phobos/std/regex/internal/ir.d
Mihails Strasuns 37e304e2df Fix mixed package protection in std.regex
This code worked before because of bug in qualifiied package protection
implementation in DMD which resulted in merging protection levels of
aggregates and their member symbols.
2015-03-11 04:21:44 +02:00

749 lines
23 KiB
D

/*
Implementation of std.regex IR, an intermediate representation
of a regular expression pattern.
This is a common ground between frontend regex component (parser)
and backend components - generators, matchers and other "filters".
*/
module std.regex.internal.ir;
package(std.regex):
import std.exception, std.uni, std.typetuple, std.traits, std.range;
// just a common trait, may be moved elsewhere
alias BasicElementOf(Range) = Unqual!(ElementEncodingType!Range);
// heuristic value determines maximum CodepointSet length suitable for linear search
enum maxCharsetUsed = 6;
// another variable to tweak behavior of caching generated Tries for character classes
enum maxCachedTries = 8;
alias CodepointSetTrie!(13, 8) Trie;
alias codepointSetTrie!(13, 8) makeTrie;
Trie[CodepointSet] trieCache;
//accessor with caching
@trusted Trie getTrie(CodepointSet set)
{// @@@BUG@@@ 6357 almost all properties of AA are not @safe
if(__ctfe || maxCachedTries == 0)
return makeTrie(set);
else
{
auto p = set in trieCache;
if(p)
return *p;
if(trieCache.length == maxCachedTries)
{
// flush entries in trieCache
trieCache = null;
}
return (trieCache[set] = makeTrie(set));
}
}
@trusted auto memoizeExpr(string expr)()
{
if(__ctfe)
return mixin(expr);
alias T = typeof(mixin(expr));
static T slot;
static bool initialized;
if(!initialized)
{
slot = mixin(expr);
initialized = true;
}
return slot;
}
//property for \w character class
@property CodepointSet wordCharacter()
{
return memoizeExpr!("unicode.Alphabetic | unicode.Mn | unicode.Mc
| unicode.Me | unicode.Nd | unicode.Pc")();
}
@property Trie wordTrie()
{
return memoizeExpr!("makeTrie(wordCharacter)")();
}
// some special Unicode white space characters
private enum NEL = '\u0085', LS = '\u2028', PS = '\u2029';
//Regular expression engine/parser options:
// global - search all nonoverlapping matches in input
// casefold - case insensitive matching, do casefolding on match in unicode mode
// freeform - ignore whitespace in pattern, to match space use [ ] or \s
// multiline - switch ^, $ detect start and end of linesinstead of just start and end of input
enum RegexOption: uint {
global = 0x1,
casefold = 0x2,
freeform = 0x4,
nonunicode = 0x8,
multiline = 0x10,
singleline = 0x20
}
//do not reorder this list
alias RegexOptionNames = TypeTuple!('g', 'i', 'x', 'U', 'm', 's');
static assert( RegexOption.max < 0x80);
// flags that allow guide execution of engine
enum RegexInfo : uint { oneShot = 0x80 }
// IR bit pattern: 0b1_xxxxx_yy
// where yy indicates class of instruction, xxxxx for actual operation code
// 00: atom, a normal instruction
// 01: open, opening of a group, has length of contained IR in the low bits
// 10: close, closing of a group, has length of contained IR in the low bits
// 11 unused
//
// Loops with Q (non-greedy, with ? mark) must have the same size / other properties as non Q version
// Possible changes:
//* merge group, option, infinite/repeat start (to never copy during parsing of (a|b){1,2})
//* reorganize groups to make n args easier to find, or simplify the check for groups of similar ops
// (like lookaround), or make it easier to identify hotspots.
enum IR:uint {
Char = 0b1_00000_00, //a character
Any = 0b1_00001_00, //any character
CodepointSet = 0b1_00010_00, //a most generic CodepointSet [...]
Trie = 0b1_00011_00, //CodepointSet implemented as Trie
//match with any of a consecutive OrChar's in this sequence
//(used for case insensitive match)
//OrChar holds in upper two bits of data total number of OrChars in this _sequence_
//the drawback of this representation is that it is difficult
// to detect a jump in the middle of it
OrChar = 0b1_00100_00,
Nop = 0b1_00101_00, //no operation (padding)
End = 0b1_00110_00, //end of program
Bol = 0b1_00111_00, //beginning of a string ^
Eol = 0b1_01000_00, //end of a string $
Wordboundary = 0b1_01001_00, //boundary of a word
Notwordboundary = 0b1_01010_00, //not a word boundary
Backref = 0b1_01011_00, //backreference to a group (that has to be pinned, i.e. locally unique) (group index)
GroupStart = 0b1_01100_00, //start of a group (x) (groupIndex+groupPinning(1bit))
GroupEnd = 0b1_01101_00, //end of a group (x) (groupIndex+groupPinning(1bit))
Option = 0b1_01110_00, //start of an option within an alternation x | y (length)
GotoEndOr = 0b1_01111_00, //end of an option (length of the rest)
//... any additional atoms here
OrStart = 0b1_00000_01, //start of alternation group (length)
OrEnd = 0b1_00000_10, //end of the or group (length,mergeIndex)
//with this instruction order
//bit mask 0b1_00001_00 could be used to test/set greediness
InfiniteStart = 0b1_00001_01, //start of an infinite repetition x* (length)
InfiniteEnd = 0b1_00001_10, //end of infinite repetition x* (length,mergeIndex)
InfiniteQStart = 0b1_00010_01, //start of a non eager infinite repetition x*? (length)
InfiniteQEnd = 0b1_00010_10, //end of non eager infinite repetition x*? (length,mergeIndex)
RepeatStart = 0b1_00011_01, //start of a {n,m} repetition (length)
RepeatEnd = 0b1_00011_10, //end of x{n,m} repetition (length,step,minRep,maxRep)
RepeatQStart = 0b1_00100_01, //start of a non eager x{n,m}? repetition (length)
RepeatQEnd = 0b1_00100_10, //end of non eager x{n,m}? repetition (length,step,minRep,maxRep)
//
LookaheadStart = 0b1_00101_01, //begin of the lookahead group (length)
LookaheadEnd = 0b1_00101_10, //end of a lookahead group (length)
NeglookaheadStart = 0b1_00110_01, //start of a negative lookahead (length)
NeglookaheadEnd = 0b1_00110_10, //end of a negative lookahead (length)
LookbehindStart = 0b1_00111_01, //start of a lookbehind (length)
LookbehindEnd = 0b1_00111_10, //end of a lookbehind (length)
NeglookbehindStart= 0b1_01000_01, //start of a negative lookbehind (length)
NeglookbehindEnd = 0b1_01000_10, //end of negative lookbehind (length)
}
//a shorthand for IR length - full length of specific opcode evaluated at compile time
template IRL(IR code)
{
enum uint IRL = lengthOfIR(code);
}
static assert (IRL!(IR.LookaheadStart) == 3);
//how many parameters follow the IR, should be optimized fixing some IR bits
int immediateParamsIR(IR i){
switch (i){
case IR.OrEnd,IR.InfiniteEnd,IR.InfiniteQEnd:
return 1;
case IR.RepeatEnd, IR.RepeatQEnd:
return 4;
case IR.LookaheadStart, IR.NeglookaheadStart, IR.LookbehindStart, IR.NeglookbehindStart:
return 2;
default:
return 0;
}
}
//full length of IR instruction inlcuding all parameters that might follow it
int lengthOfIR(IR i)
{
return 1 + immediateParamsIR(i);
}
//full length of the paired IR instruction inlcuding all parameters that might follow it
int lengthOfPairedIR(IR i)
{
return 1 + immediateParamsIR(pairedIR(i));
}
//if the operation has a merge point (this relies on the order of the ops)
bool hasMerge(IR i)
{
return (i&0b11)==0b10 && i <= IR.RepeatQEnd;
}
//is an IR that opens a "group"
bool isStartIR(IR i)
{
return (i&0b11)==0b01;
}
//is an IR that ends a "group"
bool isEndIR(IR i)
{
return (i&0b11)==0b10;
}
//is a standalone IR
bool isAtomIR(IR i)
{
return (i&0b11)==0b00;
}
//makes respective pair out of IR i, swapping start/end bits of instruction
IR pairedIR(IR i)
{
assert(isStartIR(i) || isEndIR(i));
return cast(IR)(i ^ 0b11);
}
//encoded IR instruction
struct Bytecode
{
uint raw;
//natural constraints
enum maxSequence = 2+4;
enum maxData = 1<<22;
enum maxRaw = 1<<31;
this(IR code, uint data)
{
assert(data < (1<<22) && code < 256);
raw = code<<24 | data;
}
this(IR code, uint data, uint seq)
{
assert(data < (1<<22) && code < 256 );
assert(seq >= 2 && seq < maxSequence);
raw = code << 24 | (seq - 2)<<22 | data;
}
//store raw data
static Bytecode fromRaw(uint data)
{
Bytecode t;
t.raw = data;
return t;
}
//bit twiddling helpers
//0-arg template due to @@@BUG@@@ 10985
@property uint data()() const { return raw & 0x003f_ffff; }
//ditto
//0-arg template due to @@@BUG@@@ 10985
@property uint sequence()() const { return 2 + (raw >> 22 & 0x3); }
//ditto
//0-arg template due to @@@BUG@@@ 10985
@property IR code()() const { return cast(IR)(raw>>24); }
//ditto
@property bool hotspot() const { return hasMerge(code); }
//test the class of this instruction
@property bool isAtom() const { return isAtomIR(code); }
//ditto
@property bool isStart() const { return isStartIR(code); }
//ditto
@property bool isEnd() const { return isEndIR(code); }
//number of arguments for this instruction
@property int args() const { return immediateParamsIR(code); }
//mark this GroupStart or GroupEnd as referenced in backreference
void setBackrefence()
{
assert(code == IR.GroupStart || code == IR.GroupEnd);
raw = raw | 1 << 23;
}
//is referenced
@property bool backreference() const
{
assert(code == IR.GroupStart || code == IR.GroupEnd);
return cast(bool)(raw & 1 << 23);
}
//mark as local reference (for backrefs in lookarounds)
void setLocalRef()
{
assert(code == IR.Backref);
raw = raw | 1 << 23;
}
//is a local ref
@property bool localRef() const
{
assert(code == IR.Backref);
return cast(bool)(raw & 1 << 23);
}
//human readable name of instruction
@trusted @property string mnemonic()() const
{//@@@BUG@@@ to is @system
import std.conv;
return to!string(code);
}
//full length of instruction
@property uint length() const
{
return lengthOfIR(code);
}
//full length of respective start/end of this instruction
@property uint pairedLength() const
{
return lengthOfPairedIR(code);
}
//returns bytecode of paired instruction (assuming this one is start or end)
@property Bytecode paired() const
{//depends on bit and struct layout order
assert(isStart || isEnd);
return Bytecode.fromRaw(raw ^ 0b11 << 24);
}
//gets an index into IR block of the respective pair
uint indexOfPair(uint pc) const
{
assert(isStart || isEnd);
return isStart ? pc + data + length : pc - data - lengthOfPairedIR(code);
}
}
static assert(Bytecode.sizeof == 4);
//index entry structure for name --> number of submatch
struct NamedGroup
{
string name;
uint group;
}
//holds pair of start-end markers for a submatch
struct Group(DataIndex)
{
DataIndex begin, end;
@trusted string toString()() const
{
import std.format;
auto a = appender!string();
formattedWrite(a, "%s..%s", begin, end);
return a.data;
}
}
//debugging tool, prints out instruction along with opcodes
@trusted string disassemble(in Bytecode[] irb, uint pc, in NamedGroup[] dict=[])
{
import std.array, std.format;
auto output = appender!string();
formattedWrite(output,"%s", irb[pc].mnemonic);
switch(irb[pc].code)
{
case IR.Char:
formattedWrite(output, " %s (0x%x)",cast(dchar)irb[pc].data, irb[pc].data);
break;
case IR.OrChar:
formattedWrite(output, " %s (0x%x) seq=%d", cast(dchar)irb[pc].data, irb[pc].data, irb[pc].sequence);
break;
case IR.RepeatStart, IR.InfiniteStart, IR.Option, IR.GotoEndOr, IR.OrStart:
//forward-jump instructions
uint len = irb[pc].data;
formattedWrite(output, " pc=>%u", pc+len+IRL!(IR.RepeatStart));
break;
case IR.RepeatEnd, IR.RepeatQEnd: //backward-jump instructions
uint len = irb[pc].data;
formattedWrite(output, " pc=>%u min=%u max=%u step=%u",
pc - len, irb[pc + 3].raw, irb[pc + 4].raw, irb[pc + 2].raw);
break;
case IR.InfiniteEnd, IR.InfiniteQEnd, IR.OrEnd: //ditto
uint len = irb[pc].data;
formattedWrite(output, " pc=>%u", pc-len);
break;
case IR.LookaheadEnd, IR.NeglookaheadEnd: //ditto
uint len = irb[pc].data;
formattedWrite(output, " pc=>%u", pc-len);
break;
case IR.GroupStart, IR.GroupEnd:
uint n = irb[pc].data;
string name;
foreach(v;dict)
if(v.group == n)
{
name = "'"~v.name~"'";
break;
}
formattedWrite(output, " %s #%u " ~ (irb[pc].backreference ? "referenced" : ""),
name, n);
break;
case IR.LookaheadStart, IR.NeglookaheadStart, IR.LookbehindStart, IR.NeglookbehindStart:
uint len = irb[pc].data;
uint start = irb[pc+1].raw, end = irb[pc+2].raw;
formattedWrite(output, " pc=>%u [%u..%u]", pc + len + IRL!(IR.LookaheadStart), start, end);
break;
case IR.Backref: case IR.CodepointSet: case IR.Trie:
uint n = irb[pc].data;
formattedWrite(output, " %u", n);
if(irb[pc].code == IR.Backref)
formattedWrite(output, " %s", irb[pc].localRef ? "local" : "global");
break;
default://all data-free instructions
}
if(irb[pc].hotspot)
formattedWrite(output, " Hotspot %u", irb[pc+1].raw);
return output.data;
}
//disassemble the whole chunk
@trusted void printBytecode()(in Bytecode[] slice, in NamedGroup[] dict=[])
{
import std.stdio;
for(uint pc=0; pc<slice.length; pc += slice[pc].length)
writeln("\t", disassemble(slice, pc, dict));
}
/++
$(D Regex) object holds regular expression pattern in compiled form.
Instances of this object are constructed via calls to $(D regex).
This is an intended form for caching and storage of frequently
used regular expressions.
+/
struct Regex(Char)
{
//temporary workaround for identifier lookup
CodepointSet[] charsets; //
Bytecode[] ir; //compiled bytecode of pattern
@safe @property bool empty() const nothrow { return ir is null; }
@safe @property auto namedCaptures()
{
static struct NamedGroupRange
{
private:
NamedGroup[] groups;
size_t start;
size_t end;
public:
this(NamedGroup[] g, size_t s, size_t e)
{
assert(s <= e);
assert(e <= g.length);
groups = g;
start = s;
end = e;
}
@property string front() { return groups[start].name; }
@property string back() { return groups[end-1].name; }
@property bool empty() { return start >= end; }
@property size_t length() { return end - start; }
alias opDollar = length;
@property NamedGroupRange save()
{
return NamedGroupRange(groups, start, end);
}
void popFront() { assert(!empty); start++; }
void popBack() { assert(!empty); end--; }
string opIndex()(size_t i)
{
assert(start + i < end,
"Requested named group is out of range.");
return groups[start+i].name;
}
NamedGroupRange opSlice(size_t low, size_t high) {
assert(low <= high);
assert(start + high <= end);
return NamedGroupRange(groups, start + low, start + high);
}
NamedGroupRange opSlice() { return this.save; }
}
return NamedGroupRange(dict, 0, dict.length);
}
package(std.regex):
import std.regex.internal.kickstart; //TODO: get rid of this dependency
NamedGroup[] dict; //maps name -> user group number
uint ngroup; //number of internal groups
uint maxCounterDepth; //max depth of nested {n,m} repetitions
uint hotspotTableSize; //number of entries in merge table
uint threadCount;
uint flags; //global regex flags
public const(Trie)[] tries; //
uint[] backrefed; //bit array of backreferenced submatches
Kickstart!Char kickstart;
//bit access helper
uint isBackref(uint n)
{
if(n/32 >= backrefed.length)
return 0;
return backrefed[n / 32] & (1 << (n & 31));
}
//check if searching is not needed
void checkIfOneShot()
{
if(flags & RegexOption.multiline)
return;
L_CheckLoop:
for(uint i = 0; i < ir.length; i += ir[i].length)
{
switch(ir[i].code)
{
case IR.Bol:
flags |= RegexInfo.oneShot;
break L_CheckLoop;
case IR.GroupStart, IR.GroupEnd, IR.Eol, IR.Wordboundary, IR.Notwordboundary:
break;
default:
break L_CheckLoop;
}
}
}
//print out disassembly a program's IR
@trusted debug(std_regex_parser) void print() const
{//@@@BUG@@@ write is system
for(uint i = 0; i < ir.length; i += ir[i].length)
{
writefln("%d\t%s ", i, disassemble(ir, i, dict));
}
writeln("Total merge table size: ", hotspotTableSize);
writeln("Max counter nesting depth: ", maxCounterDepth);
}
}
//@@@BUG@@@ (unreduced) - public makes it inaccessible in std.regex.package (!)
/*public*/ struct StaticRegex(Char)
{
package(std.regex):
import std.regex.internal.backtracking;
alias Matcher = BacktrackingMatcher!(true);
alias MatchFn = bool function(ref Matcher!Char) @trusted;
MatchFn nativeFn;
public:
Regex!Char _regex;
alias _regex this;
this(Regex!Char re, MatchFn fn)
{
_regex = re;
nativeFn = fn;
}
}
// The stuff below this point is temporarrily part of IR module
// but may need better place in the future (all internals)
package(std.regex):
//Simple UTF-string abstraction compatible with stream interface
struct Input(Char)
if(is(Char :dchar))
{
import std.utf;
alias DataIndex = size_t;
enum { isLoopback = false };
alias String = const(Char)[];
String _origin;
size_t _index;
//constructs Input object out of plain string
this(String input, size_t idx = 0)
{
_origin = input;
_index = idx;
}
//codepoint at current stream position
bool nextChar(ref dchar res, ref size_t pos)
{
pos = _index;
if(_index == _origin.length)
return false;
res = std.utf.decode(_origin, _index);
return true;
}
@property bool atEnd(){
return _index == _origin.length;
}
bool search(Kickstart)(ref Kickstart kick, ref dchar res, ref size_t pos)
{
size_t idx = kick.search(_origin, _index);
_index = idx;
return nextChar(res, pos);
}
//index of at End position
@property size_t lastIndex(){ return _origin.length; }
//support for backtracker engine, might not be present
void reset(size_t index){ _index = index; }
String opSlice(size_t start, size_t end){ return _origin[start..end]; }
struct BackLooper
{
alias DataIndex = size_t;
enum { isLoopback = true };
String _origin;
size_t _index;
this(Input input, size_t index)
{
_origin = input._origin;
_index = index;
}
@trusted bool nextChar(ref dchar res,ref size_t pos)
{
pos = _index;
if(_index == 0)
return false;
res = _origin[0.._index].back;
_index -= std.utf.strideBack(_origin, _index);
return true;
}
@property atEnd(){ return _index == 0 || _index == std.utf.strideBack(_origin, _index); }
auto loopBack(size_t index){ return Input(_origin, index); }
//support for backtracker engine, might not be present
//void reset(size_t index){ _index = index ? index-std.utf.strideBack(_origin, index) : 0; }
void reset(size_t index){ _index = index; }
String opSlice(size_t start, size_t end){ return _origin[end..start]; }
//index of at End position
@property size_t lastIndex(){ return 0; }
}
auto loopBack(size_t index){ return BackLooper(this, index); }
}
//both helpers below are internal, on its own are quite "explosive"
//unsafe, no initialization of elements
@system T[] mallocArray(T)(size_t len)
{
import core.stdc.stdlib;
return (cast(T*)malloc(len * T.sizeof))[0 .. len];
}
//very unsafe, no initialization
@system T[] arrayInChunk(T)(size_t len, ref void[] chunk)
{
auto ret = (cast(T*)chunk.ptr)[0..len];
chunk = chunk[len * T.sizeof .. $];
return ret;
}
//
@trusted uint lookupNamedGroup(String)(NamedGroup[] dict, String name)
{//equal is @system?
import std.conv;
import std.algorithm : map, equal;
auto fnd = assumeSorted!"cmp(a,b) < 0"(map!"a.name"(dict)).lowerBound(name).length;
enforce(fnd < dict.length && equal(dict[fnd].name, name),
text("no submatch named ", name));
return dict[fnd].group;
}
//whether ch is one of unicode newline sequences
//0-arg template due to @@@BUG@@@ 10985
bool endOfLine()(dchar front, bool seenCr)
{
return ((front == '\n') ^ seenCr) || front == '\r'
|| front == NEL || front == LS || front == PS;
}
//
//0-arg template due to @@@BUG@@@ 10985
bool startOfLine()(dchar back, bool seenNl)
{
return ((back == '\r') ^ seenNl) || back == '\n'
|| back == NEL || back == LS || back == PS;
}
//Test if bytecode starting at pc in program 're' can match given codepoint
//Returns: 0 - can't tell, -1 if doesn't match
int quickTestFwd(RegEx)(uint pc, dchar front, const ref RegEx re)
{
static assert(IRL!(IR.OrChar) == 1);//used in code processing IR.OrChar
for(;;)
switch(re.ir[pc].code)
{
case IR.OrChar:
uint len = re.ir[pc].sequence;
uint end = pc + len;
if(re.ir[pc].data != front && re.ir[pc+1].data != front)
{
for(pc = pc+2; pc < end; pc++)
if(re.ir[pc].data == front)
break;
if(pc == end)
return -1;
}
return 0;
case IR.Char:
if(front == re.ir[pc].data)
return 0;
else
return -1;
case IR.Any:
return 0;
case IR.CodepointSet:
if(re.charsets[re.ir[pc].data].scanFor(front))
return 0;
else
return -1;
case IR.GroupStart, IR.GroupEnd:
pc += IRL!(IR.GroupStart);
break;
case IR.Trie:
if(re.tries[re.ir[pc].data][front])
return 0;
else
return -1;
default:
return 0;
}
}
///Exception object thrown in case of errors during regex compilation.
public class RegexException : Exception
{
///
@trusted this(string msg, string file = __FILE__, size_t line = __LINE__)
{//@@@BUG@@@ Exception constructor is not @safe
super(msg, file, line);
}
}