mirror of
https://github.com/dlang/phobos.git
synced 2025-04-27 21:51:40 +03:00

command: sed -E "s/([[:alnum:]]) == ([[:alnum:]])/\1 == \2/g" -i **/*.d sed -E "s/([[:alnum:]])== ([[:alnum:]])/\1 == \2/g" -i **/*.d sed -E "s/([[:alnum:]]) ==([[:alnum:]])/\1 == \2/g" -i **/*.d
1811 lines
51 KiB
D
1811 lines
51 KiB
D
/**
|
|
* Implementation of the gamma and beta functions, and their integrals.
|
|
*
|
|
* License: $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0).
|
|
* Copyright: Based on the CEPHES math library, which is
|
|
* Copyright (C) 1994 Stephen L. Moshier (moshier@world.std.com).
|
|
* Authors: Stephen L. Moshier (original C code). Conversion to D by Don Clugston
|
|
*
|
|
*
|
|
Macros:
|
|
* TABLE_SV = <table border="1" cellpadding="4" cellspacing="0">
|
|
* <caption>Special Values</caption>
|
|
* $0</table>
|
|
* SVH = $(TR $(TH $1) $(TH $2))
|
|
* SV = $(TR $(TD $1) $(TD $2))
|
|
* GAMMA = Γ
|
|
* INTEGRATE = $(BIG ∫<sub>$(SMALL $1)</sub><sup>$2</sup>)
|
|
* POWER = $1<sup>$2</sup>
|
|
* NAN = $(RED NAN)
|
|
*/
|
|
module std.internal.math.gammafunction;
|
|
import std.internal.math.errorfunction;
|
|
import std.math;
|
|
|
|
pure:
|
|
nothrow:
|
|
@safe:
|
|
@nogc:
|
|
|
|
private {
|
|
|
|
enum real SQRT2PI = 2.50662827463100050242E0L; // sqrt(2pi)
|
|
immutable real EULERGAMMA = 0.57721_56649_01532_86060_65120_90082_40243_10421_59335_93992L; /** Euler-Mascheroni constant 0.57721566.. */
|
|
|
|
// Polynomial approximations for gamma and loggamma.
|
|
|
|
immutable real[8] GammaNumeratorCoeffs = [ 1.0,
|
|
0x1.acf42d903366539ep-1, 0x1.73a991c8475f1aeap-2, 0x1.c7e918751d6b2a92p-4,
|
|
0x1.86d162cca32cfe86p-6, 0x1.0c378e2e6eaf7cd8p-8, 0x1.dc5c66b7d05feb54p-12,
|
|
0x1.616457b47e448694p-15
|
|
];
|
|
|
|
immutable real[9] GammaDenominatorCoeffs = [ 1.0,
|
|
0x1.a8f9faae5d8fc8bp-2, -0x1.cb7895a6756eebdep-3, -0x1.7b9bab006d30652ap-5,
|
|
0x1.c671af78f312082ep-6, -0x1.a11ebbfaf96252dcp-11, -0x1.447b4d2230a77ddap-10,
|
|
0x1.ec1d45bb85e06696p-13,-0x1.d4ce24d05bd0a8e6p-17
|
|
];
|
|
|
|
immutable real[9] GammaSmallCoeffs = [ 1.0,
|
|
0x1.2788cfc6fb618f52p-1, -0x1.4fcf4026afa2f7ecp-1, -0x1.5815e8fa24d7e306p-5,
|
|
0x1.5512320aea2ad71ap-3, -0x1.59af0fb9d82e216p-5, -0x1.3b4b61d3bfdf244ap-7,
|
|
0x1.d9358e9d9d69fd34p-8, -0x1.38fc4bcbada775d6p-10
|
|
];
|
|
|
|
immutable real[9] GammaSmallNegCoeffs = [ -1.0,
|
|
0x1.2788cfc6fb618f54p-1, 0x1.4fcf4026afa2bc4cp-1, -0x1.5815e8fa2468fec8p-5,
|
|
-0x1.5512320baedaf4b6p-3, -0x1.59af0fa283baf07ep-5, 0x1.3b4a70de31e05942p-7,
|
|
0x1.d9398be3bad13136p-8, 0x1.291b73ee05bcbba2p-10
|
|
];
|
|
|
|
immutable real[7] logGammaStirlingCoeffs = [
|
|
0x1.5555555555553f98p-4, -0x1.6c16c16c07509b1p-9, 0x1.a01a012461cbf1e4p-11,
|
|
-0x1.3813089d3f9d164p-11, 0x1.b911a92555a277b8p-11, -0x1.ed0a7b4206087b22p-10,
|
|
0x1.402523859811b308p-8
|
|
];
|
|
|
|
immutable real[7] logGammaNumerator = [
|
|
-0x1.0edd25913aaa40a2p+23, -0x1.31c6ce2e58842d1ep+24, -0x1.f015814039477c3p+23,
|
|
-0x1.74ffe40c4b184b34p+22, -0x1.0d9c6d08f9eab55p+20, -0x1.54c6b71935f1fc88p+16,
|
|
-0x1.0e761b42932b2aaep+11
|
|
];
|
|
|
|
immutable real[8] logGammaDenominator = [
|
|
-0x1.4055572d75d08c56p+24, -0x1.deeb6013998e4d76p+24, -0x1.106f7cded5dcc79ep+24,
|
|
-0x1.25e17184848c66d2p+22, -0x1.301303b99a614a0ap+19, -0x1.09e76ab41ae965p+15,
|
|
-0x1.00f95ced9e5f54eep+9, 1.0
|
|
];
|
|
|
|
/*
|
|
* Helper function: Gamma function computed by Stirling's formula.
|
|
*
|
|
* Stirling's formula for the gamma function is:
|
|
*
|
|
* $(GAMMA)(x) = sqrt(2 π) x<sup>x-0.5</sup> exp(-x) (1 + 1/x P(1/x))
|
|
*
|
|
*/
|
|
real gammaStirling(real x)
|
|
{
|
|
// CEPHES code Copyright 1994 by Stephen L. Moshier
|
|
|
|
static immutable real[9] SmallStirlingCoeffs = [
|
|
0x1.55555555555543aap-4, 0x1.c71c71c720dd8792p-9, -0x1.5f7268f0b5907438p-9,
|
|
-0x1.e13cd410e0477de6p-13, 0x1.9b0f31643442616ep-11, 0x1.2527623a3472ae08p-14,
|
|
-0x1.37f6bc8ef8b374dep-11,-0x1.8c968886052b872ap-16, 0x1.76baa9c6d3eeddbcp-11
|
|
];
|
|
|
|
static immutable real[7] LargeStirlingCoeffs = [ 1.0L,
|
|
8.33333333333333333333E-2L, 3.47222222222222222222E-3L,
|
|
-2.68132716049382716049E-3L, -2.29472093621399176955E-4L,
|
|
7.84039221720066627474E-4L, 6.97281375836585777429E-5L
|
|
];
|
|
|
|
real w = 1.0L/x;
|
|
real y = exp(x);
|
|
if ( x > 1024.0L )
|
|
{
|
|
// For large x, use rational coefficients from the analytical expansion.
|
|
w = poly(w, LargeStirlingCoeffs);
|
|
// Avoid overflow in pow()
|
|
real v = pow( x, 0.5L * x - 0.25L );
|
|
y = v * (v / y);
|
|
}
|
|
else
|
|
{
|
|
w = 1.0L + w * poly( w, SmallStirlingCoeffs);
|
|
static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble)
|
|
{
|
|
// Avoid overflow in pow() for 64-bit reals
|
|
if (x > 143.0)
|
|
{
|
|
real v = pow( x, 0.5 * x - 0.25 );
|
|
y = v * (v / y);
|
|
}
|
|
else
|
|
{
|
|
y = pow( x, x - 0.5 ) / y;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
y = pow( x, x - 0.5L ) / y;
|
|
}
|
|
}
|
|
y = SQRT2PI * y * w;
|
|
return y;
|
|
}
|
|
|
|
/*
|
|
* Helper function: Incomplete gamma function computed by Temme's expansion.
|
|
*
|
|
* This is a port of igamma_temme_large from Boost.
|
|
*
|
|
*/
|
|
real igammaTemmeLarge(real a, real x)
|
|
{
|
|
static immutable real[][13] coef = [
|
|
[ -0.333333333333333333333, 0.0833333333333333333333,
|
|
-0.0148148148148148148148, 0.00115740740740740740741,
|
|
0.000352733686067019400353, -0.0001787551440329218107,
|
|
0.39192631785224377817e-4, -0.218544851067999216147e-5,
|
|
-0.18540622107151599607e-5, 0.829671134095308600502e-6,
|
|
-0.176659527368260793044e-6, 0.670785354340149858037e-8,
|
|
0.102618097842403080426e-7, -0.438203601845335318655e-8,
|
|
0.914769958223679023418e-9, -0.255141939949462497669e-10,
|
|
-0.583077213255042506746e-10, 0.243619480206674162437e-10,
|
|
-0.502766928011417558909e-11 ],
|
|
[ -0.00185185185185185185185, -0.00347222222222222222222,
|
|
0.00264550264550264550265, -0.000990226337448559670782,
|
|
0.000205761316872427983539, -0.40187757201646090535e-6,
|
|
-0.18098550334489977837e-4, 0.764916091608111008464e-5,
|
|
-0.161209008945634460038e-5, 0.464712780280743434226e-8,
|
|
0.137863344691572095931e-6, -0.575254560351770496402e-7,
|
|
0.119516285997781473243e-7, -0.175432417197476476238e-10,
|
|
-0.100915437106004126275e-8, 0.416279299184258263623e-9,
|
|
-0.856390702649298063807e-10 ],
|
|
[ 0.00413359788359788359788, -0.00268132716049382716049,
|
|
0.000771604938271604938272, 0.200938786008230452675e-5,
|
|
-0.000107366532263651605215, 0.529234488291201254164e-4,
|
|
-0.127606351886187277134e-4, 0.342357873409613807419e-7,
|
|
0.137219573090629332056e-5, -0.629899213838005502291e-6,
|
|
0.142806142060642417916e-6, -0.204770984219908660149e-9,
|
|
-0.140925299108675210533e-7, 0.622897408492202203356e-8,
|
|
-0.136704883966171134993e-8 ],
|
|
[ 0.000649434156378600823045, 0.000229472093621399176955,
|
|
-0.000469189494395255712128, 0.000267720632062838852962,
|
|
-0.756180167188397641073e-4, -0.239650511386729665193e-6,
|
|
0.110826541153473023615e-4, -0.56749528269915965675e-5,
|
|
0.142309007324358839146e-5, -0.278610802915281422406e-10,
|
|
-0.169584040919302772899e-6, 0.809946490538808236335e-7,
|
|
-0.191111684859736540607e-7 ],
|
|
[ -0.000861888290916711698605, 0.000784039221720066627474,
|
|
-0.000299072480303190179733, -0.146384525788434181781e-5,
|
|
0.664149821546512218666e-4, -0.396836504717943466443e-4,
|
|
0.113757269706784190981e-4, 0.250749722623753280165e-9,
|
|
-0.169541495365583060147e-5, 0.890750753220530968883e-6,
|
|
-0.229293483400080487057e-6],
|
|
[ -0.000336798553366358150309, -0.697281375836585777429e-4,
|
|
0.000277275324495939207873, -0.000199325705161888477003,
|
|
0.679778047793720783882e-4, 0.141906292064396701483e-6,
|
|
-0.135940481897686932785e-4, 0.801847025633420153972e-5,
|
|
-0.229148117650809517038e-5 ],
|
|
[ 0.000531307936463992223166, -0.000592166437353693882865,
|
|
0.000270878209671804482771, 0.790235323266032787212e-6,
|
|
-0.815396936756196875093e-4, 0.561168275310624965004e-4,
|
|
-0.183291165828433755673e-4, -0.307961345060330478256e-8,
|
|
0.346515536880360908674e-5, -0.20291327396058603727e-5,
|
|
0.57887928631490037089e-6 ],
|
|
[ 0.000344367606892377671254, 0.517179090826059219337e-4,
|
|
-0.000334931610811422363117, 0.000281269515476323702274,
|
|
-0.000109765822446847310235, -0.127410090954844853795e-6,
|
|
0.277444515115636441571e-4, -0.182634888057113326614e-4,
|
|
0.578769494973505239894e-5 ],
|
|
[ -0.000652623918595309418922, 0.000839498720672087279993,
|
|
-0.000438297098541721005061, -0.696909145842055197137e-6,
|
|
0.000166448466420675478374, -0.000127835176797692185853,
|
|
0.462995326369130429061e-4 ],
|
|
[ -0.000596761290192746250124, -0.720489541602001055909e-4,
|
|
0.000678230883766732836162, -0.0006401475260262758451,
|
|
0.000277501076343287044992 ],
|
|
[ 0.00133244544948006563713, -0.0019144384985654775265,
|
|
0.00110893691345966373396 ],
|
|
[ 0.00157972766073083495909, 0.000162516262783915816899,
|
|
-0.00206334210355432762645, 0.00213896861856890981541,
|
|
-0.00101085593912630031708 ],
|
|
[ -0.00407251211951401664727, 0.00640336283380806979482,
|
|
-0.00404101610816766177474 ]
|
|
];
|
|
|
|
// avoid nans when one of the arguments is inf:
|
|
if (x == real.infinity && a != real.infinity)
|
|
return 0;
|
|
|
|
if (x != real.infinity && a == real.infinity)
|
|
return 1;
|
|
|
|
real sigma = (x - a) / a;
|
|
real phi = sigma - log(sigma + 1);
|
|
|
|
real y = a * phi;
|
|
real z = sqrt(2 * phi);
|
|
if (x < a)
|
|
z = -z;
|
|
|
|
real[13] workspace;
|
|
foreach (i; 0 .. coef.length)
|
|
workspace[i] = poly(z, coef[i]);
|
|
|
|
real result = poly(1 / a, workspace);
|
|
result *= exp(-y) / sqrt(2 * PI * a);
|
|
if (x < a)
|
|
result = -result;
|
|
|
|
result += erfc(sqrt(y)) / 2;
|
|
|
|
return result;
|
|
}
|
|
|
|
} // private
|
|
|
|
public:
|
|
/// The maximum value of x for which gamma(x) < real.infinity.
|
|
static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended)
|
|
enum real MAXGAMMA = 1755.5483429L;
|
|
else static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble)
|
|
enum real MAXGAMMA = 171.6243769L;
|
|
else
|
|
static assert(0, "missing MAXGAMMA for other real types");
|
|
|
|
|
|
/*****************************************************
|
|
* The Gamma function, $(GAMMA)(x)
|
|
*
|
|
* $(GAMMA)(x) is a generalisation of the factorial function
|
|
* to real and complex numbers.
|
|
* Like x!, $(GAMMA)(x+1) = x*$(GAMMA)(x).
|
|
*
|
|
* Mathematically, if z.re > 0 then
|
|
* $(GAMMA)(z) = $(INTEGRATE 0, ∞) $(POWER t, z-1)$(POWER e, -t) dt
|
|
*
|
|
* $(TABLE_SV
|
|
* $(SVH x, $(GAMMA)(x) )
|
|
* $(SV $(NAN), $(NAN) )
|
|
* $(SV ±0.0, ±∞)
|
|
* $(SV integer > 0, (x-1)! )
|
|
* $(SV integer < 0, $(NAN) )
|
|
* $(SV +∞, +∞ )
|
|
* $(SV -∞, $(NAN) )
|
|
* )
|
|
*/
|
|
real gamma(real x)
|
|
{
|
|
/* Based on code from the CEPHES library.
|
|
* CEPHES code Copyright 1994 by Stephen L. Moshier
|
|
*
|
|
* Arguments |x| <= 13 are reduced by recurrence and the function
|
|
* approximated by a rational function of degree 7/8 in the
|
|
* interval (2,3). Large arguments are handled by Stirling's
|
|
* formula. Large negative arguments are made positive using
|
|
* a reflection formula.
|
|
*/
|
|
|
|
real q, z;
|
|
if (isNaN(x)) return x;
|
|
if (x == -x.infinity) return real.nan;
|
|
if ( fabs(x) > MAXGAMMA ) return real.infinity;
|
|
if (x == 0) return 1.0 / x; // +- infinity depending on sign of x, create an exception.
|
|
|
|
q = fabs(x);
|
|
|
|
if ( q > 13.0L )
|
|
{
|
|
// Large arguments are handled by Stirling's
|
|
// formula. Large negative arguments are made positive using
|
|
// the reflection formula.
|
|
|
|
if ( x < 0.0L )
|
|
{
|
|
if (x < -1/real.epsilon)
|
|
{
|
|
// Large negatives lose all precision
|
|
return real.nan;
|
|
}
|
|
int sgngam = 1; // sign of gamma.
|
|
long intpart = cast(long)(q);
|
|
if (q == intpart)
|
|
return real.nan; // poles for all integers <0.
|
|
real p = intpart;
|
|
if ( (intpart & 1) == 0 )
|
|
sgngam = -1;
|
|
z = q - p;
|
|
if ( z > 0.5L )
|
|
{
|
|
p += 1.0L;
|
|
z = q - p;
|
|
}
|
|
z = q * sin( PI * z );
|
|
z = fabs(z) * gammaStirling(q);
|
|
if ( z <= PI/real.max ) return sgngam * real.infinity;
|
|
return sgngam * PI/z;
|
|
}
|
|
else
|
|
{
|
|
return gammaStirling(x);
|
|
}
|
|
}
|
|
|
|
// Arguments |x| <= 13 are reduced by recurrence and the function
|
|
// approximated by a rational function of degree 7/8 in the
|
|
// interval (2,3).
|
|
|
|
z = 1.0L;
|
|
while ( x >= 3.0L )
|
|
{
|
|
x -= 1.0L;
|
|
z *= x;
|
|
}
|
|
|
|
while ( x < -0.03125L )
|
|
{
|
|
z /= x;
|
|
x += 1.0L;
|
|
}
|
|
|
|
if ( x <= 0.03125L )
|
|
{
|
|
if ( x == 0.0L )
|
|
return real.nan;
|
|
else
|
|
{
|
|
if ( x < 0.0L )
|
|
{
|
|
x = -x;
|
|
return z / (x * poly( x, GammaSmallNegCoeffs ));
|
|
}
|
|
else
|
|
{
|
|
return z / (x * poly( x, GammaSmallCoeffs ));
|
|
}
|
|
}
|
|
}
|
|
|
|
while ( x < 2.0L )
|
|
{
|
|
z /= x;
|
|
x += 1.0L;
|
|
}
|
|
if ( x == 2.0L ) return z;
|
|
|
|
x -= 2.0L;
|
|
return z * poly( x, GammaNumeratorCoeffs ) / poly( x, GammaDenominatorCoeffs );
|
|
}
|
|
|
|
@safe unittest
|
|
{
|
|
// gamma(n) = factorial(n-1) if n is an integer.
|
|
real fact = 1.0L;
|
|
for (int i=1; fact<real.max; ++i)
|
|
{
|
|
// Require exact equality for small factorials
|
|
if (i<14) assert(gamma(i*1.0L) == fact);
|
|
assert(feqrel(gamma(i*1.0L), fact) >= real.mant_dig-15);
|
|
fact *= (i*1.0L);
|
|
}
|
|
assert(gamma(0.0) == real.infinity);
|
|
assert(gamma(-0.0) == -real.infinity);
|
|
assert(isNaN(gamma(-1.0)));
|
|
assert(isNaN(gamma(-15.0)));
|
|
assert(isIdentical(gamma(NaN(0xABC)), NaN(0xABC)));
|
|
assert(gamma(real.infinity) == real.infinity);
|
|
assert(gamma(real.max) == real.infinity);
|
|
assert(isNaN(gamma(-real.infinity)));
|
|
assert(gamma(real.min_normal*real.epsilon) == real.infinity);
|
|
assert(gamma(MAXGAMMA)< real.infinity);
|
|
assert(gamma(MAXGAMMA*2) == real.infinity);
|
|
|
|
// Test some high-precision values (50 decimal digits)
|
|
real SQRT_PI = 1.77245385090551602729816748334114518279754945612238L;
|
|
|
|
|
|
assert(feqrel(gamma(0.5L), SQRT_PI) >= real.mant_dig-1);
|
|
assert(feqrel(gamma(17.25L), 4.224986665692703551570937158682064589938e13L) >= real.mant_dig-4);
|
|
|
|
assert(feqrel(gamma(1.0 / 3.0L), 2.67893853470774763365569294097467764412868937795730L) >= real.mant_dig-2);
|
|
assert(feqrel(gamma(0.25L),
|
|
3.62560990822190831193068515586767200299516768288006L) >= real.mant_dig-1);
|
|
assert(feqrel(gamma(1.0 / 5.0L),
|
|
4.59084371199880305320475827592915200343410999829340L) >= real.mant_dig-1);
|
|
}
|
|
|
|
/*****************************************************
|
|
* Natural logarithm of gamma function.
|
|
*
|
|
* Returns the base e (2.718...) logarithm of the absolute
|
|
* value of the gamma function of the argument.
|
|
*
|
|
* For reals, logGamma is equivalent to log(fabs(gamma(x))).
|
|
*
|
|
* $(TABLE_SV
|
|
* $(SVH x, logGamma(x) )
|
|
* $(SV $(NAN), $(NAN) )
|
|
* $(SV integer <= 0, +∞ )
|
|
* $(SV ±∞, +∞ )
|
|
* )
|
|
*/
|
|
real logGamma(real x)
|
|
{
|
|
/* Based on code from the CEPHES library.
|
|
* CEPHES code Copyright 1994 by Stephen L. Moshier
|
|
*
|
|
* For arguments greater than 33, the logarithm of the gamma
|
|
* function is approximated by the logarithmic version of
|
|
* Stirling's formula using a polynomial approximation of
|
|
* degree 4. Arguments between -33 and +33 are reduced by
|
|
* recurrence to the interval [2,3] of a rational approximation.
|
|
* The cosecant reflection formula is employed for arguments
|
|
* less than -33.
|
|
*/
|
|
real q, w, z, f, nx;
|
|
|
|
if (isNaN(x)) return x;
|
|
if (fabs(x) == x.infinity) return x.infinity;
|
|
|
|
if ( x < -34.0L )
|
|
{
|
|
q = -x;
|
|
w = logGamma(q);
|
|
real p = floor(q);
|
|
if ( p == q )
|
|
return real.infinity;
|
|
int intpart = cast(int)(p);
|
|
real sgngam = 1;
|
|
if ( (intpart & 1) == 0 )
|
|
sgngam = -1;
|
|
z = q - p;
|
|
if ( z > 0.5L )
|
|
{
|
|
p += 1.0L;
|
|
z = p - q;
|
|
}
|
|
z = q * sin( PI * z );
|
|
if ( z == 0.0L )
|
|
return sgngam * real.infinity;
|
|
/* z = LOGPI - logl( z ) - w; */
|
|
z = log( PI/z ) - w;
|
|
return z;
|
|
}
|
|
|
|
if ( x < 13.0L )
|
|
{
|
|
z = 1.0L;
|
|
nx = floor( x + 0.5L );
|
|
f = x - nx;
|
|
while ( x >= 3.0L )
|
|
{
|
|
nx -= 1.0L;
|
|
x = nx + f;
|
|
z *= x;
|
|
}
|
|
while ( x < 2.0L )
|
|
{
|
|
if ( fabs(x) <= 0.03125 )
|
|
{
|
|
if ( x == 0.0L )
|
|
return real.infinity;
|
|
if ( x < 0.0L )
|
|
{
|
|
x = -x;
|
|
q = z / (x * poly( x, GammaSmallNegCoeffs));
|
|
} else
|
|
q = z / (x * poly( x, GammaSmallCoeffs));
|
|
return log( fabs(q) );
|
|
}
|
|
z /= nx + f;
|
|
nx += 1.0L;
|
|
x = nx + f;
|
|
}
|
|
z = fabs(z);
|
|
if ( x == 2.0L )
|
|
return log(z);
|
|
x = (nx - 2.0L) + f;
|
|
real p = x * rationalPoly( x, logGammaNumerator, logGammaDenominator);
|
|
return log(z) + p;
|
|
}
|
|
|
|
// const real MAXLGM = 1.04848146839019521116e+4928L;
|
|
// if ( x > MAXLGM ) return sgngaml * real.infinity;
|
|
|
|
const real LOGSQRT2PI = 0.91893853320467274178L; // log( sqrt( 2*pi ) )
|
|
|
|
q = ( x - 0.5L ) * log(x) - x + LOGSQRT2PI;
|
|
if (x > 1.0e10L) return q;
|
|
real p = 1.0L / (x*x);
|
|
q += poly( p, logGammaStirlingCoeffs ) / x;
|
|
return q ;
|
|
}
|
|
|
|
@safe unittest
|
|
{
|
|
assert(isIdentical(logGamma(NaN(0xDEF)), NaN(0xDEF)));
|
|
assert(logGamma(real.infinity) == real.infinity);
|
|
assert(logGamma(-1.0) == real.infinity);
|
|
assert(logGamma(0.0) == real.infinity);
|
|
assert(logGamma(-50.0) == real.infinity);
|
|
assert(isIdentical(0.0L, logGamma(1.0L)));
|
|
assert(isIdentical(0.0L, logGamma(2.0L)));
|
|
assert(logGamma(real.min_normal*real.epsilon) == real.infinity);
|
|
assert(logGamma(-real.min_normal*real.epsilon) == real.infinity);
|
|
|
|
// x, correct loggamma(x), correct d/dx loggamma(x).
|
|
immutable static real[] testpoints = [
|
|
8.0L, 8.525146484375L + 1.48766904143001655310E-5, 2.01564147795560999654E0L,
|
|
8.99993896484375e-1L, 6.6375732421875e-2L + 5.11505711292524166220E-6L, -7.54938684259372234258E-1,
|
|
7.31597900390625e-1L, 2.2369384765625e-1 + 5.21506341809849792422E-6L, -1.13355566660398608343E0L,
|
|
2.31639862060546875e-1L, 1.3686676025390625L + 1.12609441752996145670E-5L, -4.56670961813812679012E0,
|
|
1.73162841796875L, -8.88214111328125e-2L + 3.36207740803753034508E-6L, 2.33339034686200586920E-1L,
|
|
1.23162841796875L, -9.3902587890625e-2L + 1.28765089229009648104E-5L, -2.49677345775751390414E-1L,
|
|
7.3786976294838206464e19L, 3.301798506038663053312e21L - 1.656137564136932662487046269677E5L,
|
|
4.57477139169563904215E1L,
|
|
1.08420217248550443401E-19L, 4.36682586669921875e1L + 1.37082843669932230418E-5L,
|
|
-9.22337203685477580858E18L,
|
|
1.0L, 0.0L, -5.77215664901532860607E-1L,
|
|
2.0L, 0.0L, 4.22784335098467139393E-1L,
|
|
-0.5L, 1.2655029296875L + 9.19379714539648894580E-6L, 3.64899739785765205590E-2L,
|
|
-1.5L, 8.6004638671875e-1L + 6.28657731014510932682E-7L, 7.03156640645243187226E-1L,
|
|
-2.5L, -5.6243896484375E-2L + 1.79986700949327405470E-7, 1.10315664064524318723E0L,
|
|
-3.5L, -1.30902099609375L + 1.43111007079536392848E-5L, 1.38887092635952890151E0L
|
|
];
|
|
// TODO: test derivatives as well.
|
|
for (int i=0; i<testpoints.length; i+=3)
|
|
{
|
|
assert( feqrel(logGamma(testpoints[i]), testpoints[i+1]) > real.mant_dig-5);
|
|
if (testpoints[i]<MAXGAMMA)
|
|
{
|
|
assert( feqrel(log(fabs(gamma(testpoints[i]))), testpoints[i+1]) > real.mant_dig-5);
|
|
}
|
|
}
|
|
assert(logGamma(-50.2) == log(fabs(gamma(-50.2))));
|
|
assert(logGamma(-0.008) == log(fabs(gamma(-0.008))));
|
|
assert(feqrel(logGamma(-38.8),log(fabs(gamma(-38.8)))) > real.mant_dig-4);
|
|
static if (real.mant_dig >= 64) // incl. 80-bit reals
|
|
assert(feqrel(logGamma(1500.0L),log(gamma(1500.0L))) > real.mant_dig-2);
|
|
else static if (real.mant_dig >= 53) // incl. 64-bit reals
|
|
assert(feqrel(logGamma(150.0L),log(gamma(150.0L))) > real.mant_dig-2);
|
|
}
|
|
|
|
|
|
private {
|
|
static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended)
|
|
{
|
|
enum real MAXLOG = 0x1.62e42fefa39ef358p+13L; // log(real.max)
|
|
enum real MINLOG = -0x1.6436716d5406e6d8p+13L; // log(real.min_normal*real.epsilon) = log(smallest denormal)
|
|
}
|
|
else static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble)
|
|
{
|
|
enum real MAXLOG = 0x1.62e42fefa39efp+9L; // log(real.max)
|
|
enum real MINLOG = -0x1.74385446d71c3p+9L; // log(real.min_normal*real.epsilon) = log(smallest denormal)
|
|
}
|
|
else
|
|
static assert(0, "missing MAXLOG and MINLOG for other real types");
|
|
|
|
enum real BETA_BIG = 9.223372036854775808e18L;
|
|
enum real BETA_BIGINV = 1.084202172485504434007e-19L;
|
|
}
|
|
|
|
/** Incomplete beta integral
|
|
*
|
|
* Returns incomplete beta integral of the arguments, evaluated
|
|
* from zero to x. The regularized incomplete beta function is defined as
|
|
*
|
|
* betaIncomplete(a, b, x) = Γ(a+b)/(Γ(a) Γ(b)) *
|
|
* $(INTEGRATE 0, x) $(POWER t, a-1)$(POWER (1-t),b-1) dt
|
|
*
|
|
* and is the same as the the cumulative distribution function.
|
|
*
|
|
* The domain of definition is 0 <= x <= 1. In this
|
|
* implementation a and b are restricted to positive values.
|
|
* The integral from x to 1 may be obtained by the symmetry
|
|
* relation
|
|
*
|
|
* betaIncompleteCompl(a, b, x ) = betaIncomplete( b, a, 1-x )
|
|
*
|
|
* The integral is evaluated by a continued fraction expansion
|
|
* or, when b*x is small, by a power series.
|
|
*/
|
|
real betaIncomplete(real aa, real bb, real xx )
|
|
{
|
|
if ( !(aa>0 && bb>0) )
|
|
{
|
|
if ( isNaN(aa) ) return aa;
|
|
if ( isNaN(bb) ) return bb;
|
|
return real.nan; // domain error
|
|
}
|
|
if (!(xx>0 && xx<1.0))
|
|
{
|
|
if (isNaN(xx)) return xx;
|
|
if ( xx == 0.0L ) return 0.0;
|
|
if ( xx == 1.0L ) return 1.0;
|
|
return real.nan; // domain error
|
|
}
|
|
if ( (bb * xx) <= 1.0L && xx <= 0.95L)
|
|
{
|
|
return betaDistPowerSeries(aa, bb, xx);
|
|
}
|
|
real x;
|
|
real xc; // = 1 - x
|
|
|
|
real a, b;
|
|
int flag = 0;
|
|
|
|
/* Reverse a and b if x is greater than the mean. */
|
|
if ( xx > (aa/(aa+bb)) )
|
|
{
|
|
// here x > aa/(aa+bb) and (bb*x>1 or x>0.95)
|
|
flag = 1;
|
|
a = bb;
|
|
b = aa;
|
|
xc = xx;
|
|
x = 1.0L - xx;
|
|
}
|
|
else
|
|
{
|
|
a = aa;
|
|
b = bb;
|
|
xc = 1.0L - xx;
|
|
x = xx;
|
|
}
|
|
|
|
if ( flag == 1 && (b * x) <= 1.0L && x <= 0.95L)
|
|
{
|
|
// here xx > aa/(aa+bb) and ((bb*xx>1) or xx>0.95) and (aa*(1-xx)<=1) and xx > 0.05
|
|
return 1.0 - betaDistPowerSeries(a, b, x); // note loss of precision
|
|
}
|
|
|
|
real w;
|
|
// Choose expansion for optimal convergence
|
|
// One is for x * (a+b+2) < (a+1),
|
|
// the other is for x * (a+b+2) > (a+1).
|
|
real y = x * (a+b-2.0L) - (a-1.0L);
|
|
if ( y < 0.0L )
|
|
{
|
|
w = betaDistExpansion1( a, b, x );
|
|
}
|
|
else
|
|
{
|
|
w = betaDistExpansion2( a, b, x ) / xc;
|
|
}
|
|
|
|
/* Multiply w by the factor
|
|
a b
|
|
x (1-x) Gamma(a+b) / ( a Gamma(a) Gamma(b) ) . */
|
|
|
|
y = a * log(x);
|
|
real t = b * log(xc);
|
|
if ( (a+b) < MAXGAMMA && fabs(y) < MAXLOG && fabs(t) < MAXLOG )
|
|
{
|
|
t = pow(xc,b);
|
|
t *= pow(x,a);
|
|
t /= a;
|
|
t *= w;
|
|
t *= gamma(a+b) / (gamma(a) * gamma(b));
|
|
}
|
|
else
|
|
{
|
|
/* Resort to logarithms. */
|
|
y += t + logGamma(a+b) - logGamma(a) - logGamma(b);
|
|
y += log(w/a);
|
|
|
|
t = exp(y);
|
|
/+
|
|
// There seems to be a bug in Cephes at this point.
|
|
// Problems occur for y > MAXLOG, not y < MINLOG.
|
|
if ( y < MINLOG )
|
|
{
|
|
t = 0.0L;
|
|
}
|
|
else
|
|
{
|
|
t = exp(y);
|
|
}
|
|
+/
|
|
}
|
|
if ( flag == 1 )
|
|
{
|
|
/+ // CEPHES includes this code, but I think it is erroneous.
|
|
if ( t <= real.epsilon )
|
|
{
|
|
t = 1.0L - real.epsilon;
|
|
} else
|
|
+/
|
|
t = 1.0L - t;
|
|
}
|
|
return t;
|
|
}
|
|
|
|
/** Inverse of incomplete beta integral
|
|
*
|
|
* Given y, the function finds x such that
|
|
*
|
|
* betaIncomplete(a, b, x) == y
|
|
*
|
|
* Newton iterations or interval halving is used.
|
|
*/
|
|
real betaIncompleteInv(real aa, real bb, real yy0 )
|
|
{
|
|
real a, b, y0, d, y, x, x0, x1, lgm, yp, di, dithresh, yl, yh, xt;
|
|
int i, rflg, dir, nflg;
|
|
|
|
if (isNaN(yy0)) return yy0;
|
|
if (isNaN(aa)) return aa;
|
|
if (isNaN(bb)) return bb;
|
|
if ( yy0 <= 0.0L )
|
|
return 0.0L;
|
|
if ( yy0 >= 1.0L )
|
|
return 1.0L;
|
|
x0 = 0.0L;
|
|
yl = 0.0L;
|
|
x1 = 1.0L;
|
|
yh = 1.0L;
|
|
if ( aa <= 1.0L || bb <= 1.0L )
|
|
{
|
|
dithresh = 1.0e-7L;
|
|
rflg = 0;
|
|
a = aa;
|
|
b = bb;
|
|
y0 = yy0;
|
|
x = a/(a+b);
|
|
y = betaIncomplete( a, b, x );
|
|
nflg = 0;
|
|
goto ihalve;
|
|
}
|
|
else
|
|
{
|
|
nflg = 0;
|
|
dithresh = 1.0e-4L;
|
|
}
|
|
|
|
// approximation to inverse function
|
|
|
|
yp = -normalDistributionInvImpl( yy0 );
|
|
|
|
if ( yy0 > 0.5L )
|
|
{
|
|
rflg = 1;
|
|
a = bb;
|
|
b = aa;
|
|
y0 = 1.0L - yy0;
|
|
yp = -yp;
|
|
}
|
|
else
|
|
{
|
|
rflg = 0;
|
|
a = aa;
|
|
b = bb;
|
|
y0 = yy0;
|
|
}
|
|
|
|
lgm = (yp * yp - 3.0L)/6.0L;
|
|
x = 2.0L/( 1.0L/(2.0L * a-1.0L) + 1.0L/(2.0L * b - 1.0L) );
|
|
d = yp * sqrt( x + lgm ) / x
|
|
- ( 1.0L/(2.0L * b - 1.0L) - 1.0L/(2.0L * a - 1.0L) )
|
|
* (lgm + (5.0L/6.0L) - 2.0L/(3.0L * x));
|
|
d = 2.0L * d;
|
|
if ( d < MINLOG )
|
|
{
|
|
x = 1.0L;
|
|
goto under;
|
|
}
|
|
x = a/( a + b * exp(d) );
|
|
y = betaIncomplete( a, b, x );
|
|
yp = (y - y0)/y0;
|
|
if ( fabs(yp) < 0.2 )
|
|
goto newt;
|
|
|
|
/* Resort to interval halving if not close enough. */
|
|
ihalve:
|
|
|
|
dir = 0;
|
|
di = 0.5L;
|
|
for ( i=0; i<400; i++ )
|
|
{
|
|
if ( i != 0 )
|
|
{
|
|
x = x0 + di * (x1 - x0);
|
|
if ( x == 1.0L )
|
|
{
|
|
x = 1.0L - real.epsilon;
|
|
}
|
|
if ( x == 0.0L )
|
|
{
|
|
di = 0.5;
|
|
x = x0 + di * (x1 - x0);
|
|
if ( x == 0.0 )
|
|
goto under;
|
|
}
|
|
y = betaIncomplete( a, b, x );
|
|
yp = (x1 - x0)/(x1 + x0);
|
|
if ( fabs(yp) < dithresh )
|
|
goto newt;
|
|
yp = (y-y0)/y0;
|
|
if ( fabs(yp) < dithresh )
|
|
goto newt;
|
|
}
|
|
if ( y < y0 )
|
|
{
|
|
x0 = x;
|
|
yl = y;
|
|
if ( dir < 0 )
|
|
{
|
|
dir = 0;
|
|
di = 0.5L;
|
|
} else if ( dir > 3 )
|
|
di = 1.0L - (1.0L - di) * (1.0L - di);
|
|
else if ( dir > 1 )
|
|
di = 0.5L * di + 0.5L;
|
|
else
|
|
di = (y0 - y)/(yh - yl);
|
|
dir += 1;
|
|
if ( x0 > 0.95L )
|
|
{
|
|
if ( rflg == 1 )
|
|
{
|
|
rflg = 0;
|
|
a = aa;
|
|
b = bb;
|
|
y0 = yy0;
|
|
}
|
|
else
|
|
{
|
|
rflg = 1;
|
|
a = bb;
|
|
b = aa;
|
|
y0 = 1.0 - yy0;
|
|
}
|
|
x = 1.0L - x;
|
|
y = betaIncomplete( a, b, x );
|
|
x0 = 0.0;
|
|
yl = 0.0;
|
|
x1 = 1.0;
|
|
yh = 1.0;
|
|
goto ihalve;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
x1 = x;
|
|
if ( rflg == 1 && x1 < real.epsilon )
|
|
{
|
|
x = 0.0L;
|
|
goto done;
|
|
}
|
|
yh = y;
|
|
if ( dir > 0 )
|
|
{
|
|
dir = 0;
|
|
di = 0.5L;
|
|
}
|
|
else if ( dir < -3 )
|
|
di = di * di;
|
|
else if ( dir < -1 )
|
|
di = 0.5L * di;
|
|
else
|
|
di = (y - y0)/(yh - yl);
|
|
dir -= 1;
|
|
}
|
|
}
|
|
if ( x0 >= 1.0L )
|
|
{
|
|
// partial loss of precision
|
|
x = 1.0L - real.epsilon;
|
|
goto done;
|
|
}
|
|
if ( x <= 0.0L )
|
|
{
|
|
under:
|
|
// underflow has occurred
|
|
x = real.min_normal * real.min_normal;
|
|
goto done;
|
|
}
|
|
|
|
newt:
|
|
|
|
if ( nflg )
|
|
{
|
|
goto done;
|
|
}
|
|
nflg = 1;
|
|
lgm = logGamma(a+b) - logGamma(a) - logGamma(b);
|
|
|
|
for ( i=0; i<15; i++ )
|
|
{
|
|
/* Compute the function at this point. */
|
|
if ( i != 0 )
|
|
y = betaIncomplete(a,b,x);
|
|
if ( y < yl )
|
|
{
|
|
x = x0;
|
|
y = yl;
|
|
}
|
|
else if ( y > yh )
|
|
{
|
|
x = x1;
|
|
y = yh;
|
|
}
|
|
else if ( y < y0 )
|
|
{
|
|
x0 = x;
|
|
yl = y;
|
|
}
|
|
else
|
|
{
|
|
x1 = x;
|
|
yh = y;
|
|
}
|
|
if ( x == 1.0L || x == 0.0L )
|
|
break;
|
|
/* Compute the derivative of the function at this point. */
|
|
d = (a - 1.0L) * log(x) + (b - 1.0L) * log(1.0L - x) + lgm;
|
|
if ( d < MINLOG )
|
|
{
|
|
goto done;
|
|
}
|
|
if ( d > MAXLOG )
|
|
{
|
|
break;
|
|
}
|
|
d = exp(d);
|
|
/* Compute the step to the next approximation of x. */
|
|
d = (y - y0)/d;
|
|
xt = x - d;
|
|
if ( xt <= x0 )
|
|
{
|
|
y = (x - x0) / (x1 - x0);
|
|
xt = x0 + 0.5L * y * (x - x0);
|
|
if ( xt <= 0.0L )
|
|
break;
|
|
}
|
|
if ( xt >= x1 )
|
|
{
|
|
y = (x1 - x) / (x1 - x0);
|
|
xt = x1 - 0.5L * y * (x1 - x);
|
|
if ( xt >= 1.0L )
|
|
break;
|
|
}
|
|
x = xt;
|
|
if ( fabs(d/x) < (128.0L * real.epsilon) )
|
|
goto done;
|
|
}
|
|
/* Did not converge. */
|
|
dithresh = 256.0L * real.epsilon;
|
|
goto ihalve;
|
|
|
|
done:
|
|
if ( rflg )
|
|
{
|
|
if ( x <= real.epsilon )
|
|
x = 1.0L - real.epsilon;
|
|
else
|
|
x = 1.0L - x;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
@safe unittest { // also tested by the normal distribution
|
|
// check NaN propagation
|
|
assert(isIdentical(betaIncomplete(NaN(0xABC),2,3), NaN(0xABC)));
|
|
assert(isIdentical(betaIncomplete(7,NaN(0xABC),3), NaN(0xABC)));
|
|
assert(isIdentical(betaIncomplete(7,15,NaN(0xABC)), NaN(0xABC)));
|
|
assert(isIdentical(betaIncompleteInv(NaN(0xABC),1,17), NaN(0xABC)));
|
|
assert(isIdentical(betaIncompleteInv(2,NaN(0xABC),8), NaN(0xABC)));
|
|
assert(isIdentical(betaIncompleteInv(2,3, NaN(0xABC)), NaN(0xABC)));
|
|
|
|
assert(isNaN(betaIncomplete(-1, 2, 3)));
|
|
|
|
assert(betaIncomplete(1, 2, 0)==0);
|
|
assert(betaIncomplete(1, 2, 1)==1);
|
|
assert(isNaN(betaIncomplete(1, 2, 3)));
|
|
assert(betaIncompleteInv(1, 1, 0)==0);
|
|
assert(betaIncompleteInv(1, 1, 1)==1);
|
|
|
|
// Test against Mathematica betaRegularized[z,a,b]
|
|
// These arbitrary points are chosen to give good code coverage.
|
|
assert(feqrel(betaIncomplete(8, 10, 0.2), 0.010_934_315_234_099_2L) >= real.mant_dig - 5);
|
|
assert(feqrel(betaIncomplete(2, 2.5, 0.9), 0.989_722_597_604_452_767_171_003_59L) >= real.mant_dig - 1);
|
|
static if (real.mant_dig >= 64) // incl. 80-bit reals
|
|
assert(feqrel(betaIncomplete(1000, 800, 0.5), 1.179140859734704555102808541457164E-06L) >= real.mant_dig - 13);
|
|
else
|
|
assert(feqrel(betaIncomplete(1000, 800, 0.5), 1.179140859734704555102808541457164E-06L) >= real.mant_dig - 14);
|
|
assert(feqrel(betaIncomplete(0.0001, 10000, 0.0001), 0.999978059362107134278786L) >= real.mant_dig - 18);
|
|
assert(betaIncomplete(0.01, 327726.7, 0.545113) == 1.0);
|
|
assert(feqrel(betaIncompleteInv(8, 10, 0.010_934_315_234_099_2L), 0.2L) >= real.mant_dig - 2);
|
|
assert(feqrel(betaIncomplete(0.01, 498.437, 0.0121433), 0.99999664562033077636065L) >= real.mant_dig - 1);
|
|
assert(feqrel(betaIncompleteInv(5, 10, 0.2000002972865658842), 0.229121208190918L) >= real.mant_dig - 3);
|
|
assert(feqrel(betaIncompleteInv(4, 7, 0.8000002209179505L), 0.483657360076904L) >= real.mant_dig - 3);
|
|
|
|
// Coverage tests. I don't have correct values for these tests, but
|
|
// these values cover most of the code, so they are useful for
|
|
// regression testing.
|
|
// Extensive testing failed to increase the coverage. It seems likely that about
|
|
// half the code in this function is unnecessary; there is potential for
|
|
// significant improvement over the original CEPHES code.
|
|
static if (real.mant_dig == 64) // 80-bit reals
|
|
{
|
|
assert(betaIncompleteInv(0.01, 8e-48, 5.45464e-20) == 1-real.epsilon);
|
|
assert(betaIncompleteInv(0.01, 8e-48, 9e-26) == 1-real.epsilon);
|
|
|
|
// Beware: a one-bit change in pow() changes almost all digits in the result!
|
|
assert(feqrel(
|
|
betaIncompleteInv(0x1.b3d151fbba0eb18p+1, 1.2265e-19, 2.44859e-18),
|
|
0x1.c0110c8531d0952cp-1L
|
|
) > 10);
|
|
// This next case uncovered a one-bit difference in the FYL2X instruction
|
|
// between Intel and AMD processors. This difference gets magnified by 2^^38.
|
|
// WolframAlpha crashes attempting to calculate this.
|
|
assert(feqrel(betaIncompleteInv(0x1.ff1275ae5b939bcap-41, 4.6713e18, 0.0813601),
|
|
0x1.f97749d90c7adba8p-63L) >= real.mant_dig - 39);
|
|
real a1 = 3.40483;
|
|
assert(betaIncompleteInv(a1, 4.0640301659679627772e19L, 0.545113) == 0x1.ba8c08108aaf5d14p-109);
|
|
real b1 = 2.82847e-25;
|
|
assert(feqrel(betaIncompleteInv(0.01, b1, 9e-26), 0x1.549696104490aa9p-830L) >= real.mant_dig-10);
|
|
|
|
// --- Problematic cases ---
|
|
// This is a situation where the series expansion fails to converge
|
|
assert( isNaN(betaIncompleteInv(0.12167, 4.0640301659679627772e19L, 0.0813601)));
|
|
// This next result is almost certainly erroneous.
|
|
// Mathematica states: "(cannot be determined by current methods)"
|
|
assert(betaIncomplete(1.16251e20, 2.18e39, 5.45e-20) == -real.infinity);
|
|
// WolframAlpha gives no result for this, though indicates that it approximately 1.0 - 1.3e-9
|
|
assert(1 - betaIncomplete(0.01, 328222, 4.0375e-5) == 0x1.5f62926b4p-30);
|
|
}
|
|
}
|
|
|
|
|
|
private {
|
|
// Implementation functions
|
|
|
|
// Continued fraction expansion #1 for incomplete beta integral
|
|
// Use when x < (a+1)/(a+b+2)
|
|
real betaDistExpansion1(real a, real b, real x )
|
|
{
|
|
real xk, pk, pkm1, pkm2, qk, qkm1, qkm2;
|
|
real k1, k2, k3, k4, k5, k6, k7, k8;
|
|
real r, t, ans;
|
|
int n;
|
|
|
|
k1 = a;
|
|
k2 = a + b;
|
|
k3 = a;
|
|
k4 = a + 1.0L;
|
|
k5 = 1.0L;
|
|
k6 = b - 1.0L;
|
|
k7 = k4;
|
|
k8 = a + 2.0L;
|
|
|
|
pkm2 = 0.0L;
|
|
qkm2 = 1.0L;
|
|
pkm1 = 1.0L;
|
|
qkm1 = 1.0L;
|
|
ans = 1.0L;
|
|
r = 1.0L;
|
|
n = 0;
|
|
const real thresh = 3.0L * real.epsilon;
|
|
do
|
|
{
|
|
xk = -( x * k1 * k2 )/( k3 * k4 );
|
|
pk = pkm1 + pkm2 * xk;
|
|
qk = qkm1 + qkm2 * xk;
|
|
pkm2 = pkm1;
|
|
pkm1 = pk;
|
|
qkm2 = qkm1;
|
|
qkm1 = qk;
|
|
|
|
xk = ( x * k5 * k6 )/( k7 * k8 );
|
|
pk = pkm1 + pkm2 * xk;
|
|
qk = qkm1 + qkm2 * xk;
|
|
pkm2 = pkm1;
|
|
pkm1 = pk;
|
|
qkm2 = qkm1;
|
|
qkm1 = qk;
|
|
|
|
if ( qk != 0.0L )
|
|
r = pk/qk;
|
|
if ( r != 0.0L )
|
|
{
|
|
t = fabs( (ans - r)/r );
|
|
ans = r;
|
|
}
|
|
else
|
|
{
|
|
t = 1.0L;
|
|
}
|
|
|
|
if ( t < thresh )
|
|
return ans;
|
|
|
|
k1 += 1.0L;
|
|
k2 += 1.0L;
|
|
k3 += 2.0L;
|
|
k4 += 2.0L;
|
|
k5 += 1.0L;
|
|
k6 -= 1.0L;
|
|
k7 += 2.0L;
|
|
k8 += 2.0L;
|
|
|
|
if ( (fabs(qk) + fabs(pk)) > BETA_BIG )
|
|
{
|
|
pkm2 *= BETA_BIGINV;
|
|
pkm1 *= BETA_BIGINV;
|
|
qkm2 *= BETA_BIGINV;
|
|
qkm1 *= BETA_BIGINV;
|
|
}
|
|
if ( (fabs(qk) < BETA_BIGINV) || (fabs(pk) < BETA_BIGINV) )
|
|
{
|
|
pkm2 *= BETA_BIG;
|
|
pkm1 *= BETA_BIG;
|
|
qkm2 *= BETA_BIG;
|
|
qkm1 *= BETA_BIG;
|
|
}
|
|
}
|
|
while ( ++n < 400 );
|
|
// loss of precision has occurred
|
|
// mtherr( "incbetl", PLOSS );
|
|
return ans;
|
|
}
|
|
|
|
// Continued fraction expansion #2 for incomplete beta integral
|
|
// Use when x > (a+1)/(a+b+2)
|
|
real betaDistExpansion2(real a, real b, real x )
|
|
{
|
|
real xk, pk, pkm1, pkm2, qk, qkm1, qkm2;
|
|
real k1, k2, k3, k4, k5, k6, k7, k8;
|
|
real r, t, ans, z;
|
|
|
|
k1 = a;
|
|
k2 = b - 1.0L;
|
|
k3 = a;
|
|
k4 = a + 1.0L;
|
|
k5 = 1.0L;
|
|
k6 = a + b;
|
|
k7 = a + 1.0L;
|
|
k8 = a + 2.0L;
|
|
|
|
pkm2 = 0.0L;
|
|
qkm2 = 1.0L;
|
|
pkm1 = 1.0L;
|
|
qkm1 = 1.0L;
|
|
z = x / (1.0L-x);
|
|
ans = 1.0L;
|
|
r = 1.0L;
|
|
int n = 0;
|
|
const real thresh = 3.0L * real.epsilon;
|
|
do
|
|
{
|
|
xk = -( z * k1 * k2 )/( k3 * k4 );
|
|
pk = pkm1 + pkm2 * xk;
|
|
qk = qkm1 + qkm2 * xk;
|
|
pkm2 = pkm1;
|
|
pkm1 = pk;
|
|
qkm2 = qkm1;
|
|
qkm1 = qk;
|
|
|
|
xk = ( z * k5 * k6 )/( k7 * k8 );
|
|
pk = pkm1 + pkm2 * xk;
|
|
qk = qkm1 + qkm2 * xk;
|
|
pkm2 = pkm1;
|
|
pkm1 = pk;
|
|
qkm2 = qkm1;
|
|
qkm1 = qk;
|
|
|
|
if ( qk != 0.0L )
|
|
r = pk/qk;
|
|
if ( r != 0.0L )
|
|
{
|
|
t = fabs( (ans - r)/r );
|
|
ans = r;
|
|
} else
|
|
t = 1.0L;
|
|
|
|
if ( t < thresh )
|
|
return ans;
|
|
k1 += 1.0L;
|
|
k2 -= 1.0L;
|
|
k3 += 2.0L;
|
|
k4 += 2.0L;
|
|
k5 += 1.0L;
|
|
k6 += 1.0L;
|
|
k7 += 2.0L;
|
|
k8 += 2.0L;
|
|
|
|
if ( (fabs(qk) + fabs(pk)) > BETA_BIG )
|
|
{
|
|
pkm2 *= BETA_BIGINV;
|
|
pkm1 *= BETA_BIGINV;
|
|
qkm2 *= BETA_BIGINV;
|
|
qkm1 *= BETA_BIGINV;
|
|
}
|
|
if ( (fabs(qk) < BETA_BIGINV) || (fabs(pk) < BETA_BIGINV) )
|
|
{
|
|
pkm2 *= BETA_BIG;
|
|
pkm1 *= BETA_BIG;
|
|
qkm2 *= BETA_BIG;
|
|
qkm1 *= BETA_BIG;
|
|
}
|
|
} while ( ++n < 400 );
|
|
// loss of precision has occurred
|
|
//mtherr( "incbetl", PLOSS );
|
|
return ans;
|
|
}
|
|
|
|
/* Power series for incomplete gamma integral.
|
|
Use when b*x is small. */
|
|
real betaDistPowerSeries(real a, real b, real x )
|
|
{
|
|
real ai = 1.0L / a;
|
|
real u = (1.0L - b) * x;
|
|
real v = u / (a + 1.0L);
|
|
real t1 = v;
|
|
real t = u;
|
|
real n = 2.0L;
|
|
real s = 0.0L;
|
|
real z = real.epsilon * ai;
|
|
while ( fabs(v) > z )
|
|
{
|
|
u = (n - b) * x / n;
|
|
t *= u;
|
|
v = t / (a + n);
|
|
s += v;
|
|
n += 1.0L;
|
|
}
|
|
s += t1;
|
|
s += ai;
|
|
|
|
u = a * log(x);
|
|
if ( (a+b) < MAXGAMMA && fabs(u) < MAXLOG )
|
|
{
|
|
t = gamma(a+b)/(gamma(a)*gamma(b));
|
|
s = s * t * pow(x,a);
|
|
}
|
|
else
|
|
{
|
|
t = logGamma(a+b) - logGamma(a) - logGamma(b) + u + log(s);
|
|
|
|
if ( t < MINLOG )
|
|
{
|
|
s = 0.0L;
|
|
} else
|
|
s = exp(t);
|
|
}
|
|
return s;
|
|
}
|
|
|
|
}
|
|
|
|
/***************************************
|
|
* Incomplete gamma integral and its complement
|
|
*
|
|
* These functions are defined by
|
|
*
|
|
* gammaIncomplete = ( $(INTEGRATE 0, x) $(POWER e, -t) $(POWER t, a-1) dt )/ $(GAMMA)(a)
|
|
*
|
|
* gammaIncompleteCompl(a,x) = 1 - gammaIncomplete(a,x)
|
|
* = ($(INTEGRATE x, ∞) $(POWER e, -t) $(POWER t, a-1) dt )/ $(GAMMA)(a)
|
|
*
|
|
* In this implementation both arguments must be positive.
|
|
* The integral is evaluated by either a power series or
|
|
* continued fraction expansion, depending on the relative
|
|
* values of a and x.
|
|
*/
|
|
real gammaIncomplete(real a, real x )
|
|
in {
|
|
assert(x >= 0);
|
|
assert(a > 0);
|
|
}
|
|
body {
|
|
/* left tail of incomplete gamma function:
|
|
*
|
|
* inf. k
|
|
* a -x - x
|
|
* x e > ----------
|
|
* - -
|
|
* k=0 | (a+k+1)
|
|
*
|
|
*/
|
|
if (x == 0)
|
|
return 0.0L;
|
|
|
|
if ( (x > 1.0L) && (x > a ) )
|
|
return 1.0L - gammaIncompleteCompl(a,x);
|
|
|
|
real ax = a * log(x) - x - logGamma(a);
|
|
/+
|
|
if ( ax < MINLOGL ) return 0; // underflow
|
|
// { mtherr( "igaml", UNDERFLOW ); return( 0.0L ); }
|
|
+/
|
|
ax = exp(ax);
|
|
|
|
/* power series */
|
|
real r = a;
|
|
real c = 1.0L;
|
|
real ans = 1.0L;
|
|
|
|
do
|
|
{
|
|
r += 1.0L;
|
|
c *= x/r;
|
|
ans += c;
|
|
} while ( c/ans > real.epsilon );
|
|
|
|
return ans * ax/a;
|
|
}
|
|
|
|
/** ditto */
|
|
real gammaIncompleteCompl(real a, real x )
|
|
in {
|
|
assert(x >= 0);
|
|
assert(a > 0);
|
|
}
|
|
body {
|
|
if (x == 0)
|
|
return 1.0L;
|
|
if ( (x < 1.0L) || (x < a) )
|
|
return 1.0L - gammaIncomplete(a,x);
|
|
|
|
// DAC (Cephes bug fix): This is necessary to avoid
|
|
// spurious nans, eg
|
|
// log(x)-x = NaN when x = real.infinity
|
|
const real MAXLOGL = 1.1356523406294143949492E4L;
|
|
if (x > MAXLOGL)
|
|
return igammaTemmeLarge(a, x);
|
|
|
|
real ax = a * log(x) - x - logGamma(a);
|
|
//const real MINLOGL = -1.1355137111933024058873E4L;
|
|
// if ( ax < MINLOGL ) return 0; // underflow;
|
|
ax = exp(ax);
|
|
|
|
|
|
/* continued fraction */
|
|
real y = 1.0L - a;
|
|
real z = x + y + 1.0L;
|
|
real c = 0.0L;
|
|
|
|
real pk, qk, t;
|
|
|
|
real pkm2 = 1.0L;
|
|
real qkm2 = x;
|
|
real pkm1 = x + 1.0L;
|
|
real qkm1 = z * x;
|
|
real ans = pkm1/qkm1;
|
|
|
|
do
|
|
{
|
|
c += 1.0L;
|
|
y += 1.0L;
|
|
z += 2.0L;
|
|
real yc = y * c;
|
|
pk = pkm1 * z - pkm2 * yc;
|
|
qk = qkm1 * z - qkm2 * yc;
|
|
if ( qk != 0.0L )
|
|
{
|
|
real r = pk/qk;
|
|
t = fabs( (ans - r)/r );
|
|
ans = r;
|
|
}
|
|
else
|
|
{
|
|
t = 1.0L;
|
|
}
|
|
pkm2 = pkm1;
|
|
pkm1 = pk;
|
|
qkm2 = qkm1;
|
|
qkm1 = qk;
|
|
|
|
const real BIG = 9.223372036854775808e18L;
|
|
|
|
if ( fabs(pk) > BIG )
|
|
{
|
|
pkm2 /= BIG;
|
|
pkm1 /= BIG;
|
|
qkm2 /= BIG;
|
|
qkm1 /= BIG;
|
|
}
|
|
} while ( t > real.epsilon );
|
|
|
|
return ans * ax;
|
|
}
|
|
|
|
/** Inverse of complemented incomplete gamma integral
|
|
*
|
|
* Given a and p, the function finds x such that
|
|
*
|
|
* gammaIncompleteCompl( a, x ) = p.
|
|
*
|
|
* Starting with the approximate value x = a $(POWER t, 3), where
|
|
* t = 1 - d - normalDistributionInv(p) sqrt(d),
|
|
* and d = 1/9a,
|
|
* the routine performs up to 10 Newton iterations to find the
|
|
* root of incompleteGammaCompl(a,x) - p = 0.
|
|
*/
|
|
real gammaIncompleteComplInv(real a, real p)
|
|
in {
|
|
assert(p>=0 && p<= 1);
|
|
assert(a>0);
|
|
}
|
|
body {
|
|
if (p == 0) return real.infinity;
|
|
|
|
real y0 = p;
|
|
const real MAXLOGL = 1.1356523406294143949492E4L;
|
|
real x0, x1, x, yl, yh, y, d, lgm, dithresh;
|
|
int i, dir;
|
|
|
|
/* bound the solution */
|
|
x0 = real.max;
|
|
yl = 0.0L;
|
|
x1 = 0.0L;
|
|
yh = 1.0L;
|
|
dithresh = 4.0 * real.epsilon;
|
|
|
|
/* approximation to inverse function */
|
|
d = 1.0L/(9.0L*a);
|
|
y = 1.0L - d - normalDistributionInvImpl(y0) * sqrt(d);
|
|
x = a * y * y * y;
|
|
|
|
lgm = logGamma(a);
|
|
|
|
for ( i=0; i<10; i++ )
|
|
{
|
|
if ( x > x0 || x < x1 )
|
|
goto ihalve;
|
|
y = gammaIncompleteCompl(a,x);
|
|
if ( y < yl || y > yh )
|
|
goto ihalve;
|
|
if ( y < y0 )
|
|
{
|
|
x0 = x;
|
|
yl = y;
|
|
}
|
|
else
|
|
{
|
|
x1 = x;
|
|
yh = y;
|
|
}
|
|
/* compute the derivative of the function at this point */
|
|
d = (a - 1.0L) * log(x0) - x0 - lgm;
|
|
if ( d < -MAXLOGL )
|
|
goto ihalve;
|
|
d = -exp(d);
|
|
/* compute the step to the next approximation of x */
|
|
d = (y - y0)/d;
|
|
x = x - d;
|
|
if ( i < 3 ) continue;
|
|
if ( fabs(d/x) < dithresh ) return x;
|
|
}
|
|
|
|
/* Resort to interval halving if Newton iteration did not converge. */
|
|
ihalve:
|
|
d = 0.0625L;
|
|
if ( x0 == real.max )
|
|
{
|
|
if ( x <= 0.0L )
|
|
x = 1.0L;
|
|
while ( x0 == real.max )
|
|
{
|
|
x = (1.0L + d) * x;
|
|
y = gammaIncompleteCompl( a, x );
|
|
if ( y < y0 )
|
|
{
|
|
x0 = x;
|
|
yl = y;
|
|
break;
|
|
}
|
|
d = d + d;
|
|
}
|
|
}
|
|
d = 0.5L;
|
|
dir = 0;
|
|
|
|
for ( i=0; i<400; i++ )
|
|
{
|
|
x = x1 + d * (x0 - x1);
|
|
y = gammaIncompleteCompl( a, x );
|
|
lgm = (x0 - x1)/(x1 + x0);
|
|
if ( fabs(lgm) < dithresh )
|
|
break;
|
|
lgm = (y - y0)/y0;
|
|
if ( fabs(lgm) < dithresh )
|
|
break;
|
|
if ( x <= 0.0L )
|
|
break;
|
|
if ( y > y0 )
|
|
{
|
|
x1 = x;
|
|
yh = y;
|
|
if ( dir < 0 )
|
|
{
|
|
dir = 0;
|
|
d = 0.5L;
|
|
} else if ( dir > 1 )
|
|
d = 0.5L * d + 0.5L;
|
|
else
|
|
d = (y0 - yl)/(yh - yl);
|
|
dir += 1;
|
|
}
|
|
else
|
|
{
|
|
x0 = x;
|
|
yl = y;
|
|
if ( dir > 0 )
|
|
{
|
|
dir = 0;
|
|
d = 0.5L;
|
|
} else if ( dir < -1 )
|
|
d = 0.5L * d;
|
|
else
|
|
d = (y0 - yl)/(yh - yl);
|
|
dir -= 1;
|
|
}
|
|
}
|
|
/+
|
|
if ( x == 0.0L )
|
|
mtherr( "igamil", UNDERFLOW );
|
|
+/
|
|
return x;
|
|
}
|
|
|
|
@safe unittest
|
|
{
|
|
//Values from Excel's GammaInv(1-p, x, 1)
|
|
assert(fabs(gammaIncompleteComplInv(1, 0.5) - 0.693147188044814) < 0.00000005);
|
|
assert(fabs(gammaIncompleteComplInv(12, 0.99) - 5.42818075054289) < 0.00000005);
|
|
assert(fabs(gammaIncompleteComplInv(100, 0.8) - 91.5013985848288L) < 0.000005);
|
|
assert(gammaIncomplete(1, 0)==0);
|
|
assert(gammaIncompleteCompl(1, 0)==1);
|
|
assert(gammaIncomplete(4545, real.infinity)==1);
|
|
|
|
// Values from Excel's (1-GammaDist(x, alpha, 1, TRUE))
|
|
|
|
assert(fabs(1.0L-gammaIncompleteCompl(0.5, 2) - 0.954499729507309L) < 0.00000005);
|
|
assert(fabs(gammaIncomplete(0.5, 2) - 0.954499729507309L) < 0.00000005);
|
|
// Fixed Cephes bug:
|
|
assert(gammaIncompleteCompl(384, real.infinity)==0);
|
|
assert(gammaIncompleteComplInv(3, 0)==real.infinity);
|
|
// Fixed a bug that caused gammaIncompleteCompl to return a wrong value when
|
|
// x was larger than a, but not by much, and both were large:
|
|
// The value is from WolframAlpha (Gamma[100000, 100001, inf] / Gamma[100000])
|
|
static if (real.mant_dig >= 64) // incl. 80-bit reals
|
|
assert(fabs(gammaIncompleteCompl(100000, 100001) - 0.49831792109) < 0.000000000005);
|
|
else
|
|
assert(fabs(gammaIncompleteCompl(100000, 100001) - 0.49831792109) < 0.00000005);
|
|
}
|
|
|
|
|
|
// DAC: These values are Bn / n for n=2,4,6,8,10,12,14.
|
|
immutable real [7] Bn_n = [
|
|
1.0L/(6*2), -1.0L/(30*4), 1.0L/(42*6), -1.0L/(30*8),
|
|
5.0L/(66*10), -691.0L/(2730*12), 7.0L/(6*14) ];
|
|
|
|
/** Digamma function
|
|
*
|
|
* The digamma function is the logarithmic derivative of the gamma function.
|
|
*
|
|
* digamma(x) = d/dx logGamma(x)
|
|
*
|
|
* References:
|
|
* 1. Abramowitz, M., and Stegun, I. A. (1970).
|
|
* Handbook of mathematical functions. Dover, New York,
|
|
* pages 258-259, equations 6.3.6 and 6.3.18.
|
|
*/
|
|
real digamma(real x)
|
|
{
|
|
// Based on CEPHES, Stephen L. Moshier.
|
|
|
|
real p, q, nz, s, w, y, z;
|
|
long i, n;
|
|
int negative;
|
|
|
|
negative = 0;
|
|
nz = 0.0;
|
|
|
|
if ( x <= 0.0 )
|
|
{
|
|
negative = 1;
|
|
q = x;
|
|
p = floor(q);
|
|
if ( p == q )
|
|
{
|
|
return real.nan; // singularity.
|
|
}
|
|
/* Remove the zeros of tan(PI x)
|
|
* by subtracting the nearest integer from x
|
|
*/
|
|
nz = q - p;
|
|
if ( nz != 0.5 )
|
|
{
|
|
if ( nz > 0.5 )
|
|
{
|
|
p += 1.0;
|
|
nz = q - p;
|
|
}
|
|
nz = PI/tan(PI*nz);
|
|
}
|
|
else
|
|
{
|
|
nz = 0.0;
|
|
}
|
|
x = 1.0 - x;
|
|
}
|
|
|
|
// check for small positive integer
|
|
if ((x <= 13.0) && (x == floor(x)) )
|
|
{
|
|
y = 0.0;
|
|
n = lrint(x);
|
|
// DAC: CEPHES bugfix. Cephes did this in reverse order, which
|
|
// created a larger roundoff error.
|
|
for (i=n-1; i>0; --i)
|
|
{
|
|
y+=1.0L/i;
|
|
}
|
|
y -= EULERGAMMA;
|
|
goto done;
|
|
}
|
|
|
|
s = x;
|
|
w = 0.0;
|
|
while ( s < 10.0 )
|
|
{
|
|
w += 1.0/s;
|
|
s += 1.0;
|
|
}
|
|
|
|
if ( s < 1.0e17 )
|
|
{
|
|
z = 1.0/(s * s);
|
|
y = z * poly(z, Bn_n);
|
|
} else
|
|
y = 0.0;
|
|
|
|
y = log(s) - 0.5L/s - y - w;
|
|
|
|
done:
|
|
if ( negative )
|
|
{
|
|
y -= nz;
|
|
}
|
|
return y;
|
|
}
|
|
|
|
@safe unittest
|
|
{
|
|
// Exact values
|
|
assert(digamma(1.0)== -EULERGAMMA);
|
|
assert(feqrel(digamma(0.25), -PI/2 - 3* LN2 - EULERGAMMA) >= real.mant_dig-7);
|
|
assert(feqrel(digamma(1.0L/6), -PI/2 *sqrt(3.0L) - 2* LN2 -1.5*log(3.0L) - EULERGAMMA) >= real.mant_dig-7);
|
|
assert(digamma(-5.0).isNaN());
|
|
assert(feqrel(digamma(2.5), -EULERGAMMA - 2*LN2 + 2.0 + 2.0L/3) >= real.mant_dig-9);
|
|
assert(isIdentical(digamma(NaN(0xABC)), NaN(0xABC)));
|
|
|
|
for (int k=1; k<40; ++k)
|
|
{
|
|
real y=0;
|
|
for (int u=k; u>=1; --u)
|
|
{
|
|
y += 1.0L/u;
|
|
}
|
|
assert(feqrel(digamma(k+1.0), -EULERGAMMA + y) >= real.mant_dig-2);
|
|
}
|
|
}
|
|
|
|
/** Log Minus Digamma function
|
|
*
|
|
* logmdigamma(x) = log(x) - digamma(x)
|
|
*
|
|
* References:
|
|
* 1. Abramowitz, M., and Stegun, I. A. (1970).
|
|
* Handbook of mathematical functions. Dover, New York,
|
|
* pages 258-259, equations 6.3.6 and 6.3.18.
|
|
*/
|
|
real logmdigamma(real x)
|
|
{
|
|
if (x <= 0.0)
|
|
{
|
|
if (x == 0.0)
|
|
{
|
|
return real.infinity;
|
|
}
|
|
return real.nan;
|
|
}
|
|
|
|
real s = x;
|
|
real w = 0.0;
|
|
while ( s < 10.0 )
|
|
{
|
|
w += 1.0/s;
|
|
s += 1.0;
|
|
}
|
|
|
|
real y;
|
|
if ( s < 1.0e17 )
|
|
{
|
|
immutable real z = 1.0/(s * s);
|
|
y = z * poly(z, Bn_n);
|
|
} else
|
|
y = 0.0;
|
|
|
|
return x == s ? y + 0.5L/s : (log(x/s) + 0.5L/s + y + w);
|
|
}
|
|
|
|
@safe unittest
|
|
{
|
|
assert(logmdigamma(-5.0).isNaN());
|
|
assert(isIdentical(logmdigamma(NaN(0xABC)), NaN(0xABC)));
|
|
assert(logmdigamma(0.0) == real.infinity);
|
|
for (auto x = 0.01; x < 1.0; x += 0.1)
|
|
assert(approxEqual(digamma(x), log(x) - logmdigamma(x)));
|
|
for (auto x = 1.0; x < 15.0; x += 1.0)
|
|
assert(approxEqual(digamma(x), log(x) - logmdigamma(x)));
|
|
}
|
|
|
|
/** Inverse of the Log Minus Digamma function
|
|
*
|
|
* Returns x such $(D log(x) - digamma(x) == y).
|
|
*
|
|
* References:
|
|
* 1. Abramowitz, M., and Stegun, I. A. (1970).
|
|
* Handbook of mathematical functions. Dover, New York,
|
|
* pages 258-259, equation 6.3.18.
|
|
*
|
|
* Authors: Ilya Yaroshenko
|
|
*/
|
|
real logmdigammaInverse(real y)
|
|
{
|
|
import std.numeric : findRoot;
|
|
// FIXME: should be returned back to enum.
|
|
// Fix requires CTFEable `log` on non-x86 targets (check both LDC and GDC).
|
|
immutable maxY = logmdigamma(real.min_normal);
|
|
assert(maxY > 0 && maxY <= real.max);
|
|
|
|
if (y >= maxY)
|
|
{
|
|
//lim x->0 (log(x)-digamma(x))*x == 1
|
|
return 1 / y;
|
|
}
|
|
if (y < 0)
|
|
{
|
|
return real.nan;
|
|
}
|
|
if (y < real.min_normal)
|
|
{
|
|
//6.3.18
|
|
return 0.5 / y;
|
|
}
|
|
if (y > 0)
|
|
{
|
|
// x/2 <= logmdigamma(1 / x) <= x, x > 0
|
|
// calls logmdigamma ~6 times
|
|
return 1 / findRoot((real x) => logmdigamma(1 / x) - y, y, 2*y);
|
|
}
|
|
return y; //NaN
|
|
}
|
|
|
|
@safe unittest
|
|
{
|
|
import std.typecons;
|
|
//WolframAlpha, 22.02.2015
|
|
immutable Tuple!(real, real)[5] testData = [
|
|
tuple(1.0L, 0.615556766479594378978099158335549201923L),
|
|
tuple(1.0L/8, 4.15937801516894947161054974029150730555L),
|
|
tuple(1.0L/1024, 512.166612384991507850643277924243523243L),
|
|
tuple(0.000500083333325000003968249801594877323784632117L, 1000.0L),
|
|
tuple(1017.644138623741168814449776695062817947092468536L, 1.0L/1024),
|
|
];
|
|
foreach (test; testData)
|
|
assert(approxEqual(logmdigammaInverse(test[0]), test[1], 2e-15, 0));
|
|
|
|
assert(approxEqual(logmdigamma(logmdigammaInverse(1)), 1, 1e-15, 0));
|
|
assert(approxEqual(logmdigamma(logmdigammaInverse(real.min_normal)), real.min_normal, 1e-15, 0));
|
|
assert(approxEqual(logmdigamma(logmdigammaInverse(real.max/2)), real.max/2, 1e-15, 0));
|
|
assert(approxEqual(logmdigammaInverse(logmdigamma(1)), 1, 1e-15, 0));
|
|
assert(approxEqual(logmdigammaInverse(logmdigamma(real.min_normal)), real.min_normal, 1e-15, 0));
|
|
assert(approxEqual(logmdigammaInverse(logmdigamma(real.max/2)), real.max/2, 1e-15, 0));
|
|
}
|