phobos/std/container/array.d
2014-06-06 10:32:04 +01:00

1995 lines
50 KiB
D

module std.container.array;
import core.exception, core.memory, core.stdc.stdlib, core.stdc.string,
std.algorithm, std.conv, std.exception, std.range,
std.traits, std.typecons;
public import std.container.util;
version(unittest) import std.stdio;
/**
Array type with deterministic control of memory. The memory allocated
for the array is reclaimed as soon as possible; there is no reliance
on the garbage collector. $(D Array) uses $(D malloc) and $(D free)
for managing its own memory.
*/
struct Array(T)
if (!is(Unqual!T == bool))
{
// This structure is not copyable.
private struct Payload
{
size_t _capacity;
T[] _payload;
// Convenience constructor
this(T[] p) { _capacity = p.length; _payload = p; }
// Destructor releases array memory
~this()
{
//Warning: destroy will also destroy class instances.
//The hasElaborateDestructor protects us here.
static if (hasElaborateDestructor!T)
foreach (ref e; _payload)
.destroy(e);
static if (hasIndirections!T)
GC.removeRange(_payload.ptr);
free(_payload.ptr);
}
this(this)
{
assert(0);
}
void opAssign(Payload rhs)
{
assert(false);
}
// Duplicate data
// @property Payload dup()
// {
// Payload result;
// result._payload = _payload.dup;
// // Conservatively assume initial capacity == length
// result._capacity = result._payload.length;
// return result;
// }
// length
@property size_t length() const
{
return _payload.length;
}
// length
@property void length(size_t newLength)
{
if (length >= newLength)
{
// shorten
static if (hasElaborateDestructor!T)
foreach (ref e; _payload.ptr[newLength .. _payload.length])
.destroy(e);
_payload = _payload.ptr[0 .. newLength];
return;
}
// enlarge
auto startEmplace = length;
_payload = (cast(T*) realloc(_payload.ptr,
T.sizeof * newLength))[0 .. newLength];
initializeAll(_payload.ptr[startEmplace .. length]);
}
// capacity
@property size_t capacity() const
{
return _capacity;
}
// reserve
void reserve(size_t elements)
{
if (elements <= capacity) return;
immutable sz = elements * T.sizeof;
static if (hasIndirections!T) // should use hasPointers instead
{
/* Because of the transactional nature of this
* relative to the garbage collector, ensure no
* threading bugs by using malloc/copy/free rather
* than realloc.
*/
immutable oldLength = length;
auto newPayload =
enforce(cast(T*) malloc(sz))[0 .. oldLength];
// copy old data over to new array
memcpy(newPayload.ptr, _payload.ptr, T.sizeof * oldLength);
// Zero out unused capacity to prevent gc from seeing
// false pointers
memset(newPayload.ptr + oldLength,
0,
(elements - oldLength) * T.sizeof);
GC.addRange(newPayload.ptr, sz);
GC.removeRange(_payload.ptr);
free(_payload.ptr);
_payload = newPayload;
}
else
{
/* These can't have pointers, so no need to zero
* unused region
*/
auto newPayload =
enforce(cast(T*) realloc(_payload.ptr, sz))[0 .. length];
_payload = newPayload;
}
_capacity = elements;
}
// Insert one item
size_t insertBack(Stuff)(Stuff stuff)
if (isImplicitlyConvertible!(Stuff, T))
{
if (_capacity == length)
{
reserve(1 + capacity * 3 / 2);
}
assert(capacity > length && _payload.ptr);
emplace(_payload.ptr + _payload.length, stuff);
_payload = _payload.ptr[0 .. _payload.length + 1];
return 1;
}
/// Insert a range of items
size_t insertBack(Stuff)(Stuff stuff)
if (isInputRange!Stuff && isImplicitlyConvertible!(ElementType!Stuff, T))
{
static if (hasLength!Stuff)
{
immutable oldLength = length;
reserve(oldLength + stuff.length);
}
size_t result;
foreach (item; stuff)
{
insertBack(item);
++result;
}
static if (hasLength!Stuff)
{
assert(length == oldLength + stuff.length);
}
return result;
}
}
private alias Data = RefCounted!(Payload, RefCountedAutoInitialize.no);
private Data _data;
/**
Constructor taking a number of items
*/
this(U)(U[] values...) if (isImplicitlyConvertible!(U, T))
{
auto p = cast(T*) malloc(T.sizeof * values.length);
if (hasIndirections!T && p)
{
GC.addRange(p, T.sizeof * values.length);
}
foreach (i, e; values)
{
emplace(p + i, e);
assert(p[i] == e);
}
_data = Data(p[0 .. values.length]);
}
/**
Constructor taking an input range
*/
this(Stuff)(Stuff stuff)
if (isInputRange!Stuff && isImplicitlyConvertible!(ElementType!Stuff, T) && !is(Stuff == T[]))
{
insertBack(stuff);
}
/**
Comparison for equality.
*/
bool opEquals(const Array rhs) const
{
return opEquals(rhs);
}
/// ditto
bool opEquals(ref const Array rhs) const
{
if (empty) return rhs.empty;
if (rhs.empty) return false;
return _data._payload == rhs._data._payload;
}
/**
Defines the container's primary range, which is a random-access range.
*/
static struct Range
{
private Array _outer;
private size_t _a, _b;
private this(ref Array data, size_t a, size_t b)
{
_outer = data;
_a = a;
_b = b;
}
@property Range save()
{
return this;
}
@property bool empty() @safe pure nothrow const
{
return _a >= _b;
}
@property size_t length() @safe pure nothrow const
{
return _b - _a;
}
alias opDollar = length;
@property ref T front()
{
version (assert) if (empty) throw new RangeError();
return _outer[_a];
}
@property ref T back()
{
version (assert) if (empty) throw new RangeError();
return _outer[_b - 1];
}
void popFront() @safe pure nothrow
{
version (assert) if (empty) throw new RangeError();
++_a;
}
void popBack() @safe pure nothrow
{
version (assert) if (empty) throw new RangeError();
--_b;
}
T moveFront()
{
version (assert) if (empty || _a >= _outer.length) throw new RangeError();
return move(_outer._data._payload[_a]);
}
T moveBack()
{
version (assert) if (empty || _b > _outer.length) throw new RangeError();
return move(_outer._data._payload[_b - 1]);
}
T moveAt(size_t i)
{
version (assert) if (_a + i >= _b || _a + i >= _outer.length) throw new RangeError();
return move(_outer._data._payload[_a + i]);
}
ref T opIndex(size_t i)
{
version (assert) if (_a + i >= _b) throw new RangeError();
return _outer[_a + i];
}
typeof(this) opSlice()
{
return typeof(this)(_outer, _a, _b);
}
typeof(this) opSlice(size_t i, size_t j)
{
version (assert) if (i > j || _a + j > _b) throw new RangeError();
return typeof(this)(_outer, _a + i, _a + j);
}
void opSliceAssign(T value)
{
version (assert) if (_b > _outer.length) throw new RangeError();
_outer[_a .. _b] = value;
}
void opSliceAssign(T value, size_t i, size_t j)
{
version (assert) if (_a + j > _b) throw new RangeError();
_outer[_a + i .. _a + j] = value;
}
void opSliceUnary(string op)()
if(op == "++" || op == "--")
{
version (assert) if (_b > _outer.length) throw new RangeError();
mixin(op~"_outer[_a .. _b];");
}
void opSliceUnary(string op)(size_t i, size_t j)
if(op == "++" || op == "--")
{
version (assert) if (_a + j > _b) throw new RangeError();
mixin(op~"_outer[_a + i .. _a + j];");
}
void opSliceOpAssign(string op)(T value)
{
version (assert) if (_b > _outer.length) throw new RangeError();
mixin("_outer[_a .. _b] "~op~"= value;");
}
void opSliceOpAssign(string op)(T value, size_t i, size_t j)
{
version (assert) if (_a + j > _b) throw new RangeError();
mixin("_outer[_a + i .. _a + j] "~op~"= value;");
}
}
/**
Duplicates the container. The elements themselves are not transitively
duplicated.
Complexity: $(BIGOH n).
*/
@property Array dup()
{
if (!_data.refCountedStore.isInitialized) return this;
return Array(_data._payload);
}
/**
Property returning $(D true) if and only if the container has no
elements.
Complexity: $(BIGOH 1)
*/
@property bool empty() const
{
return !_data.refCountedStore.isInitialized || _data._payload.empty;
}
/**
Returns the number of elements in the container.
Complexity: $(BIGOH 1).
*/
@property size_t length() const
{
return _data.refCountedStore.isInitialized ? _data._payload.length : 0;
}
/// ditto
size_t opDollar() const
{
return length;
}
/**
Returns the maximum number of elements the container can store without
(a) allocating memory, (b) invalidating iterators upon insertion.
Complexity: $(BIGOH 1)
*/
@property size_t capacity()
{
return _data.refCountedStore.isInitialized ? _data._capacity : 0;
}
/**
Ensures sufficient capacity to accommodate $(D e) elements.
Postcondition: $(D capacity >= e)
Complexity: $(BIGOH 1)
*/
void reserve(size_t elements)
{
if (!_data.refCountedStore.isInitialized)
{
if (!elements) return;
immutable sz = elements * T.sizeof;
auto p = enforce(malloc(sz));
static if (hasIndirections!T)
{
GC.addRange(p, sz);
}
_data = Data(cast(T[]) p[0 .. 0]);
_data._capacity = elements;
}
else
{
_data.reserve(elements);
}
}
/**
Returns a range that iterates over elements of the container, in
forward order.
Complexity: $(BIGOH 1)
*/
Range opSlice()
{
return Range(this, 0, length);
}
/**
Returns a range that iterates over elements of the container from
index $(D a) up to (excluding) index $(D b).
Precondition: $(D a <= b && b <= length)
Complexity: $(BIGOH 1)
*/
Range opSlice(size_t i, size_t j)
{
version (assert) if (i > j || j > length) throw new RangeError();
return Range(this, i, j);
}
/**
Forward to $(D opSlice().front) and $(D opSlice().back), respectively.
Precondition: $(D !empty)
Complexity: $(BIGOH 1)
*/
@property ref T front()
{
version (assert) if (!_data.refCountedStore.isInitialized) throw new RangeError();
return _data._payload[0];
}
/// ditto
@property ref T back()
{
version (assert) if (!_data.refCountedStore.isInitialized) throw new RangeError();
return _data._payload[$ - 1];
}
/**
Indexing operators yield or modify the value at a specified index.
Precondition: $(D i < length)
Complexity: $(BIGOH 1)
*/
ref T opIndex(size_t i)
{
version (assert) if (!_data.refCountedStore.isInitialized) throw new RangeError();
return _data._payload[i];
}
/**
Slicing operations execute an operation on an entire slice.
Precondition: $(D i < j && j < length)
Complexity: $(BIGOH slice.length)
*/
void opSliceAssign(T value)
{
if (!_data.refCountedStore.isInitialized) return;
_data._payload[] = value;
}
/// ditto
void opSliceAssign(T value, size_t i, size_t j)
{
auto slice = _data.refCountedStore.isInitialized ?
_data._payload :
T[].init;
slice[i .. j] = value;
}
/// ditto
void opSliceUnary(string op)()
if(op == "++" || op == "--")
{
if(!_data.refCountedStore.isInitialized) return;
mixin(op~"_data._payload[];");
}
/// ditto
void opSliceUnary(string op)(size_t i, size_t j)
if(op == "++" || op == "--")
{
auto slice = _data.refCountedStore.isInitialized ? _data._payload : T[].init;
mixin(op~"slice[i .. j];");
}
/// ditto
void opSliceOpAssign(string op)(T value)
{
if(!_data.refCountedStore.isInitialized) return;
mixin("_data._payload[] "~op~"= value;");
}
/// ditto
void opSliceOpAssign(string op)(T value, size_t i, size_t j)
{
auto slice = _data.refCountedStore.isInitialized ? _data._payload : T[].init;
mixin("slice[i .. j] "~op~"= value;");
}
/**
Returns a new container that's the concatenation of $(D this) and its
argument. $(D opBinaryRight) is only defined if $(D Stuff) does not
define $(D opBinary).
Complexity: $(BIGOH n + m), where m is the number of elements in $(D
stuff)
*/
Array opBinary(string op, Stuff)(Stuff stuff)
if (op == "~")
{
// TODO: optimize
Array result;
// @@@BUG@@ result ~= this[] doesn't work
auto r = this[];
result ~= r;
assert(result.length == length);
result ~= stuff[];
return result;
}
/**
Forwards to $(D insertBack(stuff)).
*/
void opOpAssign(string op, Stuff)(Stuff stuff)
if (op == "~")
{
static if (is(typeof(stuff[])))
{
insertBack(stuff[]);
}
else
{
insertBack(stuff);
}
}
/**
Removes all contents from the container. The container decides how $(D
capacity) is affected.
Postcondition: $(D empty)
Complexity: $(BIGOH n)
*/
void clear()
{
_data = Data.init;
}
/**
Sets the number of elements in the container to $(D newSize). If $(D
newSize) is greater than $(D length), the added elements are added to
unspecified positions in the container and initialized with $(D
T.init).
Complexity: $(BIGOH abs(n - newLength))
Postcondition: $(D length == newLength)
*/
@property void length(size_t newLength)
{
_data.refCountedStore.ensureInitialized();
_data.length = newLength;
}
/**
Picks one value in an unspecified position in the container, removes
it from the container, and returns it. Implementations should pick the
value that's the most advantageous for the container, but document the
exact behavior. The stable version behaves the same, but guarantees
that ranges iterating over the container are never invalidated.
Precondition: $(D !empty)
Returns: The element removed.
Complexity: $(BIGOH log(n)).
*/
T removeAny()
{
auto result = back;
removeBack();
return result;
}
/// ditto
alias stableRemoveAny = removeAny;
/**
Inserts $(D value) to the front or back of the container. $(D stuff)
can be a value convertible to $(D T) or a range of objects convertible
to $(D T). The stable version behaves the same, but guarantees that
ranges iterating over the container are never invalidated.
Returns: The number of elements inserted
Complexity: $(BIGOH m * log(n)), where $(D m) is the number of
elements in $(D stuff)
*/
size_t insertBack(Stuff)(Stuff stuff)
if (isImplicitlyConvertible!(Stuff, T) ||
isInputRange!Stuff && isImplicitlyConvertible!(ElementType!Stuff, T))
{
_data.refCountedStore.ensureInitialized();
return _data.insertBack(stuff);
}
/// ditto
alias insert = insertBack;
/**
Removes the value at the back of the container. The stable version
behaves the same, but guarantees that ranges iterating over the
container are never invalidated.
Precondition: $(D !empty)
Complexity: $(BIGOH log(n)).
*/
void removeBack()
{
enforce(!empty);
static if (hasElaborateDestructor!T)
.destroy(_data._payload[$ - 1]);
_data._payload = _data._payload[0 .. $ - 1];
}
/// ditto
alias stableRemoveBack = removeBack;
/**
Removes $(D howMany) values at the front or back of the
container. Unlike the unparameterized versions above, these functions
do not throw if they could not remove $(D howMany) elements. Instead,
if $(D howMany > n), all elements are removed. The returned value is
the effective number of elements removed. The stable version behaves
the same, but guarantees that ranges iterating over the container are
never invalidated.
Returns: The number of elements removed
Complexity: $(BIGOH howMany).
*/
size_t removeBack(size_t howMany)
{
if (howMany > length) howMany = length;
static if (hasElaborateDestructor!T)
foreach (ref e; _data._payload[$ - howMany .. $])
.destroy(e);
_data._payload = _data._payload[0 .. $ - howMany];
return howMany;
}
/// ditto
alias stableRemoveBack = removeBack;
/**
Inserts $(D stuff) before, after, or instead range $(D r), which must
be a valid range previously extracted from this container. $(D stuff)
can be a value convertible to $(D T) or a range of objects convertible
to $(D T). The stable version behaves the same, but guarantees that
ranges iterating over the container are never invalidated.
Returns: The number of values inserted.
Complexity: $(BIGOH n + m), where $(D m) is the length of $(D stuff)
*/
size_t insertBefore(Stuff)(Range r, Stuff stuff)
if (isImplicitlyConvertible!(Stuff, T))
{
enforce(r._outer._data is _data && r._a <= length);
reserve(length + 1);
assert(_data.refCountedStore.isInitialized);
// Move elements over by one slot
memmove(_data._payload.ptr + r._a + 1,
_data._payload.ptr + r._a,
T.sizeof * (length - r._a));
emplace(_data._payload.ptr + r._a, stuff);
_data._payload = _data._payload.ptr[0 .. _data._payload.length + 1];
return 1;
}
/// ditto
size_t insertBefore(Stuff)(Range r, Stuff stuff)
if (isInputRange!Stuff && isImplicitlyConvertible!(ElementType!Stuff, T))
{
enforce(r._outer._data is _data && r._a <= length);
static if (isForwardRange!Stuff)
{
// Can find the length in advance
auto extra = walkLength(stuff);
if (!extra) return 0;
reserve(length + extra);
assert(_data.refCountedStore.isInitialized);
// Move elements over by extra slots
memmove(_data._payload.ptr + r._a + extra,
_data._payload.ptr + r._a,
T.sizeof * (length - r._a));
foreach (p; _data._payload.ptr + r._a ..
_data._payload.ptr + r._a + extra)
{
emplace(p, stuff.front);
stuff.popFront();
}
_data._payload =
_data._payload.ptr[0 .. _data._payload.length + extra];
return extra;
}
else
{
enforce(_data);
immutable offset = r._a;
enforce(offset <= length);
auto result = insertBack(stuff);
bringToFront(this[offset .. length - result],
this[length - result .. length]);
return result;
}
}
/// ditto
size_t insertAfter(Stuff)(Range r, Stuff stuff)
{
enforce(r._outer._data is _data);
// TODO: optimize
immutable offset = r._b;
enforce(offset <= length);
auto result = insertBack(stuff);
bringToFront(this[offset .. length - result],
this[length - result .. length]);
return result;
}
/// ditto
size_t replace(Stuff)(Range r, Stuff stuff)
if (isInputRange!Stuff && isImplicitlyConvertible!(ElementType!Stuff, T))
{
enforce(r._outer._data is _data);
size_t result;
for (; !stuff.empty; stuff.popFront())
{
if (r.empty)
{
// insert the rest
return result + insertBefore(r, stuff);
}
r.front = stuff.front;
r.popFront();
++result;
}
// Remove remaining stuff in r
linearRemove(r);
return result;
}
/// ditto
size_t replace(Stuff)(Range r, Stuff stuff)
if (isImplicitlyConvertible!(Stuff, T))
{
enforce(r._outer._data is _data);
if (r.empty)
{
insertBefore(r, stuff);
}
else
{
r.front = stuff;
r.popFront();
linearRemove(r);
}
return 1;
}
/**
Removes all elements belonging to $(D r), which must be a range
obtained originally from this container. The stable version behaves
the same, but guarantees that ranges iterating over the container are
never invalidated.
Returns: A range spanning the remaining elements in the container that
initially were right after $(D r).
Complexity: $(BIGOH n - m), where $(D m) is the number of elements in
$(D r)
*/
Range linearRemove(Range r)
{
enforce(r._outer._data is _data);
enforce(_data.refCountedStore.isInitialized);
enforce(r._a <= r._b && r._b <= length);
immutable offset1 = r._a;
immutable offset2 = r._b;
immutable tailLength = length - offset2;
// Use copy here, not a[] = b[] because the ranges may overlap
copy(this[offset2 .. length], this[offset1 .. offset1 + tailLength]);
length = offset1 + tailLength;
return this[length - tailLength .. length];
}
/// ditto
alias stableLinearRemove = remove;
}
unittest
{
Array!int a;
assert(a.empty);
}
unittest
{
Array!int a = Array!int(1, 2, 3);
//a._data._refCountedDebug = true;
auto b = a.dup;
assert(b == Array!int(1, 2, 3));
b.front = 42;
assert(b == Array!int(42, 2, 3));
assert(a == Array!int(1, 2, 3));
}
unittest
{
auto a = Array!int(1, 2, 3);
assert(a.length == 3);
}
unittest
{
Array!int a;
a.reserve(1000);
assert(a.length == 0);
assert(a.empty);
assert(a.capacity >= 1000);
auto p = a._data._payload.ptr;
foreach (i; 0 .. 1000)
{
a.insertBack(i);
}
assert(p == a._data._payload.ptr);
}
unittest
{
auto a = Array!int(1, 2, 3);
a[1] *= 42;
assert(a[1] == 84);
}
unittest
{
auto a = Array!int(1, 2, 3);
auto b = Array!int(11, 12, 13);
auto c = a ~ b;
//foreach (e; c) writeln(e);
assert(c == Array!int(1, 2, 3, 11, 12, 13));
//assert(a ~ b[] == Array!int(1, 2, 3, 11, 12, 13));
}
unittest
{
auto a = Array!int(1, 2, 3);
auto b = Array!int(11, 12, 13);
a ~= b;
assert(a == Array!int(1, 2, 3, 11, 12, 13));
}
unittest
{
auto a = Array!int(1, 2, 3, 4);
assert(a.removeAny() == 4);
assert(a == Array!int(1, 2, 3));
}
unittest
{
auto a = Array!int(1, 2, 3, 4, 5);
auto r = a[2 .. a.length];
assert(a.insertBefore(r, 42) == 1);
assert(a == Array!int(1, 2, 42, 3, 4, 5));
r = a[2 .. 2];
assert(a.insertBefore(r, [8, 9]) == 2);
assert(a == Array!int(1, 2, 8, 9, 42, 3, 4, 5));
}
unittest
{
auto a = Array!int(0, 1, 2, 3, 4, 5, 6, 7, 8);
a.linearRemove(a[4 .. 6]);
auto b = Array!int(0, 1, 2, 3, 6, 7, 8);
//writeln(a.length);
//foreach (e; a) writeln(e);
assert(a == Array!int(0, 1, 2, 3, 6, 7, 8));
}
// Give the Range object some testing.
unittest
{
auto a = Array!int(0, 1, 2, 3, 4, 5, 6)[];
auto b = Array!int(6, 5, 4, 3, 2, 1, 0)[];
alias A = typeof(a);
static assert(isRandomAccessRange!A);
static assert(hasSlicing!A);
static assert(hasAssignableElements!A);
static assert(hasMobileElements!A);
assert(equal(retro(b), a));
assert(a.length == 7);
assert(equal(a[1..4], [1, 2, 3]));
}
// Test issue 5920
unittest
{
struct structBug5920
{
int order;
uint* pDestructionMask;
~this()
{
if (pDestructionMask)
*pDestructionMask += 1 << order;
}
}
alias S = structBug5920;
uint dMask;
auto arr = Array!S(cast(S[])[]);
foreach (i; 0..8)
arr.insertBack(S(i, &dMask));
// don't check dMask now as S may be copied multiple times (it's ok?)
{
assert(arr.length == 8);
dMask = 0;
arr.length = 6;
assert(arr.length == 6); // make sure shrinking calls the d'tor
assert(dMask == 0b1100_0000);
arr.removeBack();
assert(arr.length == 5); // make sure removeBack() calls the d'tor
assert(dMask == 0b1110_0000);
arr.removeBack(3);
assert(arr.length == 2); // ditto
assert(dMask == 0b1111_1100);
arr.clear();
assert(arr.length == 0); // make sure clear() calls the d'tor
assert(dMask == 0b1111_1111);
}
assert(dMask == 0b1111_1111); // make sure the d'tor is called once only.
}
// Test issue 5792 (mainly just to check if this piece of code is compilable)
unittest
{
auto a = Array!(int[])([[1,2],[3,4]]);
a.reserve(4);
assert(a.capacity >= 4);
assert(a.length == 2);
assert(a[0] == [1,2]);
assert(a[1] == [3,4]);
a.reserve(16);
assert(a.capacity >= 16);
assert(a.length == 2);
assert(a[0] == [1,2]);
assert(a[1] == [3,4]);
}
// test replace!Stuff with range Stuff
unittest
{
auto a = Array!int([1, 42, 5]);
a.replace(a[1 .. 2], [2, 3, 4]);
assert(equal(a[], [1, 2, 3, 4, 5]));
}
// test insertBefore and replace with empty Arrays
unittest
{
auto a = Array!int();
a.insertBefore(a[], 1);
assert(equal(a[], [1]));
}
unittest
{
auto a = Array!int();
a.insertBefore(a[], [1, 2]);
assert(equal(a[], [1, 2]));
}
unittest
{
auto a = Array!int();
a.replace(a[], [1, 2]);
assert(equal(a[], [1, 2]));
}
unittest
{
auto a = Array!int();
a.replace(a[], 1);
assert(equal(a[], [1]));
}
// make sure that Array instances refuse ranges that don't belong to them
unittest
{
Array!int a = [1, 2, 3];
auto r = a.dup[];
assertThrown(a.insertBefore(r, 42));
assertThrown(a.insertBefore(r, [42]));
assertThrown(a.insertAfter(r, 42));
assertThrown(a.replace(r, 42));
assertThrown(a.replace(r, [42]));
assertThrown(a.linearRemove(r));
}
unittest
{
auto a = Array!int([1, 1]);
a[1] = 0; //Check Array.opIndexAssign
assert(a[1] == 0);
a[1] += 1; //Check Array.opIndexOpAssign
assert(a[1] == 1);
//Check Array.opIndexUnary
++a[0];
//a[0]++ //op++ doesn't return, so this shouldn't work, even with 5044 fixed
assert(a[0] == 2);
assert(+a[0] == +2);
assert(-a[0] == -2);
assert(~a[0] == ~2);
auto r = a[];
r[1] = 0; //Check Array.Range.opIndexAssign
assert(r[1] == 0);
r[1] += 1; //Check Array.Range.opIndexOpAssign
assert(r[1] == 1);
//Check Array.Range.opIndexUnary
++r[0];
//r[0]++ //op++ doesn't return, so this shouldn't work, even with 5044 fixed
assert(r[0] == 3);
assert(+r[0] == +3);
assert(-r[0] == -3);
assert(~r[0] == ~3);
}
unittest
{
//Test "array-wide" operations
auto a = Array!int([0, 1, 2]); //Array
a[] += 5;
assert(a[].equal([5, 6, 7]));
++a[];
assert(a[].equal([6, 7, 8]));
a[1 .. 3] *= 5;
assert(a[].equal([6, 35, 40]));
a[0 .. 2] = 0;
assert(a[].equal([0, 0, 40]));
//Test empty array
auto a2 = Array!int.init;
++a2[];
++a2[0 .. 0];
a2[] = 0;
a2[0 .. 0] = 0;
a2[] += 0;
a2[0 .. 0] += 0;
//Test "range-wide" operations
auto r = Array!int([0, 1, 2])[]; //Array.Range
r[] += 5;
assert(r.equal([5, 6, 7]));
++r[];
assert(r.equal([6, 7, 8]));
r[1 .. 3] *= 5;
assert(r.equal([6, 35, 40]));
r[0 .. 2] = 0;
assert(r.equal([0, 0, 40]));
//Test empty Range
auto r2 = Array!int.init[];
++r2[];
++r2[0 .. 0];
r2[] = 0;
r2[0 .. 0] = 0;
r2[] += 0;
r2[0 .. 0] += 0;
}
// Test issue 11194
unittest {
static struct S {
int i = 1337;
void* p;
this(this) { assert(i == 1337); }
~this() { assert(i == 1337); }
}
Array!S arr;
S s;
arr ~= s;
arr ~= s;
}
unittest //11459
{
static struct S
{
bool b;
alias b this;
}
alias A = Array!S;
alias B = Array!(shared bool);
}
unittest //11884
{
auto a = Array!int([1, 2, 2].filter!"true"());
}
unittest //8282
{
auto arr = new Array!int;
}
unittest //6998
{
static int i = 0;
class C
{
int dummy = 1;
this(){++i;}
~this(){--i;}
}
assert(i == 0);
auto c = new C();
assert(i == 1);
//scope
{
auto arr = Array!C(c);
assert(i == 1);
}
//Array should not have destroyed the class instance
assert(i == 1);
//Just to make sure the GC doesn't collect before the above test.
assert(c.dummy ==1);
}
unittest //6998-2
{
static class C {int i;}
auto c = new C;
c.i = 42;
Array!C a;
a ~= c;
a.clear;
assert(c.i == 42); //fails
}
////////////////////////////////////////////////////////////////////////////////
// Array!bool
////////////////////////////////////////////////////////////////////////////////
/**
_Array specialized for $(D bool). Packs together values efficiently by
allocating one bit per element.
*/
struct Array(T)
if (is(Unqual!T == bool))
{
static immutable uint bitsPerWord = size_t.sizeof * 8;
private static struct Data
{
Array!size_t.Payload _backend;
size_t _length;
}
private RefCounted!(Data, RefCountedAutoInitialize.no) _store;
private @property ref size_t[] data()
{
assert(_store.refCountedStore.isInitialized);
return _store._backend._payload;
}
/**
Defines the container's primary range.
*/
struct Range
{
private Array _outer;
private size_t _a, _b;
/// Range primitives
@property Range save()
{
version (bug4437)
{
return this;
}
else
{
auto copy = this;
return copy;
}
}
/// Ditto
@property bool empty()
{
return _a >= _b || _outer.length < _b;
}
/// Ditto
@property T front()
{
enforce(!empty);
return _outer[_a];
}
/// Ditto
@property void front(bool value)
{
enforce(!empty);
_outer[_a] = value;
}
/// Ditto
T moveFront()
{
enforce(!empty);
return _outer.moveAt(_a);
}
/// Ditto
void popFront()
{
enforce(!empty);
++_a;
}
/// Ditto
@property T back()
{
enforce(!empty);
return _outer[_b - 1];
}
/// Ditto
@property void back(bool value)
{
enforce(!empty);
_outer[_b - 1] = value;
}
/// Ditto
T moveBack()
{
enforce(!empty);
return _outer.moveAt(_b - 1);
}
/// Ditto
void popBack()
{
enforce(!empty);
--_b;
}
/// Ditto
T opIndex(size_t i)
{
return _outer[_a + i];
}
/// Ditto
void opIndexAssign(T value, size_t i)
{
_outer[_a + i] = value;
}
/// Ditto
T moveAt(size_t i)
{
return _outer.moveAt(_a + i);
}
/// Ditto
@property size_t length() const
{
assert(_a <= _b);
return _b - _a;
}
alias opDollar = length;
/// ditto
Range opSlice(size_t low, size_t high)
{
assert(_a <= low && low <= high && high <= _b);
return Range(_outer, _a + low, _a + high);
}
}
/**
Property returning $(D true) if and only if the container has
no elements.
Complexity: $(BIGOH 1)
*/
@property bool empty()
{
return !length;
}
unittest
{
Array!bool a;
//a._store._refCountedDebug = true;
assert(a.empty);
a.insertBack(false);
assert(!a.empty);
}
/**
Returns a duplicate of the container. The elements themselves
are not transitively duplicated.
Complexity: $(BIGOH n).
*/
@property Array dup()
{
Array result;
result.insertBack(this[]);
return result;
}
unittest
{
Array!bool a;
assert(a.empty);
auto b = a.dup;
assert(b.empty);
a.insertBack(true);
assert(b.empty);
}
/**
Returns the number of elements in the container.
Complexity: $(BIGOH log(n)).
*/
@property size_t length() const
{
return _store.refCountedStore.isInitialized ? _store._length : 0;
}
size_t opDollar() const
{
return length;
}
unittest
{
Array!bool a;
assert(a.length == 0);
a.insert(true);
assert(a.length == 1, text(a.length));
}
/**
Returns the maximum number of elements the container can store
without (a) allocating memory, (b) invalidating iterators upon
insertion.
Complexity: $(BIGOH log(n)).
*/
@property size_t capacity()
{
return _store.refCountedStore.isInitialized
? cast(size_t) bitsPerWord * _store._backend.capacity
: 0;
}
unittest
{
Array!bool a;
assert(a.capacity == 0);
foreach (i; 0 .. 100)
{
a.insert(true);
assert(a.capacity >= a.length, text(a.capacity));
}
}
/**
Ensures sufficient capacity to accommodate $(D n) elements.
Postcondition: $(D capacity >= n)
Complexity: $(BIGOH log(e - capacity)) if $(D e > capacity),
otherwise $(BIGOH 1).
*/
void reserve(size_t e)
{
_store.refCountedStore.ensureInitialized();
_store._backend.reserve(to!size_t((e + bitsPerWord - 1) / bitsPerWord));
}
unittest
{
Array!bool a;
assert(a.capacity == 0);
a.reserve(15657);
assert(a.capacity >= 15657);
}
/**
Returns a range that iterates over all elements of the
container, in a container-defined order. The container should
choose the most convenient and fast method of iteration for $(D
opSlice()).
Complexity: $(BIGOH log(n))
*/
Range opSlice()
{
return Range(this, 0, length);
}
unittest
{
Array!bool a;
a.insertBack([true, false, true, true]);
assert(a[].length == 4);
}
/**
Returns a range that iterates the container between two
specified positions.
Complexity: $(BIGOH log(n))
*/
Range opSlice(size_t a, size_t b)
{
enforce(a <= b && b <= length);
return Range(this, a, b);
}
unittest
{
Array!bool a;
a.insertBack([true, false, true, true]);
assert(a[0 .. 2].length == 2);
}
/**
Equivalent to $(D opSlice().front) and $(D opSlice().back),
respectively.
Complexity: $(BIGOH log(n))
*/
@property bool front()
{
enforce(!empty);
return data.ptr[0] & 1;
}
/// Ditto
@property void front(bool value)
{
enforce(!empty);
if (value) data.ptr[0] |= 1;
else data.ptr[0] &= ~cast(size_t) 1;
}
unittest
{
Array!bool a;
a.insertBack([true, false, true, true]);
assert(a.front);
a.front = false;
assert(!a.front);
}
/// Ditto
@property bool back()
{
enforce(!empty);
return cast(bool)(data.back & (cast(size_t)1 << ((_store._length - 1) % bitsPerWord)));
}
/// Ditto
@property void back(bool value)
{
enforce(!empty);
if (value)
{
data.back |= (cast(size_t)1 << ((_store._length - 1) % bitsPerWord));
}
else
{
data.back &=
~(cast(size_t)1 << ((_store._length - 1) % bitsPerWord));
}
}
unittest
{
Array!bool a;
a.insertBack([true, false, true, true]);
assert(a.back);
a.back = false;
assert(!a.back);
}
/**
Indexing operators yield or modify the value at a specified index.
*/
bool opIndex(size_t i)
{
auto div = cast(size_t) (i / bitsPerWord);
auto rem = i % bitsPerWord;
enforce(div < data.length);
return cast(bool)(data.ptr[div] & (cast(size_t)1 << rem));
}
/// ditto
void opIndexAssign(bool value, size_t i)
{
auto div = cast(size_t) (i / bitsPerWord);
auto rem = i % bitsPerWord;
enforce(div < data.length);
if (value) data.ptr[div] |= (cast(size_t)1 << rem);
else data.ptr[div] &= ~(cast(size_t)1 << rem);
}
/// ditto
void opIndexOpAssign(string op)(bool value, size_t i)
{
auto div = cast(size_t) (i / bitsPerWord);
auto rem = i % bitsPerWord;
enforce(div < data.length);
auto oldValue = cast(bool) (data.ptr[div] & (cast(size_t)1 << rem));
// Do the deed
auto newValue = mixin("oldValue "~op~" value");
// Write back the value
if (newValue != oldValue)
{
if (newValue) data.ptr[div] |= (cast(size_t)1 << rem);
else data.ptr[div] &= ~(cast(size_t)1 << rem);
}
}
/// Ditto
T moveAt(size_t i)
{
return this[i];
}
unittest
{
Array!bool a;
a.insertBack([true, false, true, true]);
assert(a[0] && !a[1]);
a[0] &= a[1];
assert(!a[0]);
}
/**
Returns a new container that's the concatenation of $(D this)
and its argument.
Complexity: $(BIGOH n + m), where m is the number of elements
in $(D stuff)
*/
Array!bool opBinary(string op, Stuff)(Stuff rhs) if (op == "~")
{
auto result = this;
return result ~= rhs;
}
unittest
{
Array!bool a;
a.insertBack([true, false, true, true]);
Array!bool b;
b.insertBack([true, true, false, true]);
assert(equal((a ~ b)[],
[true, false, true, true, true, true, false, true]));
}
// /// ditto
// TotalContainer opBinaryRight(Stuff, string op)(Stuff lhs) if (op == "~")
// {
// assert(0);
// }
/**
Forwards to $(D insertAfter(this[], stuff)).
*/
// @@@BUG@@@
//ref Array!bool opOpAssign(string op, Stuff)(Stuff stuff) if (op == "~")
Array!bool opOpAssign(string op, Stuff)(Stuff stuff) if (op == "~")
{
static if (is(typeof(stuff[]))) insertBack(stuff[]);
else insertBack(stuff);
return this;
}
unittest
{
Array!bool a;
a.insertBack([true, false, true, true]);
Array!bool b;
a.insertBack([false, true, false, true, true]);
a ~= b;
assert(equal(
a[],
[true, false, true, true, false, true, false, true, true]));
}
/**
Removes all contents from the container. The container decides
how $(D capacity) is affected.
Postcondition: $(D empty)
Complexity: $(BIGOH n)
*/
void clear()
{
this = Array();
}
unittest
{
Array!bool a;
a.insertBack([true, false, true, true]);
a.clear();
assert(a.capacity == 0);
}
/**
Sets the number of elements in the container to $(D
newSize). If $(D newSize) is greater than $(D length), the
added elements are added to the container and initialized with
$(D ElementType.init).
Complexity: $(BIGOH abs(n - newLength))
Postcondition: $(D _length == newLength)
*/
@property void length(size_t newLength)
{
_store.refCountedStore.ensureInitialized();
auto newDataLength =
to!size_t((newLength + bitsPerWord - 1) / bitsPerWord);
_store._backend.length = newDataLength;
_store._length = newLength;
}
unittest
{
Array!bool a;
a.length = 1057;
assert(a.length == 1057);
foreach (e; a)
{
assert(!e);
}
}
/**
Inserts $(D stuff) in the container. $(D stuff) can be a value
convertible to $(D ElementType) or a range of objects
convertible to $(D ElementType).
The $(D stable) version guarantees that ranges iterating over
the container are never invalidated. Client code that counts on
non-invalidating insertion should use $(D stableInsert).
Returns: The number of elements added.
Complexity: $(BIGOH m * log(n)), where $(D m) is the number of
elements in $(D stuff)
*/
alias insert = insertBack;
///ditto
alias stableInsert = insertBack;
/**
Same as $(D insert(stuff)) and $(D stableInsert(stuff))
respectively, but relax the complexity constraint to linear.
*/
alias linearInsert = insertBack;
///ditto
alias stableLinearInsert = insertBack;
/**
Picks one value in the container, removes it from the
container, and returns it. The stable version behaves the same,
but guarantees that ranges iterating over the container are
never invalidated.
Precondition: $(D !empty)
Returns: The element removed.
Complexity: $(BIGOH log(n))
*/
T removeAny()
{
auto result = back;
removeBack();
return result;
}
/// ditto
alias stableRemoveAny = removeAny;
unittest
{
Array!bool a;
a.length = 1057;
assert(!a.removeAny());
assert(a.length == 1056);
foreach (e; a)
{
assert(!e);
}
}
/**
Inserts $(D value) to the back of the container. $(D stuff) can
be a value convertible to $(D ElementType) or a range of
objects convertible to $(D ElementType). The stable version
behaves the same, but guarantees that ranges iterating over the
container are never invalidated.
Returns: The number of elements inserted
Complexity: $(BIGOH log(n))
*/
size_t insertBack(Stuff)(Stuff stuff) if (is(Stuff : bool))
{
_store.refCountedStore.ensureInitialized();
auto rem = _store._length % bitsPerWord;
if (rem)
{
// Fits within the current array
if (stuff)
{
data[$ - 1] |= (1u << rem);
}
else
{
data[$ - 1] &= ~(1u << rem);
}
}
else
{
// Need to add more data
_store._backend.insertBack(stuff);
}
++_store._length;
return 1;
}
/// Ditto
size_t insertBack(Stuff)(Stuff stuff)
if (isInputRange!Stuff && is(ElementType!Stuff : bool))
{
static if (!hasLength!Stuff) size_t result;
for (; !stuff.empty; stuff.popFront())
{
insertBack(stuff.front);
static if (!hasLength!Stuff) ++result;
}
static if (!hasLength!Stuff) return result;
else return stuff.length;
}
/// ditto
alias stableInsertBack = insertBack;
/**
Removes the value at the front or back of the container. The
stable version behaves the same, but guarantees that ranges
iterating over the container are never invalidated. The
optional parameter $(D howMany) instructs removal of that many
elements. If $(D howMany > n), all elements are removed and no
exception is thrown.
Precondition: $(D !empty)
Complexity: $(BIGOH log(n)).
*/
void removeBack()
{
enforce(_store._length);
if (_store._length % bitsPerWord)
{
// Cool, just decrease the length
--_store._length;
}
else
{
// Reduce the allocated space
--_store._length;
_store._backend.length = _store._backend.length - 1;
}
}
/// ditto
alias stableRemoveBack = removeBack;
/**
Removes $(D howMany) values at the front or back of the
container. Unlike the unparameterized versions above, these
functions do not throw if they could not remove $(D howMany)
elements. Instead, if $(D howMany > n), all elements are
removed. The returned value is the effective number of elements
removed. The stable version behaves the same, but guarantees
that ranges iterating over the container are never invalidated.
Returns: The number of elements removed
Complexity: $(BIGOH howMany * log(n)).
*/
/// ditto
size_t removeBack(size_t howMany)
{
if (howMany >= length)
{
howMany = length;
clear();
}
else
{
length = length - howMany;
}
return howMany;
}
unittest
{
Array!bool a;
a.length = 1057;
assert(a.removeBack(1000) == 1000);
assert(a.length == 57);
foreach (e; a)
{
assert(!e);
}
}
/**
Inserts $(D stuff) before, after, or instead range $(D r),
which must be a valid range previously extracted from this
container. $(D stuff) can be a value convertible to $(D
ElementType) or a range of objects convertible to $(D
ElementType). The stable version behaves the same, but
guarantees that ranges iterating over the container are never
invalidated.
Returns: The number of values inserted.
Complexity: $(BIGOH n + m), where $(D m) is the length of $(D stuff)
*/
size_t insertBefore(Stuff)(Range r, Stuff stuff)
{
// TODO: make this faster, it moves one bit at a time
immutable inserted = stableInsertBack(stuff);
immutable tailLength = length - inserted;
bringToFront(
this[r._a .. tailLength],
this[tailLength .. length]);
return inserted;
}
/// ditto
alias stableInsertBefore = insertBefore;
unittest
{
Array!bool a;
version (bugxxxx)
{
a._store.refCountedDebug = true;
}
a.insertBefore(a[], true);
assert(a.length == 1, text(a.length));
a.insertBefore(a[], false);
assert(a.length == 2, text(a.length));
}
/// ditto
size_t insertAfter(Stuff)(Range r, Stuff stuff)
{
// TODO: make this faster, it moves one bit at a time
immutable inserted = stableInsertBack(stuff);
immutable tailLength = length - inserted;
bringToFront(
this[r._b .. tailLength],
this[tailLength .. length]);
return inserted;
}
/// ditto
alias stableInsertAfter = insertAfter;
unittest
{
Array!bool a;
a.length = 10;
a.insertAfter(a[0 .. 5], true);
assert(a.length == 11, text(a.length));
assert(a[5]);
}
/// ditto
size_t replace(Stuff)(Range r, Stuff stuff) if (is(Stuff : bool))
{
if (!r.empty)
{
// There is room
r.front = stuff;
r.popFront();
linearRemove(r);
}
else
{
// No room, must insert
insertBefore(r, stuff);
}
return 1;
}
/// ditto
alias stableReplace = replace;
unittest
{
Array!bool a;
a.length = 10;
a.replace(a[3 .. 5], true);
assert(a.length == 9, text(a.length));
assert(a[3]);
}
/**
Removes all elements belonging to $(D r), which must be a range
obtained originally from this container. The stable version
behaves the same, but guarantees that ranges iterating over the
container are never invalidated.
Returns: A range spanning the remaining elements in the container that
initially were right after $(D r).
Complexity: $(BIGOH n)
*/
Range linearRemove(Range r)
{
copy(this[r._b .. length], this[r._a .. length]);
length = length - r.length;
return this[r._a .. length];
}
/// ditto
alias stableLinearRemove = linearRemove;
}
unittest
{
Array!bool a;
assert(a.empty);
}
unittest
{
Array!bool arr;
arr.insert([false, false, false, false]);
assert(arr.front == false);
assert(arr.back == false);
assert(arr[1] == false);
auto slice = arr[];
slice = arr[0 .. $];
slice = slice[1 .. $];
slice.front = true;
slice.back = true;
slice[1] = true;
assert(slice.front == true);
assert(slice.back == true);
assert(slice[1] == true);
assert(slice.moveFront == true);
assert(slice.moveBack == true);
assert(slice.moveAt(1) == true);
}