phobos/std/conv.d
jmdavis 8f7f6d69ac Remove some undocumented, deprecated functions which are slated for removal.
These have been deprecated for a while, but there was some balking
(primarily from Andrei IIRC) at actually removing them when they were
slated for removal, so they were instead made undocumented and slated
for removal after yet another 6 months or so. So, now that that time has
passed, here's another attempt to actually remove them.
2013-03-06 22:19:34 -08:00

3829 lines
102 KiB
D

// Written in the D programming language.
/**
A one-stop shop for converting values from one type to another.
Copyright: Copyright Digital Mars 2007-.
License: $(WEB boost.org/LICENSE_1_0.txt, Boost License 1.0).
Authors: $(WEB digitalmars.com, Walter Bright),
$(WEB erdani.org, Andrei Alexandrescu),
Shin Fujishiro,
Adam D. Ruppe,
Kenji Hara
Source: $(PHOBOSSRC std/_conv.d)
*/
module std.conv;
import std.math : ldexp;
import core.stdc.string;
import std.algorithm, std.array, std.ascii, std.exception, std.math, std.range,
std.string, std.traits, std.typecons, std.typetuple, std.uni,
std.utf;
import std.format;
//debug=conv; // uncomment to turn on debugging printf's
/* ************* Exceptions *************** */
/**
* Thrown on conversion errors.
*/
class ConvException : Exception
{
this(string s, string fn = __FILE__, size_t ln = __LINE__)
{
super(s, fn, ln);
}
}
private string convError_unexpected(S)(S source) {
return source.empty ? "end of input" : text("'", source.front, "'");
}
private void convError(S, T)(S source, string fn = __FILE__, size_t ln = __LINE__)
{
throw new ConvException(
text("Unexpected ", convError_unexpected(source),
" when converting from type "~S.stringof~" to type "~T.stringof),
fn, ln);
}
private void convError(S, T)(S source, int radix, string fn = __FILE__, size_t ln = __LINE__)
{
throw new ConvException(
text("Unexpected ", convError_unexpected(source),
" when converting from type "~S.stringof~" base ", radix,
" to type "~T.stringof),
fn, ln);
}
private void parseError(lazy string msg, string fn = __FILE__, size_t ln = __LINE__)
{
throw new ConvException(text("Can't parse string: ", msg), fn, ln);
}
private void parseCheck(alias source)(dchar c, string fn = __FILE__, size_t ln = __LINE__)
{
if (source.empty) parseError(text("unexpected end of input when expecting", "\"", c, "\""));
if (source.front != c)
parseError(text("\"", c, "\" is missing"), fn, ln);
source.popFront();
}
private
{
template isImaginary(T)
{
enum bool isImaginary = staticIndexOf!(Unqual!(T),
ifloat, idouble, ireal) >= 0;
}
template isComplex(T)
{
enum bool isComplex = staticIndexOf!(Unqual!(T),
cfloat, cdouble, creal) >= 0;
}
template isNarrowInteger(T)
{
enum bool isNarrowInteger = staticIndexOf!(Unqual!(T),
byte, ubyte, short, ushort) >= 0;
}
T toStr(T, S)(S src)
if (isSomeString!T)
{
auto w = appender!T();
FormatSpec!(ElementEncodingType!T) f;
formatValue(w, src, f);
return w.data;
}
template isExactSomeString(T)
{
enum isExactSomeString = isSomeString!T && !is(T == enum);
}
template isEnumStrToStr(S, T)
{
enum isEnumStrToStr = isImplicitlyConvertible!(S, T) &&
is(S == enum) && isExactSomeString!T;
}
template isNullToStr(S, T)
{
enum isNullToStr = isImplicitlyConvertible!(S, T) &&
is(S == typeof(null)) && isExactSomeString!T;
}
template isRawStaticArray(T, A...)
{
enum isRawStaticArray =
A.length == 0 &&
isStaticArray!T &&
!is(T == class) &&
!is(T == interface) &&
!is(T == struct) &&
!is(T == union);
}
}
/**
* Thrown on conversion overflow errors.
*/
class ConvOverflowException : ConvException
{
this(string s, string fn = __FILE__, size_t ln = __LINE__)
{
super(s, fn, ln);
}
}
/**
The $(D_PARAM to) family of functions converts a value from type
$(D_PARAM Source) to type $(D_PARAM Target). The source type is
deduced and the target type must be specified, for example the
expression $(D_PARAM to!int(42.0)) converts the number 42 from
$(D_PARAM double) to $(D_PARAM int). The conversion is "safe", i.e.,
it checks for overflow; $(D_PARAM to!int(4.2e10)) would throw the
$(D_PARAM ConvOverflowException) exception. Overflow checks are only
inserted when necessary, e.g., $(D_PARAM to!double(42)) does not do
any checking because any int fits in a double.
Converting a value to its own type (useful mostly for generic code)
simply returns its argument.
Example:
-------------------------
int a = 42;
auto b = to!int(a); // b is int with value 42
auto c = to!double(3.14); // c is double with value 3.14
-------------------------
Converting among numeric types is a safe way to cast them around.
Conversions from floating-point types to integral types allow loss of
precision (the fractional part of a floating-point number). The
conversion is truncating towards zero, the same way a cast would
truncate. (To round a floating point value when casting to an
integral, use $(D_PARAM roundTo).)
Examples:
-------------------------
int a = 420;
auto b = to!long(a); // same as long b = a;
auto c = to!byte(a / 10); // fine, c = 42
auto d = to!byte(a); // throw ConvOverflowException
double e = 4.2e6;
auto f = to!int(e); // f == 4200000
e = -3.14;
auto g = to!uint(e); // fails: floating-to-integral negative overflow
e = 3.14;
auto h = to!uint(e); // h = 3
e = 3.99;
h = to!uint(a); // h = 3
e = -3.99;
f = to!int(a); // f = -3
-------------------------
Conversions from integral types to floating-point types always
succeed, but might lose accuracy. The largest integers with a
predecessor representable in floating-point format are 2^24-1 for
float, 2^53-1 for double, and 2^64-1 for $(D_PARAM real) (when
$(D_PARAM real) is 80-bit, e.g. on Intel machines).
Example:
-------------------------
int a = 16_777_215; // 2^24 - 1, largest proper integer representable as float
assert(to!int(to!float(a)) == a);
assert(to!int(to!float(-a)) == -a);
a += 2;
assert(to!int(to!float(a)) == a); // fails!
-------------------------
Conversions from string to numeric types differ from the C equivalents
$(D_PARAM atoi()) and $(D_PARAM atol()) by checking for overflow and
not allowing whitespace.
For conversion of strings to signed types, the grammar recognized is:
<pre>
$(I Integer): $(I Sign UnsignedInteger)
$(I UnsignedInteger)
$(I Sign):
$(B +)
$(B -)
</pre>
For conversion to unsigned types, the grammar recognized is:
<pre>
$(I UnsignedInteger):
$(I DecimalDigit)
$(I DecimalDigit) $(I UnsignedInteger)
</pre>
Converting an array to another array type works by converting each
element in turn. Associative arrays can be converted to associative
arrays as long as keys and values can in turn be converted.
Example:
-------------------------
int[] a = ([1, 2, 3]).dup;
auto b = to!(float[])(a);
assert(b == [1.0f, 2, 3]);
string str = "1 2 3 4 5 6";
auto numbers = to!(double[])(split(str));
assert(numbers == [1.0, 2, 3, 4, 5, 6]);
int[string] c;
c["a"] = 1;
c["b"] = 2;
auto d = to!(double[wstring])(c);
assert(d["a"w] == 1 && d["b"w] == 2);
-------------------------
Conversions operate transitively, meaning that they work on arrays and
associative arrays of any complexity:
-------------------------
int[string][double[int[]]] a;
...
auto b = to!(short[wstring][string[double[]]])(a);
-------------------------
This conversion works because $(D_PARAM to!short) applies to an
$(D_PARAM int), $(D_PARAM to!wstring) applies to a $(D_PARAM
string), $(D_PARAM to!string) applies to a $(D_PARAM double), and
$(D_PARAM to!(double[])) applies to an $(D_PARAM int[]). The
conversion might throw an exception because $(D_PARAM to!short)
might fail the range check.
Macros: WIKI=Phobos/StdConv
*/
/**
Entry point that dispatches to the appropriate conversion
primitive. Client code normally calls $(D _to!TargetType(value))
(and not some variant of $(D toImpl)).
*/
template to(T)
{
T to(A...)(A args)
if (!isRawStaticArray!A)
{
return toImpl!T(args);
}
// Fix issue 6175
T to(S)(ref S arg)
if (isRawStaticArray!S)
{
return toImpl!T(arg);
}
}
// Tests for issue 6175
unittest
{
char[9] sarr = "blablabla";
auto darr = to!(char[])(sarr);
assert(sarr.ptr == darr.ptr);
assert(sarr.length == darr.length);
}
// Tests for issue 7348
unittest
{
assert(to!string(null) == "null");
assert(text(null) == "null");
}
// Tests for issue 8729: do NOT skip leading WS
unittest
{
foreach(T;TypeTuple!(byte, ubyte, short, ushort, int, uint, long, ulong))
{
assertThrown!ConvException(to!T(" 0"));
assertThrown!ConvException(to!T(" 0", 8));
}
foreach(T;TypeTuple!(float, double, real))
{
assertThrown!ConvException(to!T(" 0"));
}
assertThrown!ConvException(to!bool (" true"));
alias typeof(null) NullType;
assertThrown!ConvException(to!NullType(" null"));
alias int[] ARR;
assertThrown!ConvException(to!ARR(" [1]"));
alias int[int] AA;
assertThrown!ConvException(to!AA(" [1:1]"));
}
/**
If the source type is implicitly convertible to the target type, $(D
to) simply performs the implicit conversion.
*/
T toImpl(T, S)(S value)
if (isImplicitlyConvertible!(S, T) &&
!isEnumStrToStr!(S, T) && !isNullToStr!(S, T))
{
alias isUnsigned isUnsignedInt;
// Conversion from integer to integer, and changing its sign
static if (isUnsignedInt!S && isSignedInt!T && S.sizeof == T.sizeof)
{ // unsigned to signed & same size
enforce(value <= cast(S)T.max,
new ConvOverflowException("Conversion positive overflow"));
}
else static if (isSignedInt!S && isUnsignedInt!T)
{ // signed to unsigned
enforce(0 <= value,
new ConvOverflowException("Conversion negative overflow"));
}
return value;
}
unittest
{
enum E { a } // Issue 9523 - Allow identity enum conversion
auto e = to!E(E.a);
assert(e == E.a);
}
private template isSignedInt(T)
{
enum isSignedInt = isIntegral!T && isSigned!T;
}
unittest
{
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
int a = 42;
auto b = to!long(a);
assert(a == b);
}
// Tests for issue 6377
unittest
{
// Conversion between same size
foreach (S; TypeTuple!(byte, short, int, long))
{
alias Unsigned!S U;
foreach (Sint; TypeTuple!(S, const(S), immutable(S)))
foreach (Uint; TypeTuple!(U, const(U), immutable(U)))
{
// positive overflow
Uint un = Uint.max;
assertThrown!ConvOverflowException(to!Sint(un), text(
Sint.stringof, ' ', Uint.stringof, ' ', un));
// negative overflow
Sint sn = -1;
assertThrown!ConvOverflowException(to!Uint(sn), text(
Sint.stringof, ' ', Uint.stringof, ' ', un));
}
}
// Conversion between different size
foreach (i, S1; TypeTuple!(byte, short, int, long))
foreach ( S2; TypeTuple!(byte, short, int, long)[i+1..$])
{
alias Unsigned!S1 U1;
alias Unsigned!S2 U2;
static assert(U1.sizeof < S2.sizeof);
// small unsigned to big signed
foreach (Uint; TypeTuple!(U1, const(U1), immutable(U1)))
foreach (Sint; TypeTuple!(S2, const(S2), immutable(S2)))
{
Uint un = Uint.max;
assertNotThrown(to!Sint(un));
assert(to!Sint(un) == un);
}
// big unsigned to small signed
foreach (Uint; TypeTuple!(U2, const(U2), immutable(U2)))
foreach (Sint; TypeTuple!(S1, const(S1), immutable(S1)))
{
Uint un = Uint.max;
assertThrown(to!Sint(un));
}
static assert(S1.sizeof < U2.sizeof);
// small signed to big unsigned
foreach (Sint; TypeTuple!(S1, const(S1), immutable(S1)))
foreach (Uint; TypeTuple!(U2, const(U2), immutable(U2)))
{
Sint sn = -1;
assertThrown!ConvOverflowException(to!Uint(sn));
}
// big signed to small unsigned
foreach (Sint; TypeTuple!(S2, const(S2), immutable(S2)))
foreach (Uint; TypeTuple!(U1, const(U1), immutable(U1)))
{
Sint sn = -1;
assertThrown!ConvOverflowException(to!Uint(sn));
}
}
}
/*
Converting static arrays forwards to their dynamic counterparts.
*/
T toImpl(T, S)(ref S s)
if (isRawStaticArray!S)
{
return toImpl!(T, typeof(s[0])[])(s);
}
unittest
{
char[4] test = ['a', 'b', 'c', 'd'];
static assert(!isInputRange!(Unqual!(char[4])));
assert(to!string(test) == test);
}
/**
When source type supports member template function opCast, is is used.
*/
T toImpl(T, S)(S value)
if (is(typeof(S.init.opCast!T()) : T) &&
!isExactSomeString!T)
{
return value.opCast!T();
}
unittest
{
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
class B
{
T opCast(T)() { return 43; }
}
auto b = new B;
assert(to!int(b) == 43);
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
struct S
{
T opCast(T)() { return 43; }
}
auto s = S();
assert(to!int(s) == 43);
}
/**
When target type supports 'converting construction', it is used.
$(UL $(LI If target type is struct, $(D T(value)) is used.)
$(LI If target type is class, $(D new T(value)) is used.))
*/
T toImpl(T, S)(S value)
if (!isImplicitlyConvertible!(S, T) &&
is(T == struct) && is(typeof(T(value))))
{
return T(value);
}
// Bugzilla 3961
unittest
{
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
struct Int
{
int x;
}
Int i = to!Int(1);
static struct Int2
{
int x;
this(int x) { this.x = x; }
}
Int2 i2 = to!Int2(1);
static struct Int3
{
int x;
static Int3 opCall(int x)
{
Int3 i;
i.x = x;
return i;
}
}
Int3 i3 = to!Int3(1);
}
// Bugzilla 6808
unittest
{
static struct FakeBigInt
{
this(string s){}
}
string s = "101";
auto i3 = to!FakeBigInt(s);
}
/// ditto
T toImpl(T, S)(S value)
if (!isImplicitlyConvertible!(S, T) &&
is(T == class) && is(typeof(new T(value))))
{
return new T(value);
}
unittest
{
static struct S
{
int x;
}
static class C
{
int x;
this(int x) { this.x = x; }
}
static class B
{
int value;
this(S src) { value = src.x; }
this(C src) { value = src.x; }
}
S s = S(1);
auto b1 = to!B(s); // == new B(s)
assert(b1.value == 1);
C c = new C(2);
auto b2 = to!B(c); // == new B(c)
assert(b2.value == 2);
auto c2 = to!C(3); // == new C(3)
assert(c2.x == 3);
}
version (unittest)
{
class A
{
this(B b) {}
}
class B : A
{
this() { super(this); }
}
}
unittest
{
B b = new B();
A a = to!A(b); // == cast(A)b
// (do not run construction conversion like new A(b))
assert(b is a);
static class C : Object
{
this() {}
this(Object o) {}
}
Object oc = new C();
C a2 = to!C(oc); // == new C(a)
// Construction conversion overrides down-casting conversion
assert(a2 != a); //
}
/**
Object-to-object conversions by dynamic casting throw exception when the source is
non-null and the target is null.
*/
T toImpl(T, S)(S value)
if (!isImplicitlyConvertible!(S, T) &&
(is(S == class) || is(S == interface)) && !is(typeof(value.opCast!T()) : T) &&
(is(T == class) || is(T == interface)) && !is(typeof(new T(value))))
{
static if (is(T == immutable))
{
// immutable <- immutable
enum isModConvertible = is(S == immutable);
}
else static if (is(T == const))
{
static if (is(T == shared))
{
// shared const <- shared
// shared const <- shared const
// shared const <- immutable
enum isModConvertible = is(S == shared) || is(S == immutable);
}
else
{
// const <- mutable
// const <- immutable
enum isModConvertible = !is(S == shared);
}
}
else
{
static if (is(T == shared))
{
// shared <- shared mutable
enum isModConvertible = is(S == shared) && !is(S == const);
}
else
{
// (mutable) <- (mutable)
enum isModConvertible = is(Unqual!S == S);
}
}
static assert(isModConvertible, "Bad modifier conversion: "~S.stringof~" to "~T.stringof);
auto result = cast(T) value;
if (!result && value)
{
throw new ConvException("Cannot convert object of static type "
~S.classinfo.name~" and dynamic type "~value.classinfo.name
~" to type "~T.classinfo.name);
}
return result;
}
unittest
{
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
// Testing object conversions
class A {}
class B : A {}
class C : A {}
A a1 = new A, a2 = new B, a3 = new C;
assert(to!B(a2) is a2);
assert(to!C(a3) is a3);
assertThrown!ConvException(to!B(a3));
}
// Unittest for 6288
version (unittest)
{
private template Identity(T) { alias T Identity; }
private template toConst(T) { alias const(T) toConst; }
private template toShared(T) { alias shared(T) toShared; }
private template toSharedConst(T) { alias shared(const(T)) toSharedConst; }
private template toImmutable(T) { alias immutable(T) toImmutable; }
private template AddModifier(int n) if (0 <= n && n < 5)
{
static if (n == 0) alias Identity AddModifier;
else static if (n == 1) alias toConst AddModifier;
else static if (n == 2) alias toShared AddModifier;
else static if (n == 3) alias toSharedConst AddModifier;
else static if (n == 4) alias toImmutable AddModifier;
}
}
unittest
{
interface I {}
interface J {}
class A {}
class B : A {}
class C : B, I, J {}
class D : I {}
foreach (m1; TypeTuple!(0,1,2,3,4)) // enumerate modifiers
foreach (m2; TypeTuple!(0,1,2,3,4)) // ditto
{
alias AddModifier!m1 srcmod;
alias AddModifier!m2 tgtmod;
//pragma(msg, srcmod!Object, " -> ", tgtmod!Object, ", convertible = ",
// isImplicitlyConvertible!(srcmod!Object, tgtmod!Object));
// Compile time convertible equals to modifier convertible.
static if (isImplicitlyConvertible!(srcmod!Object, tgtmod!Object))
{
// Test runtime conversions: class to class, class to interface,
// interface to class, and interface to interface
// Check that the runtime conversion to succeed
srcmod!A ac = new srcmod!C();
srcmod!I ic = new srcmod!C();
assert(to!(tgtmod!C)(ac) !is null); // A(c) to C
assert(to!(tgtmod!I)(ac) !is null); // A(c) to I
assert(to!(tgtmod!C)(ic) !is null); // I(c) to C
assert(to!(tgtmod!J)(ic) !is null); // I(c) to J
// Check that the runtime conversion fails
srcmod!A ab = new srcmod!B();
srcmod!I id = new srcmod!D();
assertThrown(to!(tgtmod!C)(ab)); // A(b) to C
assertThrown(to!(tgtmod!I)(ab)); // A(b) to I
assertThrown(to!(tgtmod!C)(id)); // I(d) to C
assertThrown(to!(tgtmod!J)(id)); // I(d) to J
}
else
{
// Check that the conversion is rejected statically
static assert(!is(typeof(to!(tgtmod!C)(srcmod!A.init)))); // A to C
static assert(!is(typeof(to!(tgtmod!I)(srcmod!A.init)))); // A to I
static assert(!is(typeof(to!(tgtmod!C)(srcmod!I.init)))); // I to C
static assert(!is(typeof(to!(tgtmod!J)(srcmod!I.init)))); // I to J
}
}
}
/**
Stringize conversion from all types is supported.
$(UL
$(LI String _to string conversion works for any two string types having
($(D char), $(D wchar), $(D dchar)) character widths and any
combination of qualifiers (mutable, $(D const), or $(D immutable)).)
$(LI Converts array (other than strings) to string.
Each element is converted by calling $(D to!T).)
$(LI Associative array to string conversion.
Each element is printed by calling $(D to!T).)
$(LI Object to string conversion calls $(D toString) against the object or
returns $(D "null") if the object is null.)
$(LI Struct to string conversion calls $(D toString) against the struct if
it is defined.)
$(LI For structs that do not define $(D toString), the conversion to string
produces the list of fields.)
$(LI Enumerated types are converted to strings as their symbolic names.)
$(LI Boolean values are printed as $(D "true") or $(D "false").)
$(LI $(D char), $(D wchar), $(D dchar) to a string type.)
$(LI Unsigned or signed integers to strings.
$(DL $(DT [special case])
$(DD Convert integral value to string in $(D_PARAM radix) radix.
radix must be a value from 2 to 36.
value is treated as a signed value only if radix is 10.
The characters A through Z are used to represent values 10 through 36.)))
$(LI All floating point types to all string types.)
$(LI Pointer to string conversions prints the pointer as a $(D size_t) value.
If pointer is $(D char*), treat it as C-style strings.))
*/
T toImpl(T, S)(S value)
if (!(isImplicitlyConvertible!(S, T) &&
!isEnumStrToStr!(S, T) && !isNullToStr!(S, T)) &&
isExactSomeString!T)
{
static if (isExactSomeString!S && value[0].sizeof == ElementEncodingType!T.sizeof)
{
// string-to-string with incompatible qualifier conversion
static if (is(ElementEncodingType!T == immutable))
{
// conversion (mutable|const) -> immutable
return value.idup;
}
else
{
// conversion (immutable|const) -> mutable
return value.dup;
}
}
else static if (isExactSomeString!S)
{
// other string-to-string conversions always run decode/encode
return toStr!T(value);
}
else static if (is(S == void[]) || is(S == const(void)[]) || is(S == immutable(void)[]))
{
// Converting void array to string
alias Unqual!(ElementEncodingType!T) Char;
auto raw = cast(const(ubyte)[]) value;
enforce(raw.length % Char.sizeof == 0,
new ConvException("Alignment mismatch in converting a "
~ S.stringof ~ " to a "
~ T.stringof));
auto result = new Char[raw.length / Char.sizeof];
memcpy(result.ptr, value.ptr, value.length);
return cast(T) result;
}
else static if (isPointer!S && is(S : const(char)*))
{
return value ? cast(T) value[0 .. strlen(value)].dup : cast(string)null;
}
else
{
// other non-string values runs formatting
return toStr!T(value);
}
}
unittest
{
// string to string conversion
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
alias TypeTuple!(char, wchar, dchar) Chars;
foreach (LhsC; Chars)
{
alias TypeTuple!(LhsC[], const(LhsC)[], immutable(LhsC)[]) LhStrings;
foreach (Lhs; LhStrings)
{
foreach (RhsC; Chars)
{
alias TypeTuple!(RhsC[], const(RhsC)[], immutable(RhsC)[])
RhStrings;
foreach (Rhs; RhStrings)
{
Lhs s1 = to!Lhs("wyda");
Rhs s2 = to!Rhs(s1);
//writeln(Lhs.stringof, " -> ", Rhs.stringof);
assert(s1 == to!Lhs(s2));
}
}
}
}
foreach (T; Chars)
{
foreach (U; Chars)
{
T[] s1 = to!(T[])("Hello, world!");
auto s2 = to!(U[])(s1);
assert(s1 == to!(T[])(s2));
auto s3 = to!(const(U)[])(s1);
assert(s1 == to!(T[])(s3));
auto s4 = to!(immutable(U)[])(s1);
assert(s1 == to!(T[])(s4));
}
}
}
unittest
{
// Conversion reinterpreting void array to string
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
auto a = "abcx"w;
const(void)[] b = a;
assert(b.length == 8);
auto c = to!(wchar[])(b);
assert(c == "abcx");
}
unittest
{
// char* to string conversion
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
debug(conv) printf("string.to!string(char*).unittest\n");
assert(to!string(cast(char*) null) == "");
assert(to!string("foo\0".ptr) == "foo");
}
unittest
{
// Conversion representing bool value with string
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
bool b;
assert(to!string(b) == "false");
b = true;
assert(to!string(b) == "true");
}
unittest
{
// Conversion representing character value with string
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
alias TypeTuple!(
char, wchar, dchar,
const(char), const(wchar), const(dchar),
immutable(char), immutable(wchar), immutable(dchar)) AllChars;
foreach (Char1; AllChars)
{
foreach (Char2; AllChars)
{
Char1 c = 'a';
assert(to!(Char2[])(c)[0] == c);
}
uint x = 4;
assert(to!(Char1[])(x) == "4");
}
string s = "foo";
string s2;
foreach (char c; s)
{
s2 ~= to!string(c);
}
//printf("%.*s", s2);
assert(s2 == "foo");
}
unittest
{
// Conversion representing integer values with string
foreach (Int; TypeTuple!(ubyte, ushort, uint, ulong))
{
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
debug(conv) printf("string.to!string(%.*s).unittest\n", Int.stringof.length, Int.stringof.ptr);
assert(to!string(to!Int(0)) == "0");
assert(to!string(to!Int(9)) == "9");
assert(to!string(to!Int(123)) == "123");
}
foreach (Int; TypeTuple!(byte, short, int, long))
{
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
debug(conv) printf("string.to!string(%.*s).unittest\n", Int.stringof.length, Int.stringof.ptr);
assert(to!string(to!Int(0)) == "0");
assert(to!string(to!Int(9)) == "9");
assert(to!string(to!Int(123)) == "123");
assert(to!string(to!Int(-0)) == "0");
assert(to!string(to!Int(-9)) == "-9");
assert(to!string(to!Int(-123)) == "-123");
assert(to!string(to!(const Int)(6)) == "6");
}
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
assert(wtext(int.max) == "2147483647"w);
assert(wtext(int.min) == "-2147483648"w);
assert(to!string(0L) == "0");
//Test CTFE-ability.
static assert(to!string(1uL << 62) == "4611686018427387904");
static assert(to!string(0x100000000) == "4294967296");
static assert(to!string(-138L) == "-138");
}
unittest
{
// Conversion representing dynamic/static array with string
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
long[] b = [ 1, 3, 5 ];
auto s = to!string(b);
assert(to!string(b) == "[1, 3, 5]", s);
double[2] a = [ 1.5, 2.5 ];
assert(to!string(a) == "[1.5, 2.5]");
}
unittest
{
// Conversion representing associative array with string
int[string] a = ["0":1, "1":2];
assert(to!string(a) == `["0":1, "1":2]`);
}
unittest
{
// Conversion representing class object with string
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
class A
{
override string toString() const { return "an A"; }
}
A a;
assert(to!string(a) == "null");
a = new A;
assert(to!string(a) == "an A");
// Bug 7660
class C { override string toString() const { return "C"; } }
struct S { C c; alias c this; }
S s; s.c = new C();
assert(to!string(s) == "C");
}
unittest
{
// Conversion representing struct object with string
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
struct S1
{
string toString() { return "wyda"; }
}
assert(to!string(S1()) == "wyda");
struct S2
{
int a = 42;
float b = 43.5;
}
S2 s2;
assert(to!string(s2) == "S2(42, 43.5)");
// Test for issue 8080
struct S8080
{
short[4] data;
alias data this;
string toString() { return "<S>"; }
}
S8080 s8080;
assert(to!string(s8080) == "<S>");
}
unittest
{
// Conversion representing enum value with string
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
enum EB : bool { a = true }
enum EU : uint { a = 0, b = 1, c = 2 } // base type is unsigned
enum EI : int { a = -1, b = 0, c = 1 } // base type is signed (bug 7909)
enum EF : real { a = 1.414, b = 1.732, c = 2.236 }
enum EC : char { a = 'x', b = 'y' }
enum ES : string { a = "aaa", b = "bbb" }
foreach (E; TypeTuple!(EB, EU, EI, EF, EC, ES))
{
assert(to! string(E.a) == "a"c);
assert(to!wstring(E.a) == "a"w);
assert(to!dstring(E.a) == "a"d);
}
// Test an value not corresponding to an enum member.
auto o = cast(EU)5;
assert(to! string(o) == "cast(EU)5"c);
assert(to!wstring(o) == "cast(EU)5"w);
assert(to!dstring(o) == "cast(EU)5"d);
}
/// ditto
T toImpl(T, S)(S value, uint radix)
if (isIntegral!S &&
isExactSomeString!T)
in
{
assert(radix >= 2 && radix <= 36);
}
body
{
static if (!is(IntegralTypeOf!S == ulong))
{
enforce(radix >= 2 && radix <= 36, new ConvException("Radix error"));
if (radix == 10)
return to!string(value); // handle signed cases only for radix 10
return to!string(cast(ulong) value, radix);
}
else
{
char[value.sizeof * 8] buffer;
uint i = buffer.length;
if (value < radix && value < hexDigits.length)
return hexDigits[cast(size_t)value .. cast(size_t)value + 1];
do
{
ubyte c;
c = cast(ubyte)(value % radix);
value = value / radix;
i--;
buffer[i] = cast(char)((c < 10) ? c + '0' : c + 'A' - 10);
} while (value);
return to!T(buffer[i .. $].dup);
}
}
unittest
{
foreach (Int; TypeTuple!(uint, ulong))
{
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
debug(conv) printf("string.to!string(%.*s, uint).unittest\n", Int.stringof.length, Int.stringof.ptr);
assert(to!string(to!Int(16), 16) == "10");
assert(to!string(to!Int(15), 2u) == "1111");
assert(to!string(to!Int(1), 2u) == "1");
assert(to!string(to!Int(0x1234AF), 16u) == "1234AF");
}
foreach (Int; TypeTuple!(int, long))
{
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
debug(conv) printf("string.to!string(%.*s, uint).unittest\n", Int.stringof.length, Int.stringof.ptr);
assert(to!string(to!Int(-10), 10u) == "-10");
}
}
/**
$(RED Deprecated. It will be removed in January 2013.
Please use $(XREF format, formattedWrite) instead.)
Conversions to string with optional configures.
*/
deprecated("Please use std.format.formattedWrite instead.")
T toImpl(T, S)(S s, in T leftBracket, in T separator = ", ", in T rightBracket = "]")
if (!isSomeChar!(ElementType!S) && (isInputRange!S || isInputRange!(Unqual!S)) &&
isExactSomeString!T)
{
static if (!isInputRange!S)
{
alias toImpl!(T, Unqual!S) ti;
return ti(s, leftBracket, separator, rightBracket);
}
else
{
alias Unqual!(ElementEncodingType!T) Char;
// array-to-string conversion
auto result = appender!(Char[])();
result.put(leftBracket);
bool first = true;
for (; !s.empty; s.popFront())
{
if (!first)
{
result.put(separator);
}
else
{
first = false;
}
result.put(to!T(s.front));
}
result.put(rightBracket);
return cast(T) result.data;
}
}
/// ditto
deprecated("Please use std.format.formattedWrite instead.")
T toImpl(T, S)(ref S s, in T leftBracket, in T separator = " ", in T rightBracket = "]")
if ((is(S == void[]) || is(S == const(void)[]) || is(S == immutable(void)[])) &&
isExactSomeString!T)
{
return toImpl(s);
}
/// ditto
deprecated("Please use std.format.formattedWrite instead.")
T toImpl(T, S)(S s, in T leftBracket, in T keyval = ":", in T separator = ", ", in T rightBracket = "]")
if (isAssociativeArray!S && !is(S == enum) &&
isExactSomeString!T)
{
alias Unqual!(ElementEncodingType!T) Char;
auto result = appender!(Char[])();
// hash-to-string conversion
result.put(leftBracket);
bool first = true;
foreach (k, v; s)
{
if (!first)
result.put(separator);
else first = false;
result.put(to!T(k));
result.put(keyval);
result.put(to!T(v));
}
result.put(rightBracket);
return cast(T) result.data;
}
/// ditto
deprecated("Please use std.format.formattedWrite instead.")
T toImpl(T, S)(S s, in T nullstr)
if (is(S : Object) &&
isExactSomeString!T)
{
if (!s)
return nullstr;
return to!T(s.toString());
}
/// ditto
deprecated("Please use std.format.formattedWrite instead.")
T toImpl(T, S)(S s, in T left, in T separator = ", ", in T right = ")")
if (is(S == struct) && !is(typeof(&S.init.toString)) && !isInputRange!S &&
isExactSomeString!T)
{
Tuple!(FieldTypeTuple!S) * t = void;
static if ((*t).sizeof == S.sizeof)
{
// ok, attempt to forge the tuple
t = cast(typeof(t)) &s;
alias Unqual!(ElementEncodingType!T) Char;
auto app = appender!(Char[])();
app.put(left);
foreach (i, e; t.field)
{
if (i > 0)
app.put(to!T(separator));
app.put(to!T(e));
}
app.put(right);
return cast(T) app.data;
}
else
{
// struct with weird alignment
return to!T(S.stringof);
}
}
/*
$(LI A $(D typedef Type Symbol) is converted to string as $(D "Type(value)").)
*/
deprecated T toImpl(T, S)(S s, in T left = to!T(S.stringof~"("), in T right = ")")
if (is(S == typedef) &&
isExactSomeString!T)
{
static if (is(S Original == typedef))
{
// typedef
return left ~ to!T(cast(Original) s) ~ right;
}
}
/**
Narrowing numeric-numeric conversions throw when the value does not
fit in the narrower type.
*/
T toImpl(T, S)(S value)
if (!isImplicitlyConvertible!(S, T) &&
(isNumeric!S || isSomeChar!S) && !is(S == enum) &&
(isNumeric!T || isSomeChar!T) && !is(T == enum))
{
enum sSmallest = mostNegative!S;
enum tSmallest = mostNegative!T;
static if (sSmallest < 0)
{
// possible underflow converting from a signed
static if (tSmallest == 0)
{
immutable good = value >= 0;
}
else
{
static assert(tSmallest < 0);
immutable good = value >= tSmallest;
}
if (!good)
throw new ConvOverflowException("Conversion negative overflow");
}
static if (S.max > T.max)
{
// possible overflow
if (value > T.max)
throw new ConvOverflowException("Conversion positive overflow");
}
return cast(T) value;
}
unittest
{
dchar a = ' ';
assert(to!char(a) == ' ');
a = 300;
assert(collectException(to!char(a)));
dchar from0 = 'A';
char to0 = to!char(from0);
wchar from1 = 'A';
char to1 = to!char(from1);
char from2 = 'A';
char to2 = to!char(from2);
char from3 = 'A';
wchar to3 = to!wchar(from3);
char from4 = 'A';
dchar to4 = to!dchar(from4);
}
/**
Array-to-array conversion (except when target is a string type)
converts each element in turn by using $(D to).
*/
T toImpl(T, S)(S value)
if (!isImplicitlyConvertible!(S, T) &&
!isSomeString!S && isDynamicArray!S &&
!isExactSomeString!T && isArray!T)
{
alias typeof(T.init[0]) E;
auto result = new E[value.length];
foreach (i, e; value)
{
/* Temporarily cast to mutable type, so we can get it initialized,
* this is ok because there are no other references to result[]
*/
cast()(result[i]) = to!E(e);
}
return result;
}
unittest
{
// array to array conversions
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
uint[] a = ([ 1u, 2, 3 ]).dup;
auto b = to!(float[])(a);
assert(b == [ 1.0f, 2, 3 ]);
auto c = to!(string[])(b);
assert(c[0] == "1" && c[1] == "2" && c[2] == "3");
immutable(int)[3] d = [ 1, 2, 3 ];
b = to!(float[])(d);
assert(b == [ 1.0f, 2, 3 ]);
uint[][] e = [ a, a ];
auto f = to!(float[][])(e);
assert(f[0] == b && f[1] == b);
// Test for bug 8264
struct Wrap
{
string wrap;
alias wrap this;
}
Wrap[] warr = to!(Wrap[])(["foo", "bar"]); // should work
}
/**
Associative array to associative array conversion converts each key
and each value in turn.
*/
T toImpl(T, S)(S value)
if (isAssociativeArray!S &&
isAssociativeArray!T && !is(T == enum))
{
alias KeyType!T K2;
alias ValueType!T V2;
// While we are "building" the AA, we need to unqualify its values, and only re-qualify at the end
Unqual!V2[K2] result;
foreach (k1, v1; value)
{
// Cast values temporarily to Unqual!V2 to store them to result variable
result[to!K2(k1)] = cast(Unqual!V2) to!V2(v1);
}
// Cast back to original type
return cast(T)result;
}
unittest
{
// hash to hash conversions
int[string] a;
a["0"] = 1;
a["1"] = 2;
auto b = to!(double[dstring])(a);
assert(b["0"d] == 1 && b["1"d] == 2);
}
unittest // Bugzilla 8705, from doc
{
int[string][double[int[]]] a;
auto b = to!(short[wstring][string[double[]]])(a);
a = [null:["hello":int.max]];
assertThrown!ConvOverflowException(to!(short[wstring][string[double[]]])(a));
}
version(none) // masked by unexpected linker error in posix platforms
unittest // Extra cases for AA with qualifiers conversion
{
int[][int[]] a;// = [[], []];
auto b = to!(immutable(short[])[immutable short[]])(a);
double[dstring][int[long[]]] c;
auto d = to!(immutable(short[immutable wstring])[immutable string[double[]]])(c);
}
private void testIntegralToFloating(Integral, Floating)()
{
Integral a = 42;
auto b = to!Floating(a);
assert(a == b);
assert(a == to!Integral(b));
}
private void testFloatingToIntegral(Floating, Integral)()
{
bool convFails(Source, Target, E)(Source src)
{
try
auto t = to!Target(src);
catch (E)
return true;
return false;
}
// convert some value
Floating a = 4.2e1;
auto b = to!Integral(a);
assert(is(typeof(b) == Integral) && b == 42);
// convert some negative value (if applicable)
a = -4.2e1;
static if (Integral.min < 0)
{
b = to!Integral(a);
assert(is(typeof(b) == Integral) && b == -42);
}
else
{
// no go for unsigned types
assert(convFails!(Floating, Integral, ConvOverflowException)(a));
}
// convert to the smallest integral value
a = 0.0 + Integral.min;
static if (Integral.min < 0)
{
a = -a; // -Integral.min not representable as an Integral
assert(convFails!(Floating, Integral, ConvOverflowException)(a)
|| Floating.sizeof <= Integral.sizeof);
}
a = 0.0 + Integral.min;
assert(to!Integral(a) == Integral.min);
--a; // no more representable as an Integral
assert(convFails!(Floating, Integral, ConvOverflowException)(a)
|| Floating.sizeof <= Integral.sizeof);
a = 0.0 + Integral.max;
// fwritefln(stderr, "%s a=%g, %s conv=%s", Floating.stringof, a,
// Integral.stringof, to!Integral(a));
assert(to!Integral(a) == Integral.max || Floating.sizeof <= Integral.sizeof);
++a; // no more representable as an Integral
assert(convFails!(Floating, Integral, ConvOverflowException)(a)
|| Floating.sizeof <= Integral.sizeof);
// convert a value with a fractional part
a = 3.14;
assert(to!Integral(a) == 3);
a = 3.99;
assert(to!Integral(a) == 3);
static if (Integral.min < 0)
{
a = -3.14;
assert(to!Integral(a) == -3);
a = -3.99;
assert(to!Integral(a) == -3);
}
}
unittest
{
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
alias TypeTuple!(byte, ubyte, short, ushort, int, uint, long, ulong)
AllInts;
alias TypeTuple!(float, double, real) AllFloats;
alias TypeTuple!(AllInts, AllFloats) AllNumerics;
// test with same type
{
foreach (T; AllNumerics)
{
T a = 42;
auto b = to!T(a);
assert(is(typeof(a) == typeof(b)) && a == b);
}
}
// test that floating-point numbers convert properly to largest ints
// see http://oregonstate.edu/~peterseb/mth351/docs/351s2001_fp80x87.html
// look for "largest fp integer with a predecessor"
{
// float
int a = 16_777_215; // 2^24 - 1
assert(to!int(to!float(a)) == a);
assert(to!int(to!float(-a)) == -a);
// double
long b = 9_007_199_254_740_991; // 2^53 - 1
assert(to!long(to!double(b)) == b);
assert(to!long(to!double(-b)) == -b);
// real
// @@@ BUG IN COMPILER @@@
// ulong c = 18_446_744_073_709_551_615UL; // 2^64 - 1
// assert(to!ulong(to!real(c)) == c);
// assert(to!ulong(-to!real(c)) == c);
}
// test conversions floating => integral
{
// AllInts[0 .. $ - 1] should be AllInts
// @@@ BUG IN COMPILER @@@
foreach (Integral; AllInts[0 .. $ - 1])
{
foreach (Floating; AllFloats)
{
testFloatingToIntegral!(Floating, Integral)();
}
}
}
// test conversion integral => floating
{
foreach (Integral; AllInts[0 .. $ - 1])
{
foreach (Floating; AllFloats)
{
testIntegralToFloating!(Integral, Floating)();
}
}
}
// test parsing
{
foreach (T; AllNumerics)
{
// from type immutable(char)[2]
auto a = to!T("42");
assert(a == 42);
// from type char[]
char[] s1 = "42".dup;
a = to!T(s1);
assert(a == 42);
// from type char[2]
char[2] s2;
s2[] = "42";
a = to!T(s2);
assert(a == 42);
// from type immutable(wchar)[2]
a = to!T("42"w);
assert(a == 42);
}
}
// test conversions to string
{
foreach (T; AllNumerics)
{
T a = 42;
assert(to!string(a) == "42");
//assert(to!wstring(a) == "42"w);
//assert(to!dstring(a) == "42"d);
// array test
// T[] b = new T[2];
// b[0] = 42;
// b[1] = 33;
// assert(to!string(b) == "[42,33]");
}
}
// test array to string conversion
foreach (T ; AllNumerics)
{
auto a = [to!T(1), 2, 3];
assert(to!string(a) == "[1, 2, 3]");
}
// test enum to int conversion
// enum Testing { Test1, Test2 };
// Testing t;
// auto a = to!string(t);
// assert(a == "0");
}
/**
String to non-string conversion runs parsing.
$(UL
$(LI When the source is a wide string, it is first converted to a narrow
string and then parsed.)
$(LI When the source is a narrow string, normal text parsing occurs.))
*/
T toImpl(T, S)(S value)
if ( isExactSomeString!S && isDynamicArray!S &&
!isExactSomeString!T && is(typeof(parse!T(value))))
{
scope(success)
{
if (value.length)
{
convError!(S, T)(value);
}
}
return parse!T(value);
}
/// ditto
T toImpl(T, S)(S value, uint radix)
if ( isExactSomeString!S && isDynamicArray!S &&
!isExactSomeString!T && is(typeof(parse!T(value, radix))))
{
scope(success)
{
if (value.length)
{
convError!(S, T)(value);
}
}
return parse!T(value, radix);
}
unittest
{
// Issue 6668 - ensure no collaterals thrown
try { to!uint("-1"); }
catch (ConvException e) { assert(e.next is null); }
}
unittest
{
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
foreach (Char; TypeTuple!(char, wchar, dchar))
{
auto a = to!(Char[])("123");
assert(to!int(a) == 123);
assert(to!double(a) == 123);
}
// 6255
auto n = to!int("FF", 16);
assert(n == 255);
}
/**
Convert a value that is implicitly convertible to the enum base type
into an Enum value. If the value does not match any enum member values
a ConvException is thrown.
Enums with floating-point or string base types are not supported.
*/
T toImpl(T, S)(S value)
if (is(T == enum) && !is(S == enum) && is(S : OriginalType!T)
&& !isFloatingPoint!(OriginalType!T) && !isSomeString!(OriginalType!T))
{
foreach (Member; EnumMembers!T)
{
if (Member == value)
return Member;
}
throw new ConvException(format("Value (%s) does not match any member value of enum '%s'", value, T.stringof));
}
unittest
{
enum En8143 : int { A = 10, B = 20, C = 30, D = 20 }
enum En8143[][] m3 = to!(En8143[][])([[10, 30], [30, 10]]);
static assert(m3 == [[En8143.A, En8143.C], [En8143.C, En8143.A]]);
En8143 en1 = to!En8143(10);
assert(en1 == En8143.A);
assertThrown!ConvException(to!En8143(5)); // matches none
En8143[][] m1 = to!(En8143[][])([[10, 30], [30, 10]]);
assert(m1 == [[En8143.A, En8143.C], [En8143.C, En8143.A]]);
}
/***************************************************************
Rounded conversion from floating point to integral.
Example:
---------------
assert(roundTo!int(3.14) == 3);
assert(roundTo!int(3.49) == 3);
assert(roundTo!int(3.5) == 4);
assert(roundTo!int(3.999) == 4);
assert(roundTo!int(-3.14) == -3);
assert(roundTo!int(-3.49) == -3);
assert(roundTo!int(-3.5) == -4);
assert(roundTo!int(-3.999) == -4);
---------------
Rounded conversions do not work with non-integral target types.
*/
template roundTo(Target)
{
Target roundTo(Source)(Source value)
{
static assert(isFloatingPoint!Source);
static assert(isIntegral!Target);
return to!Target(trunc(value + (value < 0 ? -0.5L : 0.5L)));
}
}
unittest
{
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
assert(roundTo!int(3.14) == 3);
assert(roundTo!int(3.49) == 3);
assert(roundTo!int(3.5) == 4);
assert(roundTo!int(3.999) == 4);
assert(roundTo!int(-3.14) == -3);
assert(roundTo!int(-3.49) == -3);
assert(roundTo!int(-3.5) == -4);
assert(roundTo!int(-3.999) == -4);
assert(roundTo!(const int)(to!(const double)(-3.999)) == -4);
// boundary values
foreach (Int; TypeTuple!(byte, ubyte, short, ushort, int, uint))
{
assert(roundTo!Int(Int.min - 0.4L) == Int.min);
assert(roundTo!Int(Int.max + 0.4L) == Int.max);
assertThrown!ConvOverflowException(roundTo!Int(Int.min - 0.5L));
assertThrown!ConvOverflowException(roundTo!Int(Int.max + 0.5L));
}
}
/***************************************************************
* The $(D_PARAM parse) family of functions works quite like the
* $(D_PARAM to) family, except that (1) it only works with character ranges
* as input, (2) takes the input by reference and advances it to
* the position following the conversion, and (3) does not throw if it
* could not convert the entire input. It still throws if an overflow
* occurred during conversion or if no character of the input
* was meaningfully converted.
*
* Example:
--------------
string test = "123 \t 76.14";
auto a = parse!uint(test);
assert(a == 123);
assert(test == " \t 76.14"); // parse bumps string
munch(test, " \t\n\r"); // skip ws
assert(test == "76.14");
auto b = parse!double(test);
assert(b == 76.14);
assert(test == "");
--------------
*/
Target parse(Target, Source)(ref Source s)
if (isSomeChar!(ElementType!Source) &&
isIntegral!Target && !is(Target == enum))
{
static if (Target.sizeof < int.sizeof)
{
// smaller types are handled like integers
auto v = .parse!(Select!(Target.min < 0, int, uint))(s);
auto result = cast(Target) v;
if (result != v)
goto Loverflow;
return result;
}
else
{
// Larger than int types
static if (Target.min < 0)
int sign = 0;
else
enum int sign = 0;
Target v = 0;
bool atStart = true;
enum char maxLastDigit = Target.min < 0 ? '7' : '5';
while (!s.empty)
{
immutable c = s.front;
if (c >= '0' && c <= '9')
{
if (v >= Target.max/10 &&
(v != Target.max/10|| c + sign > maxLastDigit))
goto Loverflow;
v = cast(Target) (v * 10 + (c - '0'));
s.popFront();
atStart = false;
}
else static if (Target.min < 0)
{
if (c == '-' && atStart)
{
s.popFront();
sign = -1;
}
else if (c == '+' && atStart)
s.popFront();
else
break;
}
else
break;
}
if (atStart)
goto Lerr;
static if (Target.min < 0)
{
if (sign == -1)
{
v = -v;
}
}
return v;
}
Loverflow:
throw new ConvOverflowException("Overflow in integral conversion");
Lerr:
convError!(Source, Target)(s);
assert(0);
}
unittest
{
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
string s = "123";
auto a = parse!int(s);
}
unittest
{
foreach (Int; TypeTuple!(byte, ubyte, short, ushort, int, uint, long, ulong))
{
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
debug(conv) printf("conv.to!%.*s.unittest\n", Int.stringof.length, Int.stringof.ptr);
{
assert(to!Int("0") == 0);
static if (isSigned!Int)
{
assert(to!Int("+0") == 0);
assert(to!Int("-0") == 0);
}
}
static if (Int.sizeof >= byte.sizeof)
{
assert(to!Int("6") == 6);
assert(to!Int("23") == 23);
assert(to!Int("68") == 68);
assert(to!Int("127") == 0x7F);
static if (isUnsigned!Int)
{
assert(to!Int("255") == 0xFF);
}
static if (isSigned!Int)
{
assert(to!Int("+6") == 6);
assert(to!Int("+23") == 23);
assert(to!Int("+68") == 68);
assert(to!Int("+127") == 0x7F);
assert(to!Int("-6") == -6);
assert(to!Int("-23") == -23);
assert(to!Int("-68") == -68);
assert(to!Int("-128") == -128);
}
}
static if (Int.sizeof >= short.sizeof)
{
assert(to!Int("468") == 468);
assert(to!Int("32767") == 0x7FFF);
static if (isUnsigned!Int)
{
assert(to!Int("65535") == 0xFFFF);
}
static if (isSigned!Int)
{
assert(to!Int("+468") == 468);
assert(to!Int("+32767") == 0x7FFF);
assert(to!Int("-468") == -468);
assert(to!Int("-32768") == -32768);
}
}
static if (Int.sizeof >= int.sizeof)
{
assert(to!Int("2147483647") == 0x7FFFFFFF);
static if (isUnsigned!Int)
{
assert(to!Int("4294967295") == 0xFFFFFFFF);
}
static if (isSigned!Int)
{
assert(to!Int("+2147483647") == 0x7FFFFFFF);
assert(to!Int("-2147483648") == -2147483648);
}
}
static if (Int.sizeof >= long.sizeof)
{
assert(to!Int("9223372036854775807") == 0x7FFFFFFFFFFFFFFF);
static if (isUnsigned!Int)
{
assert(to!Int("18446744073709551615") == 0xFFFFFFFFFFFFFFFF);
}
static if (isSigned!Int)
{
assert(to!Int("+9223372036854775807") == 0x7FFFFFFFFFFFFFFF);
assert(to!Int("-9223372036854775808") == 0x8000000000000000);
}
}
}
}
unittest
{
// parsing error check
foreach (Int; TypeTuple!(byte, ubyte, short, ushort, int, uint, long, ulong))
{
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
debug(conv) printf("conv.to!%.*s.unittest (error)\n", Int.stringof.length, Int.stringof.ptr);
{
immutable string[] errors1 =
[
"",
"-",
"+",
"-+",
" ",
" 0",
"0 ",
"- 0",
"1-",
"xx",
"123h",
];
foreach (j, s; errors1)
assertThrown!ConvException(to!Int(s));
}
// parse!SomeUnsigned cannot parse head sign.
static if (isUnsigned!Int)
{
immutable string[] errors2 =
[
"+5",
"-78",
];
foreach (j, s; errors2)
assertThrown!ConvException(to!Int(s));
}
}
// positive overflow check
foreach (i, Int; TypeTuple!(byte, ubyte, short, ushort, int, uint, long, ulong))
{
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
debug(conv) printf("conv.to!%.*s.unittest (pos overflow)\n", Int.stringof.length, Int.stringof.ptr);
immutable string[] errors =
[
"128", // > byte.max
"256", // > ubyte.max
"32768", // > short.max
"65536", // > ushort.max
"2147483648", // > int.max
"4294967296", // > uint.max
"9223372036854775808", // > long.max
"18446744073709551616", // > ulong.max
];
foreach (j, s; errors[i..$])
assertThrown!ConvOverflowException(to!Int(s));
}
// negative overflow check
foreach (i, Int; TypeTuple!(byte, short, int, long))
{
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
debug(conv) printf("conv.to!%.*s.unittest (neg overflow)\n", Int.stringof.length, Int.stringof.ptr);
immutable string[] errors =
[
"-129", // < byte.min
"-32769", // < short.min
"-2147483649", // < int.min
"-9223372036854775809", // < long.min
];
foreach (j, s; errors[i..$])
assertThrown!ConvOverflowException(to!Int(s));
}
}
unittest
{
//Some CTFE-ability checks.
static assert((){string s = "1234abc"; return parse!int(s) == 1234 && s == "abc";}());
static assert((){string s = "-1234abc"; return parse!int(s) == -1234 && s == "abc";}());
static assert((){string s = "1234abc"; return parse!uint(s) == 1234 && s == "abc";}());
}
/// ditto
Target parse(Target, Source)(ref Source s, uint radix)
if (isSomeChar!(ElementType!Source) &&
isIntegral!Target && !is(Target == enum))
in
{
assert(radix >= 2 && radix <= 36);
}
body
{
if (radix == 10)
return parse!Target(s);
immutable uint beyond = (radix < 10 ? '0' : 'a'-10) + radix;
Target v = 0;
size_t atStart = true;
for (; !s.empty; s.popFront())
{
uint c = s.front;
if (c < '0')
break;
if (radix < 10)
{
if (c >= beyond)
break;
}
else
{
if (c > '9')
{
c |= 0x20;//poorman's tolower
if (c < 'a' || c >= beyond)
break;
c -= 'a'-10-'0';
}
}
auto blah = cast(Target) (v * radix + c - '0');
if (blah < v)
goto Loverflow;
v = blah;
atStart = false;
}
if (atStart)
goto Lerr;
return v;
Loverflow:
throw new ConvOverflowException("Overflow in integral conversion");
Lerr:
convError!(Source, Target)(s, radix);
assert(0);
}
unittest
{
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
// @@@BUG@@@ the size of China
// foreach (i; 2..37)
// {
// assert(parse!int("0",i) == 0);
// assert(parse!int("1",i) == 1);
// assert(parse!byte("10",i) == i);
// }
foreach (i; 2..37)
{
string s = "0";
assert(parse!int(s,i) == 0);
s = "1";
assert(parse!int(s,i) == 1);
s = "10";
assert(parse!byte(s,i) == i);
}
// Same @@@BUG@@@ as above
//assert(parse!int("0011001101101", 2) == 0b0011001101101);
// assert(parse!int("765",8) == 0765);
// assert(parse!int("fCDe",16) == 0xfcde);
auto s = "0011001101101";
assert(parse!int(s, 2) == 0b0011001101101);
s = "765";
assert(parse!int(s, 8) == octal!765);
s = "fCDe";
assert(parse!int(s, 16) == 0xfcde);
// 6609
s = "-42";
assert(parse!int(s, 10) == -42);
}
unittest // bugzilla 7302
{
auto r = cycle("2A!");
auto u = parse!uint(r, 16);
assert(u == 42);
assert(r.front == '!');
}
Target parse(Target, Source)(ref Source s)
if (isExactSomeString!Source &&
is(Target == enum))
{
Target result;
size_t longest_match = 0;
foreach (i, e; EnumMembers!Target)
{
auto ident = __traits(allMembers, Target)[i];
if (longest_match < ident.length && s.startsWith(ident))
{
result = e;
longest_match = ident.length ;
}
}
if( longest_match > 0 )
{
s = s[longest_match..$];
return result ;
}
throw new ConvException(
Target.stringof ~ " does not have a member named '"
~ to!string(s) ~ "'");
}
unittest
{
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
enum EB : bool { a = true, b = false, c = a }
enum EU { a, b, c }
enum EI { a = -1, b = 0, c = 1 }
enum EF : real { a = 1.414, b = 1.732, c = 2.236 }
enum EC : char { a = 'a', b = 'b', c = 'c' }
enum ES : string { a = "aaa", b = "bbb", c = "ccc" }
foreach (E; TypeTuple!(EB, EU, EI, EF, EC, ES))
{
assert(to!E("a"c) == E.a);
assert(to!E("b"w) == E.b);
assert(to!E("c"d) == E.c);
assertThrown!ConvException(to!E("d"));
}
}
unittest // bugzilla 4744
{
enum A { member1, member11, member111 }
assert(to!A("member1" ) == A.member1 );
assert(to!A("member11" ) == A.member11 );
assert(to!A("member111") == A.member111);
auto s = "member1111";
assert(parse!A(s) == A.member111 && s == "1");
}
Target parse(Target, Source)(ref Source p)
if (isInputRange!Source && isSomeChar!(ElementType!Source) && !is(Source == enum) &&
isFloatingPoint!Target && !is(Target == enum))
{
static immutable real negtab[14] =
[ 1e-4096L,1e-2048L,1e-1024L,1e-512L,1e-256L,1e-128L,1e-64L,1e-32L,
1e-16L,1e-8L,1e-4L,1e-2L,1e-1L,1.0L ];
static immutable real postab[13] =
[ 1e+4096L,1e+2048L,1e+1024L,1e+512L,1e+256L,1e+128L,1e+64L,1e+32L,
1e+16L,1e+8L,1e+4L,1e+2L,1e+1L ];
// static immutable string infinity = "infinity";
// static immutable string nans = "nans";
ConvException bailOut(string msg = null, string fn = __FILE__, size_t ln = __LINE__)
{
if (!msg)
msg = "Floating point conversion error";
return new ConvException(text(msg, " for input \"", p, "\"."), fn, ln);
}
enforce(!p.empty, bailOut());
char sign = 0; /* indicating + */
switch (p.front)
{
case '-':
sign++;
p.popFront();
enforce(!p.empty, bailOut());
if (std.ascii.toLower(p.front) == 'i')
goto case 'i';
enforce(!p.empty, bailOut());
break;
case '+':
p.popFront();
enforce(!p.empty, bailOut());
break;
case 'i': case 'I':
p.popFront();
enforce(!p.empty, bailOut());
if (std.ascii.toLower(p.front) == 'n' &&
(p.popFront(), enforce(!p.empty, bailOut()), std.ascii.toLower(p.front) == 'f'))
{
// 'inf'
p.popFront();
return sign ? -Target.infinity : Target.infinity;
}
goto default;
default: {}
}
bool isHex = false;
bool startsWithZero = p.front == '0';
if(startsWithZero)
{
p.popFront();
if(p.empty)
{
return (sign) ? -0.0 : 0.0;
}
isHex = p.front == 'x' || p.front == 'X';
}
real ldval = 0.0;
char dot = 0; /* if decimal point has been seen */
int exp = 0;
long msdec = 0, lsdec = 0;
ulong msscale = 1;
if (isHex)
{
int guard = 0;
int anydigits = 0;
uint ndigits = 0;
p.popFront();
while (!p.empty)
{
int i = p.front;
while (isHexDigit(i))
{
anydigits = 1;
i = std.ascii.isAlpha(i) ? ((i & ~0x20) - ('A' - 10)) : i - '0';
if (ndigits < 16)
{
msdec = msdec * 16 + i;
if (msdec)
ndigits++;
}
else if (ndigits == 16)
{
while (msdec >= 0)
{
exp--;
msdec <<= 1;
i <<= 1;
if (i & 0x10)
msdec |= 1;
}
guard = i << 4;
ndigits++;
exp += 4;
}
else
{
guard |= i;
exp += 4;
}
exp -= dot;
p.popFront();
if (p.empty)
break;
i = p.front;
if (i == '_')
{
p.popFront();
if (p.empty)
break;
i = p.front;
}
}
if (i == '.' && !dot)
{ p.popFront();
dot = 4;
}
else
break;
}
// Round up if (guard && (sticky || odd))
if (guard & 0x80 && (guard & 0x7F || msdec & 1))
{
msdec++;
if (msdec == 0) // overflow
{ msdec = 0x8000000000000000L;
exp++;
}
}
enforce(anydigits, bailOut());
enforce(!p.empty && (p.front == 'p' || p.front == 'P'),
bailOut("Floating point parsing: exponent is required"));
char sexp;
int e;
sexp = 0;
p.popFront();
if (!p.empty)
{
switch (p.front)
{ case '-': sexp++;
goto case;
case '+': p.popFront(); enforce(!p.empty,
new ConvException("Error converting input"
" to floating point"));
break;
default: {}
}
}
ndigits = 0;
e = 0;
while (!p.empty && isDigit(p.front))
{
if (e < 0x7FFFFFFF / 10 - 10) // prevent integer overflow
{
e = e * 10 + p.front - '0';
}
p.popFront();
ndigits = 1;
}
exp += (sexp) ? -e : e;
enforce(ndigits, new ConvException("Error converting input"
" to floating point"));
if (msdec)
{
int e2 = 0x3FFF + 63;
// left justify mantissa
while (msdec >= 0)
{ msdec <<= 1;
e2--;
}
// Stuff mantissa directly into real
*cast(long *)&ldval = msdec;
(cast(ushort *)&ldval)[4] = cast(ushort) e2;
// Exponent is power of 2, not power of 10
ldval = ldexp(ldval,exp);
}
goto L6;
}
else // not hex
{
if (std.ascii.toUpper(p.front) == 'N' && !startsWithZero)
{
// nan
enforce((p.popFront(), !p.empty && std.ascii.toUpper(p.front) == 'A')
&& (p.popFront(), !p.empty && std.ascii.toUpper(p.front) == 'N'),
new ConvException("error converting input to floating point"));
// skip past the last 'n'
p.popFront();
return typeof(return).nan;
}
bool sawDigits = startsWithZero;
while (!p.empty)
{
int i = p.front;
while (isDigit(i))
{
sawDigits = true; /* must have at least 1 digit */
if (msdec < (0x7FFFFFFFFFFFL-10)/10)
msdec = msdec * 10 + (i - '0');
else if (msscale < (0xFFFFFFFF-10)/10)
{ lsdec = lsdec * 10 + (i - '0');
msscale *= 10;
}
else
{
exp++;
}
exp -= dot;
p.popFront();
if (p.empty)
break;
i = p.front;
if (i == '_')
{
p.popFront();
if (p.empty)
break;
i = p.front;
}
}
if (i == '.' && !dot)
{
p.popFront();
dot++;
}
else
{
break;
}
}
enforce(sawDigits, new ConvException("no digits seen"));
}
if (!p.empty && (p.front == 'e' || p.front == 'E'))
{
char sexp;
int e;
sexp = 0;
p.popFront();
enforce(!p.empty, new ConvException("Unexpected end of input"));
switch (p.front)
{ case '-': sexp++;
goto case;
case '+': p.popFront();
break;
default: {}
}
bool sawDigits = 0;
e = 0;
while (!p.empty && isDigit(p.front))
{
if (e < 0x7FFFFFFF / 10 - 10) // prevent integer overflow
{
e = e * 10 + p.front - '0';
}
p.popFront();
sawDigits = 1;
}
exp += (sexp) ? -e : e;
enforce(sawDigits, new ConvException("No digits seen."));
}
ldval = msdec;
if (msscale != 1) /* if stuff was accumulated in lsdec */
ldval = ldval * msscale + lsdec;
if (ldval)
{
uint u = 0;
int pow = 4096;
while (exp > 0)
{
while (exp >= pow)
{
ldval *= postab[u];
exp -= pow;
}
pow >>= 1;
u++;
}
while (exp < 0)
{
while (exp <= -pow)
{
ldval *= negtab[u];
enforce(ldval != 0, new ConvException("Range error"));
exp += pow;
}
pow >>= 1;
u++;
}
}
L6: // if overflow occurred
enforce(ldval != core.stdc.math.HUGE_VAL, new ConvException("Range error"));
L1:
return (sign) ? -ldval : ldval;
}
unittest
{
// Compare reals with given precision
bool feq(in real rx, in real ry, in real precision = 0.000001L)
{
if (rx == ry)
return 1;
if (isnan(rx))
return cast(bool)isnan(ry);
if (isnan(ry))
return 0;
return cast(bool)(fabs(rx - ry) <= precision);
}
// Make given typed literal
F Literal(F)(F f)
{
return f;
}
foreach (Float; TypeTuple!(float, double, real))
{
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
debug(conv) printf("conv.to!%.*s.unittest\n", Float.stringof.length, Float.stringof.ptr);
assert(to!Float("123") == Literal!Float(123));
assert(to!Float("+123") == Literal!Float(+123));
assert(to!Float("-123") == Literal!Float(-123));
assert(to!Float("123e2") == Literal!Float(123e2));
assert(to!Float("123e+2") == Literal!Float(123e+2));
assert(to!Float("123e-2") == Literal!Float(123e-2));
assert(to!Float("123.") == Literal!Float(123.0));
assert(to!Float(".456") == Literal!Float(.456));
assert(to!Float("1.23456E+2") == Literal!Float(1.23456E+2));
assert(to!Float("0") is 0.0);
assert(to!Float("-0") is -0.0);
assert(isnan(to!Float("nan")));
assertThrown!ConvException(to!Float("\x00"));
}
// min and max
float f = to!float("1.17549e-38");
assert(feq(cast(real)f, cast(real)1.17549e-38));
assert(feq(cast(real)f, cast(real)float.min_normal));
f = to!float("3.40282e+38");
assert(to!string(f) == to!string(3.40282e+38));
// min and max
double d = to!double("2.22508e-308");
assert(feq(cast(real)d, cast(real)2.22508e-308));
assert(feq(cast(real)d, cast(real)double.min_normal));
d = to!double("1.79769e+308");
assert(to!string(d) == to!string(1.79769e+308));
assert(to!string(d) == to!string(double.max));
assert(to!string(to!real(to!string(real.max / 2L))) == to!string(real.max / 2L));
// min and max
real r = to!real(to!string(real.min_normal));
assert(to!string(r) == to!string(real.min_normal));
r = to!real(to!string(real.max));
assert(to!string(r) == to!string(real.max));
}
unittest
{
import core.stdc.errno;
import core.stdc.stdlib;
errno = 0; // In case it was set by another unittest in a different module.
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
struct longdouble
{
ushort value[5];
}
real ld;
longdouble x;
real ld1;
longdouble x1;
int i;
string s = "0x1.FFFFFFFFFFFFFFFEp-16382";
ld = parse!real(s);
assert(s.empty);
x = *cast(longdouble *)&ld;
ld1 = strtold("0x1.FFFFFFFFFFFFFFFEp-16382", null);
x1 = *cast(longdouble *)&ld1;
assert(x1 == x && ld1 == ld);
// for (i = 4; i >= 0; i--)
// {
// printf("%04x ", x.value[i]);
// }
// printf("\n");
assert(!errno);
s = "1.0e5";
ld = parse!real(s);
assert(s.empty);
x = *cast(longdouble *)&ld;
ld1 = strtold("1.0e5", null);
x1 = *cast(longdouble *)&ld1;
// for (i = 4; i >= 0; i--)
// {
// printf("%04x ", x.value[i]);
// }
// printf("\n");
}
// Unittest for bug 4959
unittest
{
auto s = "0 ";
auto x = parse!double(s);
assert(s == " ");
assert(x == 0.0);
}
// Unittest for bug 3369
unittest
{
assert(to!float("inf") == float.infinity);
assert(to!float("-inf") == -float.infinity);
}
// Unittest for bug 6160
unittest
{
assert(1000_000_000e50L == to!real("1000_000_000_e50")); // 1e59
assert(0x1000_000_000_p10 == to!real("0x1000_000_000_p10")); // 7.03687e+13
}
// Unittest for bug 6258
unittest
{
assertThrown!ConvException(to!real("-"));
assertThrown!ConvException(to!real("in"));
}
// Unittest for bug 7055
unittest
{
assertThrown!ConvException(to!float("INF2"));
}
unittest
{
//extra stress testing
auto ssOK = ["1.", "1.1.1", "1.e5", "2e1e", "2a", "2e1_1",
"inf", "-inf", "infa", "-infa", "inf2e2", "-inf2e2"];
auto ssKO = ["", " ", "2e", "2e+", "2e-", "2ee", "2e++1", "2e--1", "2e_1", "+inf"];
foreach(s; ssOK)
parse!double(s);
foreach(s; ssKO)
assertThrown!ConvException(parse!double(s));
}
/**
Parsing one character off a string returns the character and bumps the
string up one position.
*/
Target parse(Target, Source)(ref Source s)
if (isExactSomeString!Source &&
staticIndexOf!(Unqual!Target, dchar, Unqual!(ElementEncodingType!Source)) >= 0)
{
if (s.empty) convError!(Source, Target)(s);
static if (is(Unqual!Target == dchar))
{
Target result = s.front;
s.popFront();
return result;
}
else
{
// Special case: okay so parse a Char off a Char[]
Target result = s[0];
s = s[1 .. $];
return result;
}
}
unittest
{
foreach (Str; TypeTuple!(string, wstring, dstring))
{
foreach (Char; TypeTuple!(char, wchar, dchar))
{
static if (is(Unqual!Char == dchar) ||
Char.sizeof == ElementEncodingType!Str.sizeof)
{
Str s = "aaa";
assert(parse!Char(s) == 'a');
assert(s == "aa");
}
}
}
}
Target parse(Target, Source)(ref Source s)
if (!isSomeString!Source && isInputRange!Source && isSomeChar!(ElementType!Source) &&
isSomeChar!Target && Target.sizeof >= ElementType!Source.sizeof && !is(Target == enum))
{
if (s.empty) convError!(Source, Target)(s);
Target result = s.front;
s.popFront();
return result;
}
// string to bool conversions
Target parse(Target, Source)(ref Source s)
if (isExactSomeString!Source &&
is(Unqual!Target == bool))
{
if (s.length >= 4 && icmp(s[0 .. 4], "true")==0)
{
s = s[4 .. $];
return true;
}
if (s.length >= 5 && icmp(s[0 .. 5], "false")==0)
{
s = s[5 .. $];
return false;
}
parseError("bool should be case-insensitive 'true' or 'false'");
assert(0);
}
/*
Tests for to!bool and parse!bool
*/
unittest
{
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
debug(conv) printf("conv.to!bool.unittest\n");
assert (to!bool("TruE") == true);
assert (to!bool("faLse"d) == false);
assertThrown!ConvException(to!bool("maybe"));
auto t = "TrueType";
assert (parse!bool(t) == true);
assert (t == "Type");
auto f = "False killer whale"d;
assert (parse!bool(f) == false);
assert (f == " killer whale"d);
auto m = "maybe";
assertThrown!ConvException(parse!bool(m));
assert (m == "maybe"); // m shouldn't change on failure
auto s = "true";
auto b = parse!(const(bool))(s);
assert(b == true);
}
// string to null literal conversions
Target parse(Target, Source)(ref Source s)
if (isExactSomeString!Source &&
is(Unqual!Target == typeof(null)))
{
if (s.length >= 4 && icmp(s[0 .. 4], "null")==0)
{
s = s[4 .. $];
return null;
}
parseError("null should be case-insensitive 'null'");
assert(0);
}
unittest
{
alias typeof(null) NullType;
auto s1 = "null";
assert(parse!NullType(s1) is null);
assert(s1 == "");
auto s2 = "NUll"d;
assert(parse!NullType(s2) is null);
assert(s2 == "");
auto m = "maybe";
assertThrown!ConvException(parse!NullType(m));
assert(m == "maybe"); // m shouldn't change on failure
auto s = "NULL";
assert(parse!(const(NullType))(s) is null);
}
//Used internally by parse Array/AA, to remove ascii whites
package void skipWS(R)(ref R r)
{
static if (isSomeString!R)
{
//Implementation inspired from stripLeft.
foreach(i, dchar c; r)
{
if (!std.ascii.isWhite(c))
{
r = r[i .. $];
return;
}
}
r = r[0 .. 0]; //Empty string with correct type.
return;
}
else
{
for ( ; !r.empty && std.ascii.isWhite(r.front) ; r.popFront())
{ }
}
}
/**
* Parses an array from a string given the left bracket (default $(D
* '[')), right bracket (default $(D ']')), and element separator (by
* default $(D ',')).
*/
Target parse(Target, Source)(ref Source s, dchar lbracket = '[', dchar rbracket = ']', dchar comma = ',')
if (isExactSomeString!Source &&
isDynamicArray!Target && !is(Target == enum))
{
Target result;
parseCheck!s(lbracket);
skipWS(s);
if (s.empty) convError!(Source, Target)(s);
if (s.front == rbracket)
{
s.popFront();
return result;
}
for (;; s.popFront(), skipWS(s))
{
result ~= parseElement!(ElementType!Target)(s);
skipWS(s);
if (s.empty) convError!(Source, Target)(s);
if (s.front != comma)
break;
}
parseCheck!s(rbracket);
return result;
}
unittest
{
int[] a = [1, 2, 3, 4, 5];
auto s = to!string(a);
assert(to!(int[])(s) == a);
}
unittest
{
int[][] a = [ [1, 2] , [3], [4, 5] ];
auto s = to!string(a);
assert(to!(int[][])(s) == a);
}
unittest
{
int[][][] ia = [ [[1,2],[3,4],[5]] , [[6],[],[7,8,9]] , [[]] ];
char[] s = to!(char[])(ia);
int[][][] ia2;
ia2 = to!(typeof(ia2))(s);
assert( ia == ia2);
}
unittest
{
auto s1 = `[['h', 'e', 'l', 'l', 'o'], "world"]`;
auto a1 = parse!(string[])(s1);
assert(a1 == ["hello", "world"]);
auto s2 = `["aaa", "bbb", "ccc"]`;
auto a2 = parse!(string[])(s2);
assert(a2 == ["aaa", "bbb", "ccc"]);
}
unittest
{
//Check proper failure
auto s = "[ 1 , 2 , 3 ]";
foreach(i ; 0..s.length-1)
{
auto ss = s[0 .. i];
assertThrown!ConvException(parse!(int[])(ss));
}
int[] arr = parse!(int[])(s);
}
/// ditto
Target parse(Target, Source)(ref Source s, dchar lbracket = '[', dchar rbracket = ']', dchar comma = ',')
if (isExactSomeString!Source &&
isStaticArray!Target && !is(Target == enum))
{
Target result = void;
parseCheck!s(lbracket);
skipWS(s);
if (s.empty) convError!(Source, Target)(s);
if (s.front == rbracket)
{
static if (result.length != 0)
goto Lmanyerr;
else
{
s.popFront();
return result;
}
}
for (size_t i = 0; ; s.popFront(), skipWS(s))
{
if (i == result.length)
goto Lmanyerr;
result[i++] = parseElement!(ElementType!Target)(s);
skipWS(s);
if (s.empty) convError!(Source, Target)(s);
if (s.front != comma)
{
if (i != result.length)
goto Lfewerr;
break;
}
}
parseCheck!s(rbracket);
return result;
Lmanyerr:
parseError(text("Too many elements in input, ", result.length, " elements expected."));
assert(0);
Lfewerr:
parseError(text("Too few elements in input, ", result.length, " elements expected."));
assert(0);
}
unittest
{
auto s1 = "[1,2,3,4]";
auto sa1 = parse!(int[4])(s1);
assert(sa1 == [1,2,3,4]);
auto s2 = "[[1],[2,3],[4]]";
auto sa2 = parse!(int[][3])(s2);
assert(sa2 == [[1],[2,3],[4]]);
auto s3 = "[1,2,3]";
assertThrown!ConvException(parse!(int[4])(s3));
auto s4 = "[1,2,3,4,5]";
assertThrown!ConvException(parse!(int[4])(s4));
}
/**
* Parses an associative array from a string given the left bracket (default $(D
* '[')), right bracket (default $(D ']')), key-value separator (default $(D
* ':')), and element seprator (by default $(D ',')).
*/
Target parse(Target, Source)(ref Source s, dchar lbracket = '[', dchar rbracket = ']', dchar keyval = ':', dchar comma = ',')
if (isExactSomeString!Source &&
isAssociativeArray!Target && !is(Target == enum))
{
alias typeof(Target.keys[0]) KeyType;
alias typeof(Target.values[0]) ValueType;
Target result;
parseCheck!s(lbracket);
skipWS(s);
if (s.empty) convError!(Source, Target)(s);
if (s.front == rbracket)
{
s.popFront();
return result;
}
for (;; s.popFront(), skipWS(s))
{
auto key = parseElement!KeyType(s);
skipWS(s);
parseCheck!s(keyval);
skipWS(s);
auto val = parseElement!ValueType(s);
skipWS(s);
result[key] = val;
if (s.empty) convError!(Source, Target)(s);
if (s.front != comma) break;
}
parseCheck!s(rbracket);
return result;
}
unittest
{
auto s1 = "[1:10, 2:20, 3:30]";
auto aa1 = parse!(int[int])(s1);
assert(aa1 == [1:10, 2:20, 3:30]);
auto s2 = `["aaa":10, "bbb":20, "ccc":30]`;
auto aa2 = parse!(int[string])(s2);
assert(aa2 == ["aaa":10, "bbb":20, "ccc":30]);
auto s3 = `["aaa":[1], "bbb":[2,3], "ccc":[4,5,6]]`;
auto aa3 = parse!(int[][string])(s3);
assert(aa3 == ["aaa":[1], "bbb":[2,3], "ccc":[4,5,6]]);
}
unittest
{
//Check proper failure
auto s = "[1:10, 2:20, 3:30]";
foreach(i ; 0..s.length-1)
{
auto ss = s[0 .. i];
assertThrown!ConvException(parse!(int[int])(ss));
}
int[int] aa = parse!(int[int])(s);
}
private dchar parseEscape(Source)(ref Source s)
if (isInputRange!Source && isSomeChar!(ElementType!Source))
{
parseCheck!s('\\');
if (s.empty) parseError("Unterminated escape sequence");
dchar getHexDigit()
{
if (s.empty) parseError("Unterminated escape sequence");
s.popFront();
if (s.empty) parseError("Unterminated escape sequence");
dchar c = s.front;
if (!isHexDigit(c))
parseError("Hex digit is missing");
return std.ascii.isAlpha(c) ? ((c & ~0x20) - ('A' - 10)) : c - '0';
}
dchar result;
switch (s.front)
{
case 'a': result = '\a'; break;
case 'b': result = '\b'; break;
case 'f': result = '\f'; break;
case 'n': result = '\n'; break;
case 'r': result = '\r'; break;
case 't': result = '\t'; break;
case 'v': result = '\v'; break;
case 'x':
result = getHexDigit() << 4;
result |= getHexDigit();
if (s.empty) parseError("Unterminated escape sequence");
break;
case 'u':
result = getHexDigit() << 12;
result |= getHexDigit() << 8;
result |= getHexDigit() << 4;
result |= getHexDigit();
if (s.empty) parseError("Unterminated escape sequence");
break;
case 'U':
result = getHexDigit() << 28;
result |= getHexDigit() << 24;
result |= getHexDigit() << 20;
result |= getHexDigit() << 16;
result |= getHexDigit() << 12;
result |= getHexDigit() << 8;
result |= getHexDigit() << 4;
result |= getHexDigit();
if (s.empty) parseError("Unterminated escape sequence");
break;
default:
parseError("Unknown escape character " ~ to!string(s.front));
break;
}
s.popFront();
return result;
}
// Undocumented
Target parseElement(Target, Source)(ref Source s)
if (isInputRange!Source && isSomeChar!(ElementType!Source) && !is(Source == enum) &&
isExactSomeString!Target)
{
auto result = appender!Target();
// parse array of chars
if (s.empty) convError!(Source, Target)(s);
if (s.front == '[')
return parse!Target(s);
parseCheck!s('\"');
if (s.empty) convError!(Source, Target)(s);
if (s.front == '\"')
{
s.popFront();
return result.data;
}
while (true)
{
if (s.empty)
parseError("Unterminated quoted string");
switch (s.front)
{
case '\"':
s.popFront();
return result.data;
case '\\':
result.put(parseEscape(s));
break;
default:
result.put(s.front);
s.popFront();
break;
}
}
assert(0);
}
// ditto
Target parseElement(Target, Source)(ref Source s)
if (isInputRange!Source && isSomeChar!(ElementType!Source) && !is(Source == enum) &&
isSomeChar!Target && !is(Target == enum))
{
Target c;
parseCheck!s('\'');
if (s.empty) convError!(Source, Target)(s);
if (s.front != '\\')
{
c = s.front;
s.popFront();
}
else
c = parseEscape(s);
parseCheck!s('\'');
return c;
}
// ditto
Target parseElement(Target, Source)(ref Source s)
if (isInputRange!Source && isSomeChar!(ElementType!Source) &&
!isSomeString!Target && !isSomeChar!Target)
{
return parse!Target(s);
}
/***************************************************************
Convenience functions for converting any number and types of
arguments into _text (the three character widths).
Example:
----
assert(text(42, ' ', 1.5, ": xyz") == "42 1.5: xyz");
assert(wtext(42, ' ', 1.5, ": xyz") == "42 1.5: xyz"w);
assert(dtext(42, ' ', 1.5, ": xyz") == "42 1.5: xyz"d);
----
*/
string text(T...)(T args)
{
return textImpl!string(args);
}
///ditto
wstring wtext(T...)(T args)
{
return textImpl!wstring(args);
}
///ditto
dstring dtext(T...)(T args)
{
return textImpl!dstring(args);
}
private S textImpl(S, U...)(U args) if (U.length == 0)
{
return null;
}
private S textImpl(S, U...)(U args) if (U.length > 0)
{
auto result = to!S(args[0]);
foreach (arg; args[1 .. $]) result ~= to!S(arg);
return result;
}
unittest
{
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
assert(text(42, ' ', 1.5, ": xyz") == "42 1.5: xyz");
assert(wtext(42, ' ', 1.5, ": xyz") == "42 1.5: xyz"w);
assert(dtext(42, ' ', 1.5, ": xyz") == "42 1.5: xyz"d);
assert(text() is null);
assert(wtext() is null);
assert(dtext() is null);
}
/***************************************************************
The $(D octal) facility is intended as an experimental facility to
replace _octal literals starting with $(D '0'), which many find
confusing. Using $(D octal!177) or $(D octal!"177") instead of $(D
0177) as an _octal literal makes code clearer and the intent more
visible. If use of this facility becomes preponderent, a future
version of the language may deem old-style _octal literals deprecated.
The rules for strings are the usual for literals: If it can fit in an
$(D int), it is an $(D int). Otherwise, it is a $(D long). But, if the
user specifically asks for a $(D long) with the $(D L) suffix, always
give the $(D long). Give an unsigned iff it is asked for with the $(D
U) or $(D u) suffix. _Octals created from integers preserve the type
of the passed-in integral.
Example:
----
// same as 0177
auto x = octal!177;
// octal is a compile-time device
enum y = octal!160;
// Create an unsigned octal
auto z = octal!"1_000_000u";
----
*/
@property int octal(string num)()
if((octalFitsInInt!(num) && !literalIsLong!(num)) && !literalIsUnsigned!(num))
{
return octal!(int, num);
}
/// Ditto
@property long octal(string num)()
if((!octalFitsInInt!(num) || literalIsLong!(num)) && !literalIsUnsigned!(num))
{
return octal!(long, num);
}
/// Ditto
@property uint octal(string num)()
if((octalFitsInInt!(num) && !literalIsLong!(num)) && literalIsUnsigned!(num))
{
return octal!(int, num);
}
/// Ditto
@property ulong octal(string num)()
if((!octalFitsInInt!(num) || literalIsLong!(num)) && literalIsUnsigned!(num))
{
return octal!(long, num);
}
/// Ditto
template octal(alias s)
if (isIntegral!(typeof(s)))
{
enum auto octal = octal!(typeof(s), to!string(s));
}
/*
Takes a string, num, which is an octal literal, and returns its
value, in the type T specified.
So:
int a = octal!(int, "10");
assert(a == 8);
*/
@property T octal(T, string num)()
if (isOctalLiteral!num)
{
ulong pow = 1;
T value = 0;
for (int pos = num.length - 1; pos >= 0; pos--)
{
char s = num[pos];
if (s < '0' || s > '7') // we only care about digits; skip the rest
// safe to skip - this is checked out in the assert so these
// are just suffixes
continue;
value += pow * (s - '0');
pow *= 8;
}
return value;
}
/*
Take a look at int.max and int.max+1 in octal and the logic for this
function follows directly.
*/
template octalFitsInInt(string octalNum)
{
// note it is important to strip the literal of all
// non-numbers. kill the suffix and underscores lest they mess up
// the number of digits here that we depend on.
enum bool octalFitsInInt = strippedOctalLiteral(octalNum).length < 11 ||
strippedOctalLiteral(octalNum).length == 11 &&
strippedOctalLiteral(octalNum)[0] == '1';
}
string strippedOctalLiteral(string original)
{
string stripped = "";
foreach (c; original)
if (c >= '0' && c <= '7')
stripped ~= c;
return stripped;
}
template literalIsLong(string num)
{
static if (num.length > 1)
// can be xxL or xxLu according to spec
enum literalIsLong = (num[$-1] == 'L' || num[$-2] == 'L');
else
enum literalIsLong = false;
}
template literalIsUnsigned(string num)
{
static if (num.length > 1)
// can be xxU or xxUL according to spec
enum literalIsUnsigned = (num[$-1] == 'u' || num[$-2] == 'u')
// both cases are allowed too
|| (num[$-1] == 'U' || num[$-2] == 'U');
else
enum literalIsUnsigned = false;
}
/*
Returns if the given string is a correctly formatted octal literal.
The format is specified in lex.html. The leading zero is allowed, but
not required.
*/
bool isOctalLiteralString(string num)
{
if (num.length == 0)
return false;
// Must start with a number. To avoid confusion, literals that
// start with a '0' are not allowed
if (num[0] == '0' && num.length > 1)
return false;
if (num[0] < '0' || num[0] > '7')
return false;
foreach (i, c; num)
{
if ((c < '0' || c > '7') && c != '_') // not a legal character
{
if (i < num.length - 2)
return false;
else // gotta check for those suffixes
{
if (c != 'U' && c != 'u' && c != 'L')
return false;
if (i != num.length - 1)
{
// if we're not the last one, the next one must
// also be a suffix to be valid
char c2 = num[$-1];
if (c2 != 'U' && c2 != 'u' && c2 != 'L')
return false; // spam at the end of the string
if (c2 == c)
return false; // repeats are disallowed
}
}
}
}
return true;
}
/*
Returns true if the given compile time string is an octal literal.
*/
template isOctalLiteral(string num)
{
enum bool isOctalLiteral = isOctalLiteralString(num);
}
unittest
{
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
// ensure that you get the right types, even with embedded underscores
auto w = octal!"100_000_000_000";
static assert(!is(typeof(w) == int));
auto w2 = octal!"1_000_000_000";
static assert(is(typeof(w2) == int));
static assert(octal!"45" == 37);
static assert(octal!"0" == 0);
static assert(octal!"7" == 7);
static assert(octal!"10" == 8);
static assert(octal!"666" == 438);
static assert(octal!45 == 37);
static assert(octal!0 == 0);
static assert(octal!7 == 7);
static assert(octal!10 == 8);
static assert(octal!666 == 438);
static assert(octal!"66_6" == 438);
static assert(octal!2520046213 == 356535435);
static assert(octal!"2520046213" == 356535435);
static assert(octal!17777777777 == int.max);
static assert(!__traits(compiles, octal!823));
static assert(!__traits(compiles, octal!"823"));
static assert(!__traits(compiles, octal!"_823"));
static assert(!__traits(compiles, octal!"spam"));
static assert(!__traits(compiles, octal!"77%"));
int a;
long b;
// biggest value that should fit in an it
static assert(__traits(compiles, a = octal!"17777777777"));
// should not fit in the int
static assert(!__traits(compiles, a = octal!"20000000000"));
// ... but should fit in a long
static assert(__traits(compiles, b = octal!"20000000000"));
static assert(!__traits(compiles, a = octal!"1L"));
// this should pass, but it doesn't, since the int converter
// doesn't pass along its suffix to helper templates
//static assert(!__traits(compiles, a = octal!1L));
static assert(__traits(compiles, b = octal!"1L"));
static assert(__traits(compiles, b = octal!1L));
}
// emplace
/**
Given a pointer $(D chunk) to uninitialized memory (but already typed
as $(D T)), constructs an object of non-$(D class) type $(D T) at that
address.
This function can be $(D @trusted) if the corresponding constructor of
$(D T) is $(D @safe).
Returns: A pointer to the newly constructed object (which is the same
as $(D chunk)).
*/
T* emplace(T)(T* chunk)
if (!is(T == class))
{
static T i; // Can't use `= T.init` here because of @@@BUG8902@@@.
memcpy(chunk, &i, T.sizeof);
return chunk;
}
///ditto
T* emplace(T)(T* chunk)
if (is(T == class))
{
*chunk = null;
return chunk;
}
version(unittest) private struct __conv_EmplaceTest
{
int i = 3;
this(int i)
{
assert(this.i == 3 && i == 5);
this.i = i;
}
this(int i, ref int j)
{
assert(i == 5 && j == 6);
this.i = i;
++j;
}
@disable:
this();
this(this);
void opAssign();
}
version(unittest) private class __conv_EmplaceTestClass
{
int i = 3;
this(int i)
{
assert(this.i == 3 && i == 5);
this.i = i;
}
this(int i, ref int j)
{
assert(i == 5 && j == 6);
this.i = i;
++j;
}
}
unittest
{
struct S { @disable this(); }
S s = void;
static assert(!__traits(compiles, emplace(&s)));
}
unittest
{
interface I {}
class K : I {}
K k = void;
emplace(&k);
assert(k is null);
I i = void;
emplace(&i);
assert(i is null);
}
/**
Given a pointer $(D chunk) to uninitialized memory (but already typed
as a non-class type $(D T)), constructs an object of type $(D T) at
that address from arguments $(D args).
This function can be $(D @trusted) if the corresponding constructor of
$(D T) is $(D @safe).
Returns: A pointer to the newly constructed object (which is the same
as $(D chunk)).
*/
T* emplace(T, Args...)(T* chunk, Args args)
if (!is(T == struct) && Args.length == 1)
{
*chunk = args[0];
return chunk;
}
unittest
{
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
int a;
int b = 42;
assert(*emplace!int(&a, b) == 42);
}
unittest
{
interface I {}
class K : I {}
K k = null, k2 = new K;
assert(k !is k2);
emplace!K(&k, k2);
assert(k is k2);
I i = null;
assert(i !is k);
emplace!I(&i, k);
assert(i is k);
}
// Specialization for struct
T* emplace(T, Args...)(T* chunk, auto ref Args args)
if (is(T == struct))
{
void initialize()
{
if(auto p = typeid(T).init().ptr)
memcpy(chunk, p, T.sizeof);
else
memset(chunk, 0, T.sizeof);
}
static if (is(typeof(chunk.__ctor(args))))
{
// T defines a genuine constructor accepting args
// Go the classic route: write .init first, then call ctor
initialize();
chunk.__ctor(args);
}
else static if (is(typeof(T(args))))
{
// Struct without constructor that has one matching field for
// each argument
*chunk = T(args);
}
else //static if (Args.length == 1 && is(Args[0] : T))
{
static assert(Args.length == 1);
//static assert(0, T.stringof ~ " " ~ Args.stringof);
// initialize();
*chunk = args[0];
}
return chunk;
}
// Test constructor branch
unittest
{
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
struct S
{
double x = 5, y = 6;
this(int a, int b)
{
assert(x == 5 && y == 6);
x = a;
y = b;
}
}
auto s1 = new void[S.sizeof];
auto s2 = S(42, 43);
assert(*emplace!S(cast(S*) s1.ptr, s2) == s2);
assert(*emplace!S(cast(S*) s1, 44, 45) == S(44, 45));
}
unittest
{
__conv_EmplaceTest k = void;
emplace(&k, 5);
assert(k.i == 5);
}
unittest
{
int var = 6;
__conv_EmplaceTest k = void;
emplace(&k, 5, var);
assert(k.i == 5);
assert(var == 7);
}
// Test matching fields branch
unittest
{
struct S { uint n; }
S s;
emplace!S(&s, 2U);
assert(s.n == 2);
}
unittest
{
struct S { int a, b; this(int){} }
S s;
static assert(!__traits(compiles, emplace!S(&s, 2, 3)));
}
unittest
{
struct S { int a, b = 7; }
S s1 = void, s2 = void;
emplace!S(&s1, 2);
assert(s1.a == 2 && s1.b == 7);
emplace!S(&s2, 2, 3);
assert(s2.a == 2 && s2.b == 3);
}
// Test assignment branch
// FIXME: no tests
private void testEmplaceChunk(void[] chunk, size_t typeSize, size_t typeAlignment, string typeName)
{
enforceEx!ConvException(chunk.length >= typeSize,
xformat("emplace: Chunk size too small: %s < %s size = %s",
chunk.length, typeName, typeSize));
enforceEx!ConvException((cast(size_t) chunk.ptr) % typeAlignment == 0,
xformat("emplace: Misaligned memory block (0x%X): it must be %s-byte aligned for type %s",
chunk.ptr, typeAlignment, typeName));
}
/**
Given a raw memory area $(D chunk), constructs an object of $(D class)
type $(D T) at that address. The constructor is passed the arguments
$(D Args). The $(D chunk) must be as least as large as $(D T) needs
and should have an alignment multiple of $(D T)'s alignment. (The size
of a $(D class) instance is obtained by using $(D
__traits(classInstanceSize, T))).
This function can be $(D @trusted) if the corresponding constructor of
$(D T) is $(D @safe).
Returns: A pointer to the newly constructed object.
*/
T emplace(T, Args...)(void[] chunk, auto ref Args args) if (is(T == class))
{
enum classSize = __traits(classInstanceSize, T);
testEmplaceChunk(chunk, classSize, classInstanceAlignment!T, T.stringof);
auto result = cast(T) chunk.ptr;
// Initialize the object in its pre-ctor state
(cast(byte[]) chunk)[0 .. classSize] = typeid(T).init[];
// Call the ctor if any
static if (is(typeof(result.__ctor(args))))
{
// T defines a genuine constructor accepting args
// Go the classic route: write .init first, then call ctor
result.__ctor(args);
}
else
{
static assert(args.length == 0 && !is(typeof(&T.__ctor)),
"Don't know how to initialize an object of type "
~ T.stringof ~ " with arguments " ~ Args.stringof);
}
return result;
}
unittest
{
int var = 6;
auto k = emplace!__conv_EmplaceTestClass(new void[__traits(classInstanceSize, __conv_EmplaceTestClass)], 5, var);
assert(k.i == 5);
assert(var == 7);
}
/**
Given a raw memory area $(D chunk), constructs an object of non-$(D
class) type $(D T) at that address. The constructor is passed the
arguments $(D args), if any. The $(D chunk) must be as least as large
as $(D T) needs and should have an alignment multiple of $(D T)'s
alignment.
This function can be $(D @trusted) if the corresponding constructor of
$(D T) is $(D @safe).
Returns: A pointer to the newly constructed object.
*/
T* emplace(T, Args...)(void[] chunk, auto ref Args args)
if (!is(T == class))
{
testEmplaceChunk(chunk, T.sizeof, T.alignof, T.stringof);
return emplace(cast(T*) chunk.ptr, args);
}
unittest
{
struct S
{
int a, b;
}
auto p = new void[S.sizeof];
S s;
s.a = 42;
s.b = 43;
auto s1 = emplace!S(p, s);
assert(s1.a == 42 && s1.b == 43);
}
unittest
{
int var = 6;
auto k = emplace!__conv_EmplaceTest(new void[__conv_EmplaceTest.sizeof], 5, var);
assert(k.i == 5);
assert(var == 7);
}
unittest
{
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
class A
{
int x = 5;
int y = 42;
this(int z)
{
assert(x == 5 && y == 42);
x = y = z;
}
}
void[] buf;
static byte[__traits(classInstanceSize, A)] sbuf;
buf = sbuf[];
auto a = emplace!A(buf, 55);
assert(a.x == 55 && a.y == 55);
// emplace in bigger buffer
buf = new byte[](__traits(classInstanceSize, A) + 10);
a = emplace!A(buf, 55);
assert(a.x == 55 && a.y == 55);
// need ctor args
static assert(!is(typeof(emplace!A(buf))));
}
unittest
{
debug(conv) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " succeeded.");
// Check fix for http://d.puremagic.com/issues/show_bug.cgi?id=2971
assert(equal(map!(to!int)(["42", "34", "345"]), [42, 34, 345]));
}
// Undocumented for the time being
void toTextRange(T, W)(T value, W writer)
if (isIntegral!T && isOutputRange!(W, char))
{
char[value.sizeof * 4] buffer = void;
uint i = cast(uint) (buffer.length - 1);
bool negative = value < 0;
Unqual!(Unsigned!T) v = negative ? -value : value;
while (v >= 10)
{
auto c = cast(uint) (v % 10);
v /= 10;
buffer[i--] = cast(char) (c + '0');
}
buffer[i] = cast(char) (v + '0'); //hexDigits[cast(uint) v];
if (negative)
buffer[--i] = '-';
put(writer, buffer[i .. $]);
}
unittest
{
auto result = appender!(char[])();
toTextRange(-1, result);
assert(result.data == "-1");
}