phobos/std/exception.d
2015-12-17 18:32:41 -08:00

2150 lines
62 KiB
D

// Written in the D programming language.
/++
This module defines functions related to exceptions and general error
handling. It also defines functions intended to aid in unit testing.
Synopsis of some of std.exception's functions:
--------------------
string synopsis()
{
FILE* f = enforce(fopen("some/file"));
// f is not null from here on
FILE* g = enforce!WriteException(fopen("some/other/file", "w"));
// g is not null from here on
Exception e = collectException(write(g, readln(f)));
if (e)
{
... an exception occurred...
... We have the exception to play around with...
}
string msg = collectExceptionMsg(write(g, readln(f)));
if (msg)
{
... an exception occurred...
... We have the message from the exception but not the exception...
}
char[] line;
enforce(readln(f, line));
return assumeUnique(line);
}
--------------------
Macros:
WIKI = Phobos/StdException
Copyright: Copyright Andrei Alexandrescu 2008-, Jonathan M Davis 2011-.
License: $(WEB boost.org/LICENSE_1_0.txt, Boost License 1.0)
Authors: $(WEB erdani.org, Andrei Alexandrescu) and Jonathan M Davis
Source: $(PHOBOSSRC std/_exception.d)
+/
module std.exception;
import std.range;
import std.traits;
import core.stdc.errno;
import core.stdc.string;
/++
Asserts that the given expression does $(I not) throw the given type
of $(D Throwable). If a $(D Throwable) of the given type is thrown,
it is caught and does not escape assertNotThrown. Rather, an
$(D AssertError) is thrown. However, any other $(D Throwable)s will escape.
Params:
T = The $(D Throwable) to test for.
expression = The expression to test.
msg = Optional message to output on test failure.
If msg is empty, and the thrown exception has a
non-empty msg field, the exception's msg field
will be output on test failure.
file = The file where the error occurred.
Defaults to $(D __FILE__).
line = The line where the error occurred.
Defaults to $(D __LINE__).
Throws:
$(D AssertError) if the given $(D Throwable) is thrown.
Returns:
the result of `expression`.
+/
auto assertNotThrown(T : Throwable = Exception, E)
(lazy E expression,
string msg = null,
string file = __FILE__,
size_t line = __LINE__)
{
import core.exception : AssertError;
try
{
return expression();
}
catch (T t)
{
immutable message = msg.length == 0 ? t.msg : msg;
immutable tail = message.length == 0 ? "." : ": " ~ message;
throw new AssertError("assertNotThrown failed: " ~ T.stringof ~ " was thrown" ~ tail, file, line, t);
}
}
///
unittest
{
import core.exception : AssertError;
import std.string;
assertNotThrown!StringException(enforce!StringException(true, "Error!"));
//Exception is the default.
assertNotThrown(enforce!StringException(true, "Error!"));
assert(collectExceptionMsg!AssertError(assertNotThrown!StringException(
enforce!StringException(false, "Error!"))) ==
`assertNotThrown failed: StringException was thrown: Error!`);
}
unittest
{
import core.exception : AssertError;
import std.string;
assert(collectExceptionMsg!AssertError(assertNotThrown!StringException(
enforce!StringException(false, ""), "Error!")) ==
`assertNotThrown failed: StringException was thrown: Error!`);
assert(collectExceptionMsg!AssertError(assertNotThrown!StringException(
enforce!StringException(false, ""))) ==
`assertNotThrown failed: StringException was thrown.`);
assert(collectExceptionMsg!AssertError(assertNotThrown!StringException(
enforce!StringException(false, ""), "")) ==
`assertNotThrown failed: StringException was thrown.`);
}
unittest
{
import core.exception : AssertError;
void throwEx(Throwable t) { throw t; }
bool nothrowEx() { return true; }
try
{
assert(assertNotThrown!Exception(nothrowEx()));
}
catch (AssertError) assert(0);
try
{
assert(assertNotThrown!Exception(nothrowEx(), "It's a message"));
}
catch (AssertError) assert(0);
try
{
assert(assertNotThrown!AssertError(nothrowEx()));
}
catch (AssertError) assert(0);
try
{
assert(assertNotThrown!AssertError(nothrowEx(), "It's a message"));
}
catch (AssertError) assert(0);
{
bool thrown = false;
try
{
assertNotThrown!Exception(
throwEx(new Exception("It's an Exception")));
}
catch (AssertError) thrown = true;
assert(thrown);
}
{
bool thrown = false;
try
{
assertNotThrown!Exception(
throwEx(new Exception("It's an Exception")), "It's a message");
}
catch (AssertError) thrown = true;
assert(thrown);
}
{
bool thrown = false;
try
{
assertNotThrown!AssertError(
throwEx(new AssertError("It's an AssertError", __FILE__, __LINE__)));
}
catch (AssertError) thrown = true;
assert(thrown);
}
{
bool thrown = false;
try
{
assertNotThrown!AssertError(
throwEx(new AssertError("It's an AssertError", __FILE__, __LINE__)),
"It's a message");
}
catch (AssertError) thrown = true;
assert(thrown);
}
}
/++
Asserts that the given expression throws the given type of $(D Throwable).
The $(D Throwable) is caught and does not escape assertThrown. However,
any other $(D Throwable)s $(I will) escape, and if no $(D Throwable)
of the given type is thrown, then an $(D AssertError) is thrown.
Params:
T = The $(D Throwable) to test for.
expression = The expression to test.
msg = Optional message to output on test failure.
file = The file where the error occurred.
Defaults to $(D __FILE__).
line = The line where the error occurred.
Defaults to $(D __LINE__).
Throws:
$(D AssertError) if the given $(D Throwable) is not thrown.
+/
void assertThrown(T : Throwable = Exception, E)
(lazy E expression,
string msg = null,
string file = __FILE__,
size_t line = __LINE__)
{
import core.exception : AssertError;
try
expression();
catch (T)
return;
throw new AssertError("assertThrown failed: No " ~ T.stringof ~ " was thrown"
~ (msg.length == 0 ? "." : ": ") ~ msg,
file, line);
}
///
unittest
{
import core.exception : AssertError;
import std.string;
assertThrown!StringException(enforce!StringException(false, "Error!"));
//Exception is the default.
assertThrown(enforce!StringException(false, "Error!"));
assert(collectExceptionMsg!AssertError(assertThrown!StringException(
enforce!StringException(true, "Error!"))) ==
`assertThrown failed: No StringException was thrown.`);
}
unittest
{
import core.exception : AssertError;
void throwEx(Throwable t) { throw t; }
void nothrowEx() { }
try
{
assertThrown!Exception(throwEx(new Exception("It's an Exception")));
}
catch (AssertError) assert(0);
try
{
assertThrown!Exception(throwEx(new Exception("It's an Exception")),
"It's a message");
}
catch(AssertError) assert(0);
try
{
assertThrown!AssertError(throwEx(new AssertError("It's an AssertError",
__FILE__, __LINE__)));
}
catch (AssertError) assert(0);
try
{
assertThrown!AssertError(throwEx(new AssertError("It's an AssertError",
__FILE__, __LINE__)),
"It's a message");
}
catch (AssertError) assert(0);
{
bool thrown = false;
try
assertThrown!Exception(nothrowEx());
catch(AssertError)
thrown = true;
assert(thrown);
}
{
bool thrown = false;
try
assertThrown!Exception(nothrowEx(), "It's a message");
catch(AssertError)
thrown = true;
assert(thrown);
}
{
bool thrown = false;
try
assertThrown!AssertError(nothrowEx());
catch(AssertError)
thrown = true;
assert(thrown);
}
{
bool thrown = false;
try
assertThrown!AssertError(nothrowEx(), "It's a message");
catch(AssertError)
thrown = true;
assert(thrown);
}
}
/++
Enforces that the given value is true.
Params:
value = The value to test.
E = Exception type to throw if the value evalues to false.
msg = The error message to put in the exception if it is thrown.
file = The source file of the caller.
line = The line number of the caller.
Returns: $(D value), if `cast(bool)value` is true. Otherwise,
$(D new Exception(msg)) is thrown.
Note:
$(D enforce) is used to throw exceptions and is therefore intended to
aid in error handling. It is $(I not) intended for verifying the logic
of your program. That is what $(D assert) is for. Also, do not use
$(D enforce) inside of contracts (i.e. inside of $(D in) and $(D out)
blocks and $(D invariant)s), because they will be compiled out when
compiling with $(I -release). Use $(D assert) in contracts.
Example:
--------------------
auto f = enforce(fopen("data.txt"));
auto line = readln(f);
enforce(line.length, "Expected a non-empty line.");
--------------------
+/
T enforce(E : Throwable = Exception, T)(T value, lazy const(char)[] msg = null, string file = __FILE__, size_t line = __LINE__)
if (is(typeof({ if (!value) {} })))
{
if (!value) bailOut!E(file, line, msg);
return value;
}
// Explicitly undocumented. It will be removed in August 2016. @@@DEPRECATED_2016-08@@@
deprecated("Use the overload of enforce that takes file and line as function arguments.")
T enforce(T, string file, size_t line = __LINE__)
(T value, lazy const(char)[] msg = null)
if (is(typeof({ if (!value) {} })))
{
if (!value) bailOut(file, line, msg);
return value;
}
/++
Enforces that the given value is true.
Params:
value = The value to test.
dg = The delegate to be called if the value evaluates to false.
file = The source file of the caller.
line = The line number of the caller.
Returns: $(D value), if `cast(bool)value` is true. Otherwise, the given
delegate is called.
The safety and purity of this function are inferred from $(D Dg)'s safety
and purity.
+/
T enforce(T, Dg, string file = __FILE__, size_t line = __LINE__)
(T value, scope Dg dg)
if (isSomeFunction!Dg && is(typeof( dg() )) &&
is(typeof({ if (!value) {} })))
{
if (!value) dg();
return value;
}
private void bailOut(E : Throwable = Exception)(string file, size_t line, in char[] msg)
{
static if (is(typeof(new E(string.init, string.init, size_t.init))))
{
throw new E(msg.ptr ? msg.idup : "Enforcement failed", file, line);
}
else static if (is(typeof(new E(string.init, size_t.init))))
{
throw new E(file, line);
}
else
{
static assert(0, "Expected this(string, string, size_t) or this(string, size_t)" ~
" constructor for " ~ __traits(identifier, E));
}
}
unittest
{
assert (enforce(123) == 123);
try
{
enforce(false, "error");
assert (false);
}
catch (Exception e)
{
assert (e.msg == "error");
assert (e.file == __FILE__);
assert (e.line == __LINE__-7);
}
}
unittest
{
// Issue 10510
extern(C) void cFoo() { }
enforce(false, &cFoo);
}
// purity and safety inference test
unittest
{
import std.meta : AliasSeq;
foreach (EncloseSafe; AliasSeq!(false, true))
foreach (EnclosePure; AliasSeq!(false, true))
{
foreach (BodySafe; AliasSeq!(false, true))
foreach (BodyPure; AliasSeq!(false, true))
{
enum code =
"delegate void() " ~
(EncloseSafe ? "@safe " : "") ~
(EnclosePure ? "pure " : "") ~
"{ enforce(true, { " ~
"int n; " ~
(BodySafe ? "" : "auto p = &n + 10; " ) ~ // unsafe code
(BodyPure ? "" : "static int g; g = 10; ") ~ // impure code
"}); " ~
"}";
enum expect =
(BodySafe || !EncloseSafe) && (!EnclosePure || BodyPure);
version(none)
pragma(msg, "safe = ", EncloseSafe?1:0, "/", BodySafe?1:0, ", ",
"pure = ", EnclosePure?1:0, "/", BodyPure?1:0, ", ",
"expect = ", expect?"OK":"NG", ", ",
"code = ", code);
static assert(__traits(compiles, mixin(code)()) == expect);
}
}
}
// Test for bugzilla 8637
unittest
{
struct S
{
static int g;
~this() {} // impure & unsafe destructor
bool opCast(T:bool)() {
int* p = cast(int*)0; // unsafe operation
int n = g; // impure operation
return true;
}
}
S s;
enforce(s);
enforce(s, {});
enforce(s, new Exception(""));
errnoEnforce(s);
alias E1 = Exception;
static class E2 : Exception
{
this(string fn, size_t ln) { super("", fn, ln); }
}
static class E3 : Exception
{
this(string msg) { super(msg, __FILE__, __LINE__); }
}
enforce!E1(s);
enforce!E2(s);
}
deprecated unittest
{
struct S
{
static int g;
~this() {} // impure & unsafe destructor
bool opCast(T:bool)() {
int* p = cast(int*)0; // unsafe operation
int n = g; // impure operation
return true;
}
}
S s;
enforce!(S, __FILE__, __LINE__)(s, "");
}
unittest
{
// Issue 14685
class E : Exception
{
this() { super("Not found"); }
}
static assert(!__traits(compiles, { enforce!E(false); }));
}
/++
Enforces that the given value is true.
Params:
value = The value to test.
ex = The exception to throw if the value evaluates to false.
Returns: $(D value), if `cast(bool)value` is true. Otherwise, $(D ex) is
thrown.
Example:
--------------------
auto f = enforce(fopen("data.txt"));
auto line = readln(f);
enforce(line.length, new IOException); // expect a non-empty line
--------------------
+/
T enforce(T)(T value, lazy Throwable ex)
{
if (!value) throw ex();
return value;
}
unittest
{
assertNotThrown(enforce(true, new Exception("this should not be thrown")));
assertThrown(enforce(false, new Exception("this should be thrown")));
}
/++
Enforces that the given value is true, throwing an `ErrnoException` if it
is not.
Params:
value = The value to test.
msg = The message to include in the `ErrnoException` if it is thrown.
Returns: $(D value), if `cast(bool)value` is true. Otherwise,
$(D new ErrnoException(msg)) is thrown. It is assumed that the last
operation set $(D errno) to an error code corresponding with the failed
condition.
Example:
--------------------
auto f = errnoEnforce(fopen("data.txt"));
auto line = readln(f);
enforce(line.length); // expect a non-empty line
--------------------
+/
T errnoEnforce(T, string file = __FILE__, size_t line = __LINE__)
(T value, lazy string msg = null)
{
if (!value) throw new ErrnoException(msg, file, line);
return value;
}
/++
If $(D !value) is $(D false), $(D value) is returned. Otherwise,
$(D new E(msg, file, line)) is thrown. Or if $(D E) doesn't take a message
and can be constructed with $(D new E(file, line)), then
$(D new E(file, line)) will be thrown.
This is legacy name, it is recommended to use $(D enforce!E) instead.
Example:
--------------------
auto f = enforceEx!FileMissingException(fopen("data.txt"));
auto line = readln(f);
enforceEx!DataCorruptionException(line.length);
--------------------
+/
template enforceEx(E : Throwable)
if (is(typeof(new E("", __FILE__, __LINE__))))
{
/++ Ditto +/
T enforceEx(T)(T value, lazy string msg = "", string file = __FILE__, size_t line = __LINE__)
{
if (!value) throw new E(msg, file, line);
return value;
}
}
/++ Ditto +/
template enforceEx(E : Throwable)
if (is(typeof(new E(__FILE__, __LINE__))) && !is(typeof(new E("", __FILE__, __LINE__))))
{
/++ Ditto +/
T enforceEx(T)(T value, string file = __FILE__, size_t line = __LINE__)
{
if (!value) throw new E(file, line);
return value;
}
}
unittest
{
import std.array : empty;
import core.exception : OutOfMemoryError;
assertNotThrown(enforceEx!Exception(true));
assertNotThrown(enforceEx!Exception(true, "blah"));
assertNotThrown(enforceEx!OutOfMemoryError(true));
{
auto e = collectException(enforceEx!Exception(false));
assert(e !is null);
assert(e.msg.empty);
assert(e.file == __FILE__);
assert(e.line == __LINE__ - 4);
}
{
auto e = collectException(enforceEx!Exception(false, "hello", "file", 42));
assert(e !is null);
assert(e.msg == "hello");
assert(e.file == "file");
assert(e.line == 42);
}
{
auto e = collectException!Error(enforceEx!OutOfMemoryError(false));
assert(e !is null);
assert(e.msg == "Memory allocation failed");
assert(e.file == __FILE__);
assert(e.line == __LINE__ - 4);
}
{
auto e = collectException!Error(enforceEx!OutOfMemoryError(false, "file", 42));
assert(e !is null);
assert(e.msg == "Memory allocation failed");
assert(e.file == "file");
assert(e.line == 42);
}
static assert(!is(typeof(enforceEx!int(true))));
}
unittest
{
alias enf = enforceEx!Exception;
assertNotThrown(enf(true));
assertThrown(enf(false, "blah"));
}
/++
Catches and returns the exception thrown from the given expression.
If no exception is thrown, then null is returned and $(D result) is
set to the result of the expression.
Note that while $(D collectException) $(I can) be used to collect any
$(D Throwable) and not just $(D Exception)s, it is generally ill-advised to
catch anything that is neither an $(D Exception) nor a type derived from
$(D Exception). So, do not use $(D collectException) to collect
non-$(D Exception)s unless you're sure that that's what you really want to
do.
Params:
T = The type of exception to catch.
expression = The expression which may throw an exception.
result = The result of the expression if no exception is thrown.
+/
T collectException(T = Exception, E)(lazy E expression, ref E result)
{
try
{
result = expression();
}
catch (T e)
{
return e;
}
return null;
}
///
unittest
{
int b;
int foo() { throw new Exception("blah"); }
assert(collectException(foo(), b));
int[] a = new int[3];
import core.exception : RangeError;
assert(collectException!RangeError(a[4], b));
}
/++
Catches and returns the exception thrown from the given expression.
If no exception is thrown, then null is returned. $(D E) can be
$(D void).
Note that while $(D collectException) $(I can) be used to collect any
$(D Throwable) and not just $(D Exception)s, it is generally ill-advised to
catch anything that is neither an $(D Exception) nor a type derived from
$(D Exception). So, do not use $(D collectException) to collect
non-$(D Exception)s unless you're sure that that's what you really want to
do.
Params:
T = The type of exception to catch.
expression = The expression which may throw an exception.
+/
T collectException(T : Throwable = Exception, E)(lazy E expression)
{
try
{
expression();
}
catch (T t)
{
return t;
}
return null;
}
unittest
{
int foo() { throw new Exception("blah"); }
assert(collectException(foo()));
}
/++
Catches the exception thrown from the given expression and returns the
msg property of that exception. If no exception is thrown, then null is
returned. $(D E) can be $(D void).
If an exception is thrown but it has an empty message, then
$(D emptyExceptionMsg) is returned.
Note that while $(D collectExceptionMsg) $(I can) be used to collect any
$(D Throwable) and not just $(D Exception)s, it is generally ill-advised to
catch anything that is neither an $(D Exception) nor a type derived from
$(D Exception). So, do not use $(D collectExceptionMsg) to collect
non-$(D Exception)s unless you're sure that that's what you really want to
do.
Params:
T = The type of exception to catch.
expression = The expression which may throw an exception.
+/
string collectExceptionMsg(T = Exception, E)(lazy E expression)
{
import std.array : empty;
try
{
expression();
return cast(string)null;
}
catch(T e)
return e.msg.empty ? emptyExceptionMsg : e.msg;
}
///
unittest
{
void throwFunc() { throw new Exception("My Message."); }
assert(collectExceptionMsg(throwFunc()) == "My Message.");
void nothrowFunc() {}
assert(collectExceptionMsg(nothrowFunc()) is null);
void throwEmptyFunc() { throw new Exception(""); }
assert(collectExceptionMsg(throwEmptyFunc()) == emptyExceptionMsg);
}
/++
Value that collectExceptionMsg returns when it catches an exception
with an empty exception message.
+/
enum emptyExceptionMsg = "<Empty Exception Message>";
/**
* Casts a mutable array to an immutable array in an idiomatic
* manner. Technically, $(D assumeUnique) just inserts a cast,
* but its name documents assumptions on the part of the
* caller. $(D assumeUnique(arr)) should only be called when
* there are no more active mutable aliases to elements of $(D
* arr). To strengthen this assumption, $(D assumeUnique(arr))
* also clears $(D arr) before returning. Essentially $(D
* assumeUnique(arr)) indicates commitment from the caller that there
* is no more mutable access to any of $(D arr)'s elements
* (transitively), and that all future accesses will be done through
* the immutable array returned by $(D assumeUnique).
*
* Typically, $(D assumeUnique) is used to return arrays from
* functions that have allocated and built them.
*
* Params:
* array = The array to cast to immutable.
*
* Returns: The immutable array.
*
* Example:
*
* ----
* string letters()
* {
* char[] result = new char['z' - 'a' + 1];
* foreach (i, ref e; result)
* {
* e = cast(char)('a' + i);
* }
* return assumeUnique(result);
* }
* ----
*
* The use in the example above is correct because $(D result)
* was private to $(D letters) and is inaccessible in writing
* after the function returns. The following example shows an
* incorrect use of $(D assumeUnique).
*
* Bad:
*
* ----
* private char[] buffer;
* string letters(char first, char last)
* {
* if (first >= last) return null; // fine
* auto sneaky = buffer;
* sneaky.length = last - first + 1;
* foreach (i, ref e; sneaky)
* {
* e = cast(char)('a' + i);
* }
* return assumeUnique(sneaky); // BAD
* }
* ----
*
* The example above wreaks havoc on client code because it is
* modifying arrays that callers considered immutable. To obtain an
* immutable array from the writable array $(D buffer), replace
* the last line with:
* ----
* return to!(string)(sneaky); // not that sneaky anymore
* ----
*
* The call will duplicate the array appropriately.
*
* Note that checking for uniqueness during compilation is
* possible in certain cases, especially when a function is
* marked as a pure function. The following example does not
* need to call assumeUnique because the compiler can infer the
* uniqueness of the array in the pure function:
* ----
* string letters() pure
* {
* char[] result = new char['z' - 'a' + 1];
* foreach (i, ref e; result)
* {
* e = cast(char)('a' + i);
* }
* return result;
* }
* ----
*
* For more on infering uniqueness see the $(B unique) and
* $(B lent) keywords in the
* $(WEB archjava.fluid.cs.cmu.edu/papers/oopsla02.pdf, ArchJava)
* language.
*
* The downside of using $(D assumeUnique)'s
* convention-based usage is that at this time there is no
* formal checking of the correctness of the assumption;
* on the upside, the idiomatic use of $(D assumeUnique) is
* simple and rare enough to be tolerable.
*
*/
immutable(T)[] assumeUnique(T)(T[] array) pure nothrow
{
return .assumeUnique(array); // call ref version
}
/// ditto
immutable(T)[] assumeUnique(T)(ref T[] array) pure nothrow
{
auto result = cast(immutable(T)[]) array;
array = null;
return result;
}
unittest
{
int[] arr = new int[1];
auto arr1 = assumeUnique(arr);
assert(is(typeof(arr1) == immutable(int)[]) && arr == null);
}
immutable(T[U]) assumeUnique(T, U)(ref T[U] array) pure nothrow
{
auto result = cast(immutable(T[U])) array;
array = null;
return result;
}
// @@@BUG@@@
version(none) unittest
{
int[string] arr = ["a":1];
auto arr1 = assumeUnique(arr);
assert(is(typeof(arr1) == immutable(int[string])) && arr == null);
}
/**
* Wraps a possibly-throwing expression in a $(D nothrow) wrapper so that it
* can be called by a $(D nothrow) function.
*
* This wrapper function documents commitment on the part of the caller that
* the appropriate steps have been taken to avoid whatever conditions may
* trigger an exception during the evaluation of $(D expr). If it turns out
* that the expression $(I does) throw at runtime, the wrapper will throw an
* $(D AssertError).
*
* (Note that $(D Throwable) objects such as $(D AssertError) that do not
* subclass $(D Exception) may be thrown even from $(D nothrow) functions,
* since they are considered to be serious runtime problems that cannot be
* recovered from.)
*
* Params:
* expr = The expression asserted not to throw.
* msg = The message to include in the `AssertError` if the assumption turns
* out to be false.
* file = The source file name of the caller.
* line = The line number of the caller.
*
* Returns:
* The value of `expr`, if any.
*/
T assumeWontThrow(T)(lazy T expr,
string msg = null,
string file = __FILE__,
size_t line = __LINE__) nothrow
{
import core.exception : AssertError;
try
{
return expr;
}
catch(Exception e)
{
import std.range.primitives : empty;
immutable tail = msg.empty ? "." : ": " ~ msg;
throw new AssertError("assumeWontThrow failed: Expression did throw" ~
tail, file, line);
}
}
///
unittest
{
import std.math : sqrt;
// This function may throw.
int squareRoot(int x)
{
if (x < 0)
throw new Exception("Tried to take root of negative number");
return cast(int)sqrt(cast(double)x);
}
// This function never throws.
int computeLength(int x, int y) nothrow
{
// Since x*x + y*y is always positive, we can safely assume squareRoot
// won't throw, and use it to implement this nothrow function. If it
// does throw (e.g., if x*x + y*y overflows a 32-bit value), then the
// program will terminate.
return assumeWontThrow(squareRoot(x*x + y*y));
}
assert(computeLength(3, 4) == 5);
}
unittest
{
import core.exception : AssertError;
void alwaysThrows()
{
throw new Exception("I threw up");
}
void bad() nothrow
{
assumeWontThrow(alwaysThrows());
}
assertThrown!AssertError(bad());
}
/**
Checks whether a given source object contains pointers or references to a given
target object.
Params:
source = The source object
target = The target object
Returns: $(D true) if $(D source)'s representation embeds a pointer
that points to $(D target)'s representation or somewhere inside
it.
If $(D source) is or contains a dynamic array, then, then these functions will check
if there is overlap between the dynamic array and $(D target)'s representation.
If $(D source) is a class, then it will be handled as a pointer.
If $(D target) is a pointer, a dynamic array or a class, then these functions will only
check if $(D source) points to $(D target), $(I not) what $(D target) references.
If $(D source) is or contains a union, then there may be either false positives or
false negatives:
$(D doesPointTo) will return $(D true) if it is absolutely certain
$(D source) points to $(D target). It may produce false negatives, but never
false positives. This function should be prefered when trying to validate
input data.
$(D mayPointTo) will return $(D false) if it is absolutely certain
$(D source) does not point to $(D target). It may produce false positives, but never
false negatives. This function should be prefered for defensively choosing a
code path.
Note: Evaluating $(D doesPointTo(x, x)) checks whether $(D x) has
internal pointers. This should only be done as an assertive test,
as the language is free to assume objects don't have internal pointers
(TDPL 7.1.3.5).
*/
bool doesPointTo(S, T, Tdummy=void)(auto ref const S source, ref const T target) @trusted pure nothrow
if (__traits(isRef, source) || isDynamicArray!S ||
isPointer!S || is(S == class))
{
static if (isPointer!S || is(S == class) || is(S == interface))
{
const m = *cast(void**) &source;
const b = cast(void*) &target;
const e = b + target.sizeof;
return b <= m && m < e;
}
else static if (is(S == struct) || is(S == union))
{
foreach (i, Subobj; typeof(source.tupleof))
static if (!isUnionAliased!(S, i))
if (doesPointTo(source.tupleof[i], target)) return true;
return false;
}
else static if (isStaticArray!S)
{
foreach (size_t i; 0 .. S.length)
if (doesPointTo(source[i], target)) return true;
return false;
}
else static if (isDynamicArray!S)
{
import std.array : overlap;
return overlap(cast(void[])source, cast(void[])(&target)[0 .. 1]).length != 0;
}
else
{
return false;
}
}
// for shared objects
/// ditto
bool doesPointTo(S, T)(auto ref const shared S source, ref const shared T target) @trusted pure nothrow
{
return doesPointTo!(shared S, shared T, void)(source, target);
}
/// ditto
bool mayPointTo(S, T, Tdummy=void)(auto ref const S source, ref const T target) @trusted pure nothrow
if (__traits(isRef, source) || isDynamicArray!S ||
isPointer!S || is(S == class))
{
static if (isPointer!S || is(S == class) || is(S == interface))
{
const m = *cast(void**) &source;
const b = cast(void*) &target;
const e = b + target.sizeof;
return b <= m && m < e;
}
else static if (is(S == struct) || is(S == union))
{
foreach (i, Subobj; typeof(source.tupleof))
if (mayPointTo(source.tupleof[i], target)) return true;
return false;
}
else static if (isStaticArray!S)
{
foreach (size_t i; 0 .. S.length)
if (mayPointTo(source[i], target)) return true;
return false;
}
else static if (isDynamicArray!S)
{
import std.array : overlap;
return overlap(cast(void[])source, cast(void[])(&target)[0 .. 1]).length != 0;
}
else
{
return false;
}
}
// for shared objects
/// ditto
bool mayPointTo(S, T)(auto ref const shared S source, ref const shared T target) @trusted pure nothrow
{
return mayPointTo!(shared S, shared T, void)(source, target);
}
/// Pointers
unittest
{
int i = 0;
int* p = null;
assert(!p.doesPointTo(i));
p = &i;
assert( p.doesPointTo(i));
}
/// Structs and Unions
unittest
{
struct S
{
int v;
int* p;
}
int i;
auto s = S(0, &i);
// structs and unions "own" their members
// pointsTo will answer true if one of the members pointsTo.
assert(!s.doesPointTo(s.v)); //s.v is just v member of s, so not pointed.
assert( s.p.doesPointTo(i)); //i is pointed by s.p.
assert( s .doesPointTo(i)); //which means i is pointed by s itself.
// Unions will behave exactly the same. Points to will check each "member"
// individually, even if they share the same memory
}
/// Arrays (dynamic and static)
unittest
{
int i;
int[] slice = [0, 1, 2, 3, 4];
int[5] arr = [0, 1, 2, 3, 4];
int*[] slicep = [&i];
int*[1] arrp = [&i];
// A slice points to all of its members:
assert( slice.doesPointTo(slice[3]));
assert(!slice[0 .. 2].doesPointTo(slice[3])); // Object 3 is outside of the
// slice [0 .. 2]
// Note that a slice will not take into account what its members point to.
assert( slicep[0].doesPointTo(i));
assert(!slicep .doesPointTo(i));
// static arrays are objects that own their members, just like structs:
assert(!arr.doesPointTo(arr[0])); // arr[0] is just a member of arr, so not
// pointed.
assert( arrp[0].doesPointTo(i)); // i is pointed by arrp[0].
assert( arrp .doesPointTo(i)); // which means i is pointed by arrp
// itself.
// Notice the difference between static and dynamic arrays:
assert(!arr .doesPointTo(arr[0]));
assert( arr[].doesPointTo(arr[0]));
assert( arrp .doesPointTo(i));
assert(!arrp[].doesPointTo(i));
}
/// Classes
unittest
{
class C
{
this(int* p){this.p = p;}
int* p;
}
int i;
C a = new C(&i);
C b = a;
// Classes are a bit particular, as they are treated like simple pointers
// to a class payload.
assert( a.p.doesPointTo(i)); // a.p points to i.
assert(!a .doesPointTo(i)); // Yet a itself does not point i.
//To check the class payload itself, iterate on its members:
()
{
foreach (index, _; Fields!C)
if (doesPointTo(a.tupleof[index], i))
return;
assert(0);
}();
// To check if a class points a specific payload, a direct memmory check
// can be done:
auto aLoc = cast(ubyte[__traits(classInstanceSize, C)]*) a;
assert(b.doesPointTo(*aLoc)); // b points to where a is pointing
}
unittest
{
struct S1 { int a; S1 * b; }
S1 a1;
S1 * p = &a1;
assert(doesPointTo(p, a1));
S1 a2;
a2.b = &a1;
assert(doesPointTo(a2, a1));
struct S3 { int[10] a; }
S3 a3;
auto a4 = a3.a[2 .. 3];
assert(doesPointTo(a4, a3));
auto a5 = new double[4];
auto a6 = a5[1 .. 2];
assert(!doesPointTo(a5, a6));
auto a7 = new double[3];
auto a8 = new double[][1];
a8[0] = a7;
assert(!doesPointTo(a8[0], a8[0]));
// don't invoke postblit on subobjects
{
static struct NoCopy { this(this) { assert(0); } }
static struct Holder { NoCopy a, b, c; }
Holder h;
cast(void)doesPointTo(h, h);
}
shared S3 sh3;
shared sh3sub = sh3.a[];
assert(doesPointTo(sh3sub, sh3));
int[] darr = [1, 2, 3, 4];
//dynamic arrays don't point to each other, or slices of themselves
assert(!doesPointTo(darr, darr));
assert(!doesPointTo(darr[0 .. 1], darr));
//But they do point their elements
foreach (i; 0 .. 4)
assert(doesPointTo(darr, darr[i]));
assert(doesPointTo(darr[0..3], darr[2]));
assert(!doesPointTo(darr[0..3], darr[3]));
}
unittest
{
//tests with static arrays
//Static arrays themselves are just objects, and don't really *point* to anything.
//They aggregate their contents, much the same way a structure aggregates its attributes.
//*However* The elements inside the static array may themselves point to stuff.
//Standard array
int[2] k;
assert(!doesPointTo(k, k)); //an array doesn't point to itself
//Technically, k doesn't point its elements, although it does alias them
assert(!doesPointTo(k, k[0]));
assert(!doesPointTo(k, k[1]));
//But an extracted slice will point to the same array.
assert(doesPointTo(k[], k));
assert(doesPointTo(k[], k[1]));
//An array of pointers
int*[2] pp;
int a;
int b;
pp[0] = &a;
assert( doesPointTo(pp, a)); //The array contains a pointer to a
assert(!doesPointTo(pp, b)); //The array does NOT contain a pointer to b
assert(!doesPointTo(pp, pp)); //The array does not point itslef
//A struct containing a static array of pointers
static struct S
{
int*[2] p;
}
S s;
s.p[0] = &a;
assert( doesPointTo(s, a)); //The struct contains an array that points a
assert(!doesPointTo(s, b)); //But doesn't point b
assert(!doesPointTo(s, s)); //The struct doesn't actually point itslef.
//An array containing structs that have pointers
static struct SS
{
int* p;
}
SS[2] ss = [SS(&a), SS(null)];
assert( doesPointTo(ss, a)); //The array contains a struct that points to a
assert(!doesPointTo(ss, b)); //The array doesn't contains a struct that points to b
assert(!doesPointTo(ss, ss)); //The array doesn't point itself.
}
unittest //Unions
{
int i;
union U //Named union
{
size_t asInt = 0;
int* asPointer;
}
struct S
{
union //Anonymous union
{
size_t asInt = 0;
int* asPointer;
}
}
U u;
S s;
assert(!doesPointTo(u, i));
assert(!doesPointTo(s, i));
assert(!mayPointTo(u, i));
assert(!mayPointTo(s, i));
u.asPointer = &i;
s.asPointer = &i;
assert(!doesPointTo(u, i));
assert(!doesPointTo(s, i));
assert( mayPointTo(u, i));
assert( mayPointTo(s, i));
u.asInt = cast(size_t)&i;
s.asInt = cast(size_t)&i;
assert(!doesPointTo(u, i));
assert(!doesPointTo(s, i));
assert( mayPointTo(u, i));
assert( mayPointTo(s, i));
}
unittest //Classes
{
int i;
static class A
{
int* p;
}
A a = new A, b = a;
assert(!doesPointTo(a, b)); //a does not point to b
a.p = &i;
assert(!doesPointTo(a, i)); //a does not point to i
}
unittest //alias this test
{
static int i;
static int j;
struct S
{
int* p;
@property int* foo(){return &i;}
alias foo this;
}
assert(is(S : int*));
S s = S(&j);
assert(!doesPointTo(s, i));
assert( doesPointTo(s, j));
assert( doesPointTo(cast(int*)s, i));
assert(!doesPointTo(cast(int*)s, j));
}
unittest //more alias this opCast
{
void* p;
class A
{
void* opCast(T)() if (is(T == void*))
{
return p;
}
alias foo = opCast!(void*);
alias foo this;
}
assert(!doesPointTo(A.init, p));
assert(!mayPointTo(A.init, p));
}
// Explicitly undocumented. It will be removed in May 2016. @@@DEPRECATED_2016-05@@@
deprecated ("pointsTo is ambiguous. Please use either of doesPointTo or mayPointTo")
alias pointsTo = doesPointTo;
/+
Returns true if the field at index $(D i) in ($D T) shares its address with another field.
Note: This does not merelly check if the field is a member of an union, but also that
it is not a single child.
+/
package enum isUnionAliased(T, size_t i) = isUnionAliasedImpl!T(T.tupleof[i].offsetof);
private bool isUnionAliasedImpl(T)(size_t offset)
{
int count = 0;
foreach (i, U; typeof(T.tupleof))
if (T.tupleof[i].offsetof == offset)
++count;
return count >= 2;
}
//
unittest
{
static struct S
{
int a0; //Not aliased
union
{
int a1; //Not aliased
}
union
{
int a2; //Aliased
int a3; //Aliased
}
union A4
{
int b0; //Not aliased
}
A4 a4;
union A5
{
int b0; //Aliased
int b1; //Aliased
}
A5 a5;
}
static assert(!isUnionAliased!(S, 0)); //a0;
static assert(!isUnionAliased!(S, 1)); //a1;
static assert( isUnionAliased!(S, 2)); //a2;
static assert( isUnionAliased!(S, 3)); //a3;
static assert(!isUnionAliased!(S, 4)); //a4;
static assert(!isUnionAliased!(S.A4, 0)); //a4.b0;
static assert(!isUnionAliased!(S, 5)); //a5;
static assert( isUnionAliased!(S.A5, 0)); //a5.b0;
static assert( isUnionAliased!(S.A5, 1)); //a5.b1;
}
/*********************
* Thrown if errors that set $(D errno) occur.
*/
class ErrnoException : Exception
{
final @property uint errno() { return _errno; } /// Operating system error code.
private uint _errno;
this(string msg, string file = null, size_t line = 0) @trusted
{
_errno = .errno;
version (CRuntime_Glibc)
{
char[1024] buf = void;
auto s = core.stdc.string.strerror_r(errno, buf.ptr, buf.length);
}
else
{
auto s = core.stdc.string.strerror(errno);
}
super(msg ~ " (" ~ s[0..s.strlen].idup ~ ")", file, line);
}
}
/++
ML-style functional exception handling. Runs the supplied expression and
returns its result. If the expression throws a $(D Throwable), runs the
supplied error handler instead and return its result. The error handler's
type must be the same as the expression's type.
Params:
E = The type of $(D Throwable)s to catch. Defaults to $(D Exception)
T1 = The type of the expression.
T2 = The return type of the error handler.
expression = The expression to run and return its result.
errorHandler = The handler to run if the expression throwed.
Returns:
expression, if it does not throw. Otherwise, returns the result of
errorHandler.
Example:
--------------------
//Revert to a default value upon an error:
assert("x".to!int().ifThrown(0) == 0);
--------------------
You can also chain multiple calls to ifThrown, each capturing errors from the
entire preceding expression.
Example:
--------------------
//Chaining multiple calls to ifThrown to attempt multiple things in a row:
string s="true";
assert(s.to!int().
ifThrown(cast(int)s.to!double()).
ifThrown(cast(int)s.to!bool())
== 1);
//Respond differently to different types of errors
assert(enforce("x".to!int() < 1).to!string()
.ifThrown!ConvException("not a number")
.ifThrown!Exception("number too small")
== "not a number");
--------------------
The expression and the errorHandler must have a common type they can both
be implicitly casted to, and that type will be the type of the compound
expression.
Example:
--------------------
//null and new Object have a common type(Object).
static assert(is(typeof(null.ifThrown(new Object())) == Object));
static assert(is(typeof((new Object()).ifThrown(null)) == Object));
//1 and new Object do not have a common type.
static assert(!__traits(compiles, 1.ifThrown(new Object())));
static assert(!__traits(compiles, (new Object()).ifThrown(1)));
--------------------
If you need to use the actual thrown exception, you can use a delegate.
Example:
--------------------
//Use a lambda to get the thrown object.
assert("%s".format().ifThrown!Exception(e => e.classinfo.name) == "std.format.FormatException");
--------------------
+/
//lazy version
CommonType!(T1, T2) ifThrown(E : Throwable = Exception, T1, T2)(lazy scope T1 expression, lazy scope T2 errorHandler)
{
static assert(!is(typeof(return) == void),
"The error handler's return value(" ~ T2.stringof ~ ") does not have a common type with the expression(" ~ T1.stringof ~ ").");
try
{
return expression();
}
catch(E)
{
return errorHandler();
}
}
///ditto
//delegate version
CommonType!(T1, T2) ifThrown(E : Throwable, T1, T2)(lazy scope T1 expression, scope T2 delegate(E) errorHandler)
{
static assert(!is(typeof(return) == void),
"The error handler's return value(" ~ T2.stringof ~ ") does not have a common type with the expression(" ~ T1.stringof ~ ").");
try
{
return expression();
}
catch(E e)
{
return errorHandler(e);
}
}
///ditto
//delegate version, general overload to catch any Exception
CommonType!(T1, T2) ifThrown(T1, T2)(lazy scope T1 expression, scope T2 delegate(Exception) errorHandler)
{
static assert(!is(typeof(return) == void),
"The error handler's return value(" ~ T2.stringof ~ ") does not have a common type with the expression(" ~ T1.stringof ~ ").");
try
{
return expression();
}
catch(Exception e)
{
return errorHandler(e);
}
}
//Verify Examples
unittest
{
import std.string;
import std.conv;
//Revert to a default value upon an error:
assert("x".to!int().ifThrown(0) == 0);
//Chaining multiple calls to ifThrown to attempt multiple things in a row:
string s="true";
assert(s.to!int().
ifThrown(cast(int)s.to!double()).
ifThrown(cast(int)s.to!bool())
== 1);
//Respond differently to different types of errors
assert(enforce("x".to!int() < 1).to!string()
.ifThrown!ConvException("not a number")
.ifThrown!Exception("number too small")
== "not a number");
//null and new Object have a common type(Object).
static assert(is(typeof(null.ifThrown(new Object())) == Object));
static assert(is(typeof((new Object()).ifThrown(null)) == Object));
//1 and new Object do not have a common type.
static assert(!__traits(compiles, 1.ifThrown(new Object())));
static assert(!__traits(compiles, (new Object()).ifThrown(1)));
//Use a lambda to get the thrown object.
assert("%s".format().ifThrown(e => e.classinfo.name) == "std.format.FormatException");
}
unittest
{
import std.string;
import std.conv;
import core.exception;
//Basic behaviour - all versions.
assert("1".to!int().ifThrown(0) == 1);
assert("x".to!int().ifThrown(0) == 0);
assert("1".to!int().ifThrown!ConvException(0) == 1);
assert("x".to!int().ifThrown!ConvException(0) == 0);
assert("1".to!int().ifThrown(e=>0) == 1);
assert("x".to!int().ifThrown(e=>0) == 0);
static if (__traits(compiles, 0.ifThrown!Exception(e => 0))) //This will only work with a fix that was not yet pulled
{
assert("1".to!int().ifThrown!ConvException(e=>0) == 1);
assert("x".to!int().ifThrown!ConvException(e=>0) == 0);
}
//Exceptions other than stated not caught.
assert("x".to!int().ifThrown!StringException(0).collectException!ConvException() !is null);
static if (__traits(compiles, 0.ifThrown!Exception(e => 0))) //This will only work with a fix that was not yet pulled
{
assert("x".to!int().ifThrown!StringException(e=>0).collectException!ConvException() !is null);
}
//Default does not include errors.
int throwRangeError() { throw new RangeError; }
assert(throwRangeError().ifThrown(0).collectException!RangeError() !is null);
assert(throwRangeError().ifThrown(e=>0).collectException!RangeError() !is null);
//Incompatible types are not accepted.
static assert(!__traits(compiles, 1.ifThrown(new Object())));
static assert(!__traits(compiles, (new Object()).ifThrown(1)));
static assert(!__traits(compiles, 1.ifThrown(e=>new Object())));
static assert(!__traits(compiles, (new Object()).ifThrown(e=>1)));
}
version(unittest) package
@property void assertCTFEable(alias dg)()
{
static assert({ cast(void)dg(); return true; }());
cast(void)dg();
}
/** This $(D enum) is used to select the primitives of the range to handle by the
$(LREF handle) range wrapper. The values of the $(D enum) can be $(D OR)'d to
select multiple primitives to be handled.
$(D RangePrimitive.access) is a shortcut for the access primitives; $(D front),
$(D back) and $(D opIndex).
$(D RangePrimitive.pop) is a shortcut for the mutating primitives;
$(D popFront) and $(D popBack).
*/
enum RangePrimitive
{
front = 0b00_0000_0001, ///
back = 0b00_0000_0010, /// Ditto
popFront = 0b00_0000_0100, /// Ditto
popBack = 0b00_0000_1000, /// Ditto
empty = 0b00_0001_0000, /// Ditto
save = 0b00_0010_0000, /// Ditto
length = 0b00_0100_0000, /// Ditto
opDollar = 0b00_1000_0000, /// Ditto
opIndex = 0b01_0000_0000, /// Ditto
opSlice = 0b10_0000_0000, /// Ditto
access = front | back | opIndex, /// Ditto
pop = popFront | popBack, /// Ditto
}
/** Handle exceptions thrown from range primitives.
Use the $(LREF RangePrimitive) enum to specify which primitives to _handle.
Multiple range primitives can be handled at once by using the $(D OR) operator
or the pseudo-primitives $(D RangePrimitive.access) and $(D RangePrimitive.pop).
All handled primitives must have return types or values compatible with the
user-supplied handler.
Params:
E = The type of $(D Throwable) to _handle.
primitivesToHandle = Set of range primitives to _handle.
handler = The callable that is called when a handled primitive throws a
$(D Throwable) of type $(D E). The handler must accept arguments of
the form $(D E, ref IRange) and its return value is used as the primitive's
return value whenever $(D E) is thrown. For $(D opIndex), the handler can
optionally recieve a third argument; the index that caused the exception.
input = The range to _handle.
Returns: A wrapper $(D struct) that preserves the range interface of $(D input).
opSlice:
Infinite ranges with slicing support must return an instance of
$(XREF range, Take) when sliced with a specific lower and upper
bound (see $(XREF_PACK range,primitives,hasSlicing)); $(D handle) deals with
this by $(D take)ing 0 from the return value of the handler function and
returning that when an exception is caught.
*/
auto handle(E : Throwable, RangePrimitive primitivesToHandle, alias handler, Range)(Range input)
if (isInputRange!Range)
{
static struct Handler
{
private Range range;
static if (isForwardRange!Range)
{
@property typeof(this) save()
{
static if (primitivesToHandle & RangePrimitive.save)
{
try
{
return typeof(this)(range.save);
}
catch(E exception)
{
return typeof(this)(handler(exception, this.range));
}
}
else
return typeof(this)(range.save);
}
}
static if (isInfinite!Range)
{
enum bool empty = false;
}
else
{
@property bool empty()
{
static if (primitivesToHandle & RangePrimitive.empty)
{
try
{
return this.range.empty;
}
catch(E exception)
{
return handler(exception, this.range);
}
}
else
return this.range.empty;
}
}
@property auto ref front()
{
static if (primitivesToHandle & RangePrimitive.front)
{
try
{
return this.range.front;
}
catch(E exception)
{
return handler(exception, this.range);
}
}
else
return this.range.front;
}
void popFront()
{
static if (primitivesToHandle & RangePrimitive.popFront)
{
try
{
this.range.popFront();
}
catch(E exception)
{
handler(exception, this.range);
}
}
else
this.range.popFront();
}
static if (isBidirectionalRange!Range)
{
@property auto ref back()
{
static if (primitivesToHandle & RangePrimitive.back)
{
try
{
return this.range.back;
}
catch(E exception)
{
return handler(exception, this.range);
}
}
else
return this.range.back;
}
void popBack()
{
static if (primitivesToHandle & RangePrimitive.popBack)
{
try
{
this.range.popBack();
}
catch(E exception)
{
handler(exception, this.range);
}
}
else
this.range.popBack();
}
}
static if (isRandomAccessRange!Range)
{
auto ref opIndex(size_t index)
{
static if (primitivesToHandle & RangePrimitive.opIndex)
{
try
{
return this.range[index];
}
catch(E exception)
{
static if (__traits(compiles, handler(exception, this.range, index)))
return handler(exception, this.range, index);
else
return handler(exception, this.range);
}
}
else
return this.range[index];
}
}
static if (hasLength!Range)
{
@property auto length()
{
static if (primitivesToHandle & RangePrimitive.length)
{
try
{
return this.range.length;
}
catch(E exception)
{
return handler(exception, this.range);
}
}
else
return this.range.length;
}
}
static if (hasSlicing!Range)
{
static if (hasLength!Range)
{
typeof(this) opSlice(size_t lower, size_t upper)
{
static if (primitivesToHandle & RangePrimitive.opSlice)
{
try
{
return typeof(this)(this.range[lower .. upper]);
}
catch(E exception)
{
return typeof(this)(handler(exception, this.range));
}
}
else
return typeof(this)(this.range[lower .. upper]);
}
}
else static if (is(typeof(Range.init[size_t.init .. $])))
{
static struct DollarToken {}
enum opDollar = DollarToken.init;
typeof(this) opSlice(size_t lower, DollarToken)
{
static if (primitivesToHandle & RangePrimitive.opSlice)
{
try
{
return typeof(this)(this.range[lower .. $]);
}
catch(E exception)
{
return typeof(this)(handler(exception, this.range));
}
}
else
return typeof(this)(this.range[lower .. $]);
}
Take!Handler opSlice(size_t lower, size_t upper)
{
static if (primitivesToHandle & RangePrimitive.opSlice)
{
try
{
return takeExactly(typeof(this)(this.range[lower .. $]), upper - 1);
}
catch(E exception)
{
return takeExactly(typeof(this)(handler(exception, this.range)), 0);
}
}
else
return takeExactly(typeof(this)(this.range[lower .. $]), upper - 1);
}
}
}
}
return Handler(input);
}
///
pure @safe unittest
{
import std.algorithm : equal, map, splitter;
import std.conv : to, ConvException;
auto s = "12,1337z32,54,2,7,9,1z,6,8";
// The next line composition will throw when iterated
// as some elements of the input do not convert to integer
auto r = s.splitter(',').map!(a => to!int(a));
// Substitute 0 for cases of ConvException
auto h = r.handle!(ConvException, RangePrimitive.front, (e, r) => 0);
assert(h.equal([12, 0, 54, 2, 7, 9, 0, 6, 8]));
}
///
pure @safe unittest
{
import std.algorithm : equal;
import std.range : retro;
import std.utf : UTFException;
auto str = "hello\xFFworld"; // 0xFF is an invalid UTF-8 code unit
auto handled = str.handle!(UTFException, RangePrimitive.access,
(e, r) => ' '); // Replace invalid code points with spaces
assert(handled.equal("hello world")); // `front` is handled,
assert(handled.retro.equal("dlrow olleh")); // as well as `back`
}
pure nothrow @safe unittest
{
static struct ThrowingRange
{
pure @safe:
@property bool empty()
{
throw new Exception("empty has thrown");
}
@property int front()
{
throw new Exception("front has thrown");
}
@property int back()
{
throw new Exception("back has thrown");
}
void popFront()
{
throw new Exception("popFront has thrown");
}
void popBack()
{
throw new Exception("popBack has thrown");
}
int opIndex(size_t)
{
throw new Exception("opIndex has thrown");
}
ThrowingRange opSlice(size_t, size_t)
{
throw new Exception("opSlice has thrown");
}
@property size_t length()
{
throw new Exception("length has thrown");
}
alias opDollar = length;
@property ThrowingRange save()
{
throw new Exception("save has thrown");
}
}
static assert(isInputRange!ThrowingRange);
static assert(isForwardRange!ThrowingRange);
static assert(isBidirectionalRange!ThrowingRange);
static assert(hasSlicing!ThrowingRange);
static assert(hasLength!ThrowingRange);
auto f = ThrowingRange();
auto fb = f.handle!(Exception, RangePrimitive.front | RangePrimitive.back,
(e, r) => -1)();
assert(fb.front == -1);
assert(fb.back == -1);
assertThrown(fb.popFront());
assertThrown(fb.popBack());
assertThrown(fb.empty);
assertThrown(fb.save);
assertThrown(fb[0]);
auto accessRange = f.handle!(Exception, RangePrimitive.access,
(e, r) => -1);
assert(accessRange.front == -1);
assert(accessRange.back == -1);
assert(accessRange[0] == -1);
assertThrown(accessRange.popFront());
assertThrown(accessRange.popBack());
auto pfb = f.handle!(Exception, RangePrimitive.pop, (e, r) => -1)();
pfb.popFront(); // this would throw otherwise
pfb.popBack(); // this would throw otherwise
auto em = f.handle!(Exception,
RangePrimitive.empty, (e, r) => false)();
assert(!em.empty);
auto arr = f.handle!(Exception,
RangePrimitive.opIndex, (e, r) => 1337)();
assert(arr[0] == 1337);
auto arr2 = f.handle!(Exception,
RangePrimitive.opIndex, (e, r, i) => i)();
assert(arr2[0] == 0);
assert(arr2[1337] == 1337);
auto save = f.handle!(Exception,
RangePrimitive.save,
function(Exception e, ref ThrowingRange r) {
return ThrowingRange();
})();
save.save;
auto slice = f.handle!(Exception,
RangePrimitive.opSlice, (e, r) => ThrowingRange())();
auto sliced = slice[0 .. 1337]; // this would throw otherwise
static struct Infinite
{
pure @safe:
enum bool empty = false;
int front() { assert(false); }
void popFront() { assert(false); }
Infinite save() @property { assert(false); }
static struct DollarToken {}
enum opDollar = DollarToken.init;
Take!Infinite opSlice(size_t, size_t) { assert(false); }
Infinite opSlice(size_t, DollarToken)
{
throw new Exception("opSlice has thrown");
}
}
static assert(isInputRange!Infinite);
static assert(isInfinite!Infinite);
static assert(hasSlicing!Infinite);
assertThrown(Infinite()[0 .. $]);
auto infinite = Infinite.init.handle!(Exception,
RangePrimitive.opSlice, (e, r) => Infinite())();
auto infSlice = infinite[0 .. $]; // this would throw otherwise
}