phobos/std/bitmanip.d

3688 lines
94 KiB
D

// Written in the D programming language.
/**
Bit-level manipulation facilities.
Macros:
WIKI = StdBitarray
Copyright: Copyright Digital Mars 2007 - 2011.
License: $(WEB www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
Authors: $(WEB digitalmars.com, Walter Bright),
$(WEB erdani.org, Andrei Alexandrescu),
Jonathan M Davis,
Alex Rønne Petersen,
Damian Ziemba
Source: $(PHOBOSSRC std/_bitmanip.d)
*/
/*
Copyright Digital Mars 2007 - 2012.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
*/
module std.bitmanip;
//debug = bitarray; // uncomment to turn on debugging printf's
import core.bitop;
import std.format;
import std.range;
import std.string;
import std.system;
import std.traits;
version(unittest)
{
import std.stdio;
import std.typetuple;
}
private string myToStringx(ulong n)
{
enum s = "0123456789";
if (n < 10)
return s[cast(size_t)n..cast(size_t)n+1];
else
return myToStringx(n / 10) ~ myToStringx(n % 10);
}
private string myToString(ulong n)
{
return myToStringx(n) ~ (n > uint.max ? "UL" : "U");
}
private template createAccessors(
string store, T, string name, size_t len, size_t offset)
{
static if (!name.length)
{
// No need to create any accessor
enum result = "";
}
else static if (len == 0)
{
// Fields of length 0 are always zero
enum result = "enum "~T.stringof~" "~name~" = 0;\n";
}
else
{
enum ulong
maskAllElse = ((~0uL) >> (64 - len)) << offset,
signBitCheck = 1uL << (len - 1);
static if (T.min < 0)
{
enum long minVal = -(1uL << (len - 1));
enum ulong maxVal = (1uL << (len - 1)) - 1;
alias UT = Unsigned!(T);
enum UT extendSign = cast(UT)~((~0uL) >> (64 - len));
}
else
{
enum ulong minVal = 0;
enum ulong maxVal = (~0uL) >> (64 - len);
enum extendSign = 0;
}
static if (is(T == bool))
{
static assert(len == 1);
enum result =
// getter
"@property bool " ~ name ~ "() @safe pure nothrow @nogc const { return "
~"("~store~" & "~myToString(maskAllElse)~") != 0;}\n"
// setter
~"@property void " ~ name ~ "(bool v) @safe pure nothrow @nogc { "
~"if (v) "~store~" |= "~myToString(maskAllElse)~";"
~"else "~store~" &= ~"~myToString(maskAllElse)~";}\n";
}
else
{
// getter
enum result = "@property "~T.stringof~" "~name~"() @safe pure nothrow @nogc const { auto result = "
~"("~store~" & "
~ myToString(maskAllElse) ~ ") >>"
~ myToString(offset) ~ ";"
~ (T.min < 0
? "if (result >= " ~ myToString(signBitCheck)
~ ") result |= " ~ myToString(extendSign) ~ ";"
: "")
~ " return cast("~T.stringof~") result;}\n"
// setter
~"@property void "~name~"("~T.stringof~" v) @safe pure nothrow @nogc { "
~"assert(v >= "~name~`_min, "Value is smaller than the minimum value of bitfield '`~name~`'"); `
~"assert(v <= "~name~`_max, "Value is greater than the maximum value of bitfield '`~name~`'"); `
~store~" = cast(typeof("~store~"))"
~" (("~store~" & ~cast(typeof("~store~"))"~myToString(maskAllElse)~")"
~" | ((cast(typeof("~store~")) v << "~myToString(offset)~")"
~" & "~myToString(maskAllElse)~"));}\n"
// constants
~"enum "~T.stringof~" "~name~"_min = cast("~T.stringof~")"
~myToString(minVal)~"; "
~" enum "~T.stringof~" "~name~"_max = cast("~T.stringof~")"
~myToString(maxVal)~"; ";
}
}
}
private template createStoreName(Ts...)
{
static if (Ts.length < 2)
enum createStoreName = "";
else
enum createStoreName = "_" ~ Ts[1] ~ createStoreName!(Ts[3 .. $]);
}
private template createFields(string store, size_t offset, Ts...)
{
static if (!Ts.length)
{
static if (offset == ubyte.sizeof * 8)
alias StoreType = ubyte;
else static if (offset == ushort.sizeof * 8)
alias StoreType = ushort;
else static if (offset == uint.sizeof * 8)
alias StoreType = uint;
else static if (offset == ulong.sizeof * 8)
alias StoreType = ulong;
else
{
static assert(false, "Field widths must sum to 8, 16, 32, or 64");
alias StoreType = ulong; // just to avoid another error msg
}
enum result = "private " ~ StoreType.stringof ~ " " ~ store ~ ";";
}
else
{
enum result
= createAccessors!(store, Ts[0], Ts[1], Ts[2], offset).result
~ createFields!(store, offset + Ts[2], Ts[3 .. $]).result;
}
}
/**
Allows creating bit fields inside $(D_PARAM struct)s and $(D_PARAM
class)es.
Example:
----
struct A
{
int a;
mixin(bitfields!(
uint, "x", 2,
int, "y", 3,
uint, "z", 2,
bool, "flag", 1));
}
A obj;
obj.x = 2;
obj.z = obj.x;
----
The example above creates a bitfield pack of eight bits, which fit in
one $(D_PARAM ubyte). The bitfields are allocated starting from the
least significant bit, i.e. x occupies the two least significant bits
of the bitfields storage.
The sum of all bit lengths in one $(D_PARAM bitfield) instantiation
must be exactly 8, 16, 32, or 64. If padding is needed, just allocate
one bitfield with an empty name.
Example:
----
struct A
{
mixin(bitfields!(
bool, "flag1", 1,
bool, "flag2", 1,
uint, "", 6));
}
----
The type of a bit field can be any integral type or enumerated
type. The most efficient type to store in bitfields is $(D_PARAM
bool), followed by unsigned types, followed by signed types.
*/
template bitfields(T...)
{
enum { bitfields = createFields!(createStoreName!(T), 0, T).result }
}
@safe pure nothrow @nogc
unittest
{
// Degenerate bitfields (#8474 / #11160) tests mixed with range tests
struct Test1
{
mixin(bitfields!(uint, "a", 32,
uint, "b", 4,
uint, "c", 4,
uint, "d", 8,
uint, "e", 16,));
static assert(Test1.b_min == 0);
static assert(Test1.b_max == 15);
}
struct Test2
{
mixin(bitfields!(bool, "a", 0,
ulong, "b", 64));
static assert(Test2.b_min == ulong.min);
static assert(Test2.b_max == ulong.max);
}
struct Test1b
{
mixin(bitfields!(bool, "a", 0,
int, "b", 8));
}
struct Test2b
{
mixin(bitfields!(int, "a", 32,
int, "b", 4,
int, "c", 4,
int, "d", 8,
int, "e", 16,));
static assert(Test2b.b_min == -8);
static assert(Test2b.b_max == 7);
}
struct Test3b
{
mixin(bitfields!(bool, "a", 0,
long, "b", 64));
static assert(Test3b.b_min == long.min);
static assert(Test3b.b_max == long.max);
}
struct Test4b
{
mixin(bitfields!(long, "a", 32,
int, "b", 32));
}
// Sign extension tests
Test2b t2b;
Test4b t4b;
t2b.b = -5; assert(t2b.b == -5);
t2b.d = -5; assert(t2b.d == -5);
t2b.e = -5; assert(t2b.e == -5);
t4b.a = -5; assert(t4b.a == -5L);
}
unittest
{
// Bug #6686
union S {
ulong bits = ulong.max;
mixin (bitfields!(
ulong, "back", 31,
ulong, "front", 33)
);
}
S num;
num.bits = ulong.max;
num.back = 1;
assert(num.bits == 0xFFFF_FFFF_8000_0001uL);
}
unittest
{
// Bug #5942
struct S
{
mixin(bitfields!(
int, "a" , 32,
int, "b" , 32
));
}
S data;
data.b = 42;
data.a = 1;
assert(data.b == 42);
}
unittest
{
struct Test
{
mixin(bitfields!(bool, "a", 1,
uint, "b", 3,
short, "c", 4));
}
@safe void test() pure nothrow
{
Test t;
t.a = true;
t.b = 5;
t.c = 2;
assert(t.a);
assert(t.b == 5);
assert(t.c == 2);
}
test();
}
unittest
{
{
static struct Integrals {
bool checkExpectations(bool eb, int ei, short es) { return b == eb && i == ei && s == es; }
mixin(bitfields!(
bool, "b", 1,
uint, "i", 3,
short, "s", 4));
}
Integrals i;
assert(i.checkExpectations(false, 0, 0));
i.b = true;
assert(i.checkExpectations(true, 0, 0));
i.i = 7;
assert(i.checkExpectations(true, 7, 0));
i.s = -8;
assert(i.checkExpectations(true, 7, -8));
i.s = 7;
assert(i.checkExpectations(true, 7, 7));
}
//Bug# 8876
{
struct MoreIntegrals {
bool checkExpectations(uint eu, ushort es, uint ei) { return u == eu && s == es && i == ei; }
mixin(bitfields!(
uint, "u", 24,
short, "s", 16,
int, "i", 24));
}
MoreIntegrals i;
assert(i.checkExpectations(0, 0, 0));
i.s = 20;
assert(i.checkExpectations(0, 20, 0));
i.i = 72;
assert(i.checkExpectations(0, 20, 72));
i.u = 8;
assert(i.checkExpectations(8, 20, 72));
i.s = 7;
assert(i.checkExpectations(8, 7, 72));
}
enum A { True, False }
enum B { One, Two, Three, Four }
static struct Enums {
bool checkExpectations(A ea, B eb) { return a == ea && b == eb; }
mixin(bitfields!(
A, "a", 1,
B, "b", 2,
uint, "", 5));
}
Enums e;
assert(e.checkExpectations(A.True, B.One));
e.a = A.False;
assert(e.checkExpectations(A.False, B.One));
e.b = B.Three;
assert(e.checkExpectations(A.False, B.Three));
static struct SingleMember {
bool checkExpectations(bool eb) { return b == eb; }
mixin(bitfields!(
bool, "b", 1,
uint, "", 7));
}
SingleMember f;
assert(f.checkExpectations(false));
f.b = true;
assert(f.checkExpectations(true));
}
// Issue 12477
unittest
{
import std.bitmanip : bitfields;
import core.exception : AssertError;
static struct S
{
mixin(bitfields!(
uint, "a", 6,
int, "b", 2));
}
S s;
try { s.a = uint.max; assert(0); }
catch (AssertError ae)
{ assert(ae.msg == "Value is greater than the maximum value of bitfield 'a'", ae.msg); }
try { s.b = int.min; assert(0); }
catch (AssertError ae)
{ assert(ae.msg == "Value is smaller than the minimum value of bitfield 'b'", ae.msg); }
}
/**
Allows manipulating the fraction, exponent, and sign parts of a
$(D_PARAM float) separately. The definition is:
----
struct FloatRep
{
union
{
float value;
mixin(bitfields!(
uint, "fraction", 23,
ubyte, "exponent", 8,
bool, "sign", 1));
}
enum uint bias = 127, fractionBits = 23, exponentBits = 8, signBits = 1;
}
----
*/
struct FloatRep
{
union
{
float value;
mixin(bitfields!(
uint, "fraction", 23,
ubyte, "exponent", 8,
bool, "sign", 1));
}
enum uint bias = 127, fractionBits = 23, exponentBits = 8, signBits = 1;
}
/**
Allows manipulating the fraction, exponent, and sign parts of a
$(D_PARAM double) separately. The definition is:
----
struct DoubleRep
{
union
{
double value;
mixin(bitfields!(
ulong, "fraction", 52,
ushort, "exponent", 11,
bool, "sign", 1));
}
enum uint bias = 1023, signBits = 1, fractionBits = 52, exponentBits = 11;
}
----
*/
struct DoubleRep
{
union
{
double value;
mixin(bitfields!(
ulong, "fraction", 52,
ushort, "exponent", 11,
bool, "sign", 1));
}
enum uint bias = 1023, signBits = 1, fractionBits = 52, exponentBits = 11;
}
unittest
{
// test reading
DoubleRep x;
x.value = 1.0;
assert(x.fraction == 0 && x.exponent == 1023 && !x.sign);
x.value = -0.5;
assert(x.fraction == 0 && x.exponent == 1022 && x.sign);
x.value = 0.5;
assert(x.fraction == 0 && x.exponent == 1022 && !x.sign);
// test writing
x.fraction = 1125899906842624;
x.exponent = 1025;
x.sign = true;
assert(x.value == -5.0);
// test enums
enum ABC { A, B, C }
struct EnumTest
{
mixin(bitfields!(
ABC, "x", 2,
bool, "y", 1,
ubyte, "z", 5));
}
}
/**
* An array of bits.
*/
struct BitArray
{
size_t len;
size_t* ptr;
enum bitsPerSizeT = size_t.sizeof * 8;
private:
@property size_t fullWords() const @nogc pure nothrow
{
return len / bitsPerSizeT;
}
// Number of bits after the last full word
@property size_t endBits() const @nogc pure nothrow
{
return len % bitsPerSizeT;
}
// Bit mask to extract the bits after the last full word
@property size_t endMask() const @nogc pure nothrow
{
return (size_t(1) << endBits) - 1;
}
static size_t lenToDim(size_t len) @nogc pure nothrow
{
return (len + (bitsPerSizeT-1)) / bitsPerSizeT;
}
public:
/**********************************************
* Gets the amount of native words backing this $(D BitArray).
*/
@property size_t dim() const @nogc pure nothrow
{
return lenToDim(len);
}
/**********************************************
* Gets the amount of bits in the $(D BitArray).
*/
@property size_t length() const @nogc pure nothrow
{
return len;
}
/**********************************************
* Sets the amount of bits in the $(D BitArray).
* $(RED Warning: increasing length may overwrite bits in
* final word up to the next word boundary. i.e. D dynamic
* array extension semantics are not followed.)
*/
@property size_t length(size_t newlen) pure nothrow
{
if (newlen != len)
{
size_t olddim = dim;
size_t newdim = lenToDim(newlen);
if (newdim != olddim)
{
// Create a fake array so we can use D's realloc machinery
auto b = ptr[0 .. olddim];
b.length = newdim; // realloc
ptr = b.ptr;
}
len = newlen;
}
return len;
}
/**********************************************
* Gets the $(D i)'th bit in the $(D BitArray).
*/
bool opIndex(size_t i) const @nogc pure nothrow
in
{
assert(i < len);
}
body
{
return cast(bool) bt(ptr, i);
}
unittest
{
debug(bitarray) printf("BitArray.opIndex.unittest\n");
void Fun(const BitArray arr)
{
auto x = arr[0];
assert(x == 1);
}
BitArray a;
a.length = 3;
a[0] = 1;
Fun(a);
}
/**********************************************
* Sets the $(D i)'th bit in the $(D BitArray).
*/
bool opIndexAssign(bool b, size_t i) @nogc pure nothrow
in
{
assert(i < len);
}
body
{
if (b)
bts(ptr, i);
else
btr(ptr, i);
return b;
}
/**********************************************
* Duplicates the $(D BitArray) and its contents.
*/
@property BitArray dup() const pure nothrow
{
BitArray ba;
auto b = ptr[0 .. dim].dup;
ba.len = len;
ba.ptr = b.ptr;
return ba;
}
unittest
{
BitArray a;
BitArray b;
int i;
debug(bitarray) printf("BitArray.dup.unittest\n");
a.length = 3;
a[0] = 1; a[1] = 0; a[2] = 1;
b = a.dup;
assert(b.length == 3);
for (i = 0; i < 3; i++)
{ debug(bitarray) printf("b[%d] = %d\n", i, b[i]);
assert(b[i] == (((i ^ 1) & 1) ? true : false));
}
}
/**********************************************
* Support for $(D foreach) loops for $(D BitArray).
*/
int opApply(scope int delegate(ref bool) dg)
{
int result;
foreach (i; 0 .. len)
{
bool b = opIndex(i);
result = dg(b);
this[i] = b;
if (result)
break;
}
return result;
}
/** ditto */
int opApply(scope int delegate(bool) dg) const
{
int result;
foreach (i; 0 .. len)
{
bool b = opIndex(i);
result = dg(b);
if (result)
break;
}
return result;
}
/** ditto */
int opApply(scope int delegate(size_t, ref bool) dg)
{
int result;
foreach (i; 0 .. len)
{
bool b = opIndex(i);
result = dg(i, b);
this[i] = b;
if (result)
break;
}
return result;
}
/** ditto */
int opApply(scope int delegate(size_t, bool) dg) const
{
int result;
foreach (i; 0 .. len)
{
bool b = opIndex(i);
result = dg(i, b);
if (result)
break;
}
return result;
}
unittest
{
debug(bitarray) printf("BitArray.opApply unittest\n");
static bool[] ba = [1,0,1];
BitArray a; a.init(ba);
int i;
foreach (b;a)
{
switch (i)
{
case 0: assert(b == true); break;
case 1: assert(b == false); break;
case 2: assert(b == true); break;
default: assert(0);
}
i++;
}
foreach (j,b;a)
{
switch (j)
{
case 0: assert(b == true); break;
case 1: assert(b == false); break;
case 2: assert(b == true); break;
default: assert(0);
}
}
}
/**********************************************
* Reverses the bits of the $(D BitArray).
*/
@property BitArray reverse() @nogc pure nothrow
out (result)
{
assert(result == this);
}
body
{
if (len >= 2)
{
bool t;
size_t lo, hi;
lo = 0;
hi = len - 1;
for (; lo < hi; lo++, hi--)
{
t = this[lo];
this[lo] = this[hi];
this[hi] = t;
}
}
return this;
}
unittest
{
debug(bitarray) printf("BitArray.reverse.unittest\n");
BitArray b;
static bool[5] data = [1,0,1,1,0];
int i;
b.init(data);
b.reverse;
for (i = 0; i < data.length; i++)
{
assert(b[i] == data[4 - i]);
}
}
/**********************************************
* Sorts the $(D BitArray)'s elements.
*/
@property BitArray sort() @nogc pure nothrow
out (result)
{
assert(result == this);
}
body
{
if (len >= 2)
{
size_t lo, hi;
lo = 0;
hi = len - 1;
while (1)
{
while (1)
{
if (lo >= hi)
goto Ldone;
if (this[lo] == true)
break;
lo++;
}
while (1)
{
if (lo >= hi)
goto Ldone;
if (this[hi] == false)
break;
hi--;
}
this[lo] = false;
this[hi] = true;
lo++;
hi--;
}
}
Ldone:
return this;
}
unittest
{
debug(bitarray) printf("BitArray.sort.unittest\n");
__gshared size_t x = 0b1100011000;
__gshared BitArray ba = { 10, &x };
ba.sort;
for (size_t i = 0; i < 6; i++)
assert(ba[i] == false);
for (size_t i = 6; i < 10; i++)
assert(ba[i] == true);
}
/***************************************
* Support for operators == and != for $(D BitArray).
*/
bool opEquals(const ref BitArray a2) const @nogc pure nothrow
{
if (this.length != a2.length)
return false;
auto p1 = this.ptr;
auto p2 = a2.ptr;
if (p1[0..fullWords] != p2[0..fullWords])
return false;
if (!endBits)
return true;
auto i = fullWords;
return (p1[i] & endMask) == (p2[i] & endMask);
}
unittest
{
debug(bitarray) printf("BitArray.opEquals unittest\n");
static bool[] ba = [1,0,1,0,1];
static bool[] bb = [1,0,1];
static bool[] bc = [1,0,1,0,1,0,1];
static bool[] bd = [1,0,1,1,1];
static bool[] be = [1,0,1,0,1];
static bool[] bf = [1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
static bool[] bg = [1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1];
BitArray a; a.init(ba);
BitArray b; b.init(bb);
BitArray c; c.init(bc);
BitArray d; d.init(bd);
BitArray e; e.init(be);
BitArray f; f.init(bf);
BitArray g; g.init(bg);
assert(a != b);
assert(a != c);
assert(a != d);
assert(a == e);
assert(f != g);
}
/***************************************
* Supports comparison operators for $(D BitArray).
*/
int opCmp(BitArray a2) const @nogc pure nothrow
{
auto lesser = this.length < a2.length ? &this : &a2;
size_t fullWords = lesser.fullWords;
size_t endBits = lesser.endBits;
auto p1 = this.ptr;
auto p2 = a2.ptr;
foreach (i; 0 .. fullWords)
{
if (p1[i] != p2[i])
{
return p1[i] & (size_t(1) << bsf(p1[i] ^ p2[i])) ? 1 : -1;
}
}
if (endBits)
{
immutable i = fullWords;
immutable diff = p1[i] ^ p2[i];
if (diff)
{
immutable index = bsf(diff);
if (index < endBits)
{
return p1[i] & (size_t(1) << index) ? 1 : -1;
}
}
}
// Standard:
// A bool value can be implicitly converted to any integral type,
// with false becoming 0 and true becoming 1
return (this.length > a2.length) - (this.length < a2.length);
}
unittest
{
debug(bitarray) printf("BitArray.opCmp unittest\n");
static bool[] ba = [1,0,1,0,1];
static bool[] bb = [1,0,1];
static bool[] bc = [1,0,1,0,1,0,1];
static bool[] bd = [1,0,1,1,1];
static bool[] be = [1,0,1,0,1];
static bool[] bf = [1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1];
static bool[] bg = [1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0];
BitArray a; a.init(ba);
BitArray b; b.init(bb);
BitArray c; c.init(bc);
BitArray d; d.init(bd);
BitArray e; e.init(be);
BitArray f; f.init(bf);
BitArray g; g.init(bg);
assert(a > b);
assert(a >= b);
assert(a < c);
assert(a <= c);
assert(a < d);
assert(a <= d);
assert(a == e);
assert(a <= e);
assert(a >= e);
assert(f < g);
assert(g <= g);
bool[] v;
foreach (i; 1 .. 256)
{
v.length = i;
v[] = false;
BitArray x; x.init(v);
v[i-1] = true;
BitArray y; y.init(v);
assert(x < y);
assert(x <= y);
}
BitArray a1, a2;
for (size_t len = 4; len <= 256; len <<= 1)
{
a1.length = a2.length = len;
a1[len-2] = a2[len-1] = true;
assert(a1 > a2);
a1[len-2] = a2[len-1] = false;
}
foreach (j; 1 .. a1.length)
{
a1[j-1] = a2[j] = true;
assert(a1 > a2);
a1[j-1] = a2[j] = false;
}
}
/***************************************
* Support for hashing for $(D BitArray).
*/
size_t toHash() const @nogc pure nothrow
{
size_t hash = 3557;
auto fullBytes = len / 8;
foreach (i; 0 .. fullBytes)
{
hash *= 3559;
hash += (cast(byte*)this.ptr)[i];
}
foreach (i; 8*fullBytes .. len)
{
hash *= 3571;
hash += this[i];
}
return hash;
}
/***************************************
* Set this $(D BitArray) to the contents of $(D ba).
*/
void init(bool[] ba) pure nothrow
{
length = ba.length;
foreach (i, b; ba)
{
this[i] = b;
}
}
/***************************************
* Map the $(D BitArray) onto $(D v), with $(D numbits) being the number of bits
* in the array. Does not copy the data. $(D v.length) must be a multiple of
* $(D size_t.sizeof). If there are unmapped bits in the final mapped word then
* these will be set to 0.
*
* This is the inverse of $(D opCast).
*/
void init(void[] v, size_t numbits) pure nothrow
in
{
assert(numbits <= v.length * 8);
assert(v.length % size_t.sizeof == 0);
}
body
{
ptr = cast(size_t*)v.ptr;
len = numbits;
if (endBits)
{
// Need to mask away extraneous bits from v.
ptr[dim - 1] &= endMask;
}
}
unittest
{
debug(bitarray) printf("BitArray.init unittest\n");
static bool[] ba = [1,0,1,0,1];
BitArray a; a.init(ba);
BitArray b;
void[] v;
v = cast(void[])a;
b.init(v, a.length);
assert(b[0] == 1);
assert(b[1] == 0);
assert(b[2] == 1);
assert(b[3] == 0);
assert(b[4] == 1);
a[0] = 0;
assert(b[0] == 0);
assert(a == b);
}
/***************************************
* Convert to $(D void[]).
*/
void[] opCast(T : void[])() @nogc pure nothrow
{
return cast(void[])ptr[0 .. dim];
}
/***************************************
* Convert to $(D size_t[]).
*/
size_t[] opCast(T : size_t[])() @nogc pure nothrow
{
return ptr[0 .. dim];
}
unittest
{
debug(bitarray) printf("BitArray.opCast unittest\n");
static bool[] ba = [1,0,1,0,1];
BitArray a; a.init(ba);
void[] v = cast(void[])a;
assert(v.length == a.dim * size_t.sizeof);
}
/***************************************
* Support for unary operator ~ for $(D BitArray).
*/
BitArray opCom() const pure nothrow
{
auto dim = this.dim;
BitArray result;
result.length = len;
result.ptr[0..dim] = ~this.ptr[0..dim];
// Avoid putting garbage in extra bits
// Remove once we zero on length extension
if (endBits)
result.ptr[dim - 1] &= endMask;
return result;
}
unittest
{
debug(bitarray) printf("BitArray.opCom unittest\n");
static bool[] ba = [1,0,1,0,1];
BitArray a; a.init(ba);
BitArray b = ~a;
assert(b[0] == 0);
assert(b[1] == 1);
assert(b[2] == 0);
assert(b[3] == 1);
assert(b[4] == 0);
}
/***************************************
* Support for binary bitwise operators for $(D BitArray).
*/
BitArray opBinary(string op)(const BitArray e2) const pure nothrow
if (op == "-" || op == "&" || op == "|" || op == "^")
in
{
assert(len == e2.length);
}
body
{
auto dim = this.dim;
BitArray result;
result.length = len;
static if (op == "-")
result.ptr[0..dim] = this.ptr[0..dim] & ~e2.ptr[0..dim];
else
mixin("result.ptr[0..dim] = this.ptr[0..dim]"~op~" e2.ptr[0..dim];");
// Avoid putting garbage in extra bits
// Remove once we zero on length extension
if (endBits)
result.ptr[dim - 1] &= endMask;
return result;
}
unittest
{
debug(bitarray) printf("BitArray.opAnd unittest\n");
static bool[] ba = [1,0,1,0,1];
static bool[] bb = [1,0,1,1,0];
BitArray a; a.init(ba);
BitArray b; b.init(bb);
BitArray c = a & b;
assert(c[0] == 1);
assert(c[1] == 0);
assert(c[2] == 1);
assert(c[3] == 0);
assert(c[4] == 0);
}
unittest
{
debug(bitarray) printf("BitArray.opOr unittest\n");
static bool[] ba = [1,0,1,0,1];
static bool[] bb = [1,0,1,1,0];
BitArray a; a.init(ba);
BitArray b; b.init(bb);
BitArray c = a | b;
assert(c[0] == 1);
assert(c[1] == 0);
assert(c[2] == 1);
assert(c[3] == 1);
assert(c[4] == 1);
}
unittest
{
debug(bitarray) printf("BitArray.opXor unittest\n");
static bool[] ba = [1,0,1,0,1];
static bool[] bb = [1,0,1,1,0];
BitArray a; a.init(ba);
BitArray b; b.init(bb);
BitArray c = a ^ b;
assert(c[0] == 0);
assert(c[1] == 0);
assert(c[2] == 0);
assert(c[3] == 1);
assert(c[4] == 1);
}
unittest
{
debug(bitarray) printf("BitArray.opSub unittest\n");
static bool[] ba = [1,0,1,0,1];
static bool[] bb = [1,0,1,1,0];
BitArray a; a.init(ba);
BitArray b; b.init(bb);
BitArray c = a - b;
assert(c[0] == 0);
assert(c[1] == 0);
assert(c[2] == 0);
assert(c[3] == 0);
assert(c[4] == 1);
}
/***************************************
* Support for operator op= for $(D BitArray).
*/
BitArray opOpAssign(string op)(const BitArray e2) @nogc pure nothrow
if (op == "-" || op == "&" || op == "|" || op == "^")
in
{
assert(len == e2.length);
}
body
{
foreach (i; 0 .. fullWords)
{
static if (op == "-")
ptr[i] &= ~e2.ptr[i];
else
mixin("ptr[i] "~op~"= e2.ptr[i];");
}
if (!endBits)
return this;
size_t i = fullWords;
size_t endWord = ptr[i];
static if (op == "-")
endWord &= ~e2.ptr[i];
else
mixin("endWord "~op~"= e2.ptr[i];");
ptr[i] = (ptr[i] & ~endMask) | (endWord & endMask);
return this;
}
unittest
{
static bool[] ba = [1,0,1,0,1,1,0,1,0,1];
static bool[] bb = [1,0,1,1,0];
BitArray a; a.init(ba);
BitArray b; b.init(bb);
BitArray c = a;
c.length = 5;
c &= b;
assert(a[5] == 1);
assert(a[6] == 0);
assert(a[7] == 1);
assert(a[8] == 0);
assert(a[9] == 1);
}
unittest
{
debug(bitarray) printf("BitArray.opAndAssign unittest\n");
static bool[] ba = [1,0,1,0,1];
static bool[] bb = [1,0,1,1,0];
BitArray a; a.init(ba);
BitArray b; b.init(bb);
a &= b;
assert(a[0] == 1);
assert(a[1] == 0);
assert(a[2] == 1);
assert(a[3] == 0);
assert(a[4] == 0);
}
unittest
{
debug(bitarray) printf("BitArray.opOrAssign unittest\n");
static bool[] ba = [1,0,1,0,1];
static bool[] bb = [1,0,1,1,0];
BitArray a; a.init(ba);
BitArray b; b.init(bb);
a |= b;
assert(a[0] == 1);
assert(a[1] == 0);
assert(a[2] == 1);
assert(a[3] == 1);
assert(a[4] == 1);
}
unittest
{
debug(bitarray) printf("BitArray.opXorAssign unittest\n");
static bool[] ba = [1,0,1,0,1];
static bool[] bb = [1,0,1,1,0];
BitArray a; a.init(ba);
BitArray b; b.init(bb);
a ^= b;
assert(a[0] == 0);
assert(a[1] == 0);
assert(a[2] == 0);
assert(a[3] == 1);
assert(a[4] == 1);
}
unittest
{
debug(bitarray) printf("BitArray.opSubAssign unittest\n");
static bool[] ba = [1,0,1,0,1];
static bool[] bb = [1,0,1,1,0];
BitArray a; a.init(ba);
BitArray b; b.init(bb);
a -= b;
assert(a[0] == 0);
assert(a[1] == 0);
assert(a[2] == 0);
assert(a[3] == 0);
assert(a[4] == 1);
}
/***************************************
* Support for operator ~= for $(D BitArray).
* $(RED Warning: This will overwrite a bit in the final word
* of the current underlying data regardless of whether it is
* shared between BitArray objects. i.e. D dynamic array
* concatenation semantics are not followed)
*/
BitArray opCatAssign(bool b) pure nothrow
{
length = len + 1;
this[len - 1] = b;
return this;
}
unittest
{
debug(bitarray) printf("BitArray.opCatAssign unittest\n");
static bool[] ba = [1,0,1,0,1];
BitArray a; a.init(ba);
BitArray b;
b = (a ~= true);
assert(a[0] == 1);
assert(a[1] == 0);
assert(a[2] == 1);
assert(a[3] == 0);
assert(a[4] == 1);
assert(a[5] == 1);
assert(b == a);
}
/***************************************
* ditto
*/
BitArray opCatAssign(BitArray b) pure nothrow
{
auto istart = len;
length = len + b.length;
for (auto i = istart; i < len; i++)
this[i] = b[i - istart];
return this;
}
unittest
{
debug(bitarray) printf("BitArray.opCatAssign unittest\n");
static bool[] ba = [1,0];
static bool[] bb = [0,1,0];
BitArray a; a.init(ba);
BitArray b; b.init(bb);
BitArray c;
c = (a ~= b);
assert(a.length == 5);
assert(a[0] == 1);
assert(a[1] == 0);
assert(a[2] == 0);
assert(a[3] == 1);
assert(a[4] == 0);
assert(c == a);
}
/***************************************
* Support for binary operator ~ for $(D BitArray).
*/
BitArray opCat(bool b) const pure nothrow
{
BitArray r;
r = this.dup;
r.length = len + 1;
r[len] = b;
return r;
}
/** ditto */
BitArray opCat_r(bool b) const pure nothrow
{
BitArray r;
r.length = len + 1;
r[0] = b;
foreach (i; 0 .. len)
r[1 + i] = this[i];
return r;
}
/** ditto */
BitArray opCat(BitArray b) const pure nothrow
{
BitArray r;
r = this.dup;
r ~= b;
return r;
}
unittest
{
debug(bitarray) printf("BitArray.opCat unittest\n");
static bool[] ba = [1,0];
static bool[] bb = [0,1,0];
BitArray a; a.init(ba);
BitArray b; b.init(bb);
BitArray c;
c = (a ~ b);
assert(c.length == 5);
assert(c[0] == 1);
assert(c[1] == 0);
assert(c[2] == 0);
assert(c[3] == 1);
assert(c[4] == 0);
c = (a ~ true);
assert(c.length == 3);
assert(c[0] == 1);
assert(c[1] == 0);
assert(c[2] == 1);
c = (false ~ a);
assert(c.length == 3);
assert(c[0] == 0);
assert(c[1] == 1);
assert(c[2] == 0);
}
/***************************************
* Return a string representation of this BitArray.
*
* Two format specifiers are supported:
* $(LI $(B %s) which prints the bits as an array, and)
* $(LI $(B %b) which prints the bits as 8-bit byte packets)
* separated with an underscore.
*/
void toString(scope void delegate(const(char)[]) sink,
FormatSpec!char fmt) const
{
switch(fmt.spec)
{
case 'b':
return formatBitString(sink);
case 's':
return formatBitArray(sink);
default:
throw new Exception("Unknown format specifier: %" ~ fmt.spec);
}
}
///
unittest
{
debug(bitarray) printf("BitArray.toString unittest\n");
BitArray b;
b.init([0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1]);
auto s1 = format("%s", b);
assert(s1 == "[0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1]");
auto s2 = format("%b", b);
assert(s2 == "00001111_00001111");
}
/***************************************
* Return a lazy range of the indices of set bits.
*/
@property auto bitsSet() const nothrow
{
import std.algorithm : filter, map, joiner;
return iota(dim).
filter!(i => ptr[i])().
map!(i => BitsSet!size_t(ptr[i], i * bitsPerSizeT))().
joiner();
}
///
unittest
{
import std.algorithm : equal;
BitArray b1;
b1.init([0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1]);
assert(b1.bitsSet.equal([4, 5, 6, 7, 12, 13, 14, 15]));
BitArray b2;
b2.length = 1000;
b2[333] = true;
b2[666] = true;
b2[999] = true;
assert(b2.bitsSet.equal([333, 666, 999]));
}
unittest
{
import std.algorithm : equal;
debug(bitarray) printf("BitArray.bitsSet unittest\n");
BitArray b;
enum wordBits = size_t.sizeof * 8;
b.init([size_t.max], 0);
assert(b.bitsSet.empty);
b.init([size_t.max], 1);
assert(b.bitsSet.equal([0]));
b.init([size_t.max], wordBits);
assert(b.bitsSet.equal(iota(wordBits)));
b.init([size_t.max, size_t.max], wordBits);
assert(b.bitsSet.equal(iota(wordBits)));
b.init([size_t.max, size_t.max], wordBits + 1);
assert(b.bitsSet.equal(iota(wordBits + 1)));
b.init([size_t.max, size_t.max], wordBits * 2);
assert(b.bitsSet.equal(iota(wordBits * 2)));
}
private void formatBitString(scope void delegate(const(char)[]) sink) const
{
if (!length)
return;
auto leftover = len % 8;
foreach (idx; 0 .. leftover)
{
char[1] res = cast(char)(this[idx] + '0');
sink.put(res[]);
}
if (leftover && len > 8)
sink.put("_");
size_t count;
foreach (idx; leftover .. len)
{
char[1] res = cast(char)(this[idx] + '0');
sink.put(res[]);
if (++count == 8 && idx != len - 1)
{
sink.put("_");
count = 0;
}
}
}
private void formatBitArray(scope void delegate(const(char)[]) sink) const
{
sink("[");
foreach (idx; 0 .. len)
{
char[1] res = cast(char)(this[idx] + '0');
sink(res[]);
if (idx+1 < len)
sink(", ");
}
sink("]");
}
}
unittest
{
BitArray b;
b.init([]);
assert(format("%s", b) == "[]");
assert(format("%b", b) is null);
b.init([1]);
assert(format("%s", b) == "[1]");
assert(format("%b", b) == "1");
b.init([0, 0, 0, 0]);
assert(format("%b", b) == "0000");
b.init([0, 0, 0, 0, 1, 1, 1, 1]);
assert(format("%s", b) == "[0, 0, 0, 0, 1, 1, 1, 1]");
assert(format("%b", b) == "00001111");
b.init([0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1]);
assert(format("%s", b) == "[0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1]");
assert(format("%b", b) == "00001111_00001111");
b.init([1, 0, 0, 0, 0, 1, 1, 1, 1]);
assert(format("%b", b) == "1_00001111");
b.init([1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1]);
assert(format("%b", b) == "1_00001111_00001111");
}
/++
Swaps the endianness of the given integral value or character.
+/
T swapEndian(T)(T val) @safe pure nothrow @nogc
if(isIntegral!T || isSomeChar!T || isBoolean!T)
{
static if(val.sizeof == 1)
return val;
else static if(isUnsigned!T)
return swapEndianImpl(val);
else static if(isIntegral!T)
return cast(T)swapEndianImpl(cast(Unsigned!T) val);
else static if(is(Unqual!T == wchar))
return cast(T)swapEndian(cast(ushort)val);
else static if(is(Unqual!T == dchar))
return cast(T)swapEndian(cast(uint)val);
else
static assert(0, T.stringof ~ " unsupported by swapEndian.");
}
private ushort swapEndianImpl(ushort val) @safe pure nothrow @nogc
{
return ((val & 0xff00U) >> 8) |
((val & 0x00ffU) << 8);
}
private uint swapEndianImpl(uint val) @trusted pure nothrow @nogc
{
return bswap(val);
}
private ulong swapEndianImpl(ulong val) @trusted pure nothrow @nogc
{
immutable ulong res = bswap(cast(uint)val);
return res << 32 | bswap(cast(uint)(val >> 32));
}
unittest
{
foreach(T; TypeTuple!(bool, byte, ubyte, short, ushort, int, uint, long, ulong, char, wchar, dchar))
{
scope(failure) writefln("Failed type: %s", T.stringof);
T val;
const T cval;
immutable T ival;
assert(swapEndian(swapEndian(val)) == val);
assert(swapEndian(swapEndian(cval)) == cval);
assert(swapEndian(swapEndian(ival)) == ival);
assert(swapEndian(swapEndian(T.min)) == T.min);
assert(swapEndian(swapEndian(T.max)) == T.max);
foreach(i; 2 .. 10)
{
immutable T maxI = cast(T)(T.max / i);
immutable T minI = cast(T)(T.min / i);
assert(swapEndian(swapEndian(maxI)) == maxI);
static if(isSigned!T)
assert(swapEndian(swapEndian(minI)) == minI);
}
static if(isSigned!T)
assert(swapEndian(swapEndian(cast(T)0)) == 0);
// used to trigger BUG6354
static if(T.sizeof > 1 && isUnsigned!T)
{
T left = 0xffU;
left <<= (T.sizeof - 1) * 8;
T right = 0xffU;
for(size_t i = 1; i < T.sizeof; ++i)
{
assert(swapEndian(left) == right);
assert(swapEndian(right) == left);
left >>= 8;
right <<= 8;
}
}
}
}
private union EndianSwapper(T)
if(canSwapEndianness!T)
{
Unqual!T value;
ubyte[T.sizeof] array;
static if(is(FloatingPointTypeOf!T == float))
uint intValue;
else static if(is(FloatingPointTypeOf!T == double))
ulong intValue;
}
/++
Converts the given value from the native endianness to big endian and
returns it as a $(D ubyte[n]) where $(D n) is the size of the given type.
Returning a $(D ubyte[n]) helps prevent accidentally using a swapped value
as a regular one (and in the case of floating point values, it's necessary,
because the FPU will mess up any swapped floating point values. So, you
can't actually have swapped floating point values as floating point values).
$(D real) is not supported, because its size is implementation-dependent
and therefore could vary from machine to machine (which could make it
unusable if you tried to transfer it to another machine).
Examples:
--------------------
int i = 12345;
ubyte[4] swappedI = nativeToBigEndian(i);
assert(i == bigEndianToNative!int(swappedI));
double d = 123.45;
ubyte[8] swappedD = nativeToBigEndian(d);
assert(d == bigEndianToNative!double(swappedD));
--------------------
+/
auto nativeToBigEndian(T)(T val) @safe pure nothrow @nogc
if(canSwapEndianness!T)
{
return nativeToBigEndianImpl(val);
}
//Verify Examples
unittest
{
int i = 12345;
ubyte[4] swappedI = nativeToBigEndian(i);
assert(i == bigEndianToNative!int(swappedI));
double d = 123.45;
ubyte[8] swappedD = nativeToBigEndian(d);
assert(d == bigEndianToNative!double(swappedD));
}
private auto nativeToBigEndianImpl(T)(T val) @safe pure nothrow @nogc
if(isIntegral!T || isSomeChar!T || isBoolean!T)
{
EndianSwapper!T es = void;
version(LittleEndian)
es.value = swapEndian(val);
else
es.value = val;
return es.array;
}
private auto nativeToBigEndianImpl(T)(T val) @safe pure nothrow @nogc
if(isFloatOrDouble!T)
{
version(LittleEndian)
return floatEndianImpl!(T, true)(val);
else
return floatEndianImpl!(T, false)(val);
}
unittest
{
foreach(T; TypeTuple!(bool, byte, ubyte, short, ushort, int, uint, long, ulong,
char, wchar, dchar
/* The trouble here is with floats and doubles being compared against nan
* using a bit compare. There are two kinds of nans, quiet and signaling.
* When a nan passes through the x87, it converts signaling to quiet.
* When a nan passes through the XMM, it does not convert signaling to quiet.
* float.init is a signaling nan.
* The binary API sometimes passes the data through the XMM, sometimes through
* the x87, meaning these will fail the 'is' bit compare under some circumstances.
* I cannot think of a fix for this that makes consistent sense.
*/
/*,float, double*/))
{
scope(failure) writefln("Failed type: %s", T.stringof);
T val;
const T cval;
immutable T ival;
//is instead of == because of NaN for floating point values.
assert(bigEndianToNative!T(nativeToBigEndian(val)) is val);
assert(bigEndianToNative!T(nativeToBigEndian(cval)) is cval);
assert(bigEndianToNative!T(nativeToBigEndian(ival)) is ival);
assert(bigEndianToNative!T(nativeToBigEndian(T.min)) == T.min);
assert(bigEndianToNative!T(nativeToBigEndian(T.max)) == T.max);
static if(isSigned!T)
assert(bigEndianToNative!T(nativeToBigEndian(cast(T)0)) == 0);
static if(!is(T == bool))
{
foreach(i; [2, 4, 6, 7, 9, 11])
{
immutable T maxI = cast(T)(T.max / i);
immutable T minI = cast(T)(T.min / i);
assert(bigEndianToNative!T(nativeToBigEndian(maxI)) == maxI);
static if(T.sizeof > 1)
assert(nativeToBigEndian(maxI) != nativeToLittleEndian(maxI));
else
assert(nativeToBigEndian(maxI) == nativeToLittleEndian(maxI));
static if(isSigned!T)
{
assert(bigEndianToNative!T(nativeToBigEndian(minI)) == minI);
static if(T.sizeof > 1)
assert(nativeToBigEndian(minI) != nativeToLittleEndian(minI));
else
assert(nativeToBigEndian(minI) == nativeToLittleEndian(minI));
}
}
}
static if(isUnsigned!T || T.sizeof == 1 || is(T == wchar))
assert(nativeToBigEndian(T.max) == nativeToLittleEndian(T.max));
else
assert(nativeToBigEndian(T.max) != nativeToLittleEndian(T.max));
static if(isUnsigned!T || T.sizeof == 1 || isSomeChar!T)
assert(nativeToBigEndian(T.min) == nativeToLittleEndian(T.min));
else
assert(nativeToBigEndian(T.min) != nativeToLittleEndian(T.min));
}
}
/++
Converts the given value from big endian to the native endianness and
returns it. The value is given as a $(D ubyte[n]) where $(D n) is the size
of the target type. You must give the target type as a template argument,
because there are multiple types with the same size and so the type of the
argument is not enough to determine the return type.
Taking a $(D ubyte[n]) helps prevent accidentally using a swapped value
as a regular one (and in the case of floating point values, it's necessary,
because the FPU will mess up any swapped floating point values. So, you
can't actually have swapped floating point values as floating point values).
Examples:
--------------------
ushort i = 12345;
ubyte[2] swappedI = nativeToBigEndian(i);
assert(i == bigEndianToNative!ushort(swappedI));
dchar c = 'D';
ubyte[4] swappedC = nativeToBigEndian(c);
assert(c == bigEndianToNative!dchar(swappedC));
--------------------
+/
T bigEndianToNative(T, size_t n)(ubyte[n] val) @safe pure nothrow @nogc
if(canSwapEndianness!T && n == T.sizeof)
{
return bigEndianToNativeImpl!(T, n)(val);
}
//Verify Examples.
unittest
{
ushort i = 12345;
ubyte[2] swappedI = nativeToBigEndian(i);
assert(i == bigEndianToNative!ushort(swappedI));
dchar c = 'D';
ubyte[4] swappedC = nativeToBigEndian(c);
assert(c == bigEndianToNative!dchar(swappedC));
}
private T bigEndianToNativeImpl(T, size_t n)(ubyte[n] val) @safe pure nothrow @nogc
if((isIntegral!T || isSomeChar!T || isBoolean!T) &&
n == T.sizeof)
{
EndianSwapper!T es = void;
es.array = val;
version(LittleEndian)
immutable retval = swapEndian(es.value);
else
immutable retval = es.value;
return retval;
}
private T bigEndianToNativeImpl(T, size_t n)(ubyte[n] val) @safe pure nothrow @nogc
if(isFloatOrDouble!T && n == T.sizeof)
{
version(LittleEndian)
return cast(T) floatEndianImpl!(n, true)(val);
else
return cast(T) floatEndianImpl!(n, false)(val);
}
/++
Converts the given value from the native endianness to little endian and
returns it as a $(D ubyte[n]) where $(D n) is the size of the given type.
Returning a $(D ubyte[n]) helps prevent accidentally using a swapped value
as a regular one (and in the case of floating point values, it's necessary,
because the FPU will mess up any swapped floating point values. So, you
can't actually have swapped floating point values as floating point values).
Examples:
--------------------
int i = 12345;
ubyte[4] swappedI = nativeToLittleEndian(i);
assert(i == littleEndianToNative!int(swappedI));
double d = 123.45;
ubyte[8] swappedD = nativeToLittleEndian(d);
assert(d == littleEndianToNative!double(swappedD));
--------------------
+/
auto nativeToLittleEndian(T)(T val) @safe pure nothrow @nogc
if(canSwapEndianness!T)
{
return nativeToLittleEndianImpl(val);
}
//Verify Examples.
unittest
{
int i = 12345;
ubyte[4] swappedI = nativeToLittleEndian(i);
assert(i == littleEndianToNative!int(swappedI));
double d = 123.45;
ubyte[8] swappedD = nativeToLittleEndian(d);
assert(d == littleEndianToNative!double(swappedD));
}
private auto nativeToLittleEndianImpl(T)(T val) @safe pure nothrow @nogc
if(isIntegral!T || isSomeChar!T || isBoolean!T)
{
EndianSwapper!T es = void;
version(BigEndian)
es.value = swapEndian(val);
else
es.value = val;
return es.array;
}
private auto nativeToLittleEndianImpl(T)(T val) @safe pure nothrow @nogc
if(isFloatOrDouble!T)
{
version(BigEndian)
return floatEndianImpl!(T, true)(val);
else
return floatEndianImpl!(T, false)(val);
}
unittest
{
foreach(T; TypeTuple!(bool, byte, ubyte, short, ushort, int, uint, long, ulong,
char, wchar, dchar/*,
float, double*/))
{
scope(failure) writefln("Failed type: %s", T.stringof);
T val;
const T cval;
immutable T ival;
//is instead of == because of NaN for floating point values.
assert(littleEndianToNative!T(nativeToLittleEndian(val)) is val);
assert(littleEndianToNative!T(nativeToLittleEndian(cval)) is cval);
assert(littleEndianToNative!T(nativeToLittleEndian(ival)) is ival);
assert(littleEndianToNative!T(nativeToLittleEndian(T.min)) == T.min);
assert(littleEndianToNative!T(nativeToLittleEndian(T.max)) == T.max);
static if(isSigned!T)
assert(littleEndianToNative!T(nativeToLittleEndian(cast(T)0)) == 0);
static if(!is(T == bool))
{
foreach(i; 2 .. 10)
{
immutable T maxI = cast(T)(T.max / i);
immutable T minI = cast(T)(T.min / i);
assert(littleEndianToNative!T(nativeToLittleEndian(maxI)) == maxI);
static if(isSigned!T)
assert(littleEndianToNative!T(nativeToLittleEndian(minI)) == minI);
}
}
}
}
/++
Converts the given value from little endian to the native endianness and
returns it. The value is given as a $(D ubyte[n]) where $(D n) is the size
of the target type. You must give the target type as a template argument,
because there are multiple types with the same size and so the type of the
argument is not enough to determine the return type.
Taking a $(D ubyte[n]) helps prevent accidentally using a swapped value
as a regular one (and in the case of floating point values, it's necessary,
because the FPU will mess up any swapped floating point values. So, you
can't actually have swapped floating point values as floating point values).
$(D real) is not supported, because its size is implementation-dependent
and therefore could vary from machine to machine (which could make it
unusable if you tried to transfer it to another machine).
Examples:
--------------------
ushort i = 12345;
ubyte[2] swappedI = nativeToLittleEndian(i);
assert(i == littleEndianToNative!ushort(swappedI));
dchar c = 'D';
ubyte[4] swappedC = nativeToLittleEndian(c);
assert(c == littleEndianToNative!dchar(swappedC));
--------------------
+/
T littleEndianToNative(T, size_t n)(ubyte[n] val) @safe pure nothrow @nogc
if(canSwapEndianness!T && n == T.sizeof)
{
return littleEndianToNativeImpl!T(val);
}
//Verify Unittest.
unittest
{
ushort i = 12345;
ubyte[2] swappedI = nativeToLittleEndian(i);
assert(i == littleEndianToNative!ushort(swappedI));
dchar c = 'D';
ubyte[4] swappedC = nativeToLittleEndian(c);
assert(c == littleEndianToNative!dchar(swappedC));
}
private T littleEndianToNativeImpl(T, size_t n)(ubyte[n] val) @safe pure nothrow @nogc
if((isIntegral!T || isSomeChar!T || isBoolean!T) &&
n == T.sizeof)
{
EndianSwapper!T es = void;
es.array = val;
version(BigEndian)
immutable retval = swapEndian(es.value);
else
immutable retval = es.value;
return retval;
}
private T littleEndianToNativeImpl(T, size_t n)(ubyte[n] val) @safe pure nothrow @nogc
if(((isFloatOrDouble!T) &&
n == T.sizeof))
{
version(BigEndian)
return floatEndianImpl!(n, true)(val);
else
return floatEndianImpl!(n, false)(val);
}
private auto floatEndianImpl(T, bool swap)(T val) @safe pure nothrow @nogc
if(isFloatOrDouble!T)
{
EndianSwapper!T es = void;
es.value = val;
static if(swap)
es.intValue = swapEndian(es.intValue);
return es.array;
}
private auto floatEndianImpl(size_t n, bool swap)(ubyte[n] val) @safe pure nothrow @nogc
if(n == 4 || n == 8)
{
static if(n == 4) EndianSwapper!float es = void;
else static if(n == 8) EndianSwapper!double es = void;
es.array = val;
static if(swap)
es.intValue = swapEndian(es.intValue);
return es.value;
}
private template isFloatOrDouble(T)
{
enum isFloatOrDouble = isFloatingPoint!T &&
!is(Unqual!(FloatingPointTypeOf!T) == real);
}
unittest
{
foreach(T; TypeTuple!(float, double))
{
static assert(isFloatOrDouble!(T));
static assert(isFloatOrDouble!(const T));
static assert(isFloatOrDouble!(immutable T));
static assert(isFloatOrDouble!(shared T));
static assert(isFloatOrDouble!(shared(const T)));
static assert(isFloatOrDouble!(shared(immutable T)));
}
static assert(!isFloatOrDouble!(real));
static assert(!isFloatOrDouble!(const real));
static assert(!isFloatOrDouble!(immutable real));
static assert(!isFloatOrDouble!(shared real));
static assert(!isFloatOrDouble!(shared(const real)));
static assert(!isFloatOrDouble!(shared(immutable real)));
}
private template canSwapEndianness(T)
{
enum canSwapEndianness = isIntegral!T ||
isSomeChar!T ||
isBoolean!T ||
isFloatOrDouble!T;
}
unittest
{
foreach(T; TypeTuple!(bool, ubyte, byte, ushort, short, uint, int, ulong,
long, char, wchar, dchar, float, double))
{
static assert(canSwapEndianness!(T));
static assert(canSwapEndianness!(const T));
static assert(canSwapEndianness!(immutable T));
static assert(canSwapEndianness!(shared(T)));
static assert(canSwapEndianness!(shared(const T)));
static assert(canSwapEndianness!(shared(immutable T)));
}
//!
foreach(T; TypeTuple!(real, string, wstring, dstring))
{
static assert(!canSwapEndianness!(T));
static assert(!canSwapEndianness!(const T));
static assert(!canSwapEndianness!(immutable T));
static assert(!canSwapEndianness!(shared(T)));
static assert(!canSwapEndianness!(shared(const T)));
static assert(!canSwapEndianness!(shared(immutable T)));
}
}
/++
Takes a range of $(D ubyte)s and converts the first $(D T.sizeof) bytes to
$(D T). The value returned is converted from the given endianness to the
native endianness. The range is not consumed.
Params:
T = The integral type to convert the first $(D T.sizeof) bytes to.
endianness = The endianness that the bytes are assumed to be in.
range = The range to read from.
index = The index to start reading from (instead of starting at the
front). If index is a pointer, then it is updated to the index
after the bytes read. The overloads with index are only
available if $(D hasSlicing!R) is $(D true).
Examples:
--------------------
ubyte[] buffer = [1, 5, 22, 9, 44, 255, 8];
assert(buffer.peek!uint() == 17110537);
assert(buffer.peek!ushort() == 261);
assert(buffer.peek!ubyte() == 1);
assert(buffer.peek!uint(2) == 369700095);
assert(buffer.peek!ushort(2) == 5641);
assert(buffer.peek!ubyte(2) == 22);
size_t index = 0;
assert(buffer.peek!ushort(&index) == 261);
assert(index == 2);
assert(buffer.peek!uint(&index) == 369700095);
assert(index == 6);
assert(buffer.peek!ubyte(&index) == 8);
assert(index == 7);
--------------------
+/
T peek(T, Endian endianness = Endian.bigEndian, R)(R range)
if (canSwapEndianness!T &&
isForwardRange!R &&
is(ElementType!R : const ubyte))
{
static if(hasSlicing!R)
const ubyte[T.sizeof] bytes = range[0 .. T.sizeof];
else
{
ubyte[T.sizeof] bytes;
//Make sure that range is not consumed, even if it's a class.
range = range.save;
foreach(ref e; bytes)
{
e = range.front;
range.popFront();
}
}
static if(endianness == Endian.bigEndian)
return bigEndianToNative!T(bytes);
else
return littleEndianToNative!T(bytes);
}
/++ Ditto +/
T peek(T, Endian endianness = Endian.bigEndian, R)(R range, size_t index)
if(canSwapEndianness!T &&
isForwardRange!R &&
hasSlicing!R &&
is(ElementType!R : const ubyte))
{
return peek!(T, endianness)(range, &index);
}
/++ Ditto +/
T peek(T, Endian endianness = Endian.bigEndian, R)(R range, size_t* index)
if(canSwapEndianness!T &&
isForwardRange!R &&
hasSlicing!R &&
is(ElementType!R : const ubyte))
{
assert(index);
immutable begin = *index;
immutable end = begin + T.sizeof;
const ubyte[T.sizeof] bytes = range[begin .. end];
*index = end;
static if(endianness == Endian.bigEndian)
return bigEndianToNative!T(bytes);
else
return littleEndianToNative!T(bytes);
}
//Verify Example.
unittest
{
ubyte[] buffer = [1, 5, 22, 9, 44, 255, 8];
assert(buffer.peek!uint() == 17110537);
assert(buffer.peek!ushort() == 261);
assert(buffer.peek!ubyte() == 1);
assert(buffer.peek!uint(2) == 369700095);
assert(buffer.peek!ushort(2) == 5641);
assert(buffer.peek!ubyte(2) == 22);
size_t index = 0;
assert(buffer.peek!ushort(&index) == 261);
assert(index == 2);
assert(buffer.peek!uint(&index) == 369700095);
assert(index == 6);
assert(buffer.peek!ubyte(&index) == 8);
assert(index == 7);
}
unittest
{
{
//bool
ubyte[] buffer = [0, 1];
assert(buffer.peek!bool() == false);
assert(buffer.peek!bool(1) == true);
size_t index = 0;
assert(buffer.peek!bool(&index) == false);
assert(index == 1);
assert(buffer.peek!bool(&index) == true);
assert(index == 2);
}
{
//char (8bit)
ubyte[] buffer = [97, 98, 99, 100];
assert(buffer.peek!char() == 'a');
assert(buffer.peek!char(1) == 'b');
size_t index = 0;
assert(buffer.peek!char(&index) == 'a');
assert(index == 1);
assert(buffer.peek!char(&index) == 'b');
assert(index == 2);
}
{
//wchar (16bit - 2x ubyte)
ubyte[] buffer = [1, 5, 32, 29, 1, 7];
assert(buffer.peek!wchar() == 'ą');
assert(buffer.peek!wchar(2) == '”');
assert(buffer.peek!wchar(4) == 'ć');
size_t index = 0;
assert(buffer.peek!wchar(&index) == 'ą');
assert(index == 2);
assert(buffer.peek!wchar(&index) == '”');
assert(index == 4);
assert(buffer.peek!wchar(&index) == 'ć');
assert(index == 6);
}
{
//dchar (32bit - 4x ubyte)
ubyte[] buffer = [0, 0, 1, 5, 0, 0, 32, 29, 0, 0, 1, 7];
assert(buffer.peek!dchar() == 'ą');
assert(buffer.peek!dchar(4) == '”');
assert(buffer.peek!dchar(8) == 'ć');
size_t index = 0;
assert(buffer.peek!dchar(&index) == 'ą');
assert(index == 4);
assert(buffer.peek!dchar(&index) == '”');
assert(index == 8);
assert(buffer.peek!dchar(&index) == 'ć');
assert(index == 12);
}
{
//float (32bit - 4x ubyte)
ubyte[] buffer = [66, 0, 0, 0, 65, 200, 0, 0];
assert(buffer.peek!float()== 32.0);
assert(buffer.peek!float(4) == 25.0f);
size_t index = 0;
assert(buffer.peek!float(&index) == 32.0f);
assert(index == 4);
assert(buffer.peek!float(&index) == 25.0f);
assert(index == 8);
}
{
//double (64bit - 8x ubyte)
ubyte[] buffer = [64, 64, 0, 0, 0, 0, 0, 0, 64, 57, 0, 0, 0, 0, 0, 0];
assert(buffer.peek!double() == 32.0);
assert(buffer.peek!double(8) == 25.0);
size_t index = 0;
assert(buffer.peek!double(&index) == 32.0);
assert(index == 8);
assert(buffer.peek!double(&index) == 25.0);
assert(index == 16);
}
{
//enum
ubyte[] buffer = [0, 0, 0, 10, 0, 0, 0, 20, 0, 0, 0, 30];
enum Foo
{
one = 10,
two = 20,
three = 30
}
assert(buffer.peek!Foo() == Foo.one);
assert(buffer.peek!Foo(0) == Foo.one);
assert(buffer.peek!Foo(4) == Foo.two);
assert(buffer.peek!Foo(8) == Foo.three);
size_t index = 0;
assert(buffer.peek!Foo(&index) == Foo.one);
assert(index == 4);
assert(buffer.peek!Foo(&index) == Foo.two);
assert(index == 8);
assert(buffer.peek!Foo(&index) == Foo.three);
assert(index == 12);
}
{
//enum - bool
ubyte[] buffer = [0, 1];
enum Bool: bool
{
bfalse = false,
btrue = true,
}
assert(buffer.peek!Bool() == Bool.bfalse);
assert(buffer.peek!Bool(0) == Bool.bfalse);
assert(buffer.peek!Bool(1) == Bool.btrue);
size_t index = 0;
assert(buffer.peek!Bool(&index) == Bool.bfalse);
assert(index == 1);
assert(buffer.peek!Bool(&index) == Bool.btrue);
assert(index == 2);
}
{
//enum - float
ubyte[] buffer = [66, 0, 0, 0, 65, 200, 0, 0];
enum Float: float
{
one = 32.0f,
two = 25.0f
}
assert(buffer.peek!Float() == Float.one);
assert(buffer.peek!Float(0) == Float.one);
assert(buffer.peek!Float(4) == Float.two);
size_t index = 0;
assert(buffer.peek!Float(&index) == Float.one);
assert(index == 4);
assert(buffer.peek!Float(&index) == Float.two);
assert(index == 8);
}
{
//enum - double
ubyte[] buffer = [64, 64, 0, 0, 0, 0, 0, 0, 64, 57, 0, 0, 0, 0, 0, 0];
enum Double: double
{
one = 32.0,
two = 25.0
}
assert(buffer.peek!Double() == Double.one);
assert(buffer.peek!Double(0) == Double.one);
assert(buffer.peek!Double(8) == Double.two);
size_t index = 0;
assert(buffer.peek!Double(&index) == Double.one);
assert(index == 8);
assert(buffer.peek!Double(&index) == Double.two);
assert(index == 16);
}
{
//enum - real
ubyte[] buffer = [64, 64, 0, 0, 0, 0, 0, 0, 64, 57, 0, 0, 0, 0, 0, 0];
enum Real: real
{
one = 32.0,
two = 25.0
}
static assert(!__traits(compiles, buffer.peek!Real()));
}
}
unittest
{
import std.algorithm;
ubyte[] buffer = [1, 5, 22, 9, 44, 255, 7];
auto range = filter!"true"(buffer);
assert(range.peek!uint() == 17110537);
assert(range.peek!ushort() == 261);
assert(range.peek!ubyte() == 1);
}
/++
Takes a range of $(D ubyte)s and converts the first $(D T.sizeof) bytes to
$(D T). The value returned is converted from the given endianness to the
native endianness. The $(D T.sizeof) bytes which are read are consumed from
the range.
Params:
T = The integral type to convert the first $(D T.sizeof) bytes to.
endianness = The endianness that the bytes are assumed to be in.
range = The range to read from.
Examples:
--------------------
ubyte[] buffer = [1, 5, 22, 9, 44, 255, 8];
assert(buffer.length == 7);
assert(buffer.read!ushort() == 261);
assert(buffer.length == 5);
assert(buffer.read!uint() == 369700095);
assert(buffer.length == 1);
assert(buffer.read!ubyte() == 8);
assert(buffer.empty);
--------------------
+/
T read(T, Endian endianness = Endian.bigEndian, R)(ref R range)
if(canSwapEndianness!T && isInputRange!R && is(ElementType!R : const ubyte))
{
static if(hasSlicing!R)
{
const ubyte[T.sizeof] bytes = range[0 .. T.sizeof];
range.popFrontN(T.sizeof);
}
else
{
ubyte[T.sizeof] bytes;
foreach(ref e; bytes)
{
e = range.front;
range.popFront();
}
}
static if(endianness == Endian.bigEndian)
return bigEndianToNative!T(bytes);
else
return littleEndianToNative!T(bytes);
}
//Verify Example.
unittest
{
ubyte[] buffer = [1, 5, 22, 9, 44, 255, 8];
assert(buffer.length == 7);
assert(buffer.read!ushort() == 261);
assert(buffer.length == 5);
assert(buffer.read!uint() == 369700095);
assert(buffer.length == 1);
assert(buffer.read!ubyte() == 8);
assert(buffer.empty);
}
unittest
{
{
//bool
ubyte[] buffer = [0, 1];
assert(buffer.length == 2);
assert(buffer.read!bool() == false);
assert(buffer.length == 1);
assert(buffer.read!bool() == true);
assert(buffer.empty);
}
{
//char (8bit)
ubyte[] buffer = [97, 98, 99];
assert(buffer.length == 3);
assert(buffer.read!char() == 'a');
assert(buffer.length == 2);
assert(buffer.read!char() == 'b');
assert(buffer.length == 1);
assert(buffer.read!char() == 'c');
assert(buffer.empty);
}
{
//wchar (16bit - 2x ubyte)
ubyte[] buffer = [1, 5, 32, 29, 1, 7];
assert(buffer.length == 6);
assert(buffer.read!wchar() == 'ą');
assert(buffer.length == 4);
assert(buffer.read!wchar() == '”');
assert(buffer.length == 2);
assert(buffer.read!wchar() == 'ć');
assert(buffer.empty);
}
{
//dchar (32bit - 4x ubyte)
ubyte[] buffer = [0, 0, 1, 5, 0, 0, 32, 29, 0, 0, 1, 7];
assert(buffer.length == 12);
assert(buffer.read!dchar() == 'ą');
assert(buffer.length == 8);
assert(buffer.read!dchar() == '”');
assert(buffer.length == 4);
assert(buffer.read!dchar() == 'ć');
assert(buffer.empty);
}
{
//float (32bit - 4x ubyte)
ubyte[] buffer = [66, 0, 0, 0, 65, 200, 0, 0];
assert(buffer.length == 8);
assert(buffer.read!float()== 32.0);
assert(buffer.length == 4);
assert(buffer.read!float() == 25.0f);
assert(buffer.empty);
}
{
//double (64bit - 8x ubyte)
ubyte[] buffer = [64, 64, 0, 0, 0, 0, 0, 0, 64, 57, 0, 0, 0, 0, 0, 0];
assert(buffer.length == 16);
assert(buffer.read!double() == 32.0);
assert(buffer.length == 8);
assert(buffer.read!double() == 25.0);
assert(buffer.empty);
}
{
//enum - uint
ubyte[] buffer = [0, 0, 0, 10, 0, 0, 0, 20, 0, 0, 0, 30];
assert(buffer.length == 12);
enum Foo
{
one = 10,
two = 20,
three = 30
}
assert(buffer.read!Foo() == Foo.one);
assert(buffer.length == 8);
assert(buffer.read!Foo() == Foo.two);
assert(buffer.length == 4);
assert(buffer.read!Foo() == Foo.three);
assert(buffer.empty);
}
{
//enum - bool
ubyte[] buffer = [0, 1];
assert(buffer.length == 2);
enum Bool: bool
{
bfalse = false,
btrue = true,
}
assert(buffer.read!Bool() == Bool.bfalse);
assert(buffer.length == 1);
assert(buffer.read!Bool() == Bool.btrue);
assert(buffer.empty);
}
{
//enum - float
ubyte[] buffer = [66, 0, 0, 0, 65, 200, 0, 0];
assert(buffer.length == 8);
enum Float: float
{
one = 32.0f,
two = 25.0f
}
assert(buffer.read!Float() == Float.one);
assert(buffer.length == 4);
assert(buffer.read!Float() == Float.two);
assert(buffer.empty);
}
{
//enum - double
ubyte[] buffer = [64, 64, 0, 0, 0, 0, 0, 0, 64, 57, 0, 0, 0, 0, 0, 0];
assert(buffer.length == 16);
enum Double: double
{
one = 32.0,
two = 25.0
}
assert(buffer.read!Double() == Double.one);
assert(buffer.length == 8);
assert(buffer.read!Double() == Double.two);
assert(buffer.empty);
}
{
//enum - real
ubyte[] buffer = [64, 64, 0, 0, 0, 0, 0, 0, 64, 57, 0, 0, 0, 0, 0, 0];
enum Real: real
{
one = 32.0,
two = 25.0
}
static assert(!__traits(compiles, buffer.read!Real()));
}
}
unittest
{
import std.algorithm;
ubyte[] buffer = [1, 5, 22, 9, 44, 255, 8];
auto range = filter!"true"(buffer);
assert(walkLength(range) == 7);
assert(range.read!ushort() == 261);
assert(walkLength(range) == 5);
assert(range.read!uint() == 369700095);
assert(walkLength(range) == 1);
assert(range.read!ubyte() == 8);
assert(range.empty);
}
/++
Takes an integral value, converts it to the given endianness, and writes it
to the given range of $(D ubyte)s as a sequence of $(D T.sizeof) $(D ubyte)s
starting at index. $(D hasSlicing!R) must be $(D true).
Params:
T = The integral type to convert the first $(D T.sizeof) bytes to.
endianness = The endianness to write the bytes in.
range = The range to write to.
index = The index to start writing to. If index is a pointer, then it
is updated to the index after the bytes read.
Examples:
--------------------
{
ubyte[] buffer = [0, 0, 0, 0, 0, 0, 0, 0];
buffer.write!uint(29110231u, 0);
assert(buffer == [1, 188, 47, 215, 0, 0, 0, 0]);
buffer.write!ushort(927, 0);
assert(buffer == [3, 159, 47, 215, 0, 0, 0, 0]);
buffer.write!ubyte(42, 0);
assert(buffer == [42, 159, 47, 215, 0, 0, 0, 0]);
}
{
ubyte[] buffer = [0, 0, 0, 0, 0, 0, 0, 0, 0];
buffer.write!uint(142700095u, 2);
assert(buffer == [0, 0, 8, 129, 110, 63, 0, 0, 0]);
buffer.write!ushort(19839, 2);
assert(buffer == [0, 0, 77, 127, 110, 63, 0, 0, 0]);
buffer.write!ubyte(132, 2);
assert(buffer == [0, 0, 132, 127, 110, 63, 0, 0, 0]);
}
{
ubyte[] buffer = [0, 0, 0, 0, 0, 0, 0, 0];
size_t index = 0;
buffer.write!ushort(261, &index);
assert(buffer == [1, 5, 0, 0, 0, 0, 0, 0]);
assert(index == 2);
buffer.write!uint(369700095u, &index);
assert(buffer == [1, 5, 22, 9, 44, 255, 0, 0]);
assert(index == 6);
buffer.write!ubyte(8, &index);
assert(buffer == [1, 5, 22, 9, 44, 255, 8, 0]);
assert(index == 7);
}
--------------------
+/
void write(T, Endian endianness = Endian.bigEndian, R)(R range, T value, size_t index)
if(canSwapEndianness!T &&
isForwardRange!R &&
hasSlicing!R &&
is(ElementType!R : ubyte))
{
write!(T, endianness)(range, value, &index);
}
/++ Ditto +/
void write(T, Endian endianness = Endian.bigEndian, R)(R range, T value, size_t* index)
if(canSwapEndianness!T &&
isForwardRange!R &&
hasSlicing!R &&
is(ElementType!R : ubyte))
{
assert(index);
static if(endianness == Endian.bigEndian)
immutable bytes = nativeToBigEndian!T(value);
else
immutable bytes = nativeToLittleEndian!T(value);
immutable begin = *index;
immutable end = begin + T.sizeof;
*index = end;
range[begin .. end] = bytes[0 .. T.sizeof];
}
//Verify Example.
unittest
{
{
ubyte[] buffer = [0, 0, 0, 0, 0, 0, 0, 0];
buffer.write!uint(29110231u, 0);
assert(buffer == [1, 188, 47, 215, 0, 0, 0, 0]);
buffer.write!ushort(927, 0);
assert(buffer == [3, 159, 47, 215, 0, 0, 0, 0]);
buffer.write!ubyte(42, 0);
assert(buffer == [42, 159, 47, 215, 0, 0, 0, 0]);
}
{
ubyte[] buffer = [0, 0, 0, 0, 0, 0, 0, 0, 0];
buffer.write!uint(142700095u, 2);
assert(buffer == [0, 0, 8, 129, 110, 63, 0, 0, 0]);
buffer.write!ushort(19839, 2);
assert(buffer == [0, 0, 77, 127, 110, 63, 0, 0, 0]);
buffer.write!ubyte(132, 2);
assert(buffer == [0, 0, 132, 127, 110, 63, 0, 0, 0]);
}
{
ubyte[] buffer = [0, 0, 0, 0, 0, 0, 0, 0];
size_t index = 0;
buffer.write!ushort(261, &index);
assert(buffer == [1, 5, 0, 0, 0, 0, 0, 0]);
assert(index == 2);
buffer.write!uint(369700095u, &index);
assert(buffer == [1, 5, 22, 9, 44, 255, 0, 0]);
assert(index == 6);
buffer.write!ubyte(8, &index);
assert(buffer == [1, 5, 22, 9, 44, 255, 8, 0]);
assert(index == 7);
}
}
unittest
{
{
//bool
ubyte[] buffer = [0, 0];
buffer.write!bool(false, 0);
assert(buffer == [0, 0]);
buffer.write!bool(true, 0);
assert(buffer == [1, 0]);
buffer.write!bool(true, 1);
assert(buffer == [1, 1]);
buffer.write!bool(false, 1);
assert(buffer == [1, 0]);
size_t index = 0;
buffer.write!bool(false, &index);
assert(buffer == [0, 0]);
assert(index == 1);
buffer.write!bool(true, &index);
assert(buffer == [0, 1]);
assert(index == 2);
}
{
//char (8bit)
ubyte[] buffer = [0, 0, 0];
buffer.write!char('a', 0);
assert(buffer == [97, 0, 0]);
buffer.write!char('b', 1);
assert(buffer == [97, 98, 0]);
size_t index = 0;
buffer.write!char('a', &index);
assert(buffer == [97, 98, 0]);
assert(index == 1);
buffer.write!char('b', &index);
assert(buffer == [97, 98, 0]);
assert(index == 2);
buffer.write!char('c', &index);
assert(buffer == [97, 98, 99]);
assert(index == 3);
}
{
//wchar (16bit - 2x ubyte)
ubyte[] buffer = [0, 0, 0, 0];
buffer.write!wchar('ą', 0);
assert(buffer == [1, 5, 0, 0]);
buffer.write!wchar('”', 2);
assert(buffer == [1, 5, 32, 29]);
size_t index = 0;
buffer.write!wchar('ć', &index);
assert(buffer == [1, 7, 32, 29]);
assert(index == 2);
buffer.write!wchar('ą', &index);
assert(buffer == [1, 7, 1, 5]);
assert(index == 4);
}
{
//dchar (32bit - 4x ubyte)
ubyte[] buffer = [0, 0, 0, 0, 0, 0, 0, 0];
buffer.write!dchar('ą', 0);
assert(buffer == [0, 0, 1, 5, 0, 0, 0, 0]);
buffer.write!dchar('”', 4);
assert(buffer == [0, 0, 1, 5, 0, 0, 32, 29]);
size_t index = 0;
buffer.write!dchar('ć', &index);
assert(buffer == [0, 0, 1, 7, 0, 0, 32, 29]);
assert(index == 4);
buffer.write!dchar('ą', &index);
assert(buffer == [0, 0, 1, 7, 0, 0, 1, 5]);
assert(index == 8);
}
{
//float (32bit - 4x ubyte)
ubyte[] buffer = [0, 0, 0, 0, 0, 0, 0, 0];
buffer.write!float(32.0f, 0);
assert(buffer == [66, 0, 0, 0, 0, 0, 0, 0]);
buffer.write!float(25.0f, 4);
assert(buffer == [66, 0, 0, 0, 65, 200, 0, 0]);
size_t index = 0;
buffer.write!float(25.0f, &index);
assert(buffer == [65, 200, 0, 0, 65, 200, 0, 0]);
assert(index == 4);
buffer.write!float(32.0f, &index);
assert(buffer == [65, 200, 0, 0, 66, 0, 0, 0]);
assert(index == 8);
}
{
//double (64bit - 8x ubyte)
ubyte[] buffer = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
buffer.write!double(32.0, 0);
assert(buffer == [64, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
buffer.write!double(25.0, 8);
assert(buffer == [64, 64, 0, 0, 0, 0, 0, 0, 64, 57, 0, 0, 0, 0, 0, 0]);
size_t index = 0;
buffer.write!double(25.0, &index);
assert(buffer == [64, 57, 0, 0, 0, 0, 0, 0, 64, 57, 0, 0, 0, 0, 0, 0]);
assert(index == 8);
buffer.write!double(32.0, &index);
assert(buffer == [64, 57, 0, 0, 0, 0, 0, 0, 64, 64, 0, 0, 0, 0, 0, 0]);
assert(index == 16);
}
{
//enum
ubyte[] buffer = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
enum Foo
{
one = 10,
two = 20,
three = 30
}
buffer.write!Foo(Foo.one, 0);
assert(buffer == [0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0]);
buffer.write!Foo(Foo.two, 4);
assert(buffer == [0, 0, 0, 10, 0, 0, 0, 20, 0, 0, 0, 0]);
buffer.write!Foo(Foo.three, 8);
assert(buffer == [0, 0, 0, 10, 0, 0, 0, 20, 0, 0, 0, 30]);
size_t index = 0;
buffer.write!Foo(Foo.three, &index);
assert(buffer == [0, 0, 0, 30, 0, 0, 0, 20, 0, 0, 0, 30]);
assert(index == 4);
buffer.write!Foo(Foo.one, &index);
assert(buffer == [0, 0, 0, 30, 0, 0, 0, 10, 0, 0, 0, 30]);
assert(index == 8);
buffer.write!Foo(Foo.two, &index);
assert(buffer == [0, 0, 0, 30, 0, 0, 0, 10, 0, 0, 0, 20]);
assert(index == 12);
}
{
//enum - bool
ubyte[] buffer = [0, 0];
enum Bool: bool
{
bfalse = false,
btrue = true,
}
buffer.write!Bool(Bool.btrue, 0);
assert(buffer == [1, 0]);
buffer.write!Bool(Bool.btrue, 1);
assert(buffer == [1, 1]);
size_t index = 0;
buffer.write!Bool(Bool.bfalse, &index);
assert(buffer == [0, 1]);
assert(index == 1);
buffer.write!Bool(Bool.bfalse, &index);
assert(buffer == [0, 0]);
assert(index == 2);
}
{
//enum - float
ubyte[] buffer = [0, 0, 0, 0, 0, 0, 0, 0];
enum Float: float
{
one = 32.0f,
two = 25.0f
}
buffer.write!Float(Float.one, 0);
assert(buffer == [66, 0, 0, 0, 0, 0, 0, 0]);
buffer.write!Float(Float.two, 4);
assert(buffer == [66, 0, 0, 0, 65, 200, 0, 0]);
size_t index = 0;
buffer.write!Float(Float.two, &index);
assert(buffer == [65, 200, 0, 0, 65, 200, 0, 0]);
assert(index == 4);
buffer.write!Float(Float.one, &index);
assert(buffer == [65, 200, 0, 0, 66, 0, 0, 0]);
assert(index == 8);
}
{
//enum - double
ubyte[] buffer = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
enum Double: double
{
one = 32.0,
two = 25.0
}
buffer.write!Double(Double.one, 0);
assert(buffer == [64, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
buffer.write!Double(Double.two, 8);
assert(buffer == [64, 64, 0, 0, 0, 0, 0, 0, 64, 57, 0, 0, 0, 0, 0, 0]);
size_t index = 0;
buffer.write!Double(Double.two, &index);
assert(buffer == [64, 57, 0, 0, 0, 0, 0, 0, 64, 57, 0, 0, 0, 0, 0, 0]);
assert(index == 8);
buffer.write!Double(Double.one, &index);
assert(buffer == [64, 57, 0, 0, 0, 0, 0, 0, 64, 64, 0, 0, 0, 0, 0, 0]);
assert(index == 16);
}
{
//enum - real
ubyte[] buffer = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
enum Real: real
{
one = 32.0,
two = 25.0
}
static assert(!__traits(compiles, buffer.write!Real(Real.one)));
}
}
/++
Takes an integral value, converts it to the given endianness, and appends
it to the given range of $(D ubyte)s (using $(D put)) as a sequence of
$(D T.sizeof) $(D ubyte)s starting at index. $(D hasSlicing!R) must be
$(D true).
Params:
T = The integral type to convert the first $(D T.sizeof) bytes to.
endianness = The endianness to write the bytes in.
range = The range to append to.
Examples:
--------------------
auto buffer = appender!(const ubyte[])();
buffer.append!ushort(261);
assert(buffer.data == [1, 5]);
buffer.append!uint(369700095u);
assert(buffer.data == [1, 5, 22, 9, 44, 255]);
buffer.append!ubyte(8);
assert(buffer.data == [1, 5, 22, 9, 44, 255, 8]);
--------------------
+/
void append(T, Endian endianness = Endian.bigEndian, R)(R range, T value)
if(canSwapEndianness!T && isOutputRange!(R, ubyte))
{
static if(endianness == Endian.bigEndian)
immutable bytes = nativeToBigEndian!T(value);
else
immutable bytes = nativeToLittleEndian!T(value);
put(range, bytes[]);
}
//Verify Example.
unittest
{
auto buffer = appender!(const ubyte[])();
buffer.append!ushort(261);
assert(buffer.data == [1, 5]);
buffer.append!uint(369700095u);
assert(buffer.data == [1, 5, 22, 9, 44, 255]);
buffer.append!ubyte(8);
assert(buffer.data == [1, 5, 22, 9, 44, 255, 8]);
}
unittest
{
{
//bool
auto buffer = appender!(const ubyte[])();
buffer.append!bool(true);
assert(buffer.data == [1]);
buffer.append!bool(false);
assert(buffer.data == [1, 0]);
}
{
//char wchar dchar
auto buffer = appender!(const ubyte[])();
buffer.append!char('a');
assert(buffer.data == [97]);
buffer.append!char('b');
assert(buffer.data == [97, 98]);
buffer.append!wchar('ą');
assert(buffer.data == [97, 98, 1, 5]);
buffer.append!dchar('ą');
assert(buffer.data == [97, 98, 1, 5, 0, 0, 1, 5]);
}
{
//float double
auto buffer = appender!(const ubyte[])();
buffer.append!float(32.0f);
assert(buffer.data == [66, 0, 0, 0]);
buffer.append!double(32.0);
assert(buffer.data == [66, 0, 0, 0, 64, 64, 0, 0, 0, 0, 0, 0]);
}
{
//enum
auto buffer = appender!(const ubyte[])();
enum Foo
{
one = 10,
two = 20,
three = 30
}
buffer.append!Foo(Foo.one);
assert(buffer.data == [0, 0, 0, 10]);
buffer.append!Foo(Foo.two);
assert(buffer.data == [0, 0, 0, 10, 0, 0, 0, 20]);
buffer.append!Foo(Foo.three);
assert(buffer.data == [0, 0, 0, 10, 0, 0, 0, 20, 0, 0, 0, 30]);
}
{
//enum - bool
auto buffer = appender!(const ubyte[])();
enum Bool: bool
{
bfalse = false,
btrue = true,
}
buffer.append!Bool(Bool.btrue);
assert(buffer.data == [1]);
buffer.append!Bool(Bool.bfalse);
assert(buffer.data == [1, 0]);
buffer.append!Bool(Bool.btrue);
assert(buffer.data == [1, 0, 1]);
}
{
//enum - float
auto buffer = appender!(const ubyte[])();
enum Float: float
{
one = 32.0f,
two = 25.0f
}
buffer.append!Float(Float.one);
assert(buffer.data == [66, 0, 0, 0]);
buffer.append!Float(Float.two);
assert(buffer.data == [66, 0, 0, 0, 65, 200, 0, 0]);
}
{
//enum - double
auto buffer = appender!(const ubyte[])();
enum Double: double
{
one = 32.0,
two = 25.0
}
buffer.append!Double(Double.one);
assert(buffer.data == [64, 64, 0, 0, 0, 0, 0, 0]);
buffer.append!Double(Double.two);
assert(buffer.data == [64, 64, 0, 0, 0, 0, 0, 0, 64, 57, 0, 0, 0, 0, 0, 0]);
}
{
//enum - real
auto buffer = appender!(const ubyte[])();
enum Real: real
{
one = 32.0,
two = 25.0
}
static assert(!__traits(compiles, buffer.append!Real(Real.one)));
}
}
unittest
{
import std.string;
foreach(endianness; TypeTuple!(Endian.bigEndian, Endian.littleEndian))
{
auto toWrite = appender!(ubyte[])();
alias Types = TypeTuple!(uint, int, long, ulong, short, ubyte, ushort, byte, uint);
ulong[] values = [42, -11, long.max, 1098911981329L, 16, 255, 19012, 2, 17];
assert(Types.length == values.length);
size_t index = 0;
size_t length = 0;
foreach(T; Types)
{
toWrite.append!(T, endianness)(cast(T)values[index++]);
length += T.sizeof;
}
auto toRead = toWrite.data;
assert(toRead.length == length);
index = 0;
foreach(T; Types)
{
assert(toRead.peek!(T, endianness)() == values[index], format("Failed Index: %s", index));
assert(toRead.peek!(T, endianness)(0) == values[index], format("Failed Index: %s", index));
assert(toRead.length == length,
format("Failed Index [%s], Actual Length: %s", index, toRead.length));
assert(toRead.read!(T, endianness)() == values[index], format("Failed Index: %s", index));
length -= T.sizeof;
assert(toRead.length == length,
format("Failed Index [%s], Actual Length: %s", index, toRead.length));
++index;
}
assert(toRead.empty);
}
}
/**
Counts the number of trailing zeros in the binary representation of $(D value).
For signed integers, the sign bit is included in the count.
*/
private uint countTrailingZeros(T)(T value) @nogc pure nothrow
if (isIntegral!T)
{
// bsf doesn't give the correct result for 0.
if (!value)
return 8 * T.sizeof;
static if (T.sizeof == 8 && size_t.sizeof == 4)
{
// bsf's parameter is size_t, so it doesn't work with 64-bit integers
// on a 32-bit machine. For this case, we call bsf on each 32-bit half.
uint lower = cast(uint)value;
if (lower)
return bsf(lower);
value >>>= 32;
return 32 + bsf(cast(uint)value);
}
else
{
return bsf(value);
}
}
///
unittest
{
assert(countTrailingZeros(1) == 0);
assert(countTrailingZeros(0) == 32);
assert(countTrailingZeros(int.min) == 31);
assert(countTrailingZeros(256) == 8);
}
unittest
{
foreach (T; TypeTuple!(byte, ubyte, short, ushort, int, uint, long, ulong))
{
assert(countTrailingZeros(cast(T)0) == 8 * T.sizeof);
assert(countTrailingZeros(cast(T)1) == 0);
assert(countTrailingZeros(cast(T)2) == 1);
assert(countTrailingZeros(cast(T)3) == 0);
assert(countTrailingZeros(cast(T)4) == 2);
assert(countTrailingZeros(cast(T)5) == 0);
assert(countTrailingZeros(cast(T)64) == 6);
static if (isSigned!T)
{
assert(countTrailingZeros(cast(T)-1) == 0);
assert(countTrailingZeros(T.min) == 8 * T.sizeof - 1);
}
else
{
assert(countTrailingZeros(T.max) == 0);
}
}
assert(countTrailingZeros(1_000_000) == 6);
foreach (i; 0..63)
assert(countTrailingZeros(1UL << i) == i);
}
/**
Counts the number of set bits in the binary representation of $(D value).
For signed integers, the sign bit is included in the count.
*/
private uint countBitsSet(T)(T value) @nogc pure nothrow
if (isIntegral!T)
{
// http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
static if (T.sizeof == 8)
{
T c = value - ((value >> 1) & 0x55555555_55555555);
c = ((c >> 2) & 0x33333333_33333333) + (c & 0x33333333_33333333);
c = ((c >> 4) + c) & 0x0F0F0F0F_0F0F0F0F;
c = ((c >> 8) + c) & 0x00FF00FF_00FF00FF;
c = ((c >> 16) + c) & 0x0000FFFF_0000FFFF;
c = ((c >> 32) + c) & 0x00000000_FFFFFFFF;
}
else static if (T.sizeof == 4)
{
T c = value - ((value >> 1) & 0x55555555);
c = ((c >> 2) & 0x33333333) + (c & 0x33333333);
c = ((c >> 4) + c) & 0x0F0F0F0F;
c = ((c >> 8) + c) & 0x00FF00FF;
c = ((c >> 16) + c) & 0x0000FFFF;
}
else static if (T.sizeof == 2)
{
uint c = value - ((value >> 1) & 0x5555);
c = ((c >> 2) & 0x3333) + (c & 0X3333);
c = ((c >> 4) + c) & 0x0F0F;
c = ((c >> 8) + c) & 0x00FF;
}
else static if (T.sizeof == 1)
{
uint c = value - ((value >> 1) & 0x55);
c = ((c >> 2) & 0x33) + (c & 0X33);
c = ((c >> 4) + c) & 0x0F;
}
else
{
static assert("countBitsSet only supports 1, 2, 4, or 8 byte sized integers.");
}
return cast(uint)c;
}
///
unittest
{
assert(countBitsSet(1) == 1);
assert(countBitsSet(0) == 0);
assert(countBitsSet(int.min) == 1);
assert(countBitsSet(uint.max) == 32);
}
unittest
{
foreach (T; TypeTuple!(byte, ubyte, short, ushort, int, uint, long, ulong))
{
assert(countBitsSet(cast(T)0) == 0);
assert(countBitsSet(cast(T)1) == 1);
assert(countBitsSet(cast(T)2) == 1);
assert(countBitsSet(cast(T)3) == 2);
assert(countBitsSet(cast(T)4) == 1);
assert(countBitsSet(cast(T)5) == 2);
assert(countBitsSet(cast(T)127) == 7);
static if (isSigned!T)
{
assert(countBitsSet(cast(T)-1) == 8 * T.sizeof);
assert(countBitsSet(T.min) == 1);
}
else
{
assert(countBitsSet(T.max) == 8 * T.sizeof);
}
}
assert(countBitsSet(1_000_000) == 7);
foreach (i; 0..63)
assert(countBitsSet(1UL << i) == 1);
}
private struct BitsSet(T)
{
static assert(T.sizeof <= 8, "bitsSet assumes T is no more than 64-bit.");
@nogc pure nothrow:
this(T value, size_t startIndex = 0)
{
_value = value;
uint n = countTrailingZeros(value);
_index = startIndex + n;
_value >>>= n;
}
@property size_t front()
{
return _index;
}
@property bool empty() const
{
return !_value;
}
void popFront()
{
assert(_value, "Cannot call popFront on empty range.");
_value >>>= 1;
uint n = countTrailingZeros(_value);
_value >>>= n;
_index += n + 1;
}
@property auto save()
{
return this;
}
@property size_t length()
{
return countBitsSet(_value);
}
private T _value;
private size_t _index;
}
/**
Range that iterates the indices of the set bits in $(D value).
Index 0 corresponds to the least significant bit.
For signed integers, the highest index corresponds to the sign bit.
*/
auto bitsSet(T)(T value) @nogc pure nothrow
if (isIntegral!T)
{
return BitsSet!T(value);
}
///
unittest
{
import std.algorithm : equal;
assert(bitsSet(1).equal([0]));
assert(bitsSet(5).equal([0, 2]));
assert(bitsSet(-1).equal(iota(32)));
assert(bitsSet(int.min).equal([31]));
}
unittest
{
import std.algorithm : equal;
foreach (T; TypeTuple!(byte, ubyte, short, ushort, int, uint, long, ulong))
{
assert(bitsSet(cast(T)0).empty);
assert(bitsSet(cast(T)1).equal([0]));
assert(bitsSet(cast(T)2).equal([1]));
assert(bitsSet(cast(T)3).equal([0, 1]));
assert(bitsSet(cast(T)4).equal([2]));
assert(bitsSet(cast(T)5).equal([0, 2]));
assert(bitsSet(cast(T)127).equal(iota(7)));
static if (isSigned!T)
{
assert(bitsSet(cast(T)-1).equal(iota(8 * T.sizeof)));
assert(bitsSet(T.min).equal([8 * T.sizeof - 1]));
}
else
{
assert(bitsSet(T.max).equal(iota(8 * T.sizeof)));
}
}
assert(bitsSet(1_000_000).equal([6, 9, 14, 16, 17, 18, 19]));
foreach (i; 0..63)
assert(bitsSet(1UL << i).equal([i]));
}