phobos/std/array.d
2010-05-05 22:21:46 +00:00

959 lines
22 KiB
D

// Written in the D programming language.
/**
Copyright: Copyright Andrei Alexandrescu 2008 - 2009.
License: <a href="http://www.boost.org/LICENSE_1_0.txt">Boost License 1.0</a>.
Authors: $(WEB erdani.org, Andrei Alexandrescu)
Copyright Andrei Alexandrescu 2008 - 2009.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
*/
module std.array;
import std.c.stdio;
import core.memory;
import std.algorithm, std.contracts, std.conv, std.encoding, std.range,
std.string, std.traits, std.typecons, std.utf;
version(unittest) private import std.stdio;
/**
Returns a newly-allocated array consisting of a copy of the input
range $(D r).
Example:
----
auto a = array([1, 2, 3, 4, 5][]);
assert(a == [ 1, 2, 3, 4, 5 ]);
----
*/
ElementType!Range[] array(Range)(Range r) if (isForwardRange!Range)
{
alias ElementType!Range E;
static if (hasLength!Range)
{
if (r.empty) return null;
// Determines whether the GC should scan the array.
auto blkInfo = (typeid(E).flags & 1) ?
cast(GC.BlkAttr) 0 :
GC.BlkAttr.NO_SCAN;
auto result = (cast(E*) enforce(GC.malloc(r.length * E.sizeof, blkInfo),
text("Out of memory while allocating an array of ", r.length,
" objects of type ", E.stringof)))[0 .. r.length];
foreach (ref e; result)
{
// hacky
static if (is(typeof(&e.opAssign)))
{
// this should be in-place construction
new(&e) E(r.front);
}
else
{
e = r.front;
}
r.popFront;
}
return result;
}
else
{
auto a = Appender!(E[])();
foreach (e; r)
{
a.put(e);
}
return a.data;
}
// // 2. Initialize the memory
// size_t constructedElements = 0;
// scope(failure)
// {
// // Deconstruct only what was constructed
// foreach_reverse (i; 0 .. constructedElements)
// {
// try
// {
// //result[i].~E();
// }
// catch (Exception e)
// {
// }
// }
// // free the entire array
// std.gc.realloc(result, 0);
// }
// foreach (src; elements)
// {
// static if (is(typeof(new(result + constructedElements) E(src))))
// {
// new(result + constructedElements) E(src);
// }
// else
// {
// result[constructedElements] = src;
// }
// ++constructedElements;
// }
// // 3. Success constructing all elements, type the array and return it
// setTypeInfo(typeid(E), result);
// return result[0 .. constructedElements];
}
version(unittest)
{
struct TestArray { int x; string toString() { return .to!string(x); } }
}
unittest
{
auto a = array([1, 2, 3, 4, 5][]);
//writeln(a);
assert(a == [ 1, 2, 3, 4, 5 ]);
auto b = array([TestArray(1), TestArray(2)][]);
//writeln(b);
class C
{
int x;
this(int y) { x = y; }
override string toString() { return .to!string(x); }
}
auto c = array([new C(1), new C(2)][]);
//writeln(c);
auto d = array([1., 2.2, 3][]);
assert(is(typeof(d) == double[]));
//writeln(d);
}
template IndexType(C : T[], T)
{
alias size_t IndexType;
}
unittest
{
static assert(is(IndexType!(double[]) == size_t));
static assert(!is(IndexType!(double) == size_t));
}
/**
Implements the range interface primitive $(D empty) for built-in
arrays. Due to the fact that nonmember functions can be called with
the first argument using the dot notation, $(D array.empty) is
equivalent to $(D empty(array)).
Example:
----
void main()
{
auto a = [ 1, 2, 3 ];
assert(!a.empty);
assert(a[3 .. $].empty);
}
----
*/
@property bool empty(T)(in T[] a) { return !a.length; }
unittest
{
auto a = [ 1, 2, 3 ];
assert(!a.empty);
assert(a[3 .. $].empty);
}
/**
Implements the range interface primitive $(D popFront) for built-in
arrays. Due to the fact that nonmember functions can be called with
the first argument using the dot notation, $(D array.popFront) is
equivalent to $(D popFront(array)).
Example:
----
void main()
{
int[] a = [ 1, 2, 3 ];
a.popFront;
assert(a == [ 2, 3 ]);
}
----
*/
void popFront(T)(ref T[] a) if (!is(Unqual!T == char) && !is(Unqual!T == wchar))
{
assert(a.length, "Attempting to popFront() past the end of an array of "
~ T.stringof);
a = a[1 .. $];
}
unittest
{
//@@@BUG 2608@@@
//auto a = [ 1, 2, 3 ];
int[] a = [ 1, 2, 3 ];
a.popFront;
assert(a == [ 2, 3 ]);
}
void popFront(T)(ref T[] a) if (is(Unqual!T == char) || is(Unqual!T == wchar))
{
assert(a.length, "Attempting to popFront() past the end of an array of "
~ T.stringof);
a = a[std.utf.stride(a, 0) .. $];
}
unittest
{
string s1 = "\xC2\xA9hello";
s1.popFront();
assert(s1 == "hello");
wstring s2 = "\xC2\xA9hello";
s2.popFront();
assert(s2 == "hello");
string s3 = "\u20AC100";
//write(s3, '\n');
}
/**
Implements the range interface primitive $(D popBack) for built-in
arrays. Due to the fact that nonmember functions can be called with
the first argument using the dot notation, $(D array.popBack) is
equivalent to $(D popBack(array)).
Example:
----
void main()
{
int[] a = [ 1, 2, 3 ];
a.popBack;
assert(a == [ 1, 2 ]);
}
----
*/
void popBack(T)(ref T[] a) if (!is(Unqual!T == char) && !is(Unqual!T == wchar))
{
assert(a.length);
a = a[0 .. $ - 1];
}
unittest
{
//@@@BUG 2608@@@
//auto a = [ 1, 2, 3 ];
int[] a = [ 1, 2, 3 ];
a.popBack;
assert(a == [ 1, 2 ]);
}
void popBack(T)(ref T[] a) if (is(Unqual!T == char))
{
immutable n = a.length;
const p = a.ptr + n;
if (n >= 1 && (p[-1] & 0b1100_0000) != 0b1000_0000)
{
a = a[0 .. n - 1];
}
else if (n >= 2 && (p[-2] & 0b1100_0000) != 0b1000_0000)
{
a = a[0 .. n - 2];
}
else if (n >= 3 && (p[-3] & 0b1100_0000) != 0b1000_0000)
{
a = a[0 .. n - 3];
}
else if (n >= 4 && (p[-4] & 0b1100_0000) != 0b1000_0000)
{
a = a[0 .. n - 4];
}
else
{
assert(false, "Invalid UTF character at end of string");
}
}
unittest
{
string s = "hello\xE2\x89\xA0";
s.popBack();
assert(s == "hello", s);
string s3 = "\xE2\x89\xA0";
auto c = decodeBack(s3);
assert(c == cast(dchar)'\u2260');
assert(s3 == "");
}
void popBack(T)(ref T[] a) if (is(Unqual!T == wchar))
{
assert(a.length);
if (a.length == 1)
{
a = a[0 .. 0];
return;
}
immutable c = a[$ - 2];
a = a[0 .. $ - 1 - (c >= 0xD800 && c <= 0xDBFF)];
}
unittest
{
wstring s = "hello\xE2\x89\xA0";
s.popBack();
assert(s == "hello");
}
/**
Implements the range interface primitive $(D front) for built-in
arrays. Due to the fact that nonmember functions can be called with
the first argument using the dot notation, $(D array.front) is
equivalent to $(D front(array)).
Example:
----
void main()
{
int[] a = [ 1, 2, 3 ];
assert(a.front == 1);
}
----
*/
ref typeof(A[0]) front(A)(A a) if (is(typeof(A[0])) && !isNarrowString!A)
{
assert(a.length, "Attempting to fetch the front of an empty array");
return a[0];
}
dchar front(A)(A a) if (is(typeof(A[0])) && isNarrowString!A)
{
assert(a.length, "Attempting to fetch the front of an empty array");
size_t i = 0;
return decode(a, i);
}
/// Ditto
void front(T)(T[] a, T v) if (!isNarrowString!A)
{
assert(a.length); a[0] = v;
}
/**
Implements the range interface primitive $(D back) for built-in
arrays. Due to the fact that nonmember functions can be called with
the first argument using the dot notation, $(D array.back) is
equivalent to $(D back(array)).
Example:
----
void main()
{
int[] a = [ 1, 2, 3 ];
assert(a.front == 1);
}
----
*/
ref typeof(A.init[0]) back(A)(A a) if (is(typeof(A.init[0]))
&& !isNarrowString!A)
{
enforce(a.length, "Attempting to fetch the back of an empty array");
return a[$ - 1];
}
dchar back(A)(A a)
if (is(typeof(A.init[0])) && isNarrowString!A && a[0].sizeof < 4)
{
assert(a.length, "Attempting to fetch the back of an empty array");
auto n = a.length;
const p = a.ptr + n;
if (n >= 1 && (p[-1] & 0b1100_0000) != 0b1000_0000)
{
--n;
return std.utf.decode(a, n);
}
else if (n >= 2 && (p[-2] & 0b1100_0000) != 0b1000_0000)
{
n -= 2;
return decode(a, n);
}
else if (n >= 3 && (p[-3] & 0b1100_0000) != 0b1000_0000)
{
n -= 3;
return decode(a, n);
}
else if (n >= 4 && (p[-4] & 0b1100_0000) != 0b1000_0000)
{
n -= 4;
return decode(a, n);
}
else
{
throw new UtfException("Invalid UTF character at end of string");
}
}
/**
Implements the range interface primitive $(D put) for built-in
arrays. Due to the fact that nonmember functions can be called with
the first argument using the dot notation, $(D array.put(e)) is
equivalent to $(D put(array, e)).
Example:
----
void main()
{
int[] a = [ 1, 2, 3 ];
int[] b = a;
a.put(5);
assert(a == [ 2, 3 ]);
assert(b == [ 5, 2, 3 ]);
}
----
*/
void put(T, E)(ref T[] a, E e) { assert(a.length); a[0] = e; a = a[1 .. $]; }
// overlap
/*
Returns the overlapping portion, if any, of two arrays. Unlike $(D
equal), $(D overlap) only compares the pointers in the ranges, not the
values referred by them. If $(D r1) and $(D r2) have an overlapping
slice, returns that slice. Otherwise, returns the null slice.
Example:
----
int[] a = [ 10, 11, 12, 13, 14 ];
int[] b = a[1 .. 3];
assert(overlap(a, b) == [ 11, 12 ]);
b = b.dup;
// overlap disappears even though the content is the same
assert(isEmpty(overlap(a, b)));
----
*/
T[] overlap(T)(T[] r1, T[] r2)
{
auto b = max(r1.ptr, r2.ptr);
auto e = min(&(r1.ptr[r1.length - 1]) + 1, &(r2.ptr[r2.length - 1]) + 1);
return b < e ? b[0 .. e - b] : null;
}
unittest
{
int[] a = [ 10, 11, 12, 13, 14 ];
int[] b = a[1 .. 3];
a[1] = 100;
assert(overlap(a, b) == [ 100, 12 ]);
}
/**
Inserts $(D stuff) in $(D container) at position $(D pos).
*/
void insert(T, Range)(ref T[] array, size_t pos, Range stuff)
{
static if (is(typeof(stuff[0])))
{
// presumably an array
alias stuff toInsert;
//assert(!overlap(array, toInsert));
}
else
{
// presumably only one element
auto toInsert = (&stuff)[0 .. 1];
}
// @@@BUG 2130@@@
// immutable
// size_t delta = toInsert.length,
// size_t oldLength = array.length,
// size_t newLength = oldLength + delta;
immutable
delta = toInsert.length,
oldLength = array.length,
newLength = oldLength + delta;
// Reallocate the array to make space for new content
array = (cast(T*) core.memory.GC.realloc(array.ptr,
newLength * array[0].sizeof))[0 .. newLength];
assert(array.length == newLength);
// Move data in pos .. pos + stuff.length to the end of the array
foreach_reverse (i; pos .. oldLength)
{
// This will be guaranteed to not throw
move(array[i], array[i + delta]);
}
// Copy stuff into array
foreach (e; toInsert)
{
array[pos++] = e;
}
}
unittest
{
int[] a = ([1, 4, 5]).dup;
insert(a, 1u, [2, 3]);
assert(a == [1, 2, 3, 4, 5]);
insert(a, 1u, 99);
assert(a == [1, 99, 2, 3, 4, 5]);
}
// @@@ TODO: document this
bool sameHead(T)(in T[] lhs, in T[] rhs)
{
return lhs.ptr == rhs.ptr;
}
/**
Erases elements from $(D array) with indices ranging from $(D from)
(inclusive) to $(D to) (exclusive).
*/
// void erase(T)(ref T[] array, size_t from, size_t to)
// {
// immutable newLength = array.length - (to - from);
// foreach (i; to .. array.length)
// {
// move(array[i], array[from++]);
// }
// array.length = newLength;
// }
// unittest
// {
// int[] a = [1, 2, 3, 4, 5];
// erase(a, 1u, 3u);
// assert(a == [1, 4, 5]);
// }
/**
Erases element from $(D array) at index $(D from).
*/
// void erase(T)(ref T[] array, size_t from)
// {
// erase(array, from, from + 1);
// }
// unittest
// {
// int[] a = [1, 2, 3, 4, 5];
// erase(a, 2u);
// assert(a == [1, 2, 4, 5]);
// }
/**
Replaces elements from $(D array) with indices ranging from $(D from)
(inclusive) to $(D to) (exclusive) with the range $(D stuff). Expands
or shrinks the array as needed.
*/
void replace(T, Range)(ref T[] array, size_t from, size_t to,
Range stuff)
{
// container = container[0 .. from] ~ stuff ~ container[to .. $];
if (overlap(array, stuff))
{
// use slower/conservative method
array = array[0 .. from] ~ stuff ~ array[to .. $];
}
else if (stuff.length <= to - from)
{
// replacement reduces length
// BUG 2128
//immutable stuffEnd = from + stuff.length;
auto stuffEnd = from + stuff.length;
array[from .. stuffEnd] = stuff;
remove(array, tuple(stuffEnd, to));
}
else
{
// replacement increases length
// @@@TODO@@@: optimize this
immutable replaceLen = to - from;
array[from .. to] = stuff[0 .. replaceLen];
insert(array, to, stuff[replaceLen .. $]);
}
}
unittest
{
int[] a = [1, 4, 5];
replace(a, 1u, 2u, [2, 3, 4]);
assert(a == [1, 2, 3, 4, 5]);
}
/**
Implements an output range that appends data to an array. This is
recommended over $(D a ~= data) because it is more efficient.
Example:
----
string arr;
auto app = appender(&arr);
string b = "abcdefg";
foreach (char c; b) app.put(c);
assert(app.data == "abcdefg");
int[] a = [ 1, 2 ];
auto app2 = appender(&a);
app2.put(3);
app2.put([ 4, 5, 6 ]);
assert(app2.data == [ 1, 2, 3, 4, 5, 6 ]);
----
*/
struct Appender(A : T[], T)
{
private:
Unqual!(T)[] * pArray;
size_t _capacity;
public:
/**
Initialize an $(D Appender) with a pointer to an existing array. The
$(D Appender) object will append to this array. If $(D null) is passed
(or the default constructor gets called), the $(D Appender) object
will allocate and use a new array.
*/
this(T[] * p)
{
pArray = cast(Unqual!(T)[] *) p;
if (!pArray) pArray = (new typeof(*pArray)[1]).ptr;
_capacity = GC.sizeOf(pArray.ptr) / T.sizeof;
}
/**
Returns the managed array.
*/
T[] data()
{
return cast(typeof(return)) (pArray ? *pArray : null);
}
/**
Returns the capacity of the array (the maximum number of elements the
managed array can accommodate before triggering a reallocation).
*/
size_t capacity() const { return _capacity; }
/**
Appends one item to the managed array.
*/
void put(U)(U item) if (isImplicitlyConvertible!(U, T) ||
isSomeChar!T && isSomeChar!U)
{
static if (isSomeChar!T && isSomeChar!U && T.sizeof < U.sizeof)
{
// must do some transcoding around here
Unqual!T[T.sizeof == 1 ? 4 : 2] encoded;
auto len = std.utf.encode(encoded, item);
put(encoded[0 .. len]);
}
else
{
if (!pArray) pArray = (new typeof(*pArray)[1]).ptr;
immutable len = pArray.length;
if (len < _capacity)
{
// Should do in-place construction here
pArray.ptr[len] = item;
*pArray = pArray.ptr[0 .. len + 1];
}
else
{
// Time to reallocate, do it and cache capacity
*pArray ~= item;
_capacity = GC.sizeOf(pArray.ptr) / T.sizeof;
}
}
}
/**
Appends an entire range to the managed array.
*/
void put(Range)(Range items) if (isForwardRange!Range
&& is(typeof(Appender.init.put(items.front))))
{
static if (is(typeof(*pArray ~= items)))
{
if (!pArray) pArray = (new typeof(*pArray)[1]).ptr;
*pArray ~= items;
}
else
{
//pragma(msg, Range.stringof);
// Generic input range
for (; !items.empty; items.popFront)
{
put(items.front());
}
}
}
/**
Clears the managed array.
*/
void clear()
{
if (!pArray) return;
pArray.length = 0;
//_capacity = .capacity(pArray.ptr) / T.sizeof;
_capacity = GC.sizeOf(pArray.ptr) / T.sizeof;
}
}
/**
Convenience function that returns an $(D Appender!(T)) object
initialized with $(D t).
*/
Appender!(E[]) appender(A : E[], E)(A * array = null)
{
return Appender!(E[])(array);
}
unittest
{
auto arr = new char[0];
auto app = appender(&arr);
string b = "abcdefg";
foreach (char c; b) app.put(c);
assert(app.data == "abcdefg");
int[] a = [ 1, 2 ];
auto app2 = appender(&a);
app2.put(3);
app2.put([ 4, 5, 6 ][]);
assert(app2.data == [ 1, 2, 3, 4, 5, 6 ]);
}
/*
A simple slice type only holding pointers to the beginning and the end
of an array. Experimental duplication of the built-in slice - do not
use yet.
*/
struct SimpleSlice(T)
{
private T * _b, _e;
this(U...)(U values)
{
_b = cast(T*) core.memory.GC.malloc(U.length * T.sizeof);
_e = _b + U.length;
foreach (i, Unused; U) _b[i] = values[i];
}
void opAssign(R)(R anotherSlice)
{
static if (is(typeof(*_b = anotherSlice)))
{
// assign all elements to a value
foreach (p; _b .. _e)
{
*p = anotherSlice;
}
}
else
{
// assign another slice to this
enforce(anotherSlice.length == length);
auto p = _b;
foreach (p; _b .. _e)
{
*p = anotherSlice.front;
anotherSlice.popFront;
}
}
}
/**
Range primitives.
*/
bool empty() const
{
assert(_b <= _e);
return _b == _e;
}
/// Ditto
ref T front()
{
assert(!empty);
return *_b;
}
/// Ditto
void popFront()
{
assert(!empty);
++_b;
}
/// Ditto
ref T back()
{
assert(!empty);
return _e[-1];
}
/// Ditto
void popBack()
{
assert(!empty);
--_e;
}
/// Ditto
T opIndex(size_t n)
{
assert(n < length);
return _b[n];
}
/// Ditto
const(T) opIndex(size_t n) const
{
assert(n < length);
return _b[n];
}
/// Ditto
void opIndexAssign(T value, size_t n)
{
assert(n < length);
_b[n] = value;
}
/// Ditto
SimpleSliceLvalue!T opSlice()
{
typeof(return) result = void;
result._b = _b;
result._e = _e;
return result;
}
/// Ditto
SimpleSliceLvalue!T opSlice(size_t x, size_t y)
{
enforce(x <= y && y <= length);
typeof(return) result = { _b + x, _b + y };
return result;
}
@property
{
/// Returns the length of the slice.
size_t length() const
{
return _e - _b;
}
/**
Sets the length of the slice. Newly added elements will be filled with
$(D T.init).
*/
void length(size_t newLength)
{
immutable oldLength = length;
_b = cast(T*) core.memory.GC.realloc(_b, newLength * T.sizeof);
_e = _b + newLength;
this[oldLength .. $] = T.init;
}
}
/// Concatenation.
SimpleSlice opCat(R)(R another)
{
immutable newLen = length + another.length;
typeof(return) result = void;
result._b = cast(T*)
core.memory.GC.malloc(newLen * T.sizeof);
result._e = result._b + newLen;
result[0 .. this.length] = this;
result[this.length .. result.length] = another;
return result;
}
/// Concatenation with rebinding.
void opCatAssign(R)(R another)
{
auto newThis = this ~ another;
move(newThis, this);
}
}
// Support for mass assignment
struct SimpleSliceLvalue(T)
{
private SimpleSlice!T _s;
alias _s this;
void opAssign(R)(R anotherSlice)
{
static if (is(typeof(*_b = anotherSlice)))
{
// assign all elements to a value
foreach (p; _b .. _e)
{
*p = anotherSlice;
}
}
else
{
// assign another slice to this
enforce(anotherSlice.length == length);
auto p = _b;
foreach (p; _b .. _e)
{
*p = anotherSlice.front;
anotherSlice.popFront;
}
}
}
}
unittest
{
// SimpleSlice!(int) s;
// s = SimpleSlice!(int)(4, 5, 6);
// assert(equal(s, [4, 5, 6][]));
// assert(s.length == 3);
// assert(s[0] == 4);
// assert(s[1] == 5);
// assert(s[2] == 6);
// assert(s[] == s);
// assert(s[0 .. s.length] == s);
// assert(equal(s[0 .. s.length - 1], [4, 5][]));
// auto s1 = s ~ s[0 .. 1];
// assert(equal(s1, [4, 5, 6, 4][]));
// assert(s1[3] == 4);
// s1[3] = 42;
// assert(s1[3] == 42);
// const s2 = s;
// assert(s2.length == 3);
// assert(!s2.empty);
// assert(s2[0] == s[0]);
// s[0 .. 2] = 10;
// assert(equal(s, [10, 10, 6][]));
// s ~= [ 5, 9 ][];
// assert(equal(s, [10, 10, 6, 5, 9][]));
// s.length = 7;
// assert(equal(s, [10, 10, 6, 5, 9, 0, 0][]));
}