mirror of
https://github.com/dlang/phobos.git
synced 2025-05-08 12:07:15 +03:00
1104 lines
24 KiB
D
1104 lines
24 KiB
D
/**
|
|
* Part of the D programming language runtime library.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (C) 2004-2008 by Digital Mars, www.digitalmars.com
|
|
* Written by Walter Bright
|
|
*
|
|
* This software is provided 'as-is', without any express or implied
|
|
* warranty. In no event will the authors be held liable for any damages
|
|
* arising from the use of this software.
|
|
*
|
|
* Permission is granted to anyone to use this software for any purpose,
|
|
* including commercial applications, and to alter it and redistribute it
|
|
* freely, subject to the following restrictions:
|
|
*
|
|
* o The origin of this software must not be misrepresented; you must not
|
|
* claim that you wrote the original software. If you use this software
|
|
* in a product, an acknowledgment in the product documentation would be
|
|
* appreciated but is not required.
|
|
* o Altered source versions must be plainly marked as such, and must not
|
|
* be misrepresented as being the original software.
|
|
* o This notice may not be removed or altered from any source
|
|
* distribution.
|
|
*/
|
|
|
|
|
|
// Storage allocation
|
|
|
|
module std.gc;
|
|
|
|
//debug = PRINTF;
|
|
|
|
public import std.c.stdarg;
|
|
public import std.c.stdlib;
|
|
public import std.c.string;
|
|
public import gcx;
|
|
public import std.outofmemory;
|
|
public import gcstats;
|
|
public import std.thread;
|
|
|
|
version=GCCLASS;
|
|
|
|
version (GCCLASS)
|
|
alias GC gc_t;
|
|
else
|
|
alias GC* gc_t;
|
|
|
|
gc_t _gc;
|
|
|
|
void addRoot(void *p) { _gc.addRoot(p); }
|
|
void removeRoot(void *p) { _gc.removeRoot(p); }
|
|
void addRange(void *pbot, void *ptop) { _gc.addRange(pbot, ptop); }
|
|
void removeRange(void *pbot) { _gc.removeRange(pbot); }
|
|
void fullCollect() { _gc.fullCollect(); }
|
|
void fullCollectNoStack() { _gc.fullCollectNoStack(); }
|
|
void genCollect() { _gc.genCollect(); }
|
|
void minimize() { _gc.minimize(); }
|
|
void disable() { _gc.disable(); }
|
|
void enable() { _gc.enable(); }
|
|
void getStats(out GCStats stats) { _gc.getStats(stats); }
|
|
void hasPointers(void* p) { _gc.hasPointers(p); }
|
|
void hasNoPointers(void* p) { _gc.hasNoPointers(p); }
|
|
void setV1_0() { _gc.setV1_0(); }
|
|
|
|
void[] malloc(size_t nbytes)
|
|
{
|
|
void* p = _gc.malloc(nbytes);
|
|
return p[0 .. nbytes];
|
|
}
|
|
|
|
void[] realloc(void* p, size_t nbytes)
|
|
{
|
|
void* q = _gc.realloc(p, nbytes);
|
|
return q[0 .. nbytes];
|
|
}
|
|
|
|
size_t extend(void* p, size_t minbytes, size_t maxbytes)
|
|
{
|
|
return _gc.extend(p, minbytes, maxbytes);
|
|
}
|
|
|
|
size_t capacity(void* p)
|
|
{
|
|
return _gc.capacity(p);
|
|
}
|
|
|
|
void setTypeInfo(TypeInfo ti, void* p)
|
|
{
|
|
if (ti.flags() & 1)
|
|
hasNoPointers(p);
|
|
else
|
|
hasPointers(p);
|
|
}
|
|
|
|
void* getGCHandle()
|
|
{
|
|
return cast(void*)_gc;
|
|
}
|
|
|
|
void setGCHandle(void* p)
|
|
{
|
|
void* oldp = getGCHandle();
|
|
gc_t g = cast(gc_t)p;
|
|
if (g.gcversion != gcx.GCVERSION)
|
|
throw new Error("incompatible gc versions");
|
|
|
|
// Add our static data to the new gc
|
|
GC.scanStaticData(g);
|
|
|
|
_gc = g;
|
|
// return oldp;
|
|
}
|
|
|
|
void endGCHandle()
|
|
{
|
|
GC.unscanStaticData(_gc);
|
|
}
|
|
|
|
extern (C)
|
|
{
|
|
|
|
void _d_monitorrelease(Object h);
|
|
|
|
|
|
void gc_init()
|
|
{
|
|
version (GCCLASS)
|
|
{ void* p;
|
|
ClassInfo ci = GC.classinfo;
|
|
|
|
p = std.c.stdlib.malloc(ci.init.length);
|
|
(cast(byte*)p)[0 .. ci.init.length] = ci.init[];
|
|
_gc = cast(GC)p;
|
|
}
|
|
else
|
|
{
|
|
_gc = cast(GC *) std.c.stdlib.calloc(1, GC.sizeof);
|
|
}
|
|
_gc.initialize();
|
|
GC.scanStaticData(_gc);
|
|
std.thread.Thread.thread_init();
|
|
}
|
|
|
|
void gc_term()
|
|
{
|
|
_gc.fullCollectNoStack();
|
|
_gc.Dtor();
|
|
}
|
|
|
|
Object _d_newclass(ClassInfo ci)
|
|
{
|
|
void *p;
|
|
|
|
debug(PRINTF) printf("_d_newclass(ci = %p, %s)\n", ci, cast(char *)ci.name);
|
|
if (ci.flags & 1) // if COM object
|
|
{ /* COM objects are not garbage collected, they are reference
|
|
* counted using AddRef() and Release().
|
|
* They get free'd by C's free() function called by Release() when
|
|
* Release()'s reference count goes to zero.
|
|
*/
|
|
p = std.c.stdlib.malloc(ci.init.length);
|
|
if (!p)
|
|
_d_OutOfMemory();
|
|
debug(PRINTF) printf(" COM object p = %p\n", p);
|
|
}
|
|
else
|
|
{
|
|
p = _gc.malloc(ci.init.length);
|
|
debug(PRINTF) printf(" p = %p\n", p);
|
|
_gc.setFinalizer(p, &new_finalizer);
|
|
if (ci.flags & 2)
|
|
_gc.hasNoPointers(p);
|
|
}
|
|
|
|
debug (PRINTF)
|
|
{
|
|
printf("p = %p\n", p);
|
|
printf("ci = %p, ci.init = %p, len = %d\n", ci, ci.init, ci.init.length);
|
|
printf("vptr = %p\n", *cast(void **)ci.init);
|
|
printf("vtbl[0] = %p\n", (*cast(void ***)ci.init)[0]);
|
|
printf("vtbl[1] = %p\n", (*cast(void ***)ci.init)[1]);
|
|
printf("init[0] = %x\n", (cast(uint *)ci.init)[0]);
|
|
printf("init[1] = %x\n", (cast(uint *)ci.init)[1]);
|
|
printf("init[2] = %x\n", (cast(uint *)ci.init)[2]);
|
|
printf("init[3] = %x\n", (cast(uint *)ci.init)[3]);
|
|
printf("init[4] = %x\n", (cast(uint *)ci.init)[4]);
|
|
}
|
|
|
|
|
|
// Initialize it
|
|
(cast(byte*)p)[0 .. ci.init.length] = ci.init[];
|
|
|
|
//printf("initialization done\n");
|
|
return cast(Object)p;
|
|
}
|
|
|
|
extern (D) alias void (*fp_t)(Object); // generic function pointer
|
|
|
|
void _d_delinterface(void** p)
|
|
{
|
|
if (*p)
|
|
{
|
|
Interface *pi = **cast(Interface ***)*p;
|
|
Object o;
|
|
|
|
o = cast(Object)(*p - pi.offset);
|
|
_d_delclass(&o);
|
|
*p = null;
|
|
}
|
|
}
|
|
|
|
void _d_delclass(Object *p)
|
|
{
|
|
if (*p)
|
|
{
|
|
debug (PRINTF) printf("_d_delclass(%p)\n", *p);
|
|
version(0)
|
|
{
|
|
ClassInfo **pc = cast(ClassInfo **)*p;
|
|
if (*pc)
|
|
{
|
|
ClassInfo c = **pc;
|
|
|
|
if (c.deallocator)
|
|
{
|
|
_d_callfinalizer(cast(void *)(*p));
|
|
fp_t fp = cast(fp_t)c.deallocator;
|
|
(*fp)(*p); // call deallocator
|
|
*p = null;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
_gc.free(cast(void*)(*p));
|
|
*p = null;
|
|
}
|
|
}
|
|
|
|
/******************************************
|
|
* Allocate a new array of length elements.
|
|
* ti is the type of the resulting array, or pointer to element.
|
|
*/
|
|
|
|
/* For when the array is initialized to 0 */
|
|
ulong _d_newarrayT(TypeInfo ti, size_t length)
|
|
{
|
|
void *p;
|
|
ulong result;
|
|
auto size = ti.next.tsize(); // array element size
|
|
|
|
debug(PRINTF) printf("_d_newarrayT(length = x%x, size = %d)\n", length, size);
|
|
if (length == 0 || size == 0)
|
|
result = 0;
|
|
else
|
|
{
|
|
version (D_InlineAsm_X86)
|
|
{
|
|
asm
|
|
{
|
|
mov EAX,size ;
|
|
mul EAX,length ;
|
|
mov size,EAX ;
|
|
jc Loverflow ;
|
|
}
|
|
}
|
|
else
|
|
size *= length;
|
|
p = _gc.malloc(size + 1);
|
|
debug(PRINTF) printf(" p = %p\n", p);
|
|
if (!(ti.next.flags() & 1))
|
|
_gc.hasNoPointers(p);
|
|
memset(p, 0, size);
|
|
result = cast(ulong)length + (cast(ulong)cast(uint)p << 32);
|
|
}
|
|
return result;
|
|
|
|
Loverflow:
|
|
_d_OutOfMemory();
|
|
}
|
|
|
|
/* For when the array has a non-zero initializer.
|
|
*/
|
|
ulong _d_newarrayiT(TypeInfo ti, size_t length)
|
|
{
|
|
ulong result;
|
|
auto size = ti.next.tsize(); // array element size
|
|
|
|
debug(PRINTF)
|
|
printf("_d_newarrayiT(length = %d, size = %d)\n", length, size);
|
|
if (length == 0 || size == 0)
|
|
result = 0;
|
|
else
|
|
{
|
|
auto initializer = ti.next.init();
|
|
auto isize = initializer.length;
|
|
auto q = initializer.ptr;
|
|
version (D_InlineAsm_X86)
|
|
{
|
|
asm
|
|
{
|
|
mov EAX,size ;
|
|
mul EAX,length ;
|
|
mov size,EAX ;
|
|
jc Loverflow ;
|
|
}
|
|
}
|
|
else
|
|
size *= length;
|
|
auto p = _gc.malloc(size + 1);
|
|
debug(PRINTF)
|
|
printf(" p = %p, isize = %d\n", p, isize);
|
|
if (!(ti.next.flags() & 1))
|
|
_gc.hasNoPointers(p);
|
|
if (isize == 1)
|
|
memset(p, *cast(ubyte*)q, size);
|
|
else if (isize == int.sizeof)
|
|
{
|
|
int init = *cast(int*)q;
|
|
size /= int.sizeof;
|
|
for (size_t u = 0; u < size; u++)
|
|
{
|
|
(cast(int*)p)[u] = init;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (size_t u = 0; u < size; u += isize)
|
|
{
|
|
memcpy(p + u, q, isize);
|
|
}
|
|
}
|
|
va_end(q);
|
|
result = cast(ulong)length + (cast(ulong)cast(uint)p << 32);
|
|
}
|
|
return result;
|
|
|
|
Loverflow:
|
|
_d_OutOfMemory();
|
|
}
|
|
|
|
ulong _d_newarraymT(TypeInfo ti, int ndims, ...)
|
|
{
|
|
ulong result;
|
|
|
|
//debug(PRINTF)
|
|
//printf("_d_newarraymT(ndims = %d)\n", ndims);
|
|
if (ndims == 0)
|
|
result = 0;
|
|
else
|
|
{ va_list q;
|
|
va_start!(int)(q, ndims);
|
|
|
|
void[] foo(TypeInfo ti, size_t* pdim, int ndims)
|
|
{
|
|
size_t dim = *pdim;
|
|
void[] p;
|
|
|
|
//printf("foo(ti = %p, ti.next = %p, dim = %d, ndims = %d\n", ti, ti.next, dim, ndims);
|
|
if (ndims == 1)
|
|
{
|
|
auto r = _d_newarrayT(ti, dim);
|
|
p = *cast(void[]*)(&r);
|
|
}
|
|
else
|
|
{
|
|
p = _gc.malloc(dim * (void[]).sizeof + 1)[0 .. dim];
|
|
for (int i = 0; i < dim; i++)
|
|
{
|
|
(cast(void[]*)p.ptr)[i] = foo(ti.next, pdim + 1, ndims - 1);
|
|
}
|
|
}
|
|
return p;
|
|
}
|
|
|
|
size_t* pdim = cast(size_t *)q;
|
|
result = cast(ulong)foo(ti, pdim, ndims);
|
|
//printf("result = %llx\n", result);
|
|
|
|
version (none)
|
|
{
|
|
for (int i = 0; i < ndims; i++)
|
|
{
|
|
printf("index %d: %d\n", i, va_arg!(int)(q));
|
|
}
|
|
}
|
|
va_end(q);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
ulong _d_newarraymiT(TypeInfo ti, int ndims, ...)
|
|
{
|
|
ulong result;
|
|
|
|
//debug(PRINTF)
|
|
//printf("_d_newarraymi(size = %d, ndims = %d)\n", size, ndims);
|
|
if (ndims == 0)
|
|
result = 0;
|
|
else
|
|
{
|
|
va_list q;
|
|
va_start!(int)(q, ndims);
|
|
|
|
void[] foo(TypeInfo ti, size_t* pdim, int ndims)
|
|
{
|
|
size_t dim = *pdim;
|
|
void[] p;
|
|
|
|
if (ndims == 1)
|
|
{
|
|
auto r = _d_newarrayiT(ti, dim);
|
|
p = *cast(void[]*)(&r);
|
|
}
|
|
else
|
|
{
|
|
p = _gc.malloc(dim * (void[]).sizeof + 1)[0 .. dim];
|
|
for (int i = 0; i < dim; i++)
|
|
{
|
|
(cast(void[]*)p.ptr)[i] = foo(ti.next, pdim + 1, ndims - 1);
|
|
}
|
|
}
|
|
return p;
|
|
}
|
|
|
|
size_t* pdim = cast(size_t *)q;
|
|
result = cast(ulong)foo(ti, pdim, ndims);
|
|
//printf("result = %llx\n", result);
|
|
|
|
version (none)
|
|
{
|
|
for (int i = 0; i < ndims; i++)
|
|
{
|
|
printf("index %d: %d\n", i, va_arg!(int)(q));
|
|
printf("init = %d\n", va_arg!(int)(q));
|
|
}
|
|
}
|
|
va_end(q);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
struct Array
|
|
{
|
|
size_t length;
|
|
byte *data;
|
|
};
|
|
|
|
void* _d_allocmemory(size_t nbytes)
|
|
{
|
|
return _gc.malloc(nbytes);
|
|
}
|
|
|
|
/* This function is obsoleted; replaced by _d_delarray_t()
|
|
*/
|
|
void _d_delarray(Array *p)
|
|
{
|
|
if (p)
|
|
{
|
|
assert(!p.length || p.data);
|
|
if (p.data)
|
|
_gc.free(p.data);
|
|
p.data = null;
|
|
p.length = 0;
|
|
}
|
|
}
|
|
|
|
/* Delete an array; ti is the element type.
|
|
* Should we zero out the array when done?
|
|
*/
|
|
|
|
void _d_delarray_t(Array *p, TypeInfo ti)
|
|
{
|
|
if (p)
|
|
{
|
|
assert(!p.length || p.data);
|
|
if (p.data)
|
|
{ if (ti)
|
|
{ // Call destructors on all the sub-objects
|
|
auto sz = ti.tsize();
|
|
auto pe = p.data;
|
|
auto pend = pe + p.length * sz;
|
|
while (pe != pend)
|
|
{ pend -= sz;
|
|
ti.destroy(pend);
|
|
}
|
|
}
|
|
_gc.free(p.data);
|
|
}
|
|
p.data = null;
|
|
p.length = 0;
|
|
}
|
|
}
|
|
|
|
|
|
void _d_delmemory(void* *p)
|
|
{
|
|
if (*p)
|
|
{
|
|
_gc.free(*p);
|
|
*p = null;
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
|
|
void new_finalizer(void *p, bool dummy)
|
|
{
|
|
//printf("new_finalizer(p = %p)\n", p);
|
|
_d_callfinalizer(p);
|
|
}
|
|
|
|
extern (C)
|
|
void _d_callinterfacefinalizer(void *p)
|
|
{
|
|
//printf("_d_callinterfacefinalizer(p = %p)\n", p);
|
|
if (p)
|
|
{
|
|
Interface *pi = **cast(Interface ***)p;
|
|
Object o = cast(Object)(p - pi.offset);
|
|
_d_callfinalizer(cast(void*)o);
|
|
}
|
|
}
|
|
|
|
extern (C)
|
|
void _d_callfinalizer(void *p)
|
|
{
|
|
//printf("_d_callfinalizer(p = %p)\n", p);
|
|
if (p) // not necessary if called from gc
|
|
{
|
|
ClassInfo **pc = cast(ClassInfo **)p;
|
|
if (*pc)
|
|
{
|
|
ClassInfo c = **pc;
|
|
|
|
try
|
|
{
|
|
do
|
|
{
|
|
if (c.destructor)
|
|
{
|
|
fp_t fp = cast(fp_t)c.destructor;
|
|
(*fp)(cast(Object)p); // call destructor
|
|
}
|
|
c = c.base;
|
|
} while (c);
|
|
if ((cast(void**)p)[1]) // if monitor is not null
|
|
_d_monitorrelease(cast(Object)p);
|
|
}
|
|
finally
|
|
{
|
|
*pc = null; // zero vptr
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/+ ------------------------------------------------ +/
|
|
|
|
|
|
/******************************
|
|
* Resize dynamic arrays with 0 initializers.
|
|
*/
|
|
|
|
extern (C)
|
|
byte[] _d_arraysetlengthT(TypeInfo ti, size_t newlength, Array *p)
|
|
in
|
|
{
|
|
assert(ti);
|
|
assert(!p.length || p.data);
|
|
}
|
|
body
|
|
{
|
|
byte* newdata;
|
|
size_t sizeelem = ti.next.tsize();
|
|
|
|
debug(PRINTF)
|
|
{
|
|
printf("_d_arraysetlengthT(p = %p, sizeelem = %d, newlength = %d)\n", p, sizeelem, newlength);
|
|
if (p)
|
|
printf("\tp.data = %p, p.length = %d\n", p.data, p.length);
|
|
}
|
|
|
|
if (newlength)
|
|
{
|
|
version (D_InlineAsm_X86)
|
|
{
|
|
size_t newsize = void;
|
|
|
|
asm
|
|
{
|
|
mov EAX,newlength ;
|
|
mul EAX,sizeelem ;
|
|
mov newsize,EAX ;
|
|
jc Loverflow ;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
size_t newsize = sizeelem * newlength;
|
|
|
|
if (newsize / newlength != sizeelem)
|
|
goto Loverflow;
|
|
}
|
|
//printf("newsize = %x, newlength = %x\n", newsize, newlength);
|
|
|
|
if (p.data)
|
|
{
|
|
newdata = p.data;
|
|
if (newlength > p.length)
|
|
{
|
|
size_t size = p.length * sizeelem;
|
|
size_t cap = _gc.capacity(p.data);
|
|
|
|
if (cap <= newsize)
|
|
{
|
|
if (cap >= 4096)
|
|
{ // Try to extend in-place
|
|
auto u = _gc.extend(p.data, (newsize + 1) - cap, (newsize + 1) - cap);
|
|
if (u)
|
|
{
|
|
goto L1;
|
|
}
|
|
}
|
|
newdata = cast(byte *)_gc.malloc(newsize + 1);
|
|
newdata[0 .. size] = p.data[0 .. size];
|
|
if (!(ti.next.flags() & 1))
|
|
_gc.hasNoPointers(newdata);
|
|
}
|
|
L1:
|
|
newdata[size .. newsize] = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
newdata = cast(byte *)_gc.calloc(newsize + 1, 1);
|
|
if (!(ti.next.flags() & 1))
|
|
_gc.hasNoPointers(newdata);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
newdata = p.data;
|
|
}
|
|
|
|
p.data = newdata;
|
|
p.length = newlength;
|
|
return newdata[0 .. newlength];
|
|
|
|
Loverflow:
|
|
_d_OutOfMemory();
|
|
}
|
|
|
|
/**
|
|
* Resize arrays for non-zero initializers.
|
|
* p pointer to array lvalue to be updated
|
|
* newlength new .length property of array
|
|
* sizeelem size of each element of array
|
|
* initsize size of initializer
|
|
* ... initializer
|
|
*/
|
|
extern (C)
|
|
byte[] _d_arraysetlengthiT(TypeInfo ti, size_t newlength, Array *p)
|
|
in
|
|
{
|
|
assert(!p.length || p.data);
|
|
}
|
|
body
|
|
{
|
|
byte* newdata;
|
|
size_t sizeelem = ti.next.tsize();
|
|
void[] initializer = ti.next.init();
|
|
size_t initsize = initializer.length;
|
|
|
|
assert(sizeelem);
|
|
assert(initsize);
|
|
assert(initsize <= sizeelem);
|
|
assert((sizeelem / initsize) * initsize == sizeelem);
|
|
|
|
debug(PRINTF)
|
|
{
|
|
printf("_d_arraysetlengthiT(p = %p, sizeelem = %d, newlength = %d, initsize = %d)\n", p, sizeelem, newlength, initsize);
|
|
if (p)
|
|
printf("\tp.data = %p, p.length = %d\n", p.data, p.length);
|
|
}
|
|
|
|
if (newlength)
|
|
{
|
|
version (D_InlineAsm_X86)
|
|
{
|
|
size_t newsize = void;
|
|
|
|
asm
|
|
{
|
|
mov EAX,newlength ;
|
|
mul EAX,sizeelem ;
|
|
mov newsize,EAX ;
|
|
jc Loverflow ;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
size_t newsize = sizeelem * newlength;
|
|
|
|
if (newsize / newlength != sizeelem)
|
|
goto Loverflow;
|
|
}
|
|
//printf("newsize = %x, newlength = %x\n", newsize, newlength);
|
|
|
|
size_t size = p.length * sizeelem;
|
|
if (p.data)
|
|
{
|
|
newdata = p.data;
|
|
if (newlength > p.length)
|
|
{
|
|
size_t cap = _gc.capacity(p.data);
|
|
|
|
if (cap <= newsize)
|
|
{
|
|
if (cap >= 4096)
|
|
{ // Try to extend in-place
|
|
auto u = _gc.extend(p.data, (newsize + 1) - cap, (newsize + 1) - cap);
|
|
if (u)
|
|
{
|
|
goto L1;
|
|
}
|
|
}
|
|
newdata = cast(byte *)_gc.malloc(newsize + 1);
|
|
newdata[0 .. size] = p.data[0 .. size];
|
|
L1: ;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
newdata = cast(byte *)_gc.malloc(newsize + 1);
|
|
if (!(ti.next.flags() & 1))
|
|
_gc.hasNoPointers(newdata);
|
|
}
|
|
|
|
auto q = initializer.ptr; // pointer to initializer
|
|
|
|
if (newsize > size)
|
|
{
|
|
if (initsize == 1)
|
|
{
|
|
//printf("newdata = %p, size = %d, newsize = %d, *q = %d\n", newdata, size, newsize, *cast(byte*)q);
|
|
newdata[size .. newsize] = *(cast(byte*)q);
|
|
}
|
|
else
|
|
{
|
|
for (size_t u = size; u < newsize; u += initsize)
|
|
{
|
|
memcpy(newdata + u, q, initsize);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
newdata = p.data;
|
|
}
|
|
|
|
p.data = newdata;
|
|
p.length = newlength;
|
|
return newdata[0 .. newlength];
|
|
|
|
Loverflow:
|
|
_d_OutOfMemory();
|
|
}
|
|
|
|
/****************************************
|
|
* Append y[] to array x[].
|
|
* size is size of each array element.
|
|
*/
|
|
|
|
extern (C)
|
|
long _d_arrayappendT(TypeInfo ti, Array *px, byte[] y)
|
|
{
|
|
auto sizeelem = ti.next.tsize(); // array element size
|
|
auto cap = _gc.capacity(px.data);
|
|
auto length = px.length;
|
|
auto newlength = length + y.length;
|
|
auto newsize = newlength * sizeelem;
|
|
if (newsize > cap)
|
|
{ byte* newdata;
|
|
|
|
if (cap >= 4096)
|
|
{ // Try to extend in-place
|
|
auto u = _gc.extend(px.data, (newsize + 1) - cap, (newsize + 1) - cap);
|
|
if (u)
|
|
{
|
|
goto L1;
|
|
}
|
|
}
|
|
|
|
newdata = cast(byte *)_gc.malloc(newCapacity(newlength, sizeelem) + 1);
|
|
if (!(ti.next.flags() & 1))
|
|
_gc.hasNoPointers(newdata);
|
|
memcpy(newdata, px.data, length * sizeelem);
|
|
px.data = newdata;
|
|
}
|
|
L1:
|
|
px.length = newlength;
|
|
memcpy(px.data + length * sizeelem, y.ptr, y.length * sizeelem);
|
|
return *cast(long*)px;
|
|
}
|
|
|
|
size_t newCapacity(size_t newlength, size_t size)
|
|
{
|
|
version(none)
|
|
{
|
|
size_t newcap = newlength * size;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Better version by Dave Fladebo:
|
|
* This uses an inverse logorithmic algorithm to pre-allocate a bit more
|
|
* space for larger arrays.
|
|
* - Arrays smaller than 4096 bytes are left as-is, so for the most
|
|
* common cases, memory allocation is 1 to 1. The small overhead added
|
|
* doesn't effect small array perf. (it's virtually the same as
|
|
* current).
|
|
* - Larger arrays have some space pre-allocated.
|
|
* - As the arrays grow, the relative pre-allocated space shrinks.
|
|
* - The logorithmic algorithm allocates relatively more space for
|
|
* mid-size arrays, making it very fast for medium arrays (for
|
|
* mid-to-large arrays, this turns out to be quite a bit faster than the
|
|
* equivalent realloc() code in C, on Linux at least. Small arrays are
|
|
* just as fast as GCC).
|
|
* - Perhaps most importantly, overall memory usage and stress on the GC
|
|
* is decreased significantly for demanding environments.
|
|
*/
|
|
size_t newcap = newlength * size;
|
|
size_t newext = 0;
|
|
|
|
if (newcap > 4096)
|
|
{
|
|
//double mult2 = 1.0 + (size / log10(pow(newcap * 2.0,2.0)));
|
|
|
|
// Redo above line using only integer math
|
|
|
|
static int log2plus1(size_t c)
|
|
{ int i;
|
|
|
|
if (c == 0)
|
|
i = -1;
|
|
else
|
|
for (i = 1; c >>= 1; i++)
|
|
{ }
|
|
return i;
|
|
}
|
|
|
|
/* The following setting for mult sets how much bigger
|
|
* the new size will be over what is actually needed.
|
|
* 100 means the same size, more means proportionally more.
|
|
* More means faster but more memory consumption.
|
|
*/
|
|
//long mult = 100 + (1000L * size) / (6 * log2plus1(newcap));
|
|
long mult = 100 + (1000L * size) / log2plus1(newcap);
|
|
|
|
// testing shows 1.02 for large arrays is about the point of diminishing return
|
|
if (mult < 102)
|
|
mult = 102;
|
|
newext = cast(size_t)((newcap * mult) / 100);
|
|
newext -= newext % size;
|
|
//printf("mult: %2.2f, mult2: %2.2f, alloc: %2.2f\n",mult/100.0,mult2,newext / cast(double)size);
|
|
}
|
|
newcap = newext > newcap ? newext : newcap;
|
|
//printf("newcap = %d, newlength = %d, size = %d\n", newcap, newlength, size);
|
|
}
|
|
return newcap;
|
|
}
|
|
|
|
extern (C)
|
|
byte[] _d_arrayappendcT(TypeInfo ti, inout byte[] x, ...)
|
|
{
|
|
auto sizeelem = ti.next.tsize(); // array element size
|
|
auto cap = _gc.capacity(x.ptr);
|
|
auto length = x.length;
|
|
auto newlength = length + 1;
|
|
auto newsize = newlength * sizeelem;
|
|
|
|
assert(cap == 0 || length * sizeelem <= cap);
|
|
|
|
//printf("_d_arrayappendc(sizeelem = %d, ptr = %p, length = %d, cap = %d)\n", sizeelem, x.ptr, x.length, cap);
|
|
|
|
if (newsize >= cap)
|
|
{ byte* newdata;
|
|
|
|
if (cap >= 4096)
|
|
{ // Try to extend in-place
|
|
auto u = _gc.extend(x.ptr, (newsize + 1) - cap, (newsize + 1) - cap);
|
|
if (u)
|
|
{
|
|
goto L1;
|
|
}
|
|
}
|
|
|
|
//printf("_d_arrayappendc(sizeelem = %d, newlength = %d, cap = %d)\n", sizeelem, newlength, cap);
|
|
cap = newCapacity(newlength, sizeelem);
|
|
assert(cap >= newlength * sizeelem);
|
|
newdata = cast(byte *)_gc.malloc(cap + 1);
|
|
if (!(ti.next.flags() & 1))
|
|
_gc.hasNoPointers(newdata);
|
|
memcpy(newdata, x.ptr, length * sizeelem);
|
|
(cast(void **)(&x))[1] = newdata;
|
|
}
|
|
L1:
|
|
byte *argp = cast(byte *)(&ti + 2);
|
|
|
|
*cast(size_t *)&x = newlength;
|
|
x.ptr[length * sizeelem .. newsize] = argp[0 .. sizeelem];
|
|
assert((cast(size_t)x.ptr & 15) == 0);
|
|
assert(_gc.capacity(x.ptr) > x.length * sizeelem);
|
|
return x;
|
|
}
|
|
|
|
extern (C)
|
|
byte[] _d_arraycatT(TypeInfo ti, byte[] x, byte[] y)
|
|
out (result)
|
|
{
|
|
auto sizeelem = ti.next.tsize(); // array element size
|
|
//printf("_d_arraycatT(%d,%p ~ %d,%p sizeelem = %d => %d,%p)\n", x.length, x.ptr, y.length, y.ptr, sizeelem, result.length, result.ptr);
|
|
assert(result.length == x.length + y.length);
|
|
for (size_t i = 0; i < x.length * sizeelem; i++)
|
|
assert((cast(byte*)result)[i] == (cast(byte*)x)[i]);
|
|
for (size_t i = 0; i < y.length * sizeelem; i++)
|
|
assert((cast(byte*)result)[x.length * sizeelem + i] == (cast(byte*)y)[i]);
|
|
|
|
size_t cap = _gc.capacity(result.ptr);
|
|
assert(!cap || cap > result.length * sizeelem);
|
|
}
|
|
body
|
|
{
|
|
version (none)
|
|
{
|
|
/* Cannot use this optimization because:
|
|
* char[] a, b;
|
|
* char c = 'a';
|
|
* b = a ~ c;
|
|
* c = 'b';
|
|
* will change the contents of b.
|
|
*/
|
|
if (!y.length)
|
|
return x;
|
|
if (!x.length)
|
|
return y;
|
|
}
|
|
|
|
//printf("_d_arraycatT(%d,%p ~ %d,%p)\n", x.length, x.ptr, y.length, y.ptr);
|
|
auto sizeelem = ti.next.tsize(); // array element size
|
|
//printf("_d_arraycatT(%d,%p ~ %d,%p sizeelem = %d)\n", x.length, x.ptr, y.length, y.ptr, sizeelem);
|
|
size_t xlen = x.length * sizeelem;
|
|
size_t ylen = y.length * sizeelem;
|
|
size_t len = xlen + ylen;
|
|
if (!len)
|
|
return null;
|
|
|
|
byte* p = cast(byte*)_gc.malloc(len + 1);
|
|
if (!(ti.next.flags() & 1))
|
|
_gc.hasNoPointers(p);
|
|
memcpy(p, x.ptr, xlen);
|
|
memcpy(p + xlen, y.ptr, ylen);
|
|
p[len] = 0;
|
|
|
|
return p[0 .. x.length + y.length];
|
|
}
|
|
|
|
|
|
extern (C)
|
|
byte[] _d_arraycatnT(TypeInfo ti, uint n, ...)
|
|
{ void* a;
|
|
size_t length;
|
|
byte[]* p;
|
|
uint i;
|
|
byte[] b;
|
|
auto sizeelem = ti.next.tsize(); // array element size
|
|
|
|
p = cast(byte[]*)(&n + 1);
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
b = *p++;
|
|
length += b.length;
|
|
}
|
|
if (!length)
|
|
return null;
|
|
|
|
a = _gc.malloc(length * sizeelem);
|
|
if (!(ti.next.flags() & 1))
|
|
_gc.hasNoPointers(a);
|
|
p = cast(byte[]*)(&n + 1);
|
|
|
|
uint j = 0;
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
b = *p++;
|
|
if (b.length)
|
|
{
|
|
memcpy(a + j, b.ptr, b.length * sizeelem);
|
|
j += b.length * sizeelem;
|
|
}
|
|
}
|
|
|
|
byte[] result;
|
|
*cast(int *)&result = length; // jam length
|
|
(cast(void **)&result)[1] = a; // jam ptr
|
|
return result;
|
|
}
|
|
|
|
extern (C)
|
|
void* _d_arrayliteralT(TypeInfo ti, size_t length, ...)
|
|
{
|
|
auto sizeelem = ti.next.tsize(); // array element size
|
|
void* result;
|
|
|
|
//printf("_d_arrayliteralT(sizeelem = %d, length = %d)\n", sizeelem, length);
|
|
if (length == 0 || sizeelem == 0)
|
|
result = null;
|
|
else
|
|
{
|
|
result = _gc.malloc(length * sizeelem);
|
|
if (!(ti.next.flags() & 1))
|
|
{
|
|
_gc.hasNoPointers(result);
|
|
}
|
|
|
|
va_list q;
|
|
va_start!(size_t)(q, length);
|
|
|
|
size_t stacksize = (sizeelem + int.sizeof - 1) & ~(int.sizeof - 1);
|
|
|
|
if (stacksize == sizeelem)
|
|
{
|
|
memcpy(result, q, length * sizeelem);
|
|
}
|
|
else
|
|
{
|
|
for (size_t i = 0; i < length; i++)
|
|
{
|
|
memcpy(result + i * sizeelem, q, sizeelem);
|
|
q += stacksize;
|
|
}
|
|
}
|
|
|
|
va_end(q);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**********************************
|
|
* Support for array.dup property.
|
|
*/
|
|
|
|
struct Array2
|
|
{
|
|
size_t length;
|
|
void* ptr;
|
|
}
|
|
|
|
extern (C)
|
|
long _adDupT(TypeInfo ti, Array2 a)
|
|
out (result)
|
|
{
|
|
auto sizeelem = ti.next.tsize(); // array element size
|
|
assert(memcmp((*cast(Array2*)&result).ptr, a.ptr, a.length * sizeelem) == 0);
|
|
}
|
|
body
|
|
{
|
|
Array2 r;
|
|
|
|
if (a.length)
|
|
{
|
|
auto sizeelem = ti.next.tsize(); // array element size
|
|
auto size = a.length * sizeelem;
|
|
r.ptr = _gc.malloc(size);
|
|
if (!(ti.next.flags() & 1))
|
|
_gc.hasNoPointers(r.ptr);
|
|
r.length = a.length;
|
|
memcpy(r.ptr, a.ptr, size);
|
|
}
|
|
return *cast(long*)(&r);
|
|
}
|
|
|
|
unittest
|
|
{
|
|
int[] a;
|
|
int[] b;
|
|
int i;
|
|
|
|
debug(adi) printf("array.dup.unittest\n");
|
|
|
|
a = new int[3];
|
|
a[0] = 1; a[1] = 2; a[2] = 3;
|
|
b = a.dup;
|
|
assert(b.length == 3);
|
|
for (i = 0; i < 3; i++)
|
|
assert(b[i] == i + 1);
|
|
}
|
|
|
|
|