phobos/std/utf.d
2015-05-05 22:22:10 +03:00

3639 lines
108 KiB
D

// Written in the D programming language.
/++
Encode and decode UTF-8, UTF-16 and UTF-32 strings.
UTF character support is restricted to
$(D '\u0000' <= character <= '\U0010FFFF').
See_Also:
$(LINK2 http://en.wikipedia.org/wiki/Unicode, Wikipedia)<br>
$(LINK http://www.cl.cam.ac.uk/~mgk25/unicode.html#utf-8)<br>
$(LINK http://anubis.dkuug.dk/JTC1/SC2/WG2/docs/n1335)
Macros:
WIKI = Phobos/StdUtf
Copyright: Copyright Digital Mars 2000 - 2012.
License: $(WEB www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
Authors: $(WEB digitalmars.com, Walter Bright) and Jonathan M Davis
Source: $(PHOBOSSRC std/_utf.d)
+/
module std.utf;
import std.range.primitives;
import std.traits; // isSomeChar, isSomeString
import std.meta; // TypeTuple
//debug=utf; // uncomment to turn on debugging printf's
debug (utf) import core.stdc.stdio : printf;
/++
Exception thrown on errors in std.utf functions.
+/
class UTFException : Exception
{
import std.string : format;
uint[4] sequence;
size_t len;
@safe pure nothrow @nogc
UTFException setSequence(uint[] data...)
{
assert(data.length <= 4);
len = data.length < 4 ? data.length : 4;
sequence[0 .. len] = data[0 .. len];
return this;
}
@safe pure nothrow
this(string msg, string file = __FILE__, size_t line = __LINE__, Throwable next = null)
{
super(msg, file, line, next);
}
@safe pure
this(string msg, size_t index, string file = __FILE__, size_t line = __LINE__, Throwable next = null)
{
super(msg ~ format(" (at index %s)", index), file, line, next);
}
override string toString()
{
if (len == 0)
return super.toString();
string result = "Invalid UTF sequence:";
foreach (i; sequence[0 .. len])
result ~= format(" %02x", i);
if (super.msg.length > 0)
{
result ~= " - ";
result ~= super.msg;
}
return result;
}
}
/++
Returns whether $(D c) is a valid UTF-32 character.
$(D '\uFFFE') and $(D '\uFFFF') are considered valid by $(D isValidDchar),
as they are permitted for internal use by an application, but they are
not allowed for interchange by the Unicode standard.
+/
@safe
pure nothrow bool isValidDchar(dchar c) @nogc
{
/* Note: FFFE and FFFF are specifically permitted by the
* Unicode standard for application internal use, but are not
* allowed for interchange.
* (thanks to Arcane Jill)
*/
return c < 0xD800 ||
(c > 0xDFFF && c <= 0x10FFFF /*&& c != 0xFFFE && c != 0xFFFF*/);
}
unittest
{
import std.exception;
debug(utf) printf("utf.isValidDchar.unittest\n");
assertCTFEable!(
{
assert( isValidDchar(cast(dchar)'a') == true);
assert( isValidDchar(cast(dchar)0x1FFFFF) == false);
assert(!isValidDchar(cast(dchar)0x00D800));
assert(!isValidDchar(cast(dchar)0x00DBFF));
assert(!isValidDchar(cast(dchar)0x00DC00));
assert(!isValidDchar(cast(dchar)0x00DFFF));
assert( isValidDchar(cast(dchar)0x00FFFE));
assert( isValidDchar(cast(dchar)0x00FFFF));
assert( isValidDchar(cast(dchar)0x01FFFF));
assert( isValidDchar(cast(dchar)0x10FFFF));
assert(!isValidDchar(cast(dchar)0x110000));
});
}
/++
$(D stride) returns the length of the UTF-8 sequence starting at $(D index)
in $(D str).
$(D stride) works with both UTF-8 strings and ranges of $(D char). If no
index is passed, then an input range will work, but if an index is passed,
then a random-access range is required.
$(D index) defaults to $(D 0) if none is passed.
Returns:
The number of bytes in the UTF-8 sequence, a value between 1 and 4
(as per $(WEB tools.ietf.org/html/rfc3629#section-3, RFC 3629$(COMMA) section 3)).
Throws:
May throw a $(D UTFException) if $(D str[index]) is not the start of a
valid UTF-8 sequence.
Notes:
$(D stride) will only analyze the first $(D str[index]) element. It
will not fully verify the validity of UTF-8 sequence, nor even verify
the presence of the sequence: it will not actually guarantee that
$(D index + stride(str, index) <= str.length).
+/
uint stride(S)(auto ref S str, size_t index)
if (is(S : const char[]) ||
(isRandomAccessRange!S && is(Unqual!(ElementType!S) == char)))
{
static if (is(typeof(str.length) : ulong))
assert(index < str.length, "Past the end of the UTF-8 sequence");
immutable c = str[index];
if (c < 0x80)
return 1;
else
return strideImpl(c, index);
}
/// Ditto
uint stride(S)(auto ref S str)
if (is(S : const char[]) ||
(isInputRange!S && is(Unqual!(ElementType!S) == char)))
{
static if (is(S : const char[]))
immutable c = str[0];
else
immutable c = str.front;
if (c < 0x80)
return 1;
else
return strideImpl(c, 0);
}
private uint strideImpl(char c, size_t index) @trusted pure
in { assert(c & 0x80); }
body
{
import core.bitop : bsr;
immutable msbs = 7 - bsr(~c);
if (!~c || msbs < 2 || msbs > 4)
throw new UTFException("Invalid UTF-8 sequence", index);
return msbs;
}
unittest
{
import std.conv : to;
import std.exception;
import std. string : format;
import core.exception : AssertError;
static void test(string s, dchar c, size_t i = 0, size_t line = __LINE__)
{
enforce(stride(s, i) == codeLength!char(c),
new AssertError(format("Unit test failure string: %s", s), __FILE__, line));
enforce(stride(RandomCU!char(s), i) == codeLength!char(c),
new AssertError(format("Unit test failure range: %s", s), __FILE__, line));
auto refRandom = new RefRandomCU!char(s);
immutable randLen = refRandom.length;
enforce(stride(refRandom, i) == codeLength!char(c),
new AssertError(format("Unit test failure rand ref range: %s", s), __FILE__, line));
enforce(refRandom.length == randLen,
new AssertError(format("Unit test failure rand ref range length: %s", s), __FILE__, line));
if (i == 0)
{
enforce(stride(s) == codeLength!char(c),
new AssertError(format("Unit test failure string 0: %s", s), __FILE__, line));
enforce(stride(InputCU!char(s)) == codeLength!char(c),
new AssertError(format("Unit test failure range 0: %s", s), __FILE__, line));
auto refBidir = new RefBidirCU!char(s);
immutable bidirLen = refBidir.length;
enforce(stride(refBidir) == codeLength!char(c),
new AssertError(format("Unit test failure bidir ref range code length: %s", s), __FILE__, line));
enforce(refBidir.length == bidirLen,
new AssertError(format("Unit test failure bidir ref range length: %s", s), __FILE__, line));
}
}
assertCTFEable!(
{
test("a", 'a');
test(" ", ' ');
test("\u2029", '\u2029'); //paraSep
test("\u0100", '\u0100');
test("\u0430", '\u0430');
test("\U00010143", '\U00010143');
test("abcdefcdef", 'a');
test("hello\U00010143\u0100\U00010143", 'h', 0);
test("hello\U00010143\u0100\U00010143", 'e', 1);
test("hello\U00010143\u0100\U00010143", 'l', 2);
test("hello\U00010143\u0100\U00010143", 'l', 3);
test("hello\U00010143\u0100\U00010143", 'o', 4);
test("hello\U00010143\u0100\U00010143", '\U00010143', 5);
test("hello\U00010143\u0100\U00010143", '\u0100', 9);
test("hello\U00010143\u0100\U00010143", '\U00010143', 11);
foreach (S; TypeTuple!(char[], const char[], string))
{
enum str = to!S("hello world");
static assert(isSafe!({ stride(str, 0); }));
static assert(isSafe!({ stride(str); }));
static assert((functionAttributes!({ stride(str, 0); }) & FunctionAttribute.pure_) != 0);
static assert((functionAttributes!({ stride(str); }) & FunctionAttribute.pure_) != 0);
}
});
}
unittest // invalid start bytes
{
import std.exception: assertThrown;
immutable char[] invalidStartBytes = [
0b1111_1000, // indicating a sequence length of 5
0b1111_1100, // 6
0b1111_1110, // 7
0b1111_1111, // 8
0b1000_0000, // continuation byte
];
foreach(c; invalidStartBytes)
assertThrown!UTFException(stride([c]));
}
/++
$(D strideBack) returns the length of the UTF-8 sequence ending one code
unit before $(D index) in $(D str).
$(D strideBack) works with both UTF-8 strings and bidirectional ranges of
$(D char). If no index is passed, then a bidirectional range will work, but
if an index is passed, then a random-access range is required.
$(D index) defaults to $(D str.length) if none is passed.
Returns:
The number of bytes in the UTF-8 sequence.
Throws:
May throw a $(D UTFException) if $(D str[index]) is not one past the
end of a valid UTF-8 sequence.
Notes:
$(D strideBack) will not fully verify the validity of the UTF-8
sequence. It will, however, guarantee that
$(D index - stride(str, index)) is a valid index.
+/
uint strideBack(S)(auto ref S str, size_t index)
if (is(S : const char[]) ||
(isRandomAccessRange!S && is(Unqual!(ElementType!S) == char)))
{
static if (is(typeof(str.length) : ulong))
assert(index <= str.length, "Past the end of the UTF-8 sequence");
assert(index > 0, "Not the end of the UTF-8 sequence");
if ((str[index-1] & 0b1100_0000) != 0b1000_0000)
return 1;
if (index >= 4) //single verification for most common case
{
foreach (i; TypeTuple!(2, 3, 4))
{
if ((str[index-i] & 0b1100_0000) != 0b1000_0000)
return i;
}
}
else
{
foreach (i; TypeTuple!(2, 3))
{
if (index >= i && (str[index-i] & 0b1100_0000) != 0b1000_0000)
return i;
}
}
throw new UTFException("Not the end of the UTF sequence", index);
}
/// Ditto
uint strideBack(S)(auto ref S str)
if (is(S : const char[]) ||
(isRandomAccessRange!S && hasLength!S && is(Unqual!(ElementType!S) == char)))
{
return strideBack(str, str.length);
}
uint strideBack(S)(auto ref S str)
if (isBidirectionalRange!S && is(Unqual!(ElementType!S) == char) && !isRandomAccessRange!S)
{
assert(!str.empty, "Past the end of the UTF-8 sequence");
auto temp = str.save;
foreach (i; TypeTuple!(1, 2, 3, 4))
{
if ((temp.back & 0b1100_0000) != 0b1000_0000)
return i;
temp.popBack();
if (temp.empty)
break;
}
throw new UTFException("The last code unit is not the end of the UTF-8 sequence");
}
unittest
{
import std.conv : to;
import std.exception;
import std. string : format;
import core.exception : AssertError;
static void test(string s, dchar c, size_t i = size_t.max, size_t line = __LINE__)
{
enforce(strideBack(s, i == size_t.max ? s.length : i) == codeLength!char(c),
new AssertError(format("Unit test failure string: %s", s), __FILE__, line));
enforce(strideBack(RandomCU!char(s), i == size_t.max ? s.length : i) == codeLength!char(c),
new AssertError(format("Unit test failure range: %s", s), __FILE__, line));
auto refRandom = new RefRandomCU!char(s);
immutable randLen = refRandom.length;
enforce(strideBack(refRandom, i == size_t.max ? s.length : i) == codeLength!char(c),
new AssertError(format("Unit test failure rand ref range: %s", s), __FILE__, line));
enforce(refRandom.length == randLen,
new AssertError(format("Unit test failure rand ref range length: %s", s), __FILE__, line));
if (i == size_t.max)
{
enforce(strideBack(s) == codeLength!char(c),
new AssertError(format("Unit test failure string code length: %s", s), __FILE__, line));
enforce(strideBack(BidirCU!char(s)) == codeLength!char(c),
new AssertError(format("Unit test failure range code length: %s", s), __FILE__, line));
auto refBidir = new RefBidirCU!char(s);
immutable bidirLen = refBidir.length;
enforce(strideBack(refBidir) == codeLength!char(c),
new AssertError(format("Unit test failure bidir ref range code length: %s", s), __FILE__, line));
enforce(refBidir.length == bidirLen,
new AssertError(format("Unit test failure bidir ref range length: %s", s), __FILE__, line));
}
}
assertCTFEable!(
{
test("a", 'a');
test(" ", ' ');
test("\u2029", '\u2029'); //paraSep
test("\u0100", '\u0100');
test("\u0430", '\u0430');
test("\U00010143", '\U00010143');
test("abcdefcdef", 'f');
test("\U00010143\u0100\U00010143hello", 'o', 15);
test("\U00010143\u0100\U00010143hello", 'l', 14);
test("\U00010143\u0100\U00010143hello", 'l', 13);
test("\U00010143\u0100\U00010143hello", 'e', 12);
test("\U00010143\u0100\U00010143hello", 'h', 11);
test("\U00010143\u0100\U00010143hello", '\U00010143', 10);
test("\U00010143\u0100\U00010143hello", '\u0100', 6);
test("\U00010143\u0100\U00010143hello", '\U00010143', 4);
foreach (S; TypeTuple!(char[], const char[], string))
{
enum str = to!S("hello world");
static assert(isSafe!({ strideBack(str, 0); }));
static assert(isSafe!({ strideBack(str); }));
static assert((functionAttributes!({ strideBack(str, 0); }) & FunctionAttribute.pure_) != 0);
static assert((functionAttributes!({ strideBack(str); }) & FunctionAttribute.pure_) != 0);
}
});
}
/++
$(D stride) returns the length of the UTF-16 sequence starting at $(D index)
in $(D str).
$(D stride) works with both UTF-16 strings and ranges of $(D wchar). If no
index is passed, then an input range will work, but if an index is passed,
then a random-access range is required.
$(D index) defaults to $(D 0) if none is passed.
Returns:
The number of bytes in the UTF-16 sequence.
Throws:
May throw a $(D UTFException) if $(D str[index]) is not the start of a
valid UTF-16 sequence.
Notes:
$(D stride) will only analyze the first $(D str[index]) element. It
will not fully verify the validity of UTF-16 sequence, nor even verify
the presence of the sequence: it will not actually guarantee that
$(D index + stride(str, index) <= str.length).
+/
uint stride(S)(auto ref S str, size_t index)
if (is(S : const wchar[]) ||
(isRandomAccessRange!S && is(Unqual!(ElementType!S) == wchar)))
{
static if (is(typeof(str.length) : ulong))
assert(index < str.length, "Past the end of the UTF-16 sequence");
immutable uint u = str[index];
return 1 + (u >= 0xD800 && u <= 0xDBFF);
}
/// Ditto
uint stride(S)(auto ref S str) @safe pure
if (is(S : const wchar[]))
{
return stride(str, 0);
}
uint stride(S)(auto ref S str)
if (isInputRange!S && is(Unqual!(ElementType!S) == wchar))
{
assert(!str.empty, "UTF-16 sequence is empty");
immutable uint u = str.front;
return 1 + (u >= 0xD800 && u <= 0xDBFF);
}
@trusted unittest
{
import std.conv : to;
import std.exception;
import std. string : format;
import core.exception : AssertError;
static void test(wstring s, dchar c, size_t i = 0, size_t line = __LINE__)
{
enforce(stride(s, i) == codeLength!wchar(c),
new AssertError(format("Unit test failure string: %s", s), __FILE__, line));
enforce(stride(RandomCU!wchar(s), i) == codeLength!wchar(c),
new AssertError(format("Unit test failure range: %s", s), __FILE__, line));
auto refRandom = new RefRandomCU!wchar(s);
immutable randLen = refRandom.length;
enforce(stride(refRandom, i) == codeLength!wchar(c),
new AssertError(format("Unit test failure rand ref range: %s", s), __FILE__, line));
enforce(refRandom.length == randLen,
new AssertError(format("Unit test failure rand ref range length: %s", s), __FILE__, line));
if (i == 0)
{
enforce(stride(s) == codeLength!wchar(c),
new AssertError(format("Unit test failure string 0: %s", s), __FILE__, line));
enforce(stride(InputCU!wchar(s)) == codeLength!wchar(c),
new AssertError(format("Unit test failure range 0: %s", s), __FILE__, line));
auto refBidir = new RefBidirCU!wchar(s);
immutable bidirLen = refBidir.length;
enforce(stride(refBidir) == codeLength!wchar(c),
new AssertError(format("Unit test failure bidir ref range code length: %s", s), __FILE__, line));
enforce(refBidir.length == bidirLen,
new AssertError(format("Unit test failure bidir ref range length: %s", s), __FILE__, line));
}
}
assertCTFEable!(
{
test("a", 'a');
test(" ", ' ');
test("\u2029", '\u2029'); //paraSep
test("\u0100", '\u0100');
test("\u0430", '\u0430');
test("\U00010143", '\U00010143');
test("abcdefcdef", 'a');
test("hello\U00010143\u0100\U00010143", 'h', 0);
test("hello\U00010143\u0100\U00010143", 'e', 1);
test("hello\U00010143\u0100\U00010143", 'l', 2);
test("hello\U00010143\u0100\U00010143", 'l', 3);
test("hello\U00010143\u0100\U00010143", 'o', 4);
test("hello\U00010143\u0100\U00010143", '\U00010143', 5);
test("hello\U00010143\u0100\U00010143", '\u0100', 7);
test("hello\U00010143\u0100\U00010143", '\U00010143', 8);
foreach (S; TypeTuple!(wchar[], const wchar[], wstring))
{
enum str = to!S("hello world");
static assert(isSafe!(() => stride(str, 0)));
static assert(isSafe!(() => stride(str) ));
static assert((functionAttributes!(() => stride(str, 0)) & FunctionAttribute.pure_) != 0);
static assert((functionAttributes!(() => stride(str) ) & FunctionAttribute.pure_) != 0);
}
});
}
/++
$(D strideBack) returns the length of the UTF-16 sequence ending one code
unit before $(D index) in $(D str).
$(D strideBack) works with both UTF-16 strings and ranges of $(D wchar). If
no index is passed, then a bidirectional range will work, but if an index is
passed, then a random-access range is required.
$(D index) defaults to $(D str.length) if none is passed.
Returns:
The number of bytes in the UTF-16 sequence.
Throws:
May throw a $(D UTFException) if $(D str[index]) is not one past the
end of a valid UTF-16 sequence.
Notes:
$(D stride) will only analyze the element at $(D str[index - 1])
element. It will not fully verify the validity of UTF-16 sequence, nor
even verify the presence of the sequence: it will not actually
guarantee that $(D stride(str, index) <= index).
+/
//UTF-16 is self synchronizing: The length of strideBack can be found from
//the value of a single wchar
uint strideBack(S)(auto ref S str, size_t index)
if (is(S : const wchar[]) ||
(isRandomAccessRange!S && is(Unqual!(ElementType!S) == wchar)))
{
static if (is(typeof(str.length) : ulong))
assert(index <= str.length, "Past the end of the UTF-16 sequence");
assert(index > 0, "Not the end of a UTF-16 sequence");
immutable c2 = str[index-1];
return 1 + (0xDC00 <= c2 && c2 < 0xE000);
}
/// Ditto
uint strideBack(S)(auto ref S str)
if (is(S : const wchar[]) ||
(isBidirectionalRange!S && is(Unqual!(ElementType!S) == wchar)))
{
assert(!str.empty, "UTF-16 sequence is empty");
static if (is(S : const(wchar)[]))
immutable c2 = str[$ - 1];
else
immutable c2 = str.back;
return 1 + (0xDC00 <= c2 && c2 <= 0xE000);
}
unittest
{
import std.conv : to;
import std.exception;
import std. string : format;
import core.exception : AssertError;
static void test(wstring s, dchar c, size_t i = size_t.max, size_t line = __LINE__)
{
enforce(strideBack(s, i == size_t.max ? s.length : i) == codeLength!wchar(c),
new AssertError(format("Unit test failure string: %s", s), __FILE__, line));
enforce(strideBack(RandomCU!wchar(s), i == size_t.max ? s.length : i) == codeLength!wchar(c),
new AssertError(format("Unit test failure range: %s", s), __FILE__, line));
auto refRandom = new RefRandomCU!wchar(s);
immutable randLen = refRandom.length;
enforce(strideBack(refRandom, i == size_t.max ? s.length : i) == codeLength!wchar(c),
new AssertError(format("Unit test failure rand ref range: %s", s), __FILE__, line));
enforce(refRandom.length == randLen,
new AssertError(format("Unit test failure rand ref range length: %s", s), __FILE__, line));
if (i == size_t.max)
{
enforce(strideBack(s) == codeLength!wchar(c),
new AssertError(format("Unit test failure string code length: %s", s), __FILE__, line));
enforce(strideBack(BidirCU!wchar(s)) == codeLength!wchar(c),
new AssertError(format("Unit test failure range code length: %s", s), __FILE__, line));
auto refBidir = new RefBidirCU!wchar(s);
immutable bidirLen = refBidir.length;
enforce(strideBack(refBidir) == codeLength!wchar(c),
new AssertError(format("Unit test failure bidir ref range code length: %s", s), __FILE__, line));
enforce(refBidir.length == bidirLen,
new AssertError(format("Unit test failure bidir ref range length: %s", s), __FILE__, line));
}
}
assertCTFEable!(
{
test("a", 'a');
test(" ", ' ');
test("\u2029", '\u2029'); //paraSep
test("\u0100", '\u0100');
test("\u0430", '\u0430');
test("\U00010143", '\U00010143');
test("abcdefcdef", 'f');
test("\U00010143\u0100\U00010143hello", 'o', 10);
test("\U00010143\u0100\U00010143hello", 'l', 9);
test("\U00010143\u0100\U00010143hello", 'l', 8);
test("\U00010143\u0100\U00010143hello", 'e', 7);
test("\U00010143\u0100\U00010143hello", 'h', 6);
test("\U00010143\u0100\U00010143hello", '\U00010143', 5);
test("\U00010143\u0100\U00010143hello", '\u0100', 3);
test("\U00010143\u0100\U00010143hello", '\U00010143', 2);
foreach (S; TypeTuple!(wchar[], const wchar[], wstring))
{
enum str = to!S("hello world");
static assert(isSafe!(() => strideBack(str, 0)));
static assert(isSafe!(() => strideBack(str) ));
static assert((functionAttributes!(() => strideBack(str, 0)) & FunctionAttribute.pure_) != 0);
static assert((functionAttributes!(() => strideBack(str) ) & FunctionAttribute.pure_) != 0);
}
});
}
/++
$(D stride) returns the length of the UTF-32 sequence starting at $(D index)
in $(D str).
$(D stride) works with both UTF-32 strings and ranges of $(D dchar).
Returns:
The number of bytes in the UTF-32 sequence (always $(D 1)).
Throws:
Never.
+/
uint stride(S)(auto ref S str, size_t index = 0)
if (is(S : const dchar[]) ||
(isInputRange!S && is(Unqual!(ElementEncodingType!S) == dchar)))
{
static if (is(typeof(str.length) : ulong))
assert(index < str.length, "Past the end of the UTF-32 sequence");
else
assert(!str.empty, "UTF-32 sequence is empty.");
return 1;
}
unittest
{
import std.conv : to;
import std.exception;
import std. string : format;
import core.exception : AssertError;
static void test(dstring s, dchar c, size_t i = 0, size_t line = __LINE__)
{
enforce(stride(s, i) == codeLength!dchar(c),
new AssertError(format("Unit test failure string: %s", s), __FILE__, line));
enforce(stride(RandomCU!dchar(s), i) == codeLength!dchar(c),
new AssertError(format("Unit test failure range: %s", s), __FILE__, line));
auto refRandom = new RefRandomCU!dchar(s);
immutable randLen = refRandom.length;
enforce(stride(refRandom, i) == codeLength!dchar(c),
new AssertError(format("Unit test failure rand ref range: %s", s), __FILE__, line));
enforce(refRandom.length == randLen,
new AssertError(format("Unit test failure rand ref range length: %s", s), __FILE__, line));
if (i == 0)
{
enforce(stride(s) == codeLength!dchar(c),
new AssertError(format("Unit test failure string 0: %s", s), __FILE__, line));
enforce(stride(InputCU!dchar(s)) == codeLength!dchar(c),
new AssertError(format("Unit test failure range 0: %s", s), __FILE__, line));
auto refBidir = new RefBidirCU!dchar(s);
immutable bidirLen = refBidir.length;
enforce(stride(refBidir) == codeLength!dchar(c),
new AssertError(format("Unit test failure bidir ref range code length: %s", s), __FILE__, line));
enforce(refBidir.length == bidirLen,
new AssertError(format("Unit test failure bidir ref range length: %s", s), __FILE__, line));
}
}
assertCTFEable!(
{
test("a", 'a');
test(" ", ' ');
test("\u2029", '\u2029'); //paraSep
test("\u0100", '\u0100');
test("\u0430", '\u0430');
test("\U00010143", '\U00010143');
test("abcdefcdef", 'a');
test("hello\U00010143\u0100\U00010143", 'h', 0);
test("hello\U00010143\u0100\U00010143", 'e', 1);
test("hello\U00010143\u0100\U00010143", 'l', 2);
test("hello\U00010143\u0100\U00010143", 'l', 3);
test("hello\U00010143\u0100\U00010143", 'o', 4);
test("hello\U00010143\u0100\U00010143", '\U00010143', 5);
test("hello\U00010143\u0100\U00010143", '\u0100', 6);
test("hello\U00010143\u0100\U00010143", '\U00010143', 7);
foreach (S; TypeTuple!(dchar[], const dchar[], dstring))
{
enum str = to!S("hello world");
static assert(isSafe!(() => stride(str, 0)));
static assert(isSafe!(() => stride(str) ));
static assert((functionAttributes!(() => stride(str, 0)) & FunctionAttribute.pure_) != 0);
static assert((functionAttributes!(() => stride(str) ) & FunctionAttribute.pure_) != 0);
}
});
}
/++
$(D strideBack) returns the length of the UTF-32 sequence ending one code
unit before $(D index) in $(D str).
$(D strideBack) works with both UTF-32 strings and ranges of $(D dchar). If
no index is passed, then a bidirectional range will work, but if an index is
passed, then a random-access range is required.
$(D index) defaults to $(D str.length) if none is passed.
Returns:
The number of bytes in the UTF-32 sequence (always $(D 1)).
Throws:
Never.
+/
uint strideBack(S)(auto ref S str, size_t index)
if (isRandomAccessRange!S && is(Unqual!(ElementEncodingType!S) == dchar))
{
static if (is(typeof(str.length) : ulong))
assert(index <= str.length, "Past the end of the UTF-32 sequence");
assert(index > 0, "Not the end of the UTF-32 sequence");
return 1;
}
/// Ditto
uint strideBack(S)(auto ref S str)
if (isBidirectionalRange!S && is(Unqual!(ElementEncodingType!S) == dchar))
{
assert(!str.empty, "Empty UTF-32 sequence");
return 1;
}
unittest
{
import std.conv : to;
import std.exception;
import std. string : format;
import core.exception : AssertError;
static void test(dstring s, dchar c, size_t i = size_t.max, size_t line = __LINE__)
{
enforce(strideBack(s, i == size_t.max ? s.length : i) == codeLength!dchar(c),
new AssertError(format("Unit test failure string: %s", s), __FILE__, line));
enforce(strideBack(RandomCU!dchar(s), i == size_t.max ? s.length : i) == codeLength!dchar(c),
new AssertError(format("Unit test failure range: %s", s), __FILE__, line));
auto refRandom = new RefRandomCU!dchar(s);
immutable randLen = refRandom.length;
enforce(strideBack(refRandom, i == size_t.max ? s.length : i) == codeLength!dchar(c),
new AssertError(format("Unit test failure rand ref range: %s", s), __FILE__, line));
enforce(refRandom.length == randLen,
new AssertError(format("Unit test failure rand ref range length: %s", s), __FILE__, line));
if (i == size_t.max)
{
enforce(strideBack(s) == codeLength!dchar(c),
new AssertError(format("Unit test failure string code length: %s", s), __FILE__, line));
enforce(strideBack(BidirCU!dchar(s)) == codeLength!dchar(c),
new AssertError(format("Unit test failure range code length: %s", s), __FILE__, line));
auto refBidir = new RefBidirCU!dchar(s);
immutable bidirLen = refBidir.length;
enforce(strideBack(refBidir) == codeLength!dchar(c),
new AssertError(format("Unit test failure bidir ref range code length: %s", s), __FILE__, line));
enforce(refBidir.length == bidirLen,
new AssertError(format("Unit test failure bidir ref range length: %s", s), __FILE__, line));
}
}
assertCTFEable!(
{
test("a", 'a');
test(" ", ' ');
test("\u2029", '\u2029'); //paraSep
test("\u0100", '\u0100');
test("\u0430", '\u0430');
test("\U00010143", '\U00010143');
test("abcdefcdef", 'f');
test("\U00010143\u0100\U00010143hello", 'o', 8);
test("\U00010143\u0100\U00010143hello", 'l', 7);
test("\U00010143\u0100\U00010143hello", 'l', 6);
test("\U00010143\u0100\U00010143hello", 'e', 5);
test("\U00010143\u0100\U00010143hello", 'h', 4);
test("\U00010143\u0100\U00010143hello", '\U00010143', 3);
test("\U00010143\u0100\U00010143hello", '\u0100', 2);
test("\U00010143\u0100\U00010143hello", '\U00010143', 1);
foreach (S; TypeTuple!(dchar[], const dchar[], dstring))
{
enum str = to!S("hello world");
static assert(isSafe!(() => strideBack(str, 0)));
static assert(isSafe!(() => strideBack(str) ));
static assert((functionAttributes!(() => strideBack(str, 0)) & FunctionAttribute.pure_) != 0);
static assert((functionAttributes!(() => strideBack(str) ) & FunctionAttribute.pure_) != 0);
}
});
}
/++
Given $(D index) into $(D str) and assuming that $(D index) is at the start
of a UTF sequence, $(D toUCSindex) determines the number of UCS characters
up to $(D index). So, $(D index) is the index of a code unit at the
beginning of a code point, and the return value is how many code points into
the string that that code point is.
+/
size_t toUCSindex(C)(const(C)[] str, size_t index) @safe pure
if (isSomeChar!C)
{
static if (is(Unqual!C == dchar))
return index;
else
{
size_t n = 0;
size_t j = 0;
for (; j < index; ++n)
j += stride(str, j);
if (j > index)
{
static if (is(Unqual!C == char))
throw new UTFException("Invalid UTF-8 sequence", index);
else
throw new UTFException("Invalid UTF-16 sequence", index);
}
return n;
}
}
///
unittest
{
assert(toUCSindex(`hello world`, 7) == 7);
assert(toUCSindex(`hello world`w, 7) == 7);
assert(toUCSindex(`hello world`d, 7) == 7);
assert(toUCSindex(`Ma Chérie`, 7) == 6);
assert(toUCSindex(`Ma Chérie`w, 7) == 7);
assert(toUCSindex(`Ma Chérie`d, 7) == 7);
assert(toUCSindex(`さいごの果実 / ミツバチと科学者`, 9) == 3);
assert(toUCSindex(`さいごの果実 / ミツバチと科学者`w, 9) == 9);
assert(toUCSindex(`さいごの果実 / ミツバチと科学者`d, 9) == 9);
}
/++
Given a UCS index $(D n) into $(D str), returns the UTF index.
So, $(D n) is how many code points into the string the code point is, and
the array index of the code unit is returned.
+/
size_t toUTFindex(C)(const(C)[] str, size_t n) @safe pure
if (isSomeChar!C)
{
static if (is(Unqual!C == dchar))
{
return n;
}
else
{
size_t i;
while (n--)
{
i += stride(str, i);
}
return i;
}
}
///
unittest
{
assert(toUTFindex(`hello world`, 7) == 7);
assert(toUTFindex(`hello world`w, 7) == 7);
assert(toUTFindex(`hello world`d, 7) == 7);
assert(toUTFindex(`Ma Chérie`, 6) == 7);
assert(toUTFindex(`Ma Chérie`w, 7) == 7);
assert(toUTFindex(`Ma Chérie`d, 7) == 7);
assert(toUTFindex(`さいごの果実 / ミツバチと科学者`, 3) == 9);
assert(toUTFindex(`さいごの果実 / ミツバチと科学者`w, 9) == 9);
assert(toUTFindex(`さいごの果実 / ミツバチと科学者`d, 9) == 9);
}
/* =================== Decode ======================= */
/++
Decodes and returns the code point starting at $(D str[index]). $(D index)
is advanced to one past the decoded code point. If the code point is not
well-formed, then a $(D UTFException) is thrown and $(D index) remains
unchanged.
decode will only work with strings and random access ranges of code units
with length and slicing, whereas $(LREF decodeFront) will work with any
input range of code units.
Throws:
$(LREF UTFException) if $(D str[index]) is not the start of a valid UTF
sequence.
+/
dchar decode(S)(auto ref S str, ref size_t index)
if (!isSomeString!S &&
isRandomAccessRange!S && hasSlicing!S && hasLength!S && isSomeChar!(ElementType!S))
in
{
assert(index < str.length, "Attempted to decode past the end of a string");
}
out (result)
{
assert(isValidDchar(result));
}
body
{
if (str[index] < codeUnitLimit!S)
return str[index++];
else
return decodeImpl!true(str, index);
}
dchar decode(S)(auto ref S str, ref size_t index) @trusted pure
if (isSomeString!S)
in
{
assert(index < str.length, "Attempted to decode past the end of a string");
}
out (result)
{
assert(isValidDchar(result));
}
body
{
if (str[index] < codeUnitLimit!S)
return str[index++];
else
return decodeImpl!true(str, index);
}
/++
$(D decodeFront) is a variant of $(LREF decode) which specifically decodes
the first code point. Unlike $(LREF decode), $(D decodeFront) accepts any
input range of code units (rather than just a string or random access
range). It also takes the range by $(D ref) and pops off the elements as it
decodes them. If $(D numCodeUnits) is passed in, it gets set to the number
of code units which were in the code point which was decoded.
Throws:
$(LREF UTFException) if $(D str.front) is not the start of a valid UTF
sequence. If an exception is thrown, then there is no guarantee as to
the number of code units which were popped off, as it depends on the
type of range being used and how many code units had to be popped off
before the code point was determined to be invalid.
+/
dchar decodeFront(S)(ref S str, out size_t numCodeUnits)
if (!isSomeString!S && isInputRange!S && isSomeChar!(ElementType!S))
in
{
assert(!str.empty);
}
out (result)
{
assert(isValidDchar(result));
}
body
{
immutable fst = str.front;
if (fst < codeUnitLimit!S)
{
str.popFront();
numCodeUnits = 1;
return fst;
}
else
{
//@@@BUG@@@ 8521 forces canIndex to be done outside of decodeImpl, which
//is undesirable, since not all overloads of decodeImpl need it. So, it
//should be moved back into decodeImpl once bug# 8521 has been fixed.
enum canIndex = isRandomAccessRange!S && hasSlicing!S && hasLength!S;
immutable retval = decodeImpl!canIndex(str, numCodeUnits);
// The other range types were already popped by decodeImpl.
static if (isRandomAccessRange!S && hasSlicing!S && hasLength!S)
str = str[numCodeUnits .. str.length];
return retval;
}
}
dchar decodeFront(S)(ref S str, out size_t numCodeUnits) @trusted pure
if (isSomeString!S)
in
{
assert(!str.empty);
}
out (result)
{
assert(isValidDchar(result));
}
body
{
if (str[0] < codeUnitLimit!S)
{
numCodeUnits = 1;
immutable retval = str[0];
str = str[1 .. $];
return retval;
}
else
{
immutable retval = decodeImpl!true(str, numCodeUnits);
str = str[numCodeUnits .. $];
return retval;
}
}
/++ Ditto +/
dchar decodeFront(S)(ref S str)
if (isInputRange!S && isSomeChar!(ElementType!S))
{
size_t numCodeUnits;
return decodeFront(str, numCodeUnits);
}
// Gives the maximum value that a code unit for the given range type can hold.
private template codeUnitLimit(S)
if (isSomeChar!(ElementEncodingType!S))
{
static if (is(Unqual!(ElementEncodingType!S) == char))
enum char codeUnitLimit = 0x80;
else static if (is(Unqual!(ElementEncodingType!S) == wchar))
enum wchar codeUnitLimit = 0xD800;
else
enum dchar codeUnitLimit = 0xD800;
}
/*
* For strings, this function does its own bounds checking to give a
* more useful error message when attempting to decode past the end of a string.
* Subsequently it uses a pointer instead of an array to avoid
* redundant bounds checking.
*/
private dchar decodeImpl(bool canIndex, S)(auto ref S str, ref size_t index)
if (is(S : const char[]) || (isInputRange!S && is(Unqual!(ElementEncodingType!S) == char)))
{
/* The following encodings are valid, except for the 5 and 6 byte
* combinations:
* 0xxxxxxx
* 110xxxxx 10xxxxxx
* 1110xxxx 10xxxxxx 10xxxxxx
* 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
* 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
* 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
*/
/* Dchar bitmask for different numbers of UTF-8 code units.
*/
alias bitMask = TypeTuple!((1 << 7) - 1, (1 << 11) - 1, (1 << 16) - 1, (1 << 21) - 1);
static if (is(S : const char[]))
auto pstr = str.ptr + index;
else static if (isRandomAccessRange!S && hasSlicing!S && hasLength!S)
auto pstr = str[index .. str.length];
else
alias pstr = str;
//@@@BUG@@@ 8521 forces this to be done outside of decodeImpl
//enum canIndex = is(S : const char[]) || (isRandomAccessRange!S && hasSlicing!S && hasLength!S);
static if (canIndex)
{
immutable length = str.length - index;
ubyte fst = pstr[0];
}
else
{
ubyte fst = pstr.front;
pstr.popFront();
}
static if (canIndex)
{
static UTFException exception(S)(S str, string msg)
{
uint[4] sequence = void;
size_t i;
do
{
sequence[i] = str[i];
} while (++i < str.length && i < 4 && (str[i] & 0xC0) == 0x80);
return new UTFException(msg, i).setSequence(sequence[0 .. i]);
}
}
UTFException invalidUTF()
{
static if (canIndex)
return exception(pstr[0 .. length], "Invalid UTF-8 sequence");
else
{
//We can't include the invalid sequence with input strings without
//saving each of the code units along the way, and we can't do it with
//forward ranges without saving the entire range. Both would incur a
//cost for the decoding of every character just to provide a better
//error message for the (hopefully) rare case when an invalid UTF-8
//sequence is encountered, so we don't bother trying to include the
//invalid sequence here, unlike with strings and sliceable ranges.
return new UTFException("Invalid UTF-8 sequence");
}
}
UTFException outOfBounds()
{
static if (canIndex)
return exception(pstr[0 .. length], "Attempted to decode past the end of a string");
else
return new UTFException("Attempted to decode past the end of a string");
}
if((fst & 0b1100_0000) != 0b1100_0000)
throw invalidUTF(); // starter must have at least 2 first bits set
ubyte tmp = void;
dchar d = fst; // upper control bits are masked out later
fst <<= 1;
foreach (i; TypeTuple!(1, 2, 3))
{
static if (canIndex)
{
if (i == length)
throw outOfBounds();
}
else
{
if (pstr.empty)
throw outOfBounds();
}
static if (canIndex)
tmp = pstr[i];
else
{
tmp = pstr.front;
pstr.popFront();
}
if ((tmp & 0xC0) != 0x80)
throw invalidUTF();
d = (d << 6) | (tmp & 0x3F);
fst <<= 1;
if (!(fst & 0x80)) // no more bytes
{
d &= bitMask[i]; // mask out control bits
// overlong, could have been encoded with i bytes
if ((d & ~bitMask[i - 1]) == 0)
throw invalidUTF();
// check for surrogates only needed for 3 bytes
static if (i == 2)
{
if (!isValidDchar(d))
throw invalidUTF();
}
index += i + 1;
static if (i == 3)
if (d > dchar.max)
throw invalidUTF();
return d;
}
}
throw invalidUTF();
}
private dchar decodeImpl(bool canIndex, S)(auto ref S str, ref size_t index)
if (is(S : const wchar[]) || (isInputRange!S && is(Unqual!(ElementEncodingType!S) == wchar)))
{
static if (is(S : const wchar[]))
auto pstr = str.ptr + index;
else static if (isRandomAccessRange!S && hasSlicing!S && hasLength!S)
auto pstr = str[index .. str.length];
else
alias pstr = str;
//@@@BUG@@@ 8521 forces this to be done outside of decodeImpl
//enum canIndex = is(S : const wchar[]) || (isRandomAccessRange!S && hasSlicing!S && hasLength!S);
static if (canIndex)
{
immutable length = str.length - index;
uint u = pstr[0];
}
else
{
uint u = pstr.front;
pstr.popFront();
}
UTFException exception(string msg)
{
static if (canIndex)
return new UTFException(msg).setSequence(pstr[0]);
else
return new UTFException(msg);
}
string msg;
assert(u >= 0xD800);
if (u <= 0xDBFF)
{
static if (canIndex)
immutable onlyOneCodeUnit = length == 1;
else
immutable onlyOneCodeUnit = pstr.empty;
if (onlyOneCodeUnit)
throw exception("surrogate UTF-16 high value past end of string");
static if (canIndex)
immutable uint u2 = pstr[1];
else
{
immutable uint u2 = pstr.front;
pstr.popFront();
}
if (u2 < 0xDC00 || u2 > 0xDFFF)
throw exception("surrogate UTF-16 low value out of range");
u = ((u - 0xD7C0) << 10) + (u2 - 0xDC00);
index += 2;
}
else if (u >= 0xDC00 && u <= 0xDFFF)
throw exception("unpaired surrogate UTF-16 value");
else
++index;
// Note: u+FFFE and u+FFFF are specifically permitted by the
// Unicode standard for application internal use (see isValidDchar)
return cast(dchar)u;
}
private dchar decodeImpl(bool canIndex, S)(auto ref S str, ref size_t index)
if (is(S : const dchar[]) || (isInputRange!S && is(Unqual!(ElementEncodingType!S) == dchar)))
{
static if (is(S : const dchar[]))
auto pstr = str.ptr;
else
alias pstr = str;
static if (is(S : const dchar[]) || (isRandomAccessRange!S && hasSlicing!S && hasLength!S))
{
if (!isValidDchar(pstr[index]))
throw new UTFException("Invalid UTF-32 value").setSequence(pstr[index]);
return pstr[index++];
}
else
{
if (!isValidDchar(pstr.front))
throw new UTFException("Invalid UTF-32 value").setSequence(pstr.front);
++index;
immutable retval = pstr.front;
pstr.popFront();
return retval;
}
}
version(unittest) private void testDecode(R)(R range,
size_t index,
dchar expectedChar,
size_t expectedIndex,
size_t line = __LINE__)
{
import std.exception;
import std. string : format;
import core.exception : AssertError;
static if (hasLength!R)
immutable lenBefore = range.length;
static if (isRandomAccessRange!R)
{
{
immutable result = decode(range, index);
enforce(result == expectedChar,
new AssertError(format("decode: Wrong character: %s", result), __FILE__, line));
enforce(index == expectedIndex,
new AssertError(format("decode: Wrong index: %s", index), __FILE__, line));
static if (hasLength!R)
{
enforce(range.length == lenBefore,
new AssertError(format("decode: length changed: %s", range.length), __FILE__, line));
}
}
}
}
version(unittest) private void testDecodeFront(R)(ref R range,
dchar expectedChar,
size_t expectedNumCodeUnits,
size_t line = __LINE__)
{
import std.exception;
import std. string : format;
import core.exception : AssertError;
static if (hasLength!R)
immutable lenBefore = range.length;
size_t numCodeUnits;
immutable result = decodeFront(range, numCodeUnits);
enforce(result == expectedChar,
new AssertError(format("decodeFront: Wrong character: %s", result), __FILE__, line));
enforce(numCodeUnits == expectedNumCodeUnits,
new AssertError(format("decodeFront: Wrong numCodeUnits: %s", numCodeUnits), __FILE__, line));
static if (hasLength!R)
{
enforce(range.length == lenBefore - numCodeUnits,
new AssertError(format("decodeFront: wrong length: %s", range.length), __FILE__, line));
}
}
version(unittest) private void testBothDecode(R)(R range,
dchar expectedChar,
size_t expectedIndex,
size_t line = __LINE__)
{
testDecode(range, 0, expectedChar, expectedIndex, line);
testDecodeFront(range, expectedChar, expectedIndex, line);
}
version(unittest) private void testBadDecode(R)(R range, size_t index, size_t line = __LINE__)
{
import std.exception;
import std. string : format;
import core.exception : AssertError;
immutable initialIndex = index;
static if (hasLength!R)
immutable lenBefore = range.length;
static if (isRandomAccessRange!R)
{
assertThrown!UTFException(decode(range, index), null, __FILE__, line);
enforce(index == initialIndex,
new AssertError(format("decode: Wrong index: %s", index), __FILE__, line));
static if (hasLength!R)
{
enforce(range.length == lenBefore,
new AssertError(format("decode: length changed:", range.length), __FILE__, line));
}
}
if (initialIndex == 0)
assertThrown!UTFException(decodeFront(range, index), null, __FILE__, line);
}
unittest
{
import std.conv : to;
import std.exception;
debug(utf) printf("utf.decode.unittest\n");
assertCTFEable!(
{
foreach (S; TypeTuple!(to!string, InputCU!char, RandomCU!char,
(string s) => new RefBidirCU!char(s),
(string s) => new RefRandomCU!char(s)))
{
enum sHasLength = hasLength!(typeof(S("abcd")));
{
auto range = S("abcd");
testDecode(range, 0, 'a', 1);
testDecode(range, 1, 'b', 2);
testDecodeFront(range, 'a', 1);
testDecodeFront(range, 'b', 1);
assert(decodeFront(range) == 'c');
assert(decodeFront(range) == 'd');
}
{
auto range = S("ウェブサイト");
testDecode(range, 0, 'ウ', 3);
testDecode(range, 3, 'ェ', 6);
testDecodeFront(range, 'ウ', 3);
testDecodeFront(range, 'ェ', 3);
assert(decodeFront(range) == 'ブ');
assert(decodeFront(range) == 'サ');
}
testBothDecode(S("\xC2\xA9"), '\u00A9', 2);
testBothDecode(S("\xE2\x89\xA0"), '\u2260', 3);
foreach (str; ["\xE2\x89", // too short
"\xC0\x8A",
"\xE0\x80\x8A",
"\xF0\x80\x80\x8A",
"\xF8\x80\x80\x80\x8A",
"\xFC\x80\x80\x80\x80\x8A"])
{
testBadDecode(S(str), 0);
testBadDecode(S(str), 1);
}
//Invalid UTF-8 sequence where the first code unit is valid.
testBothDecode(S("\xEF\xBF\xBE"), cast(dchar)0xFFFE, 3);
testBothDecode(S("\xEF\xBF\xBF"), cast(dchar)0xFFFF, 3);
//Invalid UTF-8 sequence where the first code unit isn't valid.
testBadDecode(S("\xED\xA0\x80"), 0);
testBadDecode(S("\xED\xAD\xBF"), 0);
testBadDecode(S("\xED\xAE\x80"), 0);
testBadDecode(S("\xED\xAF\xBF"), 0);
testBadDecode(S("\xED\xB0\x80"), 0);
testBadDecode(S("\xED\xBE\x80"), 0);
testBadDecode(S("\xED\xBF\xBF"), 0);
}
});
}
unittest
{
import std.conv : to;
import std.exception;
assertCTFEable!(
{
foreach (S; TypeTuple!(to!wstring, InputCU!wchar, RandomCU!wchar,
(wstring s) => new RefBidirCU!wchar(s),
(wstring s) => new RefRandomCU!wchar(s)))
{
testBothDecode(S([cast(wchar)0x1111]), cast(dchar)0x1111, 1);
testBothDecode(S([cast(wchar)0xD800, cast(wchar)0xDC00]), cast(dchar)0x10000, 2);
testBothDecode(S([cast(wchar)0xDBFF, cast(wchar)0xDFFF]), cast(dchar)0x10FFFF, 2);
testBothDecode(S([cast(wchar)0xFFFE]), cast(dchar)0xFFFE, 1);
testBothDecode(S([cast(wchar)0xFFFF]), cast(dchar)0xFFFF, 1);
testBadDecode(S([ cast(wchar)0xD801 ]), 0);
testBadDecode(S([ cast(wchar)0xD800, cast(wchar)0x1200 ]), 0);
{
auto range = S("ウェブサイト");
testDecode(range, 0, 'ウ', 1);
testDecode(range, 1, 'ェ', 2);
testDecodeFront(range, 'ウ', 1);
testDecodeFront(range, 'ェ', 1);
assert(decodeFront(range) == 'ブ');
assert(decodeFront(range) == 'サ');
}
}
foreach (S; TypeTuple!(to!wstring, RandomCU!wchar, (wstring s) => new RefRandomCU!wchar(s)))
{
auto str = S([cast(wchar)0xD800, cast(wchar)0xDC00,
cast(wchar)0x1400,
cast(wchar)0xDAA7, cast(wchar)0xDDDE]);
testDecode(str, 0, cast(dchar)0x10000, 2);
testDecode(str, 2, cast(dchar)0x1400, 3);
testDecode(str, 3, cast(dchar)0xB9DDE, 5);
}
});
}
unittest
{
import std.conv : to;
import std.exception;
assertCTFEable!(
{
foreach (S; TypeTuple!(to!dstring, RandomCU!dchar, InputCU!dchar,
(dstring s) => new RefBidirCU!dchar(s),
(dstring s) => new RefRandomCU!dchar(s)))
{
testBothDecode(S([cast(dchar)0x1111]), cast(dchar)0x1111, 1);
testBothDecode(S([cast(dchar)0x10000]), cast(dchar)0x10000, 1);
testBothDecode(S([cast(dchar)0x10FFFF]), cast(dchar)0x10FFFF, 1);
testBothDecode(S([cast(dchar)0xFFFE]), cast(dchar)0xFFFE, 1);
testBothDecode(S([cast(dchar)0xFFFF]), cast(dchar)0xFFFF, 1);
testBadDecode(S([cast(dchar)0xD800]), 0);
testBadDecode(S([cast(dchar)0xDFFE]), 0);
testBadDecode(S([cast(dchar)0x110000]), 0);
{
auto range = S("ウェブサイト");
testDecode(range, 0, 'ウ', 1);
testDecode(range, 1, 'ェ', 2);
testDecodeFront(range, 'ウ', 1);
testDecodeFront(range, 'ェ', 1);
assert(decodeFront(range) == 'ブ');
assert(decodeFront(range) == 'サ');
}
}
foreach (S; TypeTuple!(to!dstring, RandomCU!dchar, (dstring s) => new RefRandomCU!dchar(s)))
{
auto str = S([cast(dchar)0x10000, cast(dchar)0x1400, cast(dchar)0xB9DDE]);
testDecode(str, 0, 0x10000, 1);
testDecode(str, 1, 0x1400, 2);
testDecode(str, 2, 0xB9DDE, 3);
}
});
}
unittest
{
import std.exception;
assertCTFEable!(
{
foreach (S; TypeTuple!( char[], const( char)[], string,
wchar[], const(wchar)[], wstring,
dchar[], const(dchar)[], dstring))
{
static assert(isSafe!({ S str; size_t i = 0; decode(str, i); }));
static assert(isSafe!({ S str; size_t i = 0; decodeFront(str, i); }));
static assert(isSafe!({ S str; decodeFront(str); }));
static assert((functionAttributes!({ S str; size_t i = 0; decode(str, i); }) & FunctionAttribute.pure_) != 0);
static assert((functionAttributes!({ S str; size_t i = 0; decodeFront(str, i); }) & FunctionAttribute.pure_) != 0);
static assert((functionAttributes!({ S str; decodeFront(str); }) & FunctionAttribute.pure_) != 0);
}
});
}
unittest
{
import std.exception;
char[4] val;
val[0] = 0b1111_0111;
val[1] = 0b1011_1111;
val[2] = 0b1011_1111;
val[3] = 0b1011_1111;
size_t i = 0;
assertThrown!UTFException((){ dchar ch = decode(val[], i); }());
}
/* =================== Encode ======================= */
/++
Encodes $(D c) into the static array, $(D buf), and returns the actual
length of the encoded character (a number between $(D 1) and $(D 4) for
$(D char[4]) buffers and a number between $(D 1) and $(D 2) for
$(D wchar[2]) buffers).
Throws:
$(D UTFException) if $(D c) is not a valid UTF code point.
+/
size_t encode(ref char[4] buf, dchar c) @safe pure
{
if (c <= 0x7F)
{
assert(isValidDchar(c));
buf[0] = cast(char)c;
return 1;
}
if (c <= 0x7FF)
{
assert(isValidDchar(c));
buf[0] = cast(char)(0xC0 | (c >> 6));
buf[1] = cast(char)(0x80 | (c & 0x3F));
return 2;
}
if (c <= 0xFFFF)
{
if (0xD800 <= c && c <= 0xDFFF)
throw new UTFException("Encoding a surrogate code point in UTF-8").setSequence(c);
assert(isValidDchar(c));
buf[0] = cast(char)(0xE0 | (c >> 12));
buf[1] = cast(char)(0x80 | ((c >> 6) & 0x3F));
buf[2] = cast(char)(0x80 | (c & 0x3F));
return 3;
}
if (c <= 0x10FFFF)
{
assert(isValidDchar(c));
buf[0] = cast(char)(0xF0 | (c >> 18));
buf[1] = cast(char)(0x80 | ((c >> 12) & 0x3F));
buf[2] = cast(char)(0x80 | ((c >> 6) & 0x3F));
buf[3] = cast(char)(0x80 | (c & 0x3F));
return 4;
}
assert(!isValidDchar(c));
throw new UTFException("Encoding an invalid code point in UTF-8").setSequence(c);
}
unittest
{
import std.exception;
assertCTFEable!(
{
char[4] buf;
assert(encode(buf, '\u0000') == 1 && buf[0 .. 1] == "\u0000");
assert(encode(buf, '\u007F') == 1 && buf[0 .. 1] == "\u007F");
assert(encode(buf, '\u0080') == 2 && buf[0 .. 2] == "\u0080");
assert(encode(buf, '\u07FF') == 2 && buf[0 .. 2] == "\u07FF");
assert(encode(buf, '\u0800') == 3 && buf[0 .. 3] == "\u0800");
assert(encode(buf, '\uD7FF') == 3 && buf[0 .. 3] == "\uD7FF");
assert(encode(buf, '\uE000') == 3 && buf[0 .. 3] == "\uE000");
assert(encode(buf, 0xFFFE) == 3 && buf[0 .. 3] == "\xEF\xBF\xBE");
assert(encode(buf, 0xFFFF) == 3 && buf[0 .. 3] == "\xEF\xBF\xBF");
assert(encode(buf, '\U00010000') == 4 && buf[0 .. 4] == "\U00010000");
assert(encode(buf, '\U0010FFFF') == 4 && buf[0 .. 4] == "\U0010FFFF");
assertThrown!UTFException(encode(buf, cast(dchar)0xD800));
assertThrown!UTFException(encode(buf, cast(dchar)0xDBFF));
assertThrown!UTFException(encode(buf, cast(dchar)0xDC00));
assertThrown!UTFException(encode(buf, cast(dchar)0xDFFF));
assertThrown!UTFException(encode(buf, cast(dchar)0x110000));
});
}
/// Ditto
size_t encode(ref wchar[2] buf, dchar c) @safe pure
{
if (c <= 0xFFFF)
{
if (0xD800 <= c && c <= 0xDFFF)
throw new UTFException("Encoding an isolated surrogate code point in UTF-16").setSequence(c);
assert(isValidDchar(c));
buf[0] = cast(wchar)c;
return 1;
}
if (c <= 0x10FFFF)
{
assert(isValidDchar(c));
buf[0] = cast(wchar)((((c - 0x10000) >> 10) & 0x3FF) + 0xD800);
buf[1] = cast(wchar)(((c - 0x10000) & 0x3FF) + 0xDC00);
return 2;
}
assert(!isValidDchar(c));
throw new UTFException("Encoding an invalid code point in UTF-16").setSequence(c);
}
unittest
{
import std.exception;
assertCTFEable!(
{
wchar[2] buf;
assert(encode(buf, '\u0000') == 1 && buf[0 .. 1] == "\u0000");
assert(encode(buf, '\uD7FF') == 1 && buf[0 .. 1] == "\uD7FF");
assert(encode(buf, '\uE000') == 1 && buf[0 .. 1] == "\uE000");
assert(encode(buf, 0xFFFE) == 1 && buf[0] == 0xFFFE);
assert(encode(buf, 0xFFFF) == 1 && buf[0] == 0xFFFF);
assert(encode(buf, '\U00010000') == 2 && buf[0 .. 2] == "\U00010000");
assert(encode(buf, '\U0010FFFF') == 2 && buf[0 .. 2] == "\U0010FFFF");
assertThrown!UTFException(encode(buf, cast(dchar)0xD800));
assertThrown!UTFException(encode(buf, cast(dchar)0xDBFF));
assertThrown!UTFException(encode(buf, cast(dchar)0xDC00));
assertThrown!UTFException(encode(buf, cast(dchar)0xDFFF));
assertThrown!UTFException(encode(buf, cast(dchar)0x110000));
});
}
/++
Encodes $(D c) in $(D str)'s encoding and appends it to $(D str).
Throws:
$(D UTFException) if $(D c) is not a valid UTF code point.
+/
void encode(ref char[] str, dchar c) @safe pure
{
char[] r = str;
if (c <= 0x7F)
{
assert(isValidDchar(c));
r ~= cast(char)c;
}
else
{
char[4] buf;
uint L;
if (c <= 0x7FF)
{
assert(isValidDchar(c));
buf[0] = cast(char)(0xC0 | (c >> 6));
buf[1] = cast(char)(0x80 | (c & 0x3F));
L = 2;
}
else if (c <= 0xFFFF)
{
if (0xD800 <= c && c <= 0xDFFF)
throw new UTFException("Encoding a surrogate code point in UTF-8").setSequence(c);
assert(isValidDchar(c));
buf[0] = cast(char)(0xE0 | (c >> 12));
buf[1] = cast(char)(0x80 | ((c >> 6) & 0x3F));
buf[2] = cast(char)(0x80 | (c & 0x3F));
L = 3;
}
else if (c <= 0x10FFFF)
{
assert(isValidDchar(c));
buf[0] = cast(char)(0xF0 | (c >> 18));
buf[1] = cast(char)(0x80 | ((c >> 12) & 0x3F));
buf[2] = cast(char)(0x80 | ((c >> 6) & 0x3F));
buf[3] = cast(char)(0x80 | (c & 0x3F));
L = 4;
}
else
{
assert(!isValidDchar(c));
throw new UTFException("Encoding an invalid code point in UTF-8").setSequence(c);
}
r ~= buf[0 .. L];
}
str = r;
}
unittest
{
import std.exception;
debug(utf) printf("utf.encode.unittest\n");
assertCTFEable!(
{
char[] s = "abcd".dup;
encode(s, cast(dchar)'a');
assert(s.length == 5);
assert(s == "abcda");
encode(s, cast(dchar)'\u00A9');
assert(s.length == 7);
assert(s == "abcda\xC2\xA9");
//assert(s == "abcda\u00A9"); // BUG: fix compiler
encode(s, cast(dchar)'\u2260');
assert(s.length == 10);
assert(s == "abcda\xC2\xA9\xE2\x89\xA0");
});
}
unittest
{
import std.exception;
assertCTFEable!(
{
char[] buf;
encode(buf, '\u0000'); assert(buf[0 .. $] == "\u0000");
encode(buf, '\u007F'); assert(buf[1 .. $] == "\u007F");
encode(buf, '\u0080'); assert(buf[2 .. $] == "\u0080");
encode(buf, '\u07FF'); assert(buf[4 .. $] == "\u07FF");
encode(buf, '\u0800'); assert(buf[6 .. $] == "\u0800");
encode(buf, '\uD7FF'); assert(buf[9 .. $] == "\uD7FF");
encode(buf, '\uE000'); assert(buf[12 .. $] == "\uE000");
encode(buf, 0xFFFE); assert(buf[15 .. $] == "\xEF\xBF\xBE");
encode(buf, 0xFFFF); assert(buf[18 .. $] == "\xEF\xBF\xBF");
encode(buf, '\U00010000'); assert(buf[21 .. $] == "\U00010000");
encode(buf, '\U0010FFFF'); assert(buf[25 .. $] == "\U0010FFFF");
assertThrown!UTFException(encode(buf, cast(dchar)0xD800));
assertThrown!UTFException(encode(buf, cast(dchar)0xDBFF));
assertThrown!UTFException(encode(buf, cast(dchar)0xDC00));
assertThrown!UTFException(encode(buf, cast(dchar)0xDFFF));
assertThrown!UTFException(encode(buf, cast(dchar)0x110000));
});
}
/// ditto
void encode(ref wchar[] str, dchar c) @safe pure
{
wchar[] r = str;
if (c <= 0xFFFF)
{
if (0xD800 <= c && c <= 0xDFFF)
throw new UTFException("Encoding an isolated surrogate code point in UTF-16").setSequence(c);
assert(isValidDchar(c));
r ~= cast(wchar)c;
}
else if (c <= 0x10FFFF)
{
wchar[2] buf;
assert(isValidDchar(c));
buf[0] = cast(wchar)((((c - 0x10000) >> 10) & 0x3FF) + 0xD800);
buf[1] = cast(wchar)(((c - 0x10000) & 0x3FF) + 0xDC00);
r ~= buf;
}
else
{
assert(!isValidDchar(c));
throw new UTFException("Encoding an invalid code point in UTF-16").setSequence(c);
}
str = r;
}
unittest
{
import std.exception;
assertCTFEable!(
{
wchar[] buf;
encode(buf, '\u0000'); assert(buf[0] == '\u0000');
encode(buf, '\uD7FF'); assert(buf[1] == '\uD7FF');
encode(buf, '\uE000'); assert(buf[2] == '\uE000');
encode(buf, 0xFFFE); assert(buf[3] == 0xFFFE);
encode(buf, 0xFFFF); assert(buf[4] == 0xFFFF);
encode(buf, '\U00010000'); assert(buf[5 .. $] == "\U00010000");
encode(buf, '\U0010FFFF'); assert(buf[7 .. $] == "\U0010FFFF");
assertThrown!UTFException(encode(buf, cast(dchar)0xD800));
assertThrown!UTFException(encode(buf, cast(dchar)0xDBFF));
assertThrown!UTFException(encode(buf, cast(dchar)0xDC00));
assertThrown!UTFException(encode(buf, cast(dchar)0xDFFF));
assertThrown!UTFException(encode(buf, cast(dchar)0x110000));
});
}
/// ditto
void encode(ref dchar[] str, dchar c) @safe pure
{
if ((0xD800 <= c && c <= 0xDFFF) || 0x10FFFF < c)
throw new UTFException("Encoding an invalid code point in UTF-32").setSequence(c);
assert(isValidDchar(c));
str ~= c;
}
unittest
{
import std.exception;
assertCTFEable!(
{
dchar[] buf;
encode(buf, '\u0000'); assert(buf[0] == '\u0000');
encode(buf, '\uD7FF'); assert(buf[1] == '\uD7FF');
encode(buf, '\uE000'); assert(buf[2] == '\uE000');
encode(buf, 0xFFFE ); assert(buf[3] == 0xFFFE);
encode(buf, 0xFFFF ); assert(buf[4] == 0xFFFF);
encode(buf, '\U0010FFFF'); assert(buf[5] == '\U0010FFFF');
assertThrown!UTFException(encode(buf, cast(dchar)0xD800));
assertThrown!UTFException(encode(buf, cast(dchar)0xDBFF));
assertThrown!UTFException(encode(buf, cast(dchar)0xDC00));
assertThrown!UTFException(encode(buf, cast(dchar)0xDFFF));
assertThrown!UTFException(encode(buf, cast(dchar)0x110000));
});
}
/++
Returns the number of code units that are required to encode the code point
$(D c) when $(D C) is the character type used to encode it.
+/
ubyte codeLength(C)(dchar c) @safe pure nothrow @nogc
if (isSomeChar!C)
{
static if (C.sizeof == 1)
{
if (c <= 0x7F) return 1;
if (c <= 0x7FF) return 2;
if (c <= 0xFFFF) return 3;
if (c <= 0x10FFFF) return 4;
assert(false);
}
else static if (C.sizeof == 2)
{
return c <= 0xFFFF ? 1 : 2;
}
else
{
static assert(C.sizeof == 4);
return 1;
}
}
///
pure nothrow @nogc unittest
{
assert(codeLength!char('a') == 1);
assert(codeLength!wchar('a') == 1);
assert(codeLength!dchar('a') == 1);
assert(codeLength!char('\U0010FFFF') == 4);
assert(codeLength!wchar('\U0010FFFF') == 2);
assert(codeLength!dchar('\U0010FFFF') == 1);
}
/++
Returns the number of code units that are required to encode $(D str)
in a string whose character type is $(D C). This is particularly useful
when slicing one string with the length of another and the two string
types use different character types.
+/
size_t codeLength(C, InputRange)(InputRange input)
if (isInputRange!InputRange && is(ElementType!InputRange : dchar))
{
alias EncType = Unqual!(ElementEncodingType!InputRange);
static if (isSomeString!InputRange && is(EncType == C) && is(typeof(input.length)))
return input.length;
else
{
size_t total = 0;
foreach (dchar c; input)
total += codeLength!C(c);
return total;
}
}
///
unittest
{
import std.conv : to;
assert(codeLength!char("hello world") ==
to!string("hello world").length);
assert(codeLength!wchar("hello world") ==
to!wstring("hello world").length);
assert(codeLength!dchar("hello world") ==
to!dstring("hello world").length);
assert(codeLength!char(`プログラミング`) ==
to!string(`プログラミング`).length);
assert(codeLength!wchar(`プログラミング`) ==
to!wstring(`プログラミング`).length);
assert(codeLength!dchar(`プログラミング`) ==
to!dstring(`プログラミング`).length);
string haystack = `Être sans la verité, ça, ce ne serait pas bien.`;
wstring needle = `Être sans la verité`;
assert(haystack[codeLength!char(needle) .. $] ==
`, ça, ce ne serait pas bien.`);
}
unittest
{
import std.conv : to;
import std.exception;
import std.algorithm : filter;
assertCTFEable!(
{
foreach (S; TypeTuple!( char[], const char[], string,
wchar[], const wchar[], wstring,
dchar[], const dchar[], dstring))
{
foreach (C; TypeTuple!(char, wchar, dchar))
{
assert(codeLength!C(to!S("Walter Bright")) == to!(C[])("Walter Bright").length);
assert(codeLength!C(to!S(`言語`)) == to!(C[])(`言語`).length);
assert(codeLength!C(to!S(`ウェブサイト@La_Verité.com`)) ==
to!(C[])(`ウェブサイト@La_Verité.com`).length);
assert(codeLength!C(to!S(`ウェブサイト@La_Verité.com`).filter!(x => true)()) ==
to!(C[])(`ウェブサイト@La_Verité.com`).length);
}
}
});
}
/+
Internal helper function:
Returns true if it is safe to search for the Codepoint $(D c) inside
code units, without decoding.
This is a runtime check that is used an optimization in various functions,
particularly, in $(D std.string).
+/
package bool canSearchInCodeUnits(C)(dchar c)
if (isSomeChar!C)
{
static if (C.sizeof == 1)
return c <= 0x7F;
else static if (C.sizeof == 2)
return c <= 0xD7FF || (0xE000 <= c && c <= 0xFFFF);
else static if (C.sizeof == 4)
return true;
else
static assert(0);
}
unittest
{
assert( canSearchInCodeUnits! char('a'));
assert( canSearchInCodeUnits!wchar('a'));
assert( canSearchInCodeUnits!dchar('a'));
assert(!canSearchInCodeUnits! char('ö')); //Important test: ö <= 0xFF
assert(!canSearchInCodeUnits! char(cast(char)'ö')); //Important test: ö <= 0xFF
assert( canSearchInCodeUnits!wchar('ö'));
assert( canSearchInCodeUnits!dchar('ö'));
assert(!canSearchInCodeUnits! char('日'));
assert( canSearchInCodeUnits!wchar('日'));
assert( canSearchInCodeUnits!dchar('日'));
assert(!canSearchInCodeUnits!wchar(cast(wchar)0xDA00));
assert( canSearchInCodeUnits!dchar(cast(dchar)0xDA00));
assert(!canSearchInCodeUnits! char('\U00010001'));
assert(!canSearchInCodeUnits!wchar('\U00010001'));
assert( canSearchInCodeUnits!dchar('\U00010001'));
}
/* =================== Validation ======================= */
/++
Checks to see if $(D str) is well-formed unicode or not.
Throws:
$(D UTFException) if $(D str) is not well-formed.
+/
void validate(S)(in S str) @safe pure
if (isSomeString!S)
{
immutable len = str.length;
for (size_t i = 0; i < len; )
{
decode(str, i);
}
}
unittest // bugzilla 12923
{
import std.exception;
assertThrown((){
char[3]a=[167, 133, 175];
validate(a[]);
}());
}
/* =================== Conversion to UTF8 ======================= */
pure
{
char[] toUTF8(return out char[4] buf, dchar c) nothrow @nogc @safe
in
{
assert(isValidDchar(c));
}
body
{
if (c <= 0x7F)
{
buf[0] = cast(char)c;
return buf[0 .. 1];
}
else if (c <= 0x7FF)
{
buf[0] = cast(char)(0xC0 | (c >> 6));
buf[1] = cast(char)(0x80 | (c & 0x3F));
return buf[0 .. 2];
}
else if (c <= 0xFFFF)
{
buf[0] = cast(char)(0xE0 | (c >> 12));
buf[1] = cast(char)(0x80 | ((c >> 6) & 0x3F));
buf[2] = cast(char)(0x80 | (c & 0x3F));
return buf[0 .. 3];
}
else if (c <= 0x10FFFF)
{
buf[0] = cast(char)(0xF0 | (c >> 18));
buf[1] = cast(char)(0x80 | ((c >> 12) & 0x3F));
buf[2] = cast(char)(0x80 | ((c >> 6) & 0x3F));
buf[3] = cast(char)(0x80 | (c & 0x3F));
return buf[0 .. 4];
}
assert(0);
}
/*******************
* Encodes string $(D_PARAM s) into UTF-8 and returns the encoded string.
*/
string toUTF8(in char[] s) @safe
{
validate(s);
return s.idup;
}
/// ditto
string toUTF8(in wchar[] s) @safe
{
char[] r;
size_t i;
size_t slen = s.length;
r.length = slen;
for (i = 0; i < slen; i++)
{
wchar c = s[i];
if (c <= 0x7F)
r[i] = cast(char)c; // fast path for ascii
else
{
r.length = i;
while (i < slen)
encode(r, decode(s, i));
break;
}
}
return r;
}
/// ditto
string toUTF8(in dchar[] s) @safe
{
char[] r;
size_t i;
size_t slen = s.length;
r.length = slen;
for (i = 0; i < slen; i++)
{
dchar c = s[i];
if (c <= 0x7F)
r[i] = cast(char)c; // fast path for ascii
else
{
r.length = i;
foreach (dchar d; s[i .. slen])
{
encode(r, d);
}
break;
}
}
return r;
}
/* =================== Conversion to UTF16 ======================= */
wchar[] toUTF16(return ref wchar[2] buf, dchar c) nothrow @nogc @safe
in
{
assert(isValidDchar(c));
}
body
{
if (c <= 0xFFFF)
{
buf[0] = cast(wchar)c;
return buf[0 .. 1];
}
else
{
buf[0] = cast(wchar)((((c - 0x10000) >> 10) & 0x3FF) + 0xD800);
buf[1] = cast(wchar)(((c - 0x10000) & 0x3FF) + 0xDC00);
return buf[0 .. 2];
}
}
/****************
* Encodes string $(D s) into UTF-16 and returns the encoded string.
*/
wstring toUTF16(in char[] s) @safe
{
wchar[] r;
size_t slen = s.length;
r.length = slen;
r.length = 0;
for (size_t i = 0; i < slen; )
{
dchar c = s[i];
if (c <= 0x7F)
{
i++;
r ~= cast(wchar)c;
}
else
{
c = decode(s, i);
encode(r, c);
}
}
return r;
}
/// ditto
wstring toUTF16(in wchar[] s) @safe
{
validate(s);
return s.idup;
}
/// ditto
wstring toUTF16(in dchar[] s) @safe
{
wchar[] r;
size_t slen = s.length;
r.length = slen;
r.length = 0;
for (size_t i = 0; i < slen; i++)
{
encode(r, s[i]);
}
return r;
}
/* =================== Conversion to UTF32 ======================= */
/*****
* Encodes string $(D_PARAM s) into UTF-32 and returns the encoded string.
*/
dstring toUTF32(in char[] s) @safe
{
dchar[] r;
size_t slen = s.length;
size_t j = 0;
r.length = slen; // r[] will never be longer than s[]
for (size_t i = 0; i < slen; )
{
dchar c = s[i];
if (c >= 0x80)
c = decode(s, i);
else
i++; // c is ascii, no need for decode
r[j++] = c;
}
return r[0 .. j];
}
/// ditto
dstring toUTF32(in wchar[] s) @safe
{
dchar[] r;
size_t slen = s.length;
size_t j = 0;
r.length = slen; // r[] will never be longer than s[]
for (size_t i = 0; i < slen; )
{
dchar c = s[i];
if (c >= 0x80)
c = decode(s, i);
else
i++; // c is ascii, no need for decode
r[j++] = c;
}
return r[0 .. j];
}
/// ditto
dstring toUTF32(in dchar[] s) @safe
{
validate(s);
return s.idup;
}
} // Convert functions are @safe
/* =================== toUTFz ======================= */
/++
Returns a C-style zero-terminated string equivalent to $(D str). $(D str)
must not contain embedded $(D '\0')'s as any C function will treat the first
$(D '\0') that it sees as the end of the string. If $(D str.empty) is
$(D true), then a string containing only $(D '\0') is returned.
$(D toUTFz) accepts any type of string and is templated on the type of
character pointer that you wish to convert to. It will avoid allocating a
new string if it can, but there's a decent chance that it will end up having
to allocate a new string - particularly when dealing with character types
other than $(D char).
$(RED Warning 1:) If the result of $(D toUTFz) equals $(D str.ptr), then if
anything alters the character one past the end of $(D str) (which is the
$(D '\0') character terminating the string), then the string won't be
zero-terminated anymore. The most likely scenarios for that are if you
append to $(D str) and no reallocation takes place or when $(D str) is a
slice of a larger array, and you alter the character in the larger array
which is one character past the end of $(D str). Another case where it could
occur would be if you had a mutable character array immediately after
$(D str) in memory (for example, if they're member variables in a
user-defined type with one declared right after the other) and that
character array happened to start with $(D '\0'). Such scenarios will never
occur if you immediately use the zero-terminated string after calling
$(D toUTFz) and the C function using it doesn't keep a reference to it.
Also, they are unlikely to occur even if you save the zero-terminated string
(the cases above would be among the few examples of where it could happen).
However, if you save the zero-terminate string and want to be absolutely
certain that the string stays zero-terminated, then simply append a
$(D '\0') to the string and use its $(D ptr) property rather than calling
$(D toUTFz).
$(RED Warning 2:) When passing a character pointer to a C function, and the
C function keeps it around for any reason, make sure that you keep a
reference to it in your D code. Otherwise, it may go away during a garbage
collection cycle and cause a nasty bug when the C code tries to use it.
+/
template toUTFz(P)
{
P toUTFz(S)(S str) @safe pure
{
return toUTFzImpl!(P, S)(str);
}
}
///
@safe pure unittest
{
auto p1 = toUTFz!(char*)("hello world");
auto p2 = toUTFz!(const(char)*)("hello world");
auto p3 = toUTFz!(immutable(char)*)("hello world");
auto p4 = toUTFz!(char*)("hello world"d);
auto p5 = toUTFz!(const(wchar)*)("hello world");
auto p6 = toUTFz!(immutable(dchar)*)("hello world"w);
}
private P toUTFzImpl(P, S)(S str) @safe pure
if (isSomeString!S && isPointer!P && isSomeChar!(typeof(*P.init)) &&
is(Unqual!(typeof(*P.init)) == Unqual!(ElementEncodingType!S)) &&
is(immutable(Unqual!(ElementEncodingType!S)) == ElementEncodingType!S))
//immutable(C)[] -> C*, const(C)*, or immutable(C)*
{
if (str.empty)
{
typeof(*P.init)[] retval = ['\0'];
return retval.ptr;
}
alias C = Unqual!(ElementEncodingType!S);
//If the P is mutable, then we have to make a copy.
static if (is(Unqual!(typeof(*P.init)) == typeof(*P.init)))
{
return toUTFzImpl!(P, const(C)[])(cast(const(C)[])str);
}
else
{
if (!__ctfe)
{
auto trustedPtrAdd(S s) @trusted { return s.ptr + s.length; }
immutable p = trustedPtrAdd(str);
// Peek past end of str, if it's 0, no conversion necessary.
// Note that the compiler will put a 0 past the end of static
// strings, and the storage allocator will put a 0 past the end
// of newly allocated char[]'s.
// Is p dereferenceable? A simple test: if the p points to an
// address multiple of 4, then conservatively assume the pointer
// might be pointing to a new block of memory, which might be
// unreadable. Otherwise, it's definitely pointing to valid
// memory.
if ((cast(size_t)p & 3) && *p == '\0')
return str.ptr;
}
return toUTFzImpl!(P, const(C)[])(cast(const(C)[])str);
}
}
private P toUTFzImpl(P, S)(S str) @safe pure
if (isSomeString!S && isPointer!P && isSomeChar!(typeof(*P.init)) &&
is(Unqual!(typeof(*P.init)) == Unqual!(ElementEncodingType!S)) &&
!is(immutable(Unqual!(ElementEncodingType!S)) == ElementEncodingType!S))
//C[] or const(C)[] -> C*, const(C)*, or immutable(C)*
{
alias InChar = ElementEncodingType!S;
alias OutChar = typeof(*P.init);
//const(C)[] -> const(C)* or
//C[] -> C* or const(C)*
static if (( is(const(Unqual!InChar) == InChar) && is(const(Unqual!OutChar) == OutChar)) ||
(!is(const(Unqual!InChar) == InChar) && !is(immutable(Unqual!OutChar) == OutChar)))
{
if (!__ctfe)
{
auto trustedPtrAdd(S s) @trusted { return s.ptr + s.length; }
auto p = trustedPtrAdd(str);
if ((cast(size_t)p & 3) && *p == '\0')
return str.ptr;
}
str ~= '\0';
return str.ptr;
}
//const(C)[] -> C* or immutable(C)* or
//C[] -> immutable(C)*
else
{
import std.array : uninitializedArray;
auto copy = uninitializedArray!(Unqual!OutChar[])(str.length + 1);
copy[0 .. $ - 1] = str[];
copy[$ - 1] = '\0';
auto trustedCast(typeof(copy) c) @trusted { return cast(P)c.ptr; }
return trustedCast(copy);
}
}
private P toUTFzImpl(P, S)(S str) @safe pure
if (isSomeString!S && isPointer!P && isSomeChar!(typeof(*P.init)) &&
!is(Unqual!(typeof(*P.init)) == Unqual!(ElementEncodingType!S)))
//C1[], const(C1)[], or immutable(C1)[] -> C2*, const(C2)*, or immutable(C2)*
{
import std.array : appender;
auto retval = appender!(typeof(*P.init)[])();
foreach (dchar c; str)
retval.put(c);
retval.put('\0');
return cast(P)retval.data.ptr;
}
@safe pure unittest
{
import std.conv : to;
import std.exception;
import std. string : format;
import core.exception : AssertError;
import std.algorithm;
assertCTFEable!(
{
foreach (S; TypeTuple!(string, wstring, dstring))
{
alias C = Unqual!(ElementEncodingType!S);
auto s1 = to!S("hello\U00010143\u0100\U00010143");
auto temp = new C[](s1.length + 1);
temp[0 .. $ - 1] = s1[0 .. $];
temp[$ - 1] = '\n';
--temp.length;
auto trustedAssumeUnique(T)(T t) @trusted { return assumeUnique(t); }
auto s2 = trustedAssumeUnique(temp);
assert(s1 == s2);
void trustedCStringAssert(P, S)(S s) @trusted
{
auto p = toUTFz!P(s);
assert(p[0 .. s.length] == s);
assert(p[s.length] == '\0');
}
foreach (P; TypeTuple!(C*, const(C)*, immutable(C)*))
{
trustedCStringAssert!P(s1);
trustedCStringAssert!P(s2);
}
}
});
static void test(P, S)(S s, size_t line = __LINE__) @trusted
{
static size_t zeroLen(C)(const(C)* ptr) @trusted
{
size_t len = 0;
while (*ptr != '\0') { ++ptr; ++len; }
return len;
}
auto p = toUTFz!P(s);
immutable len = zeroLen(p);
enforce(cmp(s, p[0 .. len]) == 0,
new AssertError(format("Unit test failed: %s %s", P.stringof, S.stringof),
__FILE__, line));
}
assertCTFEable!(
{
foreach (P; TypeTuple!(wchar*, const(wchar)*, immutable(wchar)*,
dchar*, const(dchar)*, immutable(dchar)*))
{
test!P("hello\U00010143\u0100\U00010143");
}
foreach (P; TypeTuple!( char*, const( char)*, immutable( char)*,
dchar*, const(dchar)*, immutable(dchar)*))
{
test!P("hello\U00010143\u0100\U00010143"w);
}
foreach (P; TypeTuple!( char*, const( char)*, immutable( char)*,
wchar*, const(wchar)*, immutable(wchar)*))
{
test!P("hello\U00010143\u0100\U00010143"d);
}
foreach (S; TypeTuple!( char[], const( char)[],
wchar[], const(wchar)[],
dchar[], const(dchar)[]))
{
auto s = to!S("hello\U00010143\u0100\U00010143");
foreach (P; TypeTuple!( char*, const( char)*, immutable( char)*,
wchar*, const(wchar)*, immutable(wchar)*,
dchar*, const(dchar)*, immutable(dchar)*))
{
test!P(s);
}
}
});
}
/++
$(D toUTF16z) is a convenience function for $(D toUTFz!(const(wchar)*)).
Encodes string $(D s) into UTF-16 and returns the encoded string.
$(D toUTF16z) is suitable for calling the 'W' functions in the Win32 API
that take an $(D LPWSTR) or $(D LPCWSTR) argument.
+/
const(wchar)* toUTF16z(C)(const(C)[] str) @safe pure
if (isSomeChar!C)
{
return toUTFz!(const(wchar)*)(str);
}
@safe pure unittest
{
import std.conv : to;
//toUTFz is already thoroughly tested, so this will just verify that
//toUTF16z compiles properly for the various string types.
foreach (S; TypeTuple!(string, wstring, dstring))
static assert(__traits(compiles, toUTF16z(to!S("hello world"))));
}
/* ================================ tests ================================== */
pure unittest
{
import std.exception;
debug(utf) printf("utf.toUTF.unittest\n");
assertCTFEable!(
{
assert(toUTF16("hello"c) == "hello");
assert(toUTF32("hello"c) == "hello");
assert(toUTF8 ("hello"w) == "hello");
assert(toUTF32("hello"w) == "hello");
assert(toUTF8 ("hello"d) == "hello");
assert(toUTF16("hello"d) == "hello");
assert(toUTF16("hel\u1234o"c) == "hel\u1234o");
assert(toUTF32("hel\u1234o"c) == "hel\u1234o");
assert(toUTF8 ("hel\u1234o"w) == "hel\u1234o");
assert(toUTF32("hel\u1234o"w) == "hel\u1234o");
assert(toUTF8 ("hel\u1234o"d) == "hel\u1234o");
assert(toUTF16("hel\u1234o"d) == "hel\u1234o");
assert(toUTF16("he\U0010AAAAllo"c) == "he\U0010AAAAllo");
assert(toUTF32("he\U0010AAAAllo"c) == "he\U0010AAAAllo");
assert(toUTF8 ("he\U0010AAAAllo"w) == "he\U0010AAAAllo");
assert(toUTF32("he\U0010AAAAllo"w) == "he\U0010AAAAllo");
assert(toUTF8 ("he\U0010AAAAllo"d) == "he\U0010AAAAllo");
assert(toUTF16("he\U0010AAAAllo"d) == "he\U0010AAAAllo");
});
}
/++
Returns the total number of code points encoded in $(D str).
Supercedes: This function supercedes $(LREF toUCSindex).
Standards: Unicode 5.0, ASCII, ISO-8859-1, WINDOWS-1252
Throws:
$(D UTFException) if $(D str) is not well-formed.
+/
size_t count(C)(const(C)[] str) @trusted pure nothrow @nogc
if (isSomeChar!C)
{
return walkLength(str);
}
pure nothrow @nogc unittest
{
import std.exception;
assertCTFEable!(
{
assert(count("") == 0);
assert(count("a") == 1);
assert(count("abc") == 3);
assert(count("\u20AC100") == 4);
});
}
// Ranges of code units for testing.
version(unittest)
{
struct InputCU(C)
{
import std.conv : to;
@property bool empty() { return _str.empty; }
@property C front() { return _str[0]; }
void popFront() { _str = _str[1 .. $]; }
this(inout(C)[] str)
{
_str = to!(C[])(str);
}
C[] _str;
}
struct BidirCU(C)
{
import std.conv : to;
@property bool empty() { return _str.empty; }
@property C front() { return _str[0]; }
void popFront() { _str = _str[1 .. $]; }
@property C back() { return _str[$ - 1]; }
void popBack() { _str = _str[0 .. $ - 1]; }
@property auto save() { return BidirCU(_str); }
@property size_t length() { return _str.length; }
this(inout(C)[] str)
{
_str = to!(C[])(str);
}
C[] _str;
}
struct RandomCU(C)
{
import std.conv : to;
@property bool empty() { return _str.empty; }
@property C front() { return _str[0]; }
void popFront() { _str = _str[1 .. $]; }
@property C back() { return _str[$ - 1]; }
void popBack() { _str = _str[0 .. $ - 1]; }
@property auto save() { return RandomCU(_str); }
@property size_t length() { return _str.length; }
C opIndex(size_t i) { return _str[i]; }
auto opSlice(size_t i, size_t j) { return RandomCU(_str[i .. j]); }
this(inout(C)[] str)
{
_str = to!(C[])(str);
}
C[] _str;
}
class RefBidirCU(C)
{
import std.conv : to;
@property bool empty() { return _str.empty; }
@property C front() { return _str[0]; }
void popFront() { _str = _str[1 .. $]; }
@property C back() { return _str[$ - 1]; }
void popBack() { _str = _str[0 .. $ - 1]; }
@property auto save() { return new RefBidirCU(_str); }
@property size_t length() { return _str.length; }
this(inout(C)[] str)
{
_str = to!(C[])(str);
}
C[] _str;
}
class RefRandomCU(C)
{
import std.conv : to;
@property bool empty() { return _str.empty; }
@property C front() { return _str[0]; }
void popFront() { _str = _str[1 .. $]; }
@property C back() { return _str[$ - 1]; }
void popBack() { _str = _str[0 .. $ - 1]; }
@property auto save() { return new RefRandomCU(_str); }
@property size_t length() { return _str.length; }
C opIndex(size_t i) { return _str[i]; }
auto opSlice(size_t i, size_t j) { return new RefRandomCU(_str[i .. j]); }
this(inout(C)[] str)
{
_str = to!(C[])(str);
}
C[] _str;
}
}
/**
* Inserted in place of invalid UTF sequences.
*
* References:
* $(LINK http://en.wikipedia.org/wiki/Replacement_character#Replacement_character)
*/
enum dchar replacementDchar = '\uFFFD';
/********************************************
* Iterate a range of char, wchar, or dchars by code unit.
*
* The purpose is to bypass the special case decoding that
* $(XREF array,front) does to character arrays.
* Params:
* r = input range of characters, or array of characters
* Returns:
* input range
*/
auto byCodeUnit(R)(R r) if (isNarrowString!R)
{
/* Turn an array into an InputRange.
*/
static struct ByCodeUnitImpl
{
pure nothrow @nogc:
@property bool empty() const { return r.length == 0; }
@property auto ref front() inout { return r[0]; }
void popFront() { r = r[1 .. $]; }
auto ref opIndex(size_t index) inout { return r[index]; }
@property auto ref back() inout
{
return r[$ - 1];
}
void popBack()
{
r = r[0 .. $-1];
}
auto opSlice(size_t lower, size_t upper)
{
return ByCodeUnitImpl(r[lower..upper]);
}
@property size_t length() const
{
return r.length;
}
alias opDollar = length;
@property auto save()
{
return ByCodeUnitImpl(r.save);
}
private:
R r;
}
static assert(isRandomAccessRange!ByCodeUnitImpl);
return ByCodeUnitImpl(r);
}
/// Ditto
auto ref byCodeUnit(R)(R r)
if (!isNarrowString!R && isInputRange!R && isSomeChar!(ElementEncodingType!R))
{
// byCodeUnit for ranges and dchar[] is a no-op
return r;
}
pure nothrow @nogc unittest
{
import std.range;
{
char[5] s;
int i;
foreach (c; "hello".byCodeUnit().byCodeUnit())
{
s[i++] = c;
}
assert(s == "hello");
}
{
wchar[5] s;
int i;
foreach (c; "hello"w.byCodeUnit().byCodeUnit())
{
s[i++] = c;
}
assert(s == "hello"w);
}
{
dchar[5] s;
int i;
foreach (c; "hello"d.byCodeUnit().byCodeUnit())
{
s[i++] = c;
}
assert(s == "hello"d);
}
{
auto r = "hello".byCodeUnit();
assert(r.length == 5);
assert(r[3] == 'l');
assert(r[2..4][1] == 'l');
}
{
char[5] buff = "hello";
auto s = buff[].byCodeUnit();
s.front = 'H';
assert(s.front == 'H');
s[1] = 'E';
assert(s[1] == 'E');
}
{
auto r = "hello".byCodeUnit().byCodeUnit();
static assert(isForwardRange!(typeof(r)));
auto s = r.save;
r.popFront();
assert(s.front == 'h');
}
{
auto r = "hello".byCodeUnit();
static assert(hasSlicing!(typeof(r)));
static assert(isBidirectionalRange!(typeof(r)));
auto ret = r.retro;
assert(ret.front == 'o');
ret.popFront();
assert(ret.front == 'l');
}
{
auto r = "κόσμε"w.byCodeUnit();
static assert(hasSlicing!(typeof(r)));
static assert(isBidirectionalRange!(typeof(r)));
auto ret = r.retro;
assert(ret.front == 'ε');
ret.popFront();
assert(ret.front == 'μ');
}
}
/****************************
* Iterate an input range of characters by char, wchar, or dchar.
*
* UTF sequences that cannot be converted to UTF-8 are replaced by U+FFFD
* per "5.22 Best Practice for U+FFFD Substitution" of the Unicode Standard 6.2.
* Hence, byChar, byWchar, and byDchar are not symmetric.
* This algorithm is lazy, and does not allocate memory.
* Purity, nothrow, and safety are inferred from the r parameter.
* Params:
* r = input range of characters, or array of characters
* Returns:
* input range
*/
auto byChar(R)(R r) if (isNarrowString!R)
{
/* This and the following two serve as adapters to convert arrays to ranges,
* so the following three
* won't get auto-decoded by std.array.front().
*/
alias tchar = Unqual!(ElementEncodingType!R);
static if (is(tchar == char))
{
return r.byCodeUnit();
}
else
{
return r.byCodeUnit().byChar();
}
}
/// Ditto
auto byWchar(R)(R r) if (isNarrowString!R)
{
alias tchar = Unqual!(ElementEncodingType!R);
static if (is(tchar == wchar))
{
return r.byCodeUnit();
}
else
{
return r.byCodeUnit().byWchar();
}
}
/// Ditto
auto byDchar(R)(R r) if (isNarrowString!R)
{
alias tchar = Unqual!(ElementEncodingType!R);
return r.byCodeUnit().byDchar();
}
/// Ditto
auto ref byChar(R)(R r)
if (!isNarrowString!R && isInputRange!R && isSomeChar!(ElementEncodingType!R))
{
alias tchar = Unqual!(ElementEncodingType!R);
/* Defeat the auto-decoding of std.array.put() by handling arrays of chars
* explicitly.
*/
static if (is(tchar == char))
{
return r;
}
else
{
static if (is(tchar == wchar))
{
// Convert wchar => dchar => char
auto r2 = r.byDchar();
}
else static if (is(tchar == dchar))
{
alias r2 = r;
}
else
static assert(0);
static struct byCharImpl
{
this(ref typeof(r2) r)
{
this.r = r;
}
@property bool empty()
{
return !nLeft && r.empty;
}
@property auto front()
{
static assert(replacementDchar > 0x7FF && replacementDchar <= 0xFFFF);
if (!nLeft)
{
dchar c = r.front;
if (c <= 0x7F)
{
buf[0] = cast(char)c;
nLeft = 1;
}
else if (c <= 0x7FF)
{
buf[1] = cast(char)(0xC0 | (c >> 6));
buf[0] = cast(char)(0x80 | (c & 0x3F));
nLeft = 2;
}
else if (c <= 0xFFFF)
{
if (0xD800 <= c && c <= 0xDFFF)
c = replacementDchar;
buf[2] = cast(char)(0xE0 | (c >> 12));
buf[1] = cast(char)(0x80 | ((c >> 6) & 0x3F));
buf[0] = cast(char)(0x80 | (c & 0x3F));
nLeft = 3;
}
else if (c <= 0x10FFFF)
{
buf[3] = cast(char)(0xF0 | (c >> 18));
buf[2] = cast(char)(0x80 | ((c >> 12) & 0x3F));
buf[1] = cast(char)(0x80 | ((c >> 6) & 0x3F));
buf[0] = cast(char)(0x80 | (c & 0x3F));
nLeft = 4;
}
else
{
buf[2] = cast(char)(0xE0 | (replacementDchar >> 12));
buf[1] = cast(char)(0x80 | ((replacementDchar >> 6) & 0x3F));
buf[0] = cast(char)(0x80 | (replacementDchar & 0x3F));
nLeft = 3;
}
}
return buf[nLeft - 1];
}
void popFront()
{
if (!nLeft)
front;
--nLeft;
if (!nLeft)
r.popFront();
}
static if (isForwardRange!(typeof(r2)))
{
@property auto save()
{
auto ret = this;
ret.r = r.save;
return ret;
}
}
private:
typeof(r2) r;
char[4] buf = void;
uint nLeft;
}
return byCharImpl(r2);
}
}
pure nothrow @nogc unittest
{
{
char[5] s;
int i;
foreach (c; "hello".byChar.byChar())
{
//writefln("[%d] '%c'", i, c);
s[i++] = c;
}
assert(s == "hello");
}
{
char[5+2+3+4+3+3] s;
int i;
dchar[10] a;
a[0..8] = "hello\u07FF\uD7FF\U0010FFFF"d;
a[8] = 0xD800; // invalid
a[9] = cast(dchar)0x110000; // invalid
foreach (c; a[].byChar())
{
//writefln("[%d] '%c'", i, c);
s[i++] = c;
}
assert(s == "hello\u07FF\uD7FF\U0010FFFF\uFFFD\uFFFD");
}
{
auto r = "hello"w.byChar();
r.popFront();
r.popFront();
assert(r.front == 'l');
}
{
auto r = "hello"d.byChar();
r.popFront();
r.popFront();
assert(r.front == 'l');
}
{
auto r = "hello"d.byChar();
assert(isForwardRange!(typeof(r)));
auto s = r.save;
r.popFront();
assert(s.front == 'h');
}
}
/// Ditto
auto ref byWchar(R)(R r)
if (!isNarrowString!R && isInputRange!R && isSomeChar!(ElementEncodingType!R))
{
alias tchar = Unqual!(ElementEncodingType!R);
static if (is(tchar == wchar))
{
return r;
}
else
{
static if (is(tchar == char))
{
auto r2 = r.byDchar();
}
else static if (is(tchar == dchar))
{
alias r2 = r;
}
else
static assert(0);
static struct byWcharImpl
{
this(ref typeof(r2) r)
{
this.r = r;
}
@property bool empty()
{
return !nLeft && r.empty;
}
@property auto front()
{
static assert(replacementDchar > 0x7FF && replacementDchar <= 0xFFFF);
if (!nLeft)
{
dchar c = r.front;
if (c <= 0xFFFF)
{
if (0xD800 <= c && c <= 0xDFFF)
c = replacementDchar;
buf[0] = cast(wchar)c;
nLeft = 1;
}
else if (c <= 0x10FFFF)
{
buf[1] = cast(wchar)((((c - 0x10000) >> 10) & 0x3FF) + 0xD800);
buf[0] = cast(wchar)(((c - 0x10000) & 0x3FF) + 0xDC00);
nLeft = 2;
}
else
{
buf[0] = replacementDchar;
nLeft = 1;
}
}
return buf[nLeft - 1];
}
void popFront()
{
if (!nLeft)
front;
--nLeft;
if (!nLeft)
r.popFront();
}
static if (isForwardRange!(typeof(r2)))
{
@property auto save()
{
auto ret = this;
ret.r = r.save;
return ret;
}
}
private:
typeof(r2) r;
wchar[2] buf = void;
uint nLeft;
}
return byWcharImpl(r2);
}
}
pure nothrow @nogc unittest
{
{
wchar[11] s;
int i;
dchar[10] a;
a[0..8] = "hello\u07FF\uD7FF\U0010FFFF"d;
a[8] = 0xD800; // invalid
a[9] = cast(dchar)0x110000; // invalid
foreach (c; a[].byWchar())
{
//writefln("[%d] '%c' x%x", i, c, c);
s[i++] = c;
}
foreach (j, wchar c; "hello\u07FF\uD7FF\U0010FFFF\uFFFD\uFFFD"w)
{
//writefln("[%d] '%c' x%x", j, c, c);
}
assert(s == "hello\u07FF\uD7FF\U0010FFFF\uFFFD\uFFFD"w);
}
{
auto r = "hello".byWchar();
r.popFront();
r.popFront();
assert(r.front == 'l');
}
{
auto r = "hello"d.byWchar();
r.popFront();
r.popFront();
assert(r.front == 'l');
}
{
auto r = "hello"d.byWchar();
assert(isForwardRange!(typeof(r)));
auto s = r.save;
r.popFront();
assert(s.front == 'h');
}
}
/// Ditto
auto ref byDchar(R)(R r)
if (!isNarrowString!R && isInputRange!R && isSomeChar!(ElementEncodingType!R))
{
alias tchar = Unqual!(ElementEncodingType!R);
static if (is(tchar == char))
{
static struct byDcharImpl
{
this(ref R r)
{
this.r = r;
}
@property bool empty()
{
return !haveData && r.empty;
}
@property dchar front()
{
if (haveData)
return frontChar;
dchar c = r.front;
if (c < 0x80)
{
}
else
{
uint fst = c; // upper control bits are masked out later
/* Dchar bitmask for different numbers of UTF-8 code units.
*/
alias bitMask = TypeTuple!((1 << 7) - 1, (1 << 11) - 1, (1 << 16) - 1, (1 << 21) - 1);
foreach (i; TypeTuple!(1, 2, 3))
{
r.popFront();
if (r.empty)
break;
ubyte tmp = r.front;
if ((tmp & 0xC0) != 0x80)
break;
c = (c << 6) | (tmp & 0x3F);
if (!(fst & (0x40 >> i))) // if no more bytes
{
c &= bitMask[i]; // mask out control bits
// overlong, could have been encoded with i bytes
if ((c & ~bitMask[i - 1]) == 0)
break;
// check for surrogates only needed for 3 bytes
static if (i == 2)
{
if (c >= 0xD800 && c < 0xE000)
break;
}
// check for out of range only needed for 4 bytes
static if (i == 3)
{
if (c > 0x10FFFF)
break;
}
frontChar = c;
haveData = true;
return c;
}
}
c = replacementDchar;
}
frontChar = c;
haveData = true;
return c;
}
void popFront()
{
if (!haveData)
front;
r.popFront();
haveData = false;
}
static if (isForwardRange!R)
{
@property auto save()
{
auto ret = this;
ret.r = r.save;
return ret;
}
}
private:
R r;
dchar frontChar;
bool haveData;
}
return byDcharImpl(r);
}
else static if (is(tchar == wchar))
{
static struct byDcharImpl
{
this(ref R r)
{
this.r = r;
}
@property bool empty()
{
return !haveData && r.empty;
}
@property dchar front()
{
if (haveData)
return frontChar;
dchar c = r.front;
if (c < 0xD800)
{
}
else if (c <= 0xDBFF)
{
r.popFront();
if (r.empty)
c = replacementDchar;
else
{
dchar c2 = r.front;
if (c2 < 0xDC00 || c2 > 0xDFFF)
c = replacementDchar;
else
c = ((c - 0xD7C0) << 10) + (c2 - 0xDC00);
}
}
else if (c <= 0xDFFF)
c = replacementDchar;
frontChar = c;
haveData = true;
return c;
}
void popFront()
{
if (!haveData)
front;
r.popFront();
haveData = false;
}
static if (isForwardRange!R)
{
@property auto save()
{
auto ret = this;
ret.r = r.save;
return ret;
}
}
private:
R r;
dchar frontChar;
bool haveData;
}
return byDcharImpl(r);
}
else static if (is(tchar == dchar))
{
return r;
}
else
static assert(0);
}
pure nothrow @nogc unittest
{
{
dchar[9] s;
int i;
string a = "hello\u07FF\uD7FF\U00010000\U0010FFFF"; // 1,2,3,4 byte sequences
foreach (c; a.byDchar())
{
//writefln("[%d] '%c' x%x", i, c, c);
s[i++] = c;
}
assert(s == "hello\u07FF\uD7FF\U00010000\U0010FFFF"d);
}
{
char[1] cs;
cs[0] = 0xC0; // truncated
auto r = cs[].byDchar();
assert(!r.empty);
dchar c = r.front;
assert(c == replacementDchar);
}
{
char[2] cs;
cs[0] = 0xC0;
cs[1] = 0xC0; // invalid continuation
auto r = cs[].byDchar();
assert(!r.empty);
assert(r.front == r.front);
dchar c = r.front;
assert(c == replacementDchar);
}
{
char[3] cs;
enum x = 0xDC00; // invalid surrogate value
cs[0] = 0xE0 | (x >> 12);
cs[1] = 0x80 | ((x >> 6) & 0x3F);
cs[2] = 0x80 | (x & 0x3F);
auto r = cs[].byDchar();
assert(!r.empty);
dchar c = r.front;
assert(c == replacementDchar);
}
{
char[4] cs;
cs[0] = 0xF0;
cs[1] = 0x82;
cs[2] = 0x82;
cs[3] = 0xAC; // overlong
auto r = cs[].byDchar();
assert(!r.empty);
assert(r.front == r.front);
dchar c = r.front;
assert(c == replacementDchar);
}
{
char[4] cs;
enum x = 0x110000; // out of range
cs[0] = cast(char)(0xF0 | (x >> 18));
cs[1] = cast(char)(0x80 | ((x >> 12) & 0x3F));
cs[2] = cast(char)(0x80 | ((x >> 6) & 0x3F));
cs[3] = cast(char)(0x80 | (x & 0x3F));
auto r = cs[].byDchar();
assert(!r.empty);
dchar c = r.front;
assert(c == replacementDchar);
}
{
auto r = "hello".byDchar();
r.popFront();
r.popFront();
assert(r.front == 'l');
}
{
dchar[8] s;
int i;
wstring a = "hello\u07FF\uD7FF\U0010FFFF"w;
foreach (c; a.byDchar())
{
//writefln("[%d] '%c' x%x", i, c, c);
s[i++] = c;
}
assert(s == "hello\u07FF\uD7FF\U0010FFFF"d);
}
{
wchar[1] ws;
ws[0] = 0xD801; // truncated surrogate pair
auto r = ws[].byDchar();
assert(!r.empty);
dchar c = r.front;
assert(c == replacementDchar);
}
{
wchar[1] ws;
ws[0] = 0xDC00; // unpaired 2nd surrogate
auto r = ws[].byDchar();
assert(!r.empty);
dchar c = r.front;
assert(c == replacementDchar);
}
{
wchar[2] ws;
ws[0] = 0xD800;
ws[1] = 0xDD00; // correct surrogate pair
auto r = ws[].byDchar();
assert(!r.empty);
assert(r.front == r.front);
dchar c = r.front;
assert(c == '\U00010100');
}
{
wchar[2] ws;
ws[0] = 0xD800;
ws[1] = 0xDBFF; // second surrogate out of range
auto r = ws[].byDchar();
assert(!r.empty);
assert(r.front == r.front);
dchar c = r.front;
assert(c == replacementDchar);
}
{
auto r = "hello"w.byDchar();
r.popFront();
r.popFront();
assert(r.front == 'l');
}
{
dchar[5] s;
int i;
dstring a = "hello"d;
foreach (c; a.byDchar.byDchar())
{
//writefln("[%d] '%c' x%x", i, c, c);
s[i++] = c;
}
assert(s == "hello"d);
}
{
auto r = "hello".byDchar();
assert(isForwardRange!(typeof(r)));
auto s = r.save;
r.popFront();
assert(s.front == 'h');
}
{
auto r = "hello"w.byDchar();
assert(isForwardRange!(typeof(r)));
auto s = r.save;
r.popFront();
assert(s.front == 'h');
}
}
// test pure, @safe, nothrow, @nogc correctness of byChar/byWchar/byDchar,
// which needs to support ranges with and without those attributes
pure @safe nothrow @nogc unittest
{
dchar[5] s = "hello"d;
foreach (c; s[].byChar()) { }
foreach (c; s[].byWchar()) { }
foreach (c; s[].byDchar()) { }
}
version(unittest)
int impureVariable;
@system unittest
{
static struct ImpureThrowingSystemRange(Char)
{
@property bool empty() const { return true; }
@property Char front() const { return Char.init; }
void popFront()
{
impureVariable++;
throw new Exception("only for testing nothrow");
}
}
foreach (Char; TypeTuple!(char, wchar, dchar))
{
ImpureThrowingSystemRange!Char range;
foreach (c; range.byChar()) { }
foreach (c; range.byWchar()) { }
foreach (c; range.byDchar()) { }
}
}