phobos/std/date.d
Daniel Murphy 1590a5cc38 Issue 6572 - Deprecate typedef
Remove use of deprecated typedef from phobos.  This mostly consists of changing typedef to alias, and disabling unittests that require typedef.  One change to std.registry is needed to work around a bug in typedef (6571).
2011-08-30 13:22:10 +10:00

1218 lines
31 KiB
D

// Written in the D programming language.
/**
* $(RED Deprecated. It will be removed in February 2012.
* Please use std.datetime instead.)
*
* Dates are represented in several formats. The date implementation
* revolves around a central type, $(D d_time), from which other
* formats are converted to and from. Dates are calculated using the
* Gregorian calendar.
*
* References: $(WEB wikipedia.org/wiki/Gregorian_calendar, Gregorian
* calendar (Wikipedia))
*
* Macros: WIKI = Phobos/StdDate
*
* Copyright: Copyright Digital Mars 2000 - 2009.
* License: <a href="http://www.boost.org/LICENSE_1_0.txt">Boost License 1.0</a>.
* Authors: $(WEB digitalmars.com, Walter Bright)
* Source: $(PHOBOSSRC std/_date.d)
*/
/* Copyright Digital Mars 2000 - 2009.
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*/
module std.date;
import std.conv, std.datebase, std.dateparse, std.exception, std.stdio;
import std.c.stdlib;
pragma(msg, "Notice: As of Phobos 2.055, std.date and std.dateparse have been " ~
"deprecated. They will be removed in February 2012. " ~
"Please use std.datetime instead.");
deprecated:
/**
* $(D d_time) is a signed arithmetic type giving the time elapsed
* since January 1, 1970. Negative values are for dates preceding
* 1970. The time unit used is Ticks. Ticks are milliseconds or
* smaller intervals.
*
* The usual arithmetic operations can be performed on d_time, such as adding,
* subtracting, etc. Elapsed time in Ticks can be computed by subtracting a
* starting d_time from an ending d_time.
*/
alias long d_time;
/**
* A value for d_time that does not represent a valid time.
*/
enum d_time d_time_nan = long.min;
/**
* Time broken down into its components.
*/
struct Date
{
int year = int.min; /// use int.min as "nan" year value
int month; /// 1..12
int day; /// 1..31
int hour; /// 0..23
int minute; /// 0..59
int second; /// 0..59
int ms; /// 0..999
int weekday; /// 0: not specified, 1..7: Sunday..Saturday
int tzcorrection = int.min; /// -1200..1200 correction in hours
/// Parse date out of string s[] and store it in this Date instance.
void parse(string s)
{
DateParse dp;
dp.parse(s, this);
}
}
enum
{
hoursPerDay = 24,
minutesPerHour = 60,
msPerMinute = 60 * 1000,
msPerHour = 60 * msPerMinute,
msPerDay = 86_400_000,
ticksPerMs = 1,
ticksPerSecond = 1000, /// Will be at least 1000
ticksPerMinute = ticksPerSecond * 60,
ticksPerHour = ticksPerMinute * 60,
ticksPerDay = ticksPerHour * 24,
}
deprecated alias ticksPerSecond TicksPerSecond;
deprecated alias ticksPerMs TicksPerMs;
deprecated alias ticksPerMinute TicksPerMinute;
deprecated alias ticksPerHour TicksPerHour;
deprecated alias ticksPerDay TicksPerDay;
deprecated
unittest
{
assert(ticksPerSecond == TicksPerSecond);
}
__gshared d_time localTZA = 0;
private immutable char[] daystr = "SunMonTueWedThuFriSat";
private immutable char[] monstr = "JanFebMarAprMayJunJulAugSepOctNovDec";
private immutable int[12] mdays =
[ 0,31,59,90,120,151,181,212,243,273,304,334 ];
/********************************
* Compute year and week [1..53] from t. The ISO 8601 week 1 is the first week
* of the year that includes January 4. Monday is the first day of the week.
* References:
* $(LINK2 http://en.wikipedia.org/wiki/ISO_8601, ISO 8601 (Wikipedia))
*/
void toISO8601YearWeek(d_time t, out int year, out int week)
{
year = yearFromTime(t);
auto yday = day(t) - dayFromYear(year);
/* Determine day of week Jan 4 falls on.
* Weeks begin on a Monday.
*/
auto d = dayFromYear(year);
auto w = (d + 3/*Jan4*/ + 3) % 7;
if (w < 0)
w += 7;
/* Find yday of beginning of ISO 8601 year
*/
auto ydaybeg = 3/*Jan4*/ - w;
/* Check if yday is actually the last week of the previous year
*/
if (yday < ydaybeg)
{
year -= 1;
week = 53;
return;
}
/* Check if yday is actually the first week of the next year
*/
if (yday >= 362) // possible
{ int d2;
int ydaybeg2;
d2 = dayFromYear(year + 1);
w = (d2 + 3/*Jan4*/ + 3) % 7;
if (w < 0)
w += 7;
//printf("w = %d\n", w);
ydaybeg2 = 3/*Jan4*/ - w;
if (d + yday >= d2 + ydaybeg2)
{
year += 1;
week = 1;
return;
}
}
week = (yday - ydaybeg) / 7 + 1;
}
/* ***********************************
* Divide time by divisor. Always round down, even if d is negative.
*/
pure d_time floor(d_time d, int divisor)
{
return (d < 0 ? d - divisor - 1 : d) / divisor;
}
int dmod(d_time n, d_time d)
{ d_time r;
r = n % d;
if (r < 0)
r += d;
assert(cast(int)r == r);
return cast(int)r;
}
/********************************
* Calculates the hour from time.
*
* Params:
* time = The time to compute the hour from.
* Returns:
* The calculated hour, 0..23.
*/
int hourFromTime(d_time time)
{
return dmod(floor(time, msPerHour), hoursPerDay);
}
/********************************
* Calculates the minute from time.
*
* Params:
* time = The time to compute the minute from.
* Returns:
* The calculated minute, 0..59.
*/
int minFromTime(d_time time)
{
return dmod(floor(time, msPerMinute), minutesPerHour);
}
/********************************
* Calculates the second from time.
*
* Params:
* time = The time to compute the second from.
* Returns:
* The calculated second, 0..59.
*/
int secFromTime(d_time time)
{
return dmod(floor(time, ticksPerSecond), 60);
}
/********************************
* Calculates the milisecond from time.
*
* Params:
* time = The time to compute the milisecond from.
* Returns:
* The calculated milisecond, 0..999.
*/
int msFromTime(d_time time)
{
return dmod(time / (ticksPerSecond / 1000), 1000);
}
int timeWithinDay(d_time t)
{
return dmod(t, msPerDay);
}
d_time toInteger(d_time n)
{
return n;
}
int day(d_time t)
{
return cast(int)floor(t, msPerDay);
}
pure bool leapYear(uint y)
{
return (y % 4) == 0 && (y % 100 || (y % 400) == 0);
}
unittest {
assert(!leapYear(1970));
assert(leapYear(1984));
assert(leapYear(2000));
assert(!leapYear(2100));
}
/********************************
* Calculates the number of days that exists in a year.
*
* Leap years have 366 days, while other years have 365.
*
* Params:
* year = The year to compute the number of days from.
* Returns:
* The number of days in the year, 365 or 366.
*/
pure uint daysInYear(uint year)
{
return (leapYear(year) ? 366 : 365);
}
/********************************
* Calculates the number of days elapsed since 1 January 1970
* until 1 January of the given year.
*
* Params:
* year = The year to compute the number of days from.
* Returns:
* The number of days elapsed.
*
* Example:
* ----------
* writeln(dayFromYear(1970)); // writes '0'
* writeln(dayFromYear(1971)); // writes '365'
* writeln(dayFromYear(1972)); // writes '730'
* ----------
*/
pure int dayFromYear(int year)
{
return cast(int) (365 * (year - 1970) +
floor((year - 1969), 4) -
floor((year - 1901), 100) +
floor((year - 1601), 400));
}
pure d_time timeFromYear(int y)
{
return cast(d_time)msPerDay * dayFromYear(y);
}
/*****************************
* Calculates the year from the d_time t.
*/
pure int yearFromTime(d_time t)
{
if (t == d_time_nan)
return 0;
// Hazard a guess
//y = 1970 + cast(int) (t / (365.2425 * msPerDay));
// Use integer only math
int y = 1970 + cast(int) (t / (3652425 * (msPerDay / 10000)));
if (timeFromYear(y) <= t)
{
while (timeFromYear(y + 1) <= t)
y++;
}
else
{
do
{
y--;
}
while (timeFromYear(y) > t);
}
return y;
}
/*******************************
* Determines if d_time t is a leap year.
*
* A leap year is every 4 years except years ending in 00 that are not
* divsible by 400.
*
* Returns: !=0 if it is a leap year.
*
* References:
* $(LINK2 http://en.wikipedia.org/wiki/Leap_year, Wikipedia)
*/
pure bool inLeapYear(d_time t)
{
return leapYear(yearFromTime(t));
}
/*****************************
* Calculates the month from the d_time t.
*
* Returns: Integer in the range 0..11, where
* 0 represents January and 11 represents December.
*/
int monthFromTime(d_time t)
{
auto year = yearFromTime(t);
auto day = day(t) - dayFromYear(year);
int month;
if (day < 59)
{
if (day < 31)
{ assert(day >= 0);
month = 0;
}
else
month = 1;
}
else
{
day -= leapYear(year);
if (day < 212)
{
if (day < 59)
month = 1;
else if (day < 90)
month = 2;
else if (day < 120)
month = 3;
else if (day < 151)
month = 4;
else if (day < 181)
month = 5;
else
month = 6;
}
else
{
if (day < 243)
month = 7;
else if (day < 273)
month = 8;
else if (day < 304)
month = 9;
else if (day < 334)
month = 10;
else if (day < 365)
month = 11;
else
assert(0);
}
}
return month;
}
/*******************************
* Compute which day in a month a d_time t is.
* Returns:
* Integer in the range 1..31
*/
int dateFromTime(d_time t)
{
auto year = yearFromTime(t);
auto day = day(t) - dayFromYear(year);
auto leap = leapYear(year);
auto month = monthFromTime(t);
int date;
switch (month)
{
case 0: date = day + 1; break;
case 1: date = day - 30; break;
case 2: date = day - 58 - leap; break;
case 3: date = day - 89 - leap; break;
case 4: date = day - 119 - leap; break;
case 5: date = day - 150 - leap; break;
case 6: date = day - 180 - leap; break;
case 7: date = day - 211 - leap; break;
case 8: date = day - 242 - leap; break;
case 9: date = day - 272 - leap; break;
case 10: date = day - 303 - leap; break;
case 11: date = day - 333 - leap; break;
default:
assert(0);
}
return date;
}
/*******************************
* Compute which day of the week a d_time t is.
* Returns:
* Integer in the range 0..6, where 0 represents Sunday
* and 6 represents Saturday.
*/
int weekDay(d_time t)
{
auto w = (cast(int)day(t) + 4) % 7;
if (w < 0)
w += 7;
return w;
}
/***********************************
* Convert from UTC to local time.
*/
d_time UTCtoLocalTime(d_time t)
{
return (t == d_time_nan)
? d_time_nan
: t + localTZA + daylightSavingTA(t);
}
/***********************************
* Convert from local time to UTC.
*/
d_time localTimetoUTC(d_time t)
{
return (t == d_time_nan)
? d_time_nan
/* BUGZILLA 1752 says this line should be:
* : t - localTZA - daylightSavingTA(t);
*/
: t - localTZA - daylightSavingTA(t - localTZA);
}
d_time makeTime(d_time hour, d_time min, d_time sec, d_time ms)
{
return hour * ticksPerHour +
min * ticksPerMinute +
sec * ticksPerSecond +
ms * ticksPerMs;
}
/* *****************************
* Params:
* month = 0..11
* date = day of month, 1..31
* Returns:
* number of days since start of epoch
*/
d_time makeDay(d_time year, d_time month, d_time date)
{
const y = cast(int)(year + floor(month, 12));
const m = dmod(month, 12);
const leap = leapYear(y);
auto t = timeFromYear(y) + cast(d_time) mdays[m] * msPerDay;
if (leap && month >= 2)
t += msPerDay;
if (yearFromTime(t) != y ||
monthFromTime(t) != m ||
dateFromTime(t) != 1)
{
return d_time_nan;
}
return day(t) + date - 1;
}
d_time makeDate(d_time day, d_time time)
{
if (day == d_time_nan || time == d_time_nan)
return d_time_nan;
return day * ticksPerDay + time;
}
d_time timeClip(d_time time)
{
//printf("TimeClip(%g) = %g\n", time, toInteger(time));
return toInteger(time);
}
/***************************************
* Determine the date in the month, 1..31, of the nth
* weekday.
* Params:
* year = year
* month = month, 1..12
* weekday = day of week 0..6 representing Sunday..Saturday
* n = nth occurrence of that weekday in the month, 1..5, where
* 5 also means "the last occurrence in the month"
* Returns:
* the date in the month, 1..31, of the nth weekday
*/
int dateFromNthWeekdayOfMonth(int year, int month, int weekday, int n)
in
{
assert(1 <= month && month <= 12);
assert(0 <= weekday && weekday <= 6);
assert(1 <= n && n <= 5);
}
body
{
// Get day of the first of the month
auto x = makeDay(year, month - 1, 1);
// Get the week day 0..6 of the first of this month
auto wd = weekDay(makeDate(x, 0));
// Get monthday of first occurrence of weekday in this month
auto mday = weekday - wd + 1;
if (mday < 1)
mday += 7;
// Add in number of weeks
mday += (n - 1) * 7;
// If monthday is more than the number of days in the month,
// back up to 'last' occurrence
if (mday > 28 && mday > daysInMonth(year, month))
{ assert(n == 5);
mday -= 7;
}
return mday;
}
unittest
{
assert(dateFromNthWeekdayOfMonth(2003, 3, 0, 5) == 30);
assert(dateFromNthWeekdayOfMonth(2003, 10, 0, 5) == 26);
assert(dateFromNthWeekdayOfMonth(2004, 3, 0, 5) == 28);
assert(dateFromNthWeekdayOfMonth(2004, 10, 0, 5) == 31);
}
/**************************************
* Determine the number of days in a month, 1..31.
* Params:
* month = 1..12
*/
int daysInMonth(int year, int month)
{
switch (month)
{
case 1:
case 3:
case 5:
case 7:
case 8:
case 10:
case 12:
return 31;
case 2:
return 28 + leapYear(year);
case 4:
case 6:
case 9:
case 11:
return 30;
default:
break;
}
return enforce(false, "Invalid month passed to daysInMonth");
}
unittest
{
assert(daysInMonth(2003, 2) == 28);
assert(daysInMonth(2004, 2) == 29);
}
/*************************************
* Converts UTC time into a text string of the form:
* "Www Mmm dd hh:mm:ss GMT+-TZ yyyy".
* For example, "Tue Apr 02 02:04:57 GMT-0800 1996".
* If time is invalid, i.e. is d_time_nan,
* the string "Invalid date" is returned.
*
* Example:
* ------------------------------------
d_time lNow;
char[] lNowString;
// Grab the date and time relative to UTC
lNow = std.date.getUTCtime();
// Convert this into the local date and time for display.
lNowString = std.date.UTCtoString(lNow);
* ------------------------------------
*/
string UTCtoString(d_time time)
{
// Years are supposed to be -285616 .. 285616, or 7 digits
// "Tue Apr 02 02:04:57 GMT-0800 1996"
auto buffer = new char[29 + 7 + 1];
if (time == d_time_nan)
return "Invalid Date";
auto dst = daylightSavingTA(time);
auto offset = localTZA + dst;
auto t = time + offset;
auto sign = '+';
if (offset < 0)
{ sign = '-';
// offset = -offset;
offset = -(localTZA + dst);
}
auto mn = cast(int)(offset / msPerMinute);
auto hr = mn / 60;
mn %= 60;
//printf("hr = %d, offset = %g, localTZA = %g, dst = %g, + = %g\n", hr, offset, localTZA, dst, localTZA + dst);
auto len = sprintf(buffer.ptr,
"%.3s %.3s %02d %02d:%02d:%02d GMT%c%02d%02d %d",
&daystr[weekDay(t) * 3],
&monstr[monthFromTime(t) * 3],
dateFromTime(t),
hourFromTime(t), minFromTime(t), secFromTime(t),
sign, hr, mn,
cast(long)yearFromTime(t));
// Ensure no buggy buffer overflows
//printf("len = %d, buffer.length = %d\n", len, buffer.length);
assert(len < buffer.length);
buffer = buffer[0 .. len];
return assumeUnique(buffer);
}
/// Alias for UTCtoString (deprecated).
deprecated alias UTCtoString toString;
/***********************************
* Converts t into a text string of the form: "Www, dd Mmm yyyy hh:mm:ss UTC".
* If t is invalid, "Invalid date" is returned.
*/
string toUTCString(d_time t)
{
// Years are supposed to be -285616 .. 285616, or 7 digits
// "Tue, 02 Apr 1996 02:04:57 GMT"
auto buffer = new char[25 + 7 + 1];
if (t == d_time_nan)
return "Invalid Date";
auto len = sprintf(buffer.ptr, "%.3s, %02d %.3s %d %02d:%02d:%02d UTC",
&daystr[weekDay(t) * 3], dateFromTime(t),
&monstr[monthFromTime(t) * 3],
yearFromTime(t),
hourFromTime(t), minFromTime(t), secFromTime(t));
// Ensure no buggy buffer overflows
assert(len < buffer.length);
return cast(string) buffer[0 .. len];
}
/************************************
* Converts the date portion of time into a text string of the form: "Www Mmm dd
* yyyy", for example, "Tue Apr 02 1996".
* If time is invalid, "Invalid date" is returned.
*/
string toDateString(d_time time)
{
// Years are supposed to be -285616 .. 285616, or 7 digits
// "Tue Apr 02 1996"
auto buffer = new char[29 + 7 + 1];
if (time == d_time_nan)
return "Invalid Date";
auto dst = daylightSavingTA(time);
auto offset = localTZA + dst;
auto t = time + offset;
auto len = sprintf(buffer.ptr, "%.3s %.3s %02d %d",
&daystr[weekDay(t) * 3],
&monstr[monthFromTime(t) * 3],
dateFromTime(t),
cast(long)yearFromTime(t));
// Ensure no buggy buffer overflows
assert(len < buffer.length);
return cast(string) buffer[0 .. len];
}
/******************************************
* Converts the time portion of t into a text string of the form: "hh:mm:ss
* GMT+-TZ", for example, "02:04:57 GMT-0800".
* If t is invalid, "Invalid date" is returned.
* The input must be in UTC, and the output is in local time.
*/
string toTimeString(d_time time)
{
// "02:04:57 GMT-0800"
auto buffer = new char[17 + 1];
if (time == d_time_nan)
return "Invalid Date";
auto dst = daylightSavingTA(time);
auto offset = localTZA + dst;
auto t = time + offset;
auto sign = '+';
if (offset < 0)
{ sign = '-';
// offset = -offset;
offset = -(localTZA + dst);
}
auto mn = cast(int)(offset / msPerMinute);
auto hr = mn / 60;
mn %= 60;
//printf("hr = %d, offset = %g, localTZA = %g, dst = %g, + = %g\n", hr, offset, localTZA, dst, localTZA + dst);
auto len = sprintf(buffer.ptr, "%02d:%02d:%02d GMT%c%02d%02d",
hourFromTime(t), minFromTime(t), secFromTime(t),
sign, hr, mn);
// Ensure no buggy buffer overflows
assert(len < buffer.length);
// Lop off terminating 0
return cast(string) buffer[0 .. len];
}
/******************************************
* Parses s as a textual date string, and returns it as a d_time. If
* the string is not a valid date, $(D d_time_nan) is returned.
*/
d_time parse(string s)
{
try
{
Date dp;
dp.parse(s);
auto time = makeTime(dp.hour, dp.minute, dp.second, dp.ms);
// Assume UTC if no tzcorrection is set (runnable/testdate).
if (dp.tzcorrection != int.min)
{
time += cast(d_time)(dp.tzcorrection / 100) * msPerHour +
cast(d_time)(dp.tzcorrection % 100) * msPerMinute;
}
auto day = makeDay(dp.year, dp.month - 1, dp.day);
auto result = makeDate(day,time);
return timeClip(result);
}
catch
{
return d_time_nan; // erroneous date string
}
}
extern(C) void std_date_static_this()
{
localTZA = getLocalTZA();
}
version (Win32)
{
private import std.c.windows.windows;
//import c.time;
/******
* Get current UTC time.
*/
d_time getUTCtime()
{
SYSTEMTIME st;
GetSystemTime(&st); // get time in UTC
return SYSTEMTIME2d_time(&st, 0);
//return c.time.time(null) * ticksPerSecond;
}
static d_time FILETIME2d_time(const FILETIME *ft)
{
SYSTEMTIME st = void;
if (!FileTimeToSystemTime(ft, &st))
return d_time_nan;
return SYSTEMTIME2d_time(&st, 0);
}
FILETIME d_time2FILETIME(d_time dt)
{
static assert(10_000_000 >= ticksPerSecond);
static assert(10_000_000 % ticksPerSecond == 0);
enum ulong ticksFrom1601To1970 = 11_644_473_600UL * ticksPerSecond;
ulong t = (dt + ticksFrom1601To1970) * (10_000_000 / ticksPerSecond);
FILETIME result = void;
result.dwLowDateTime = cast(uint) (t & uint.max);
result.dwHighDateTime = cast(uint) (t >> 32);
return result;
}
unittest
{
auto dt = getUTCtime;
auto ft = d_time2FILETIME(dt);
auto dt1 = FILETIME2d_time(&ft);
assert(dt == dt1, text(dt, " != ", dt1));
}
static d_time SYSTEMTIME2d_time(const SYSTEMTIME *st, d_time t)
{
/* More info: http://delphicikk.atw.hu/listaz.php?id=2667&oldal=52
*/
d_time day = void;
d_time time = void;
if (st.wYear)
{
time = makeTime(st.wHour, st.wMinute, st.wSecond, st.wMilliseconds);
day = makeDay(st.wYear, st.wMonth - 1, st.wDay);
}
else
{ /* wYear being 0 is a flag to indicate relative time:
* wMonth is the month 1..12
* wDayOfWeek is weekday 0..6 corresponding to Sunday..Saturday
* wDay is the nth time, 1..5, that wDayOfWeek occurs
*/
auto year = yearFromTime(t);
auto mday = dateFromNthWeekdayOfMonth(year,
st.wMonth, st.wDay, st.wDayOfWeek);
day = makeDay(year, st.wMonth - 1, mday);
time = makeTime(st.wHour, st.wMinute, 0, 0);
}
auto n = makeDate(day,time);
return timeClip(n);
}
d_time getLocalTZA()
{
TIME_ZONE_INFORMATION tzi = void;
/* http://msdn.microsoft.com/library/en-us/sysinfo/base/gettimezoneinformation.asp
* http://msdn2.microsoft.com/en-us/library/ms725481.aspx
*/
auto r = GetTimeZoneInformation(&tzi);
//printf("bias = %d\n", tzi.Bias);
//printf("standardbias = %d\n", tzi.StandardBias);
//printf("daylightbias = %d\n", tzi.DaylightBias);
switch (r)
{
case TIME_ZONE_ID_STANDARD:
return -(tzi.Bias + tzi.StandardBias)
* cast(d_time)(60 * ticksPerSecond);
case TIME_ZONE_ID_DAYLIGHT:
// falthrough
//t = -(tzi.Bias + tzi.DaylightBias) * cast(d_time)(60 * ticksPerSecond);
//break;
case TIME_ZONE_ID_UNKNOWN:
return -(tzi.Bias) * cast(d_time)(60 * ticksPerSecond);
default:
return 0;
}
}
/*
* Get daylight savings time adjust for time dt.
*/
int daylightSavingTA(d_time dt)
{
TIME_ZONE_INFORMATION tzi = void;
d_time ts;
d_time td;
/* http://msdn.microsoft.com/library/en-us/sysinfo/base/gettimezoneinformation.asp
*/
auto r = GetTimeZoneInformation(&tzi);
auto t = 0;
switch (r)
{
case TIME_ZONE_ID_STANDARD:
case TIME_ZONE_ID_DAYLIGHT:
if (tzi.StandardDate.wMonth == 0 ||
tzi.DaylightDate.wMonth == 0)
break;
ts = SYSTEMTIME2d_time(&tzi.StandardDate, dt);
td = SYSTEMTIME2d_time(&tzi.DaylightDate, dt);
if (td <= dt && dt < ts)
{
t = -tzi.DaylightBias * (60 * ticksPerSecond);
//printf("DST is in effect, %d\n", t);
}
else
{
//printf("no DST\n");
}
break;
case TIME_ZONE_ID_UNKNOWN:
// Daylight savings time not used in this time zone
break;
default:
assert(0);
}
return t;
}
}
version (Posix)
{
private import core.sys.posix.time;
private import core.sys.posix.sys.time;
/******
* Get current UTC time.
*/
d_time getUTCtime()
{ timeval tv;
//printf("getUTCtime()\n");
if (gettimeofday(&tv, null))
{ // Some error happened - try time() instead
return time(null) * ticksPerSecond;
}
return tv.tv_sec * cast(d_time)ticksPerSecond +
(tv.tv_usec / (1000000 / cast(d_time)ticksPerSecond));
}
d_time getLocalTZA()
{
time_t t;
time(&t);
version (OSX)
{
tm result;
localtime_r(&t, &result);
return result.tm_gmtoff * ticksPerSecond;
}
else version (FreeBSD)
{
tm result;
localtime_r(&t, &result);
return result.tm_gmtoff * ticksPerSecond;
}
else
{
localtime(&t); // this will set timezone
return -(timezone * ticksPerSecond);
}
}
/*
* Get daylight savings time adjust for time dt.
*/
int daylightSavingTA(d_time dt)
{
tm *tmp;
time_t t;
int dst = 0;
if (dt != d_time_nan)
{
d_time seconds = dt / ticksPerSecond;
t = cast(time_t) seconds;
if (t == seconds) // if in range
{
tmp = localtime(&t);
if (tmp.tm_isdst > 0)
dst = ticksPerHour; // BUG: Assume daylight savings time is plus one hour.
}
else // out of range for system time, use our own calculation
{
/* BUG: this works for the US, but not other timezones.
*/
dt -= localTZA;
int year = yearFromTime(dt);
/* Compute time given year, month 1..12,
* week in month, weekday, hour
*/
d_time dstt(int year, int month, int week, int weekday, int hour)
{
auto mday = dateFromNthWeekdayOfMonth(year, month, weekday, week);
return timeClip(makeDate(
makeDay(year, month - 1, mday),
makeTime(hour, 0, 0, 0)));
}
d_time start;
d_time end;
if (year < 2007)
{ // Daylight savings time goes from 2 AM the first Sunday
// in April through 2 AM the last Sunday in October
start = dstt(year, 4, 1, 0, 2);
end = dstt(year, 10, 5, 0, 2);
}
else
{
// the second Sunday of March to
// the first Sunday in November
start = dstt(year, 3, 2, 0, 2);
end = dstt(year, 11, 1, 0, 2);
}
if (start <= dt && dt < end)
dst = ticksPerHour;
//writefln("start = %s, dt = %s, end = %s, dst = %s", start, dt, end, dst);
}
}
return dst;
}
}
/+ DOS File Time +/
/***
* Type representing the DOS file date/time format.
*/
alias uint DosFileTime;
/************************************
* Convert from DOS file date/time to d_time.
*/
d_time toDtime(DosFileTime time)
{
uint dt = cast(uint)time;
if (dt == 0)
return d_time_nan;
int year = ((dt >> 25) & 0x7F) + 1980;
int month = ((dt >> 21) & 0x0F) - 1; // 0..12
int dayofmonth = ((dt >> 16) & 0x1F); // 0..31
int hour = (dt >> 11) & 0x1F; // 0..23
int minute = (dt >> 5) & 0x3F; // 0..59
int second = (dt << 1) & 0x3E; // 0..58 (in 2 second increments)
d_time t;
t = std.date.makeDate(std.date.makeDay(year, month, dayofmonth),
std.date.makeTime(hour, minute, second, 0));
assert(yearFromTime(t) == year);
assert(monthFromTime(t) == month);
assert(dateFromTime(t) == dayofmonth);
assert(hourFromTime(t) == hour);
assert(minFromTime(t) == minute);
assert(secFromTime(t) == second);
t -= localTZA + daylightSavingTA(t);
return t;
}
/****************************************
* Convert from d_time to DOS file date/time.
*/
DosFileTime toDosFileTime(d_time t)
{ uint dt;
if (t == d_time_nan)
return cast(DosFileTime)0;
t += localTZA + daylightSavingTA(t);
uint year = yearFromTime(t);
uint month = monthFromTime(t);
uint dayofmonth = dateFromTime(t);
uint hour = hourFromTime(t);
uint minute = minFromTime(t);
uint second = secFromTime(t);
dt = (year - 1980) << 25;
dt |= ((month + 1) & 0x0F) << 21;
dt |= (dayofmonth & 0x1F) << 16;
dt |= (hour & 0x1F) << 11;
dt |= (minute & 0x3F) << 5;
dt |= (second >> 1) & 0x1F;
return cast(DosFileTime)dt;
}
/**
Benchmarks code for speed assessment and comparison.
Params:
fun = aliases of callable objects (e.g. function names). Each should
take no arguments.
times = The number of times each function is to be executed.
result = The optional store for the return value. If $(D null) is
passed in, new store is allocated appropriately.
Returns:
An array of $(D n) $(D uint)s. Element at slot $(D i) contains the
number of milliseconds spent in calling the $(D i)th function $(D
times) times.
Example:
----
int a;
void f0() { }
void f1() { auto b = a; }
void f2() { auto b = to!(string)(a); }
auto r = benchmark!(f0, f1, f2)(10_000_000);
----
*/
ulong[] benchmark(fun...)(uint times, ulong[] result = null)
{
result.length = fun.length;
result.length = 0;
foreach (i, Unused; fun)
{
immutable t = getUTCtime;
foreach (j; 0 .. times)
{
fun[i]();
}
immutable delta = getUTCtime - t;
result ~= cast(uint)delta;
}
foreach (ref e; result)
{
e *= 1000;
e /= ticksPerSecond;
}
return result;
}
unittest
{
int a;
void f0() { }
//void f1() { auto b = to!(string)(a); }
void f2() { auto b = (a); }
auto r = benchmark!(f0, f2)(100);
//writeln(r);
}