assert(witness.empty);
}
{
int[] a = [ 4, 1, 3, 2, 16, 9, 10, 14, 8, 7 ];
int[] b = new int[a.length];
BinaryHeap!(int[]) h = BinaryHeap!(int[])(b, 0);
foreach (e; a)
{
h.insert(e);
}
assert(b == [ 16, 14, 10, 8, 7, 3, 9, 1, 4, 2 ], text(b));
}
}
unittest
{
// Test range interface.
int[] a = [4, 1, 3, 2, 16, 9, 10, 14, 8, 7];
auto h = heapify(a);
static assert(isInputRange!(typeof(h)));
assert(h.equal([16, 14, 10, 9, 8, 7, 4, 3, 2, 1]));
}