mirror of
https://github.com/dlang/phobos.git
synced 2025-04-28 22:21:09 +03:00
464 lines
14 KiB
D
464 lines
14 KiB
D
/**
|
|
* Error Functions and Normal Distribution.
|
|
*
|
|
* License: $(WEB boost.org/LICENSE_1_0.txt, Boost License 1.0).
|
|
* Copyright: Based on the CEPHES math library, which is
|
|
* Copyright (C) 1994 Stephen L. Moshier (moshier@world.std.com).
|
|
* Authors: Stephen L. Moshier, ported to D by Don Clugston
|
|
*/
|
|
/**
|
|
* Macros:
|
|
* NAN = $(RED NAN)
|
|
* SUP = <span style="vertical-align:super;font-size:smaller">$0</span>
|
|
* GAMMA = Γ
|
|
* INTEGRAL = ∫
|
|
* INTEGRATE = $(BIG ∫<sub>$(SMALL $1)</sub><sup>$2</sup>)
|
|
* POWER = $1<sup>$2</sup>
|
|
* BIGSUM = $(BIG Σ <sup>$2</sup><sub>$(SMALL $1)</sub>)
|
|
* CHOOSE = $(BIG () <sup>$(SMALL $1)</sup><sub>$(SMALL $2)</sub> $(BIG ))
|
|
* TABLE_SV = <table border=1 cellpadding=4 cellspacing=0>
|
|
* <caption>Special Values</caption>
|
|
* $0</table>
|
|
* SVH = $(TR $(TH $1) $(TH $2))
|
|
* SV = $(TR $(TD $1) $(TD $2))
|
|
*/
|
|
module std.internal.math.errorfunction;
|
|
import std.math;
|
|
|
|
private {
|
|
immutable real EXP_2 = 0.13533528323661269189L; /* exp(-2) */
|
|
enum real SQRT2PI = 2.50662827463100050242E0L; // sqrt(2pi)
|
|
|
|
|
|
enum real MAXLOG = 0x1.62e42fefa39ef358p+13L; // log(real.max)
|
|
enum real MINLOG = -0x1.6436716d5406e6d8p+13L; // log(real.min*real.epsilon) = log(smallest denormal)
|
|
}
|
|
|
|
T rationalPoly(T)(T x, const(T) [] numerator, const(T) [] denominator) pure nothrow
|
|
{
|
|
return poly(x, numerator)/poly(x, denominator);
|
|
}
|
|
|
|
|
|
private {
|
|
|
|
/* erfc(x) = exp(-x^2) P(1/x)/Q(1/x)
|
|
1/8 <= 1/x <= 1
|
|
Peak relative error 5.8e-21 */
|
|
immutable real [10] P = [ -0x1.30dfa809b3cc6676p-17, 0x1.38637cd0913c0288p+18,
|
|
0x1.2f015e047b4476bp+22, 0x1.24726f46aa9ab08p+25, 0x1.64b13c6395dc9c26p+27,
|
|
0x1.294c93046ad55b5p+29, 0x1.5962a82f92576dap+30, 0x1.11a709299faba04ap+31,
|
|
0x1.11028065b087be46p+31, 0x1.0d8ef40735b097ep+30
|
|
];
|
|
|
|
immutable real [11] Q = [ 0x1.14d8e2a72dec49f4p+19, 0x1.0c880ff467626e1p+23,
|
|
0x1.04417ef060b58996p+26, 0x1.404e61ba86df4ebap+28, 0x1.0f81887bc82b873ap+30,
|
|
0x1.4552a5e39fb49322p+31, 0x1.11779a0ceb2a01cep+32, 0x1.3544dd691b5b1d5cp+32,
|
|
0x1.a91781f12251f02ep+31, 0x1.0d8ef3da605a1c86p+30, 1.0
|
|
];
|
|
|
|
|
|
/* erfc(x) = exp(-x^2) 1/x R(1/x^2) / S(1/x^2)
|
|
1/128 <= 1/x < 1/8
|
|
Peak relative error 1.9e-21 */
|
|
immutable real [5] R = [ 0x1.b9f6d8b78e22459ep-6, 0x1.1b84686b0a4ea43ap-1,
|
|
0x1.b8f6aebe96000c2ap+1, 0x1.cb1dbedac27c8ec2p+2, 0x1.cf885f8f572a4c14p+1
|
|
];
|
|
|
|
immutable real [6] S = [
|
|
0x1.87ae3cae5f65eb5ep-5, 0x1.01616f266f306d08p+0, 0x1.a4abe0411eed6c22p+2,
|
|
0x1.eac9ce3da600abaap+3, 0x1.5752a9ac2faebbccp+3, 1.0
|
|
];
|
|
|
|
/* erf(x) = x P(x^2)/Q(x^2)
|
|
0 <= x <= 1
|
|
Peak relative error 7.6e-23 */
|
|
immutable real [7] T = [ 0x1.0da01654d757888cp+20, 0x1.2eb7497bc8b4f4acp+17,
|
|
0x1.79078c19530f72a8p+15, 0x1.4eaf2126c0b2c23p+11, 0x1.1f2ea81c9d272a2ep+8,
|
|
0x1.59ca6e2d866e625p+2, 0x1.c188e0b67435faf4p-4
|
|
];
|
|
|
|
immutable real [7] U = [ 0x1.dde6025c395ae34ep+19, 0x1.c4bc8b6235df35aap+18,
|
|
0x1.8465900e88b6903ap+16, 0x1.855877093959ffdp+13, 0x1.e5c44395625ee358p+9,
|
|
0x1.6a0fed103f1c68a6p+5, 1.0
|
|
];
|
|
|
|
}
|
|
|
|
/**
|
|
* Complementary error function
|
|
*
|
|
* erfc(x) = 1 - erf(x), and has high relative accuracy for
|
|
* values of x far from zero. (For values near zero, use erf(x)).
|
|
*
|
|
* 1 - erf(x) = 2/ $(SQRT)(π)
|
|
* $(INTEGRAL x, $(INFINITY)) exp( - $(POWER t, 2)) dt
|
|
*
|
|
*
|
|
* For small x, erfc(x) = 1 - erf(x); otherwise rational
|
|
* approximations are computed.
|
|
*
|
|
* A special function expx2(x) is used to suppress error amplification
|
|
* in computing exp(-x^2).
|
|
*/
|
|
real erfc(real a)
|
|
{
|
|
if (a == real.infinity)
|
|
return 0.0;
|
|
if (a == -real.infinity)
|
|
return 2.0;
|
|
|
|
real x;
|
|
|
|
if (a < 0.0L )
|
|
x = -a;
|
|
else
|
|
x = a;
|
|
if (x < 1.0)
|
|
return 1.0 - erf(a);
|
|
|
|
real z = -a * a;
|
|
|
|
if (z < -MAXLOG){
|
|
// mtherr( "erfcl", UNDERFLOW );
|
|
if (a < 0) return 2.0;
|
|
else return 0.0;
|
|
}
|
|
|
|
/* Compute z = exp(z). */
|
|
z = expx2(a, -1);
|
|
real y = 1.0/x;
|
|
|
|
real p, q;
|
|
|
|
if( x < 8.0 ) y = z * rationalPoly(y, P, Q);
|
|
else y = z * y * rationalPoly(y * y, R, S);
|
|
|
|
if (a < 0.0L)
|
|
y = 2.0L - y;
|
|
|
|
if (y == 0.0) {
|
|
// mtherr( "erfcl", UNDERFLOW );
|
|
if (a < 0) return 2.0;
|
|
else return 0.0;
|
|
}
|
|
|
|
return y;
|
|
}
|
|
|
|
|
|
private {
|
|
/* Exponentially scaled erfc function
|
|
exp(x^2) erfc(x)
|
|
valid for x > 1.
|
|
Use with normalDistribution and expx2. */
|
|
|
|
real erfce(real x)
|
|
{
|
|
real p, q;
|
|
|
|
real y = 1.0/x;
|
|
|
|
if (x < 8.0) {
|
|
return rationalPoly( y, P, Q);
|
|
} else {
|
|
return y * rationalPoly(y*y, R, S);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Error function
|
|
*
|
|
* The integral is
|
|
*
|
|
* erf(x) = 2/ $(SQRT)(π)
|
|
* $(INTEGRAL 0, x) exp( - $(POWER t, 2)) dt
|
|
*
|
|
* The magnitude of x is limited to about 106.56 for IEEE 80-bit
|
|
* arithmetic; 1 or -1 is returned outside this range.
|
|
*
|
|
* For 0 <= |x| < 1, a rational polynomials are used; otherwise
|
|
* erf(x) = 1 - erfc(x).
|
|
*
|
|
* ACCURACY:
|
|
* Relative error:
|
|
* arithmetic domain # trials peak rms
|
|
* IEEE 0,1 50000 2.0e-19 5.7e-20
|
|
*/
|
|
real erf(real x)
|
|
{
|
|
if (x == 0.0)
|
|
return x; // deal with negative zero
|
|
if (x == -real.infinity)
|
|
return -1.0;
|
|
if (x == real.infinity)
|
|
return 1.0;
|
|
if (abs(x) > 1.0L)
|
|
return 1.0L - erfc(x);
|
|
|
|
real z = x * x;
|
|
return x * rationalPoly(z, T, U);
|
|
}
|
|
|
|
unittest {
|
|
// High resolution test points.
|
|
enum real erfc0_250 = 0.723663330078125 + 1.0279753638067014931732235184287934646022E-5;
|
|
enum real erfc0_375 = 0.5958709716796875 + 1.2118885490201676174914080878232469565953E-5;
|
|
enum real erfc0_500 = 0.4794921875 + 7.9346869534623172533461080354712635484242E-6;
|
|
enum real erfc0_625 = 0.3767547607421875 + 4.3570693945275513594941232097252997287766E-6;
|
|
enum real erfc0_750 = 0.2888336181640625 + 1.0748182422368401062165408589222625794046E-5;
|
|
enum real erfc0_875 = 0.215911865234375 + 1.3073705765341685464282101150637224028267E-5;
|
|
enum real erfc1_000 = 0.15728759765625 + 1.1609394035130658779364917390740703933002E-5;
|
|
enum real erfc1_125 = 0.111602783203125 + 8.9850951672359304215530728365232161564636E-6;
|
|
|
|
enum real erf0_875 = (1-0.215911865234375) - 1.3073705765341685464282101150637224028267E-5;
|
|
|
|
|
|
assert(feqrel(erfc(0.250L), erfc0_250 )>=real.mant_dig-1);
|
|
assert(feqrel(erfc(0.375L), erfc0_375 )>=real.mant_dig-0);
|
|
assert(feqrel(erfc(0.500L), erfc0_500 )>=real.mant_dig-1);
|
|
assert(feqrel(erfc(0.625L), erfc0_625 )>=real.mant_dig-1);
|
|
assert(feqrel(erfc(0.750L), erfc0_750 )>=real.mant_dig-1);
|
|
assert(feqrel(erfc(0.875L), erfc0_875 )>=real.mant_dig-4);
|
|
assert(feqrel(erfc(1.000L), erfc1_000 )>=real.mant_dig-0);
|
|
assert(feqrel(erfc(1.125L), erfc1_125 )>=real.mant_dig-2);
|
|
assert(feqrel(erf(0.875L), erf0_875 )>=real.mant_dig-1);
|
|
// The DMC implementation of erfc() fails this next test (just)
|
|
assert(feqrel(erfc(4.1L),0.67000276540848983727e-8L)>=real.mant_dig-4);
|
|
|
|
assert(isIdentical(erf(0.0),0.0));
|
|
assert(isIdentical(erf(-0.0),-0.0));
|
|
assert(erf(real.infinity) == 1.0);
|
|
assert(erf(-real.infinity) == -1.0);
|
|
assert(isIdentical(erf(NaN(0xDEF)),NaN(0xDEF)));
|
|
assert(isIdentical(erfc(NaN(0xDEF)),NaN(0xDEF)));
|
|
assert(isIdentical(erfc(real.infinity),0.0));
|
|
assert(erfc(-real.infinity) == 2.0);
|
|
assert(erfc(0) == 1.0);
|
|
}
|
|
|
|
/*
|
|
* Exponential of squared argument
|
|
*
|
|
* Computes y = exp(x*x) while suppressing error amplification
|
|
* that would ordinarily arise from the inexactness of the
|
|
* exponential argument x*x.
|
|
*
|
|
* If sign < 0, the result is inverted; i.e., y = exp(-x*x) .
|
|
*
|
|
* ACCURACY:
|
|
* Relative error:
|
|
* arithmetic domain # trials peak rms
|
|
* IEEE -106.566, 106.566 10^5 1.6e-19 4.4e-20
|
|
*/
|
|
|
|
real expx2(real x, int sign)
|
|
{
|
|
/*
|
|
Cephes Math Library Release 2.9: June, 2000
|
|
Copyright 2000 by Stephen L. Moshier
|
|
*/
|
|
const real M = 32768.0;
|
|
const real MINV = 3.0517578125e-5L;
|
|
|
|
x = abs(x);
|
|
if (sign < 0)
|
|
x = -x;
|
|
|
|
/* Represent x as an exact multiple of M plus a residual.
|
|
M is a power of 2 chosen so that exp(m * m) does not overflow
|
|
or underflow and so that |x - m| is small. */
|
|
real m = MINV * floor(M * x + 0.5L);
|
|
real f = x - m;
|
|
|
|
/* x^2 = m^2 + 2mf + f^2 */
|
|
real u = m * m;
|
|
real u1 = 2 * m * f + f * f;
|
|
|
|
if (sign < 0) {
|
|
u = -u;
|
|
u1 = -u1;
|
|
}
|
|
|
|
if ((u+u1) > MAXLOG)
|
|
return real.infinity;
|
|
|
|
/* u is exact, u1 is small. */
|
|
return exp(u) * exp(u1);
|
|
}
|
|
|
|
|
|
/*
|
|
Computes the normal distribution function.
|
|
|
|
The normal (or Gaussian, or bell-shaped) distribution is
|
|
defined as:
|
|
|
|
normalDist(x) = 1/$(SQRT) π $(INTEGRAL -$(INFINITY), x) exp( - $(POWER t, 2)/2) dt
|
|
= 0.5 + 0.5 * erf(x/sqrt(2))
|
|
= 0.5 * erfc(- x/sqrt(2))
|
|
|
|
To maintain accuracy at high values of x, use
|
|
normalDistribution(x) = 1 - normalDistribution(-x).
|
|
|
|
Accuracy:
|
|
Within a few bits of machine resolution over the entire
|
|
range.
|
|
|
|
References:
|
|
$(LINK http://www.netlib.org/cephes/ldoubdoc.html),
|
|
G. Marsaglia, "Evaluating the Normal Distribution",
|
|
Journal of Statistical Software <b>11</b>, (July 2004).
|
|
*/
|
|
real normalDistributionImpl(real a)
|
|
{
|
|
real x = a * SQRT1_2;
|
|
real z = abs(x);
|
|
|
|
if( z < 1.0 )
|
|
return 0.5L + 0.5L * erf(x);
|
|
else {
|
|
real y = 0.5L * erfce(z);
|
|
/* Multiply by exp(-x^2 / 2) */
|
|
z = expx2(a, -1);
|
|
y = y * sqrt(z);
|
|
if( x > 0.0L )
|
|
y = 1.0L - y;
|
|
return y;
|
|
}
|
|
}
|
|
|
|
unittest {
|
|
assert(fabs(normalDistributionImpl(1L) - (0.841344746068543))< 0.0000000000000005);
|
|
assert(isIdentical(normalDistributionImpl(NaN(0x325)), NaN(0x325)));
|
|
}
|
|
|
|
/*
|
|
* Inverse of Normal distribution function
|
|
*
|
|
* Returns the argument, x, for which the area under the
|
|
* Normal probability density function (integrated from
|
|
* minus infinity to x) is equal to p.
|
|
*
|
|
* For small arguments 0 < p < exp(-2), the program computes
|
|
* z = sqrt( -2 log(p) ); then the approximation is
|
|
* x = z - log(z)/z - (1/z) P(1/z) / Q(1/z) .
|
|
* For larger arguments, x/sqrt(2 pi) = w + w^3 R(w^2)/S(w^2)) ,
|
|
* where w = p - 0.5 .
|
|
*/
|
|
real normalDistributionInvImpl(real p)
|
|
in {
|
|
assert(p>=0.0L && p<=1.0L, "Domain error");
|
|
}
|
|
body
|
|
{
|
|
static immutable real[8] P0 =
|
|
[ -0x1.758f4d969484bfdcp-7, 0x1.53cee17a59259dd2p-3,
|
|
-0x1.ea01e4400a9427a2p-1, 0x1.61f7504a0105341ap+1, -0x1.09475a594d0399f6p+2,
|
|
0x1.7c59e7a0df99e3e2p+1, -0x1.87a81da52edcdf14p-1, 0x1.1fb149fd3f83600cp-7
|
|
];
|
|
|
|
static immutable real[8] Q0 =
|
|
[ -0x1.64b92ae791e64bb2p-7, 0x1.7585c7d597298286p-3,
|
|
-0x1.40011be4f7591ce6p+0, 0x1.1fc067d8430a425ep+2, -0x1.21008ffb1e7ccdf2p+3,
|
|
0x1.3d1581cf9bc12fccp+3, -0x1.53723a89fd8f083cp+2, 1.0
|
|
];
|
|
|
|
static immutable real[10] P1 =
|
|
[ 0x1.20ceea49ea142f12p-13, 0x1.cbe8a7267aea80bp-7,
|
|
0x1.79fea765aa787c48p-2, 0x1.d1f59faa1f4c4864p+1, 0x1.1c22e426a013bb96p+4,
|
|
0x1.a8675a0c51ef3202p+5, 0x1.75782c4f83614164p+6, 0x1.7a2f3d90948f1666p+6,
|
|
0x1.5cd116ee4c088c3ap+5, 0x1.1361e3eb6e3cc20ap+2
|
|
];
|
|
|
|
static immutable real[10] Q1 =
|
|
[ 0x1.3a4ce1406cea98fap-13, 0x1.f45332623335cda2p-7,
|
|
0x1.98f28bbd4b98db1p-2, 0x1.ec3b24f9c698091cp+1, 0x1.1cc56ecda7cf58e4p+4,
|
|
0x1.92c6f7376bf8c058p+5, 0x1.4154c25aa47519b4p+6, 0x1.1b321d3b927849eap+6,
|
|
0x1.403a5f5a4ce7b202p+4, 1.0
|
|
];
|
|
|
|
static immutable real[8] P2 =
|
|
[ 0x1.8c124a850116a6d8p-21, 0x1.534abda3c2fb90bap-13,
|
|
0x1.29a055ec93a4718cp-7, 0x1.6468e98aad6dd474p-3, 0x1.3dab2ef4c67a601cp+0,
|
|
0x1.e1fb3a1e70c67464p+1, 0x1.b6cce8035ff57b02p+2, 0x1.9f4c9e749ff35f62p+1
|
|
];
|
|
|
|
static immutable real[8] Q2 =
|
|
[ 0x1.af03f4fc0655e006p-21, 0x1.713192048d11fb2p-13,
|
|
0x1.4357e5bbf5fef536p-7, 0x1.7fdac8749985d43cp-3, 0x1.4a080c813a2d8e84p+0,
|
|
0x1.c3a4b423cdb41bdap+1, 0x1.8160694e24b5557ap+2, 1.0
|
|
];
|
|
|
|
static immutable real[8] P3 =
|
|
[ -0x1.55da447ae3806168p-34, -0x1.145635641f8778a6p-24,
|
|
-0x1.abf46d6b48040128p-17, -0x1.7da550945da790fcp-11, -0x1.aa0b2a31157775fap-8,
|
|
0x1.b11d97522eed26bcp-3, 0x1.1106d22f9ae89238p+1, 0x1.029a358e1e630f64p+1
|
|
];
|
|
|
|
static immutable real[8] Q3 =
|
|
[ -0x1.74022dd5523e6f84p-34, -0x1.2cb60d61e29ee836p-24,
|
|
-0x1.d19e6ec03a85e556p-17, -0x1.9ea2a7b4422f6502p-11, -0x1.c54b1e852f107162p-8,
|
|
0x1.e05268dd3c07989ep-3, 0x1.239c6aff14afbf82p+1, 1.0
|
|
];
|
|
|
|
if(p<=0.0L || p>=1.0L)
|
|
{
|
|
if (p == 0.0L)
|
|
return -real.infinity;
|
|
if( p == 1.0L )
|
|
return real.infinity;
|
|
return real.nan; // domain error
|
|
}
|
|
int code = 1;
|
|
real y = p;
|
|
if( y > (1.0L - EXP_2) ) {
|
|
y = 1.0L - y;
|
|
code = 0;
|
|
}
|
|
|
|
real x, z, y2, x0, x1;
|
|
|
|
if ( y > EXP_2 ) {
|
|
y = y - 0.5L;
|
|
y2 = y * y;
|
|
x = y + y * (y2 * rationalPoly( y2, P0, Q0));
|
|
return x * SQRT2PI;
|
|
}
|
|
|
|
x = sqrt( -2.0L * log(y) );
|
|
x0 = x - log(x)/x;
|
|
z = 1.0L/x;
|
|
if ( x < 8.0L ) {
|
|
x1 = z * rationalPoly( z, P1, Q1);
|
|
} else if( x < 32.0L ) {
|
|
x1 = z * rationalPoly( z, P2, Q2);
|
|
} else {
|
|
x1 = z * rationalPoly( z, P3, Q3);
|
|
}
|
|
x = x0 - x1;
|
|
if ( code != 0 ) {
|
|
x = -x;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
|
|
unittest {
|
|
// TODO: Use verified test points.
|
|
// The values below are from Excel 2003.
|
|
assert(fabs(normalDistributionInvImpl(0.001) - (-3.09023230616779))< 0.00000000000005);
|
|
assert(fabs(normalDistributionInvImpl(1e-50) - (-14.9333375347885))< 0.00000000000005);
|
|
assert(feqrel(normalDistributionInvImpl(0.999), -normalDistributionInvImpl(0.001)) > real.mant_dig-6);
|
|
|
|
// Excel 2003 gets all the following values wrong!
|
|
assert(normalDistributionInvImpl(0.0) == -real.infinity);
|
|
assert(normalDistributionInvImpl(1.0) == real.infinity);
|
|
assert(normalDistributionInvImpl(0.5) == 0);
|
|
// (Excel 2003 returns norminv(p) = -30 for all p < 1e-200).
|
|
// The value tested here is the one the function returned in Jan 2006.
|
|
real unknown1 = normalDistributionInvImpl(1e-250L);
|
|
assert( fabs(unknown1 -(-33.79958617269L) ) < 0.00000005);
|
|
}
|