phobos/std/experimental/allocator/heap_block.d
2015-10-02 07:35:08 -04:00

1290 lines
40 KiB
D

module std.experimental.allocator.heap_block;
import std.experimental.allocator.common;
import std.experimental.allocator.null_allocator;
/**
$(D HeapBlock) implements a simple heap consisting of one contiguous area
of memory organized in blocks, each of size $(D theBlockSize). A block is a unit
of allocation. A bitmap serves as bookkeeping data, more precisely one bit per
block indicating whether that block is currently allocated or not.
Passing $(D NullAllocator) as $(D ParentAllocator) (the default) means user code
manages allocation of the memory block from the outside; in that case
$(D HeapBlock) must be constructed with a $(D void[]) preallocated block and
has no responsibility regarding the lifetime of its support underlying storage.
If another allocator type is passed, $(D HeapBlock) defines a destructor that
uses the parent allocator to release the memory block. That makes the combination of $(D AllocatorList), $(D HeapBlock), and a back-end allocator such as $(D MmapAllocator) a simple and scalable solution for memory allocation.
There are advantages to storing bookkeeping data separated from the payload
(as opposed to e.g. using $(D AffixAllocator) to store metadata together with
each allocation). The layout is more compact (overhead is one bit per block),
searching for a free block during allocation enjoys better cache locality, and
deallocation does not touch memory around the payload being deallocated (which
is often cold).
Allocation requests are handled on a first-fit basis. Although linear in
complexity, allocation is in practice fast because of the compact bookkeeping
representation, use of simple and fast bitwise routines, and caching of the
first available block position. A known issue with this general approach is
fragmentation, partially mitigated by coalescing. Since $(D HeapBlock) does
not need to maintain the allocated size, freeing memory implicitly coalesces
free blocks together. Also, tuning $(D blockSize) has a considerable impact on
both internal and external fragmentation.
The size of each block can be selected either during compilation or at run
time. Statically-known block sizes are frequent in practice and yield slightly
better performance. To choose a block size statically, pass it as the $(D
blockSize) parameter as in $(D HeapBlock!(Allocator, 4096)). To choose a block
size parameter, use $(D HeapBlock!(Allocator, chooseAtRuntime)) and pass the
block size to the constructor.
TODO: implement $(D alignedAllocate) and $(D alignedReallocate).
*/
struct HeapBlock(size_t theBlockSize, uint theAlignment = platformAlignment,
ParentAllocator = NullAllocator)
{
import std.typecons;
import std.traits : hasMember;
version(unittest) import std.stdio;
import std.conv : text;
unittest
{
import std.experimental.allocator.mallocator;
import std.algorithm : max;
auto m = AlignedMallocator.it.alignedAllocate(1024 * 64,
max(theAlignment, cast(uint) size_t.sizeof));
testAllocator!(() => HeapBlock(m));
}
static assert(theBlockSize > 0 && theAlignment.isGoodStaticAlignment);
static assert(theBlockSize == chooseAtRuntime
|| theBlockSize % theAlignment == 0,
"Block size must be a multiple of the alignment");
/**
If $(D blockSize == chooseAtRuntime), $(D HeapBlock) offers a read/write
property $(D blockSize). It must be set to a power of two before any use
of the allocator. Otherwise, $(D blockSize) is an alias for $(D
theBlockSize).
*/
static if (theBlockSize != chooseAtRuntime)
{
alias blockSize = theBlockSize;
}
else
{
@property uint blockSize() { return _blockSize; }
@property void blockSize(uint s)
{
assert(!_control && s % alignment == 0);
_blockSize = s;
}
private uint _blockSize;
}
static if (is(ParentAllocator == NullAllocator))
{
private enum parentAlignment = platformAlignment;
}
else
{
private alias parentAlignment = ParentAllocator.alignment;
static assert(parentAlignment >= ulong.alignof);
}
/**
The alignment offered is user-configurable statically through parameter
$(D theAlignment), defaulted to $(D platformAlignment).
*/
alias alignment = theAlignment;
// state {
/**
The parent allocator. Depending on whether $(D ParentAllocator) holds state
or not, this is a member variable or an alias for $(D ParentAllocator.it).
*/
static if (stateSize!ParentAllocator)
{
ParentAllocator parent;
}
else
{
alias parent = ParentAllocator.it;
}
private uint _blocks;
private BitVector _control;
private void[] _payload;
private size_t _startIdx;
// }
private size_t totalAllocation(size_t capacity)
{
auto blocks = capacity.divideRoundUp(blockSize);
auto leadingUlongs = blocks.divideRoundUp(64);
import std.algorithm : min;
auto initialAlignment = min(parentAlignment,
1U << trailingZeros(leadingUlongs * 8));
auto maxSlack = alignment <= initialAlignment
? 0
: alignment - initialAlignment;
//writeln(maxSlack);
return leadingUlongs * 8 + maxSlack + blockSize * blocks;
}
/**
Constructs a block allocator given desired capacity in bytes.
*/
static if (!is(ParentAllocator == NullAllocator))
this(size_t capacity)
{
size_t toAllocate = totalAllocation(capacity);
auto data = parent.allocate(toAllocate);
this(data);
assert(_blocks * blockSize >= capacity);
}
/**
Constructs a block allocator given a hunk of memory. The layout puts the
bitmap at the front followed immediately by the payload.
*/
this(void[] data)
{
immutable a = data.ptr.effectiveAlignment;
assert(a >= ulong.alignof || !data.ptr,
"Data must be aligned properly");
immutable ulong totalBits = data.length * 8;
immutable ulong bitsPerBlock = blockSize * 8 + 1;
// Get a first estimate
import std.conv : to;
_blocks = to!uint(totalBits / bitsPerBlock);
// Reality is a bit more complicated, iterate until a good number of
// blocks found.
for (; _blocks; --_blocks)
{
immutable controlWords = _blocks.divideRoundUp(64);
auto payload = data[controlWords * 8 .. $].roundStartToMultipleOf(
alignment);
if (payload.length < _blocks * blockSize)
{
// Overestimated
continue;
}
_control = BitVector((cast(ulong*)data.ptr)[0 .. controlWords]);
_control[] = 0;
_payload = payload;
break;
}
}
/**
If $(D ParentAllocator) is not $(D NullAllocator) and defines $(D
deallocate), the destructor is defined to deallocate the block held.
*/
static if (!is(ParentAllocator == NullAllocator)
&& hasMember!(ParentAllocator, "deallocate"))
~this()
{
auto start = _control.rep.ptr, end = _payload.ptr + _payload.length;
parent.deallocate(start[0 .. end - start]);
}
/*
Adjusts the memoized _startIdx to the leftmost control word that has at
least one zero bit. Assumes all control words to the left of $(D
_control[_startIdx]) are already occupied.
*/
private void adjustStartIdx()
{
while (_startIdx < _control.rep.length
&& _control.rep[_startIdx] == ulong.max)
{
++_startIdx;
}
}
/*
Returns the blocks corresponding to the control bits starting at word index
wordIdx and bit index msbIdx (MSB=0) for a total of howManyBlocks.
*/
private void[] blocksFor(size_t wordIdx, uint msbIdx, size_t howManyBlocks)
{
assert(msbIdx <= 63);
const start = (wordIdx * 64 + msbIdx) * blockSize;
const end = start + blockSize * howManyBlocks;
if (end <= _payload.length) return _payload[start .. end];
// This could happen if we have more control bits than available memory.
// That's possible because the control bits are rounded up to fit in
// 64-bit words.
return null;
}
/**
Standard allocator methods per the semantics defined above. The $(D
deallocate) and $(D reallocate) methods are $(D @system) because they may
move memory around, leaving dangling pointers in user code.
BUGS: Neither $(D deallocateAll) nor the destructor free the original memory
block. Either user code or the parent allocator should carry that.
*/
@trusted void[] allocate(const size_t s)
{
const blocks = s.divideRoundUp(blockSize);
//writefln("Allocating %s blocks each of size %s", blocks, blockSize);
void[] result = void;
switcharoo:
switch (blocks)
{
case 1:
// inline code here for speed
// find the next available block
foreach (i; _startIdx .. _control.rep.length)
{
const w = _control.rep[i];
if (w == ulong.max) continue;
uint j = leadingOnes(w);
assert(j < 64);
assert((_control.rep[i] & ((1UL << 63) >> j)) == 0);
_control.rep[i] |= (1UL << 63) >> j;
if (i == _startIdx)
{
adjustStartIdx();
}
result = blocksFor(i, j, 1);
break switcharoo;
}
goto case 0; // fall through
case 0:
return null;
case 2: .. case 63:
result = smallAlloc(cast(uint) blocks);
break;
default:
result = hugeAlloc(blocks);
break;
}
return result.ptr ? result.ptr[0 .. s] : null;
}
/// Ditto
void[] allocateAll()
{
if (!empty) return null;
_control[] = 1;
return _payload;
}
/// Ditto
bool owns(void[] b) const
{
assert(b.ptr !is null || b.length == 0, "Corrupt block.");
return b.ptr >= _payload.ptr
&& b.ptr + b.length <= _payload.ptr + _payload.length;
}
/*
Tries to allocate "blocks" blocks at the exact position indicated by the
position wordIdx/msbIdx (msbIdx counts from MSB, i.e. MSB has index 0). If
it succeeds, fills "result" with the result and returns tuple(size_t.max,
0). Otherwise, returns a tuple with the next position to search.
*/
private Tuple!(size_t, uint) allocateAt(size_t wordIdx, uint msbIdx,
size_t blocks, ref void[] result)
{
assert(blocks > 0);
assert(wordIdx < _control.rep.length);
assert(msbIdx <= 63);
if (msbIdx + blocks <= 64)
{
// Allocation should fit this control word
if (setBitsIfZero(_control.rep[wordIdx],
cast(uint) (64 - msbIdx - blocks), 63 - msbIdx))
{
// Success
result = blocksFor(wordIdx, msbIdx, blocks);
return tuple(size_t.max, 0u);
}
// Can't allocate, make a suggestion
return msbIdx + blocks == 64
? tuple(wordIdx + 1, 0u)
: tuple(wordIdx, cast(uint) (msbIdx + blocks));
}
// Allocation spans two control words or more
auto mask = ulong.max >> msbIdx;
if (_control.rep[wordIdx] & mask)
{
// We can't allocate the rest of this control word,
// return a suggestion.
return tuple(wordIdx + 1, 0u);
}
// We can allocate the rest of this control word, but we first need to
// make sure we can allocate the tail.
if (wordIdx + 1 == _control.rep.length)
{
// No more memory
return tuple(_control.rep.length, 0u);
}
auto hint = allocateAt(wordIdx + 1, 0, blocks - 64 + msbIdx, result);
if (hint[0] == size_t.max)
{
// We did it!
_control.rep[wordIdx] |= mask;
result = blocksFor(wordIdx, msbIdx, blocks);
return tuple(size_t.max, 0u);
}
// Failed, return a suggestion that skips this whole run.
return hint;
}
/* Allocates as many blocks as possible at the end of the blocks indicated
by wordIdx. Returns the number of blocks allocated. */
private uint allocateAtTail(size_t wordIdx)
{
assert(wordIdx < _control.rep.length);
const available = trailingZeros(_control.rep[wordIdx]);
_control.rep[wordIdx] |= ulong.max >> available;
return available;
}
private void[] smallAlloc(uint blocks)
{
assert(blocks >= 2 && blocks <= 64, text(blocks));
foreach (i; _startIdx .. _control.rep.length)
{
// Test within the current 64-bit word
const v = _control.rep[i];
if (v == ulong.max) continue;
auto j = findContigOnes(~v, blocks);
if (j < 64)
{
// yay, found stuff
setBits(_control.rep[i], 64 - j - blocks, 63 - j);
return blocksFor(i, j, blocks);
}
// Next, try allocations that cross a word
auto available = trailingZeros(v);
if (available == 0) continue;
if (i + 1 >= _control.rep.length) break;
assert(available < blocks); // otherwise we should have found it
auto needed = blocks - available;
assert(needed > 0 && needed < 64);
if (allocateAtFront(i + 1, needed))
{
// yay, found a block crossing two words
_control.rep[i] |= (1UL << available) - 1;
return blocksFor(i, 64 - available, blocks);
}
}
return null;
}
private void[] hugeAlloc(size_t blocks)
{
assert(blocks > 64);
if (_startIdx == _control._rep.length)
{
assert(_control.allAre1);
return null;
}
auto i = _control.findZeros(blocks, _startIdx * 64);
if (i == i.max) return null;
// Allocate those bits
_control[i .. i + blocks] = 1;
return _payload[cast(size_t) (i * blockSize)
.. cast(size_t) ((i + blocks) * blockSize)];
//void[] result;
//auto pos = tuple(_startIdx, 0);
//for (;;)
//{
// if (pos[0] >= _control.rep.length)
// {
// // No more memory
// return null;
// }
// pos = allocateAt(pos[0], pos[1], blocks, result);
// if (pos[0] == size_t.max)
// {
// // Found and allocated
// return result;
// }
//}
}
// Rounds sizeInBytes to a multiple of blockSize.
private size_t bytes2blocks(size_t sizeInBytes)
{
return (sizeInBytes + blockSize - 1) / blockSize;
}
/* Allocates given blocks at the beginning blocks indicated by wordIdx.
Returns true if allocation was possible, false otherwise. */
private bool allocateAtFront(size_t wordIdx, uint blocks)
{
assert(wordIdx < _control.rep.length && blocks >= 1 && blocks <= 64);
const mask = (1UL << (64 - blocks)) - 1;
if (_control.rep[wordIdx] > mask) return false;
// yay, works
_control.rep[wordIdx] |= ~mask;
return true;
}
/// Ditto
@trusted bool expand(ref void[] b, immutable size_t delta)
{
if (delta == 0) return true;
if (b is null)
{
b = allocate(delta);
return b !is null;
}
const blocksOld = bytes2blocks(b.length);
const blocksNew = bytes2blocks(b.length + delta);
assert(blocksOld <= blocksNew);
// Possibly we have enough slack at the end of the block!
if (blocksOld == blocksNew)
{
b = b.ptr[0 .. b.length + delta];
return true;
}
assert((b.ptr - _payload.ptr) % blockSize == 0);
const blockIdx = (b.ptr - _payload.ptr) / blockSize;
const blockIdxAfter = blockIdx + blocksOld;
//writefln("blockIdx: %s, blockIdxAfter: %s", blockIdx, blockIdxAfter);
// Try the maximum
const wordIdx = blockIdxAfter / 64,
msbIdx = cast(uint) (blockIdxAfter % 64);
void[] p;
auto hint = allocateAt(wordIdx, msbIdx, blocksNew - blocksOld, p);
if (hint[0] != size_t.max)
{
return false;
}
// Expansion successful
assert(p.ptr == b.ptr + blocksOld * blockSize,
text(p.ptr, " != ", b.ptr + blocksOld * blockSize));
b = b.ptr[0 .. b.length + delta];
return true;
}
/// Ditto
@system bool reallocate(ref void[] b, size_t newSize)
{
if (newSize == 0)
{
deallocate(b);
b = null;
return true;
}
if (newSize < b.length)
{
// Shrink. Will shrink in place by deallocating the trailing part.
auto newCapacity = bytes2blocks(newSize) * blockSize;
deallocate(b[newCapacity .. $]);
b = b[0 .. newSize];
return true;
}
// Attempt an in-place expansion first
const delta = newSize - b.length;
if (expand(b, delta)) return true;
// Go the slow route
return .reallocate(this, b, newSize);
}
/// Ditto
void deallocate(void[] b)
{
if (b is null) return;
// Round up size to multiple of block size
auto blocks = b.length.divideRoundUp(blockSize);
// Locate position
auto pos = b.ptr - _payload.ptr;
assert(pos % blockSize == 0);
auto blockIdx = pos / blockSize;
auto wordIdx = blockIdx / 64, msbIdx = cast(uint) (blockIdx % 64);
if (_startIdx > wordIdx) _startIdx = wordIdx;
// Three stages: heading bits, full words, leftover bits
if (msbIdx)
{
if (blocks + msbIdx <= 64)
{
resetBits(_control.rep[wordIdx],
cast(uint) (64 - msbIdx - blocks),
63 - msbIdx);
return;
}
else
{
_control.rep[wordIdx] &= ulong.max << 64 - msbIdx;
blocks -= 64 - msbIdx;
++wordIdx;
msbIdx = 0;
}
}
// Stage 2: reset one word at a time
for (; blocks >= 64; blocks -= 64)
{
_control.rep[wordIdx++] = 0;
}
// Stage 3: deal with leftover bits, if any
assert(wordIdx <= _control.rep.length);
if (blocks)
{
_control.rep[wordIdx] &= ulong.max >> blocks;
}
}
/// Ditto
void deallocateAll()
{
_control[] = 0;
_startIdx = 0;
}
/// Ditto
bool empty()
{
return _control.allAre0();
}
void dump()
{
import std.stdio;
writefln("%s @ %s {", typeid(this), cast(void*) _control._rep.ptr);
scope(exit) writeln("}");
assert(_payload.length == blockSize * _blocks);
assert(_control.length >= _blocks);
writefln(" _startIdx=%s; blockSize=%s; blocks=%s",
_startIdx, blockSize, _blocks);
if (!_control.length) return;
uint blockCount = 1;
bool inAllocatedStore = _control[0];
void* start = _payload.ptr;
for (size_t i = 1;; ++i)
{
if (i >= _blocks || _control[i] != inAllocatedStore)
{
writefln(" %s block at 0x%s, length: %s (%s*%s)",
inAllocatedStore ? "Busy" : "Free",
cast(void*) start,
blockCount * blockSize,
blockCount, blockSize);
if (i >= _blocks) break;
assert(i < _control.length);
inAllocatedStore = _control[i];
start = _payload.ptr + blockCount * blockSize;
blockCount = 1;
}
else
{
++blockCount;
}
}
}
}
///
version(none) unittest
{
// Create a block allocator on top of a 10KB stack region.
InSituRegion!(10240, 64) r;
auto a = HeapBlock!(64, 64)(r.allocateAll());
static assert(hasMember!(InSituRegion!(10240, 64), "allocateAll"));
auto b = a.allocate(100);
assert(b.length == 100);
}
unittest
{
import std.experimental.allocator.gc_allocator;
testAllocator!(() => HeapBlock!(64, 8, GCAllocator)(1024 * 64));
}
unittest
{
static void testAllocateAll(size_t bs)(uint blocks, uint blocksAtATime)
{
import std.algorithm : min;
assert(bs);
import std.experimental.allocator.gc_allocator;
auto a = HeapBlock!(bs, min(bs, platformAlignment))(
GCAllocator.it.allocate((blocks * bs * 8 + blocks) / 8)
);
import std.conv : text;
assert(blocks >= a._blocks, text(blocks, " < ", a._blocks));
blocks = a._blocks;
// test allocation of 0 bytes
auto x = a.allocate(0);
assert(x is null);
// test allocation of 1 byte
x = a.allocate(1);
assert(x.length == 1 || blocks == 0,
text(x.ptr, " ", x.length, " ", a));
a.deallocateAll();
//writeln("Control words: ", a._control.length);
//writeln("Payload bytes: ", a._payload.length);
bool twice = true;
begin:
foreach (i; 0 .. blocks / blocksAtATime)
{
auto b = a.allocate(bs * blocksAtATime);
assert(b.length == bs * blocksAtATime, text(i, ": ", b.length));
}
assert(a.allocate(bs * blocksAtATime) is null);
assert(a.allocate(1) is null);
// Now deallocate all and do it again!
a.deallocateAll();
// Test deallocation
auto v = new void[][blocks / blocksAtATime];
foreach (i; 0 .. blocks / blocksAtATime)
{
auto b = a.allocate(bs * blocksAtATime);
assert(b.length == bs * blocksAtATime, text(i, ": ", b.length));
v[i] = b;
}
assert(a.allocate(bs * blocksAtATime) is null);
assert(a.allocate(1) is null);
foreach (i; 0 .. blocks / blocksAtATime)
{
a.deallocate(v[i]);
}
foreach (i; 0 .. blocks / blocksAtATime)
{
auto b = a.allocate(bs * blocksAtATime);
assert(b.length == bs * blocksAtATime, text(i, ": ", b.length));
v[i] = b;
}
foreach (i; 0 .. v.length)
{
a.deallocate(v[i]);
}
if (twice)
{
twice = false;
goto begin;
}
a.deallocateAll;
// test expansion
if (blocks >= blocksAtATime)
{
foreach (i; 0 .. blocks / blocksAtATime - 1)
{
auto b = a.allocate(bs * blocksAtATime);
assert(b.length == bs * blocksAtATime, text(i, ": ", b.length));
(cast(ubyte[]) b)[] = 0xff;
a.expand(b, blocksAtATime * bs)
|| assert(0, text(i));
(cast(ubyte[]) b)[] = 0xfe;
assert(b.length == bs * blocksAtATime * 2, text(i, ": ", b.length));
a.reallocate(b, blocksAtATime * bs) || assert(0);
assert(b.length == bs * blocksAtATime, text(i, ": ", b.length));
}
}
}
testAllocateAll!(1)(0, 1);
testAllocateAll!(1)(8, 1);
testAllocateAll!(4096)(128, 1);
testAllocateAll!(1)(0, 2);
testAllocateAll!(1)(128, 2);
testAllocateAll!(4096)(128, 2);
testAllocateAll!(1)(0, 4);
testAllocateAll!(1)(128, 4);
testAllocateAll!(4096)(128, 4);
testAllocateAll!(1)(0, 3);
testAllocateAll!(1)(24, 3);
testAllocateAll!(3008)(100, 1);
testAllocateAll!(3008)(100, 3);
testAllocateAll!(1)(0, 128);
testAllocateAll!(1)(128 * 1, 128);
testAllocateAll!(128 * 20)(13 * 128, 128);
}
// Test totakAllocation
unittest
{
HeapBlock!(8, 8, NullAllocator) h1;
assert(h1.totalAllocation(1) == 16);
assert(h1.totalAllocation(64) == 8 + 8 * 8);
//writeln(h1.totalAllocation(8 * 64));
assert(h1.totalAllocation(8 * 64) == 8 + 8 * 64);
assert(h1.totalAllocation(8 * 63) == 8 + 8 * 63);
assert(h1.totalAllocation(8 * 64 + 1) == 16 + 8 * 65);
HeapBlock!(64, 8, NullAllocator) h2;
assert(h2.totalAllocation(1) == 8 + 64);
assert(h2.totalAllocation(64 * 64) == 8 + 64 * 64);
HeapBlock!(4096, 4096, NullAllocator) h3;
assert(h3.totalAllocation(1) == 2 * 4096);
assert(h3.totalAllocation(64 * 4096) == 65 * 4096);
assert(h3.totalAllocation(64 * 4096 + 1) == 66 * 4096);
}
// HeapBlockWithInternalPointers
/**
A $(D HeapBlock) with additional structure for supporting $(D
resolveInternalPointer). To that end, $(D HeapBlockWithInternalPointers) adds a
bitmap (one bit per block) that marks object starts. The bitmap itself has
variable size and is allocated together with regular allocations.
The time complexity of $(D resolveInternalPointer) is $(BIGOH k), where $(D k)
is the size of the object within which the internal pointer is looked up.
*/
struct HeapBlockWithInternalPointers(
size_t theBlockSize, uint theAlignment = platformAlignment)
{
import std.conv : text;
unittest
{
import std.experimental.allocator.mallocator;
auto m = AlignedMallocator.it.alignedAllocate(1024 * 64, theAlignment);
testAllocator!(() => HeapBlockWithInternalPointers(m));
}
private HeapBlock!(theBlockSize, theAlignment, NullAllocator) _heap;
private BitVector _allocStart;
this(void[] b) { _heap = HeapBlock!(theBlockSize, theAlignment, NullAllocator)(b); }
// Makes sure there's enough room for _allocStart
private bool ensureRoomForAllocStart(size_t len)
{
if (_allocStart.length >= len) return true;
// Must ensure there's room
immutable oldLength = _allocStart.rep.length;
immutable bits = len.roundUpToMultipleOf(64);
void[] b = _allocStart.rep;
if (!_heap.reallocate(b, bits / 8)) return false;
assert(b.length * 8 == bits, text(b.length * 8, " != ", bits));
_allocStart = BitVector(cast(ulong[]) b);
assert(_allocStart.rep.length * 64 == bits);
_allocStart.rep[oldLength .. $] = ulong.max;
return true;
}
/**
Allocator primitives.
*/
alias alignment = theAlignment;
/// Ditto
void[] allocate(size_t bytes)
{
auto r = _heap.allocate(bytes);
if (!r.ptr) return r;
immutable block = (r.ptr - _heap._payload.ptr) / _heap.blockSize;
immutable blocks =
(r.length + _heap.blockSize - 1) / _heap.blockSize;
if (!ensureRoomForAllocStart(block + blocks))
{
// Failed, free r and bailout
_heap.deallocate(r);
return null;
}
assert(block < _allocStart.length);
assert(block + blocks <= _allocStart.length);
// Mark the _allocStart bits
assert(blocks > 0);
_allocStart[block] = 1;
_allocStart[block + 1 .. block + blocks] = 0;
assert(block + blocks == _allocStart.length
|| _allocStart[block + blocks] == 1);
return r;
}
/// Ditto
void[] allocateAll()
{
auto r = _heap.allocateAll();
if (!r.ptr) return r;
// Carve space at the end for _allocStart
auto p = alignDownTo(r.ptr + r.length - 8, ulong.alignof);
r = r[0 .. p - r.ptr];
// Initialize _allocStart
_allocStart = BitVector(cast(ulong[]) p[0 .. 8]);
_allocStart[] = 0;
immutable block = (r.ptr - _heap._payload.ptr) / _heap.blockSize;
assert(block < _allocStart.length);
_allocStart[block] = 1;
return r;
}
/// Ditto
bool expand(ref void[] b, size_t bytes)
{
if (!bytes) return true;
if (b is null)
{
b = allocate(bytes);
return b !is null;
}
immutable oldBlocks =
(b.length + _heap.blockSize - 1) / _heap.blockSize;
assert(oldBlocks);
immutable newBlocks =
(b.length + bytes + _heap.blockSize - 1) / _heap.blockSize;
assert(newBlocks >= oldBlocks);
immutable block = (b.ptr - _heap._payload.ptr) / _heap.blockSize;
assert(_allocStart[block]);
if (!ensureRoomForAllocStart(block + newBlocks)
|| !_heap.expand(b, bytes))
{
return false;
}
// Zero only the expanded bits
_allocStart[block + oldBlocks .. block + newBlocks] = 0;
assert(_allocStart[block]);
return true;
}
/// Ditto
void deallocate(void[] b)
{
// No need to touch _allocStart here - except for the first bit, it's
// meaningless in freed memory. The first bit is already 1.
_heap.deallocate(b);
// TODO: one smart thing to do is reduce memory occupied by
// _allocStart if we're freeing the rightmost block.
}
/// Ditto
void[] resolveInternalPointer(void* p)
{
if (p < _heap._payload.ptr
|| p >= _heap._payload.ptr + _heap._payload.length)
{
return null;
}
// Find block start
auto block = (p - _heap._payload.ptr) / _heap.blockSize;
if (block >= _allocStart.length) return null;
// This may happen during marking, so comment it out.
// if (!_heap._control[block]) return null;
// Within an allocation, must find the 1 just to the left of it
auto i = _allocStart.find1Backward(block);
if (i == i.max) return null;
auto j = _allocStart.find1(i + 1);
return _heap._payload.ptr[cast(size_t) (_heap.blockSize * i)
.. cast(size_t) (_heap.blockSize * j)];
}
/// Ditto
bool empty()
{
return _heap.empty;
}
/// Ditto
void markAllAsUnused()
{
// Mark all deallocated memory with 1 so we minimize damage created by
// false pointers. TODO: improve speed.
foreach (i, ref e; _allocStart.rep)
{
// Set to 1 all bits in _allocStart[i] that were 0 in control, and
// leave the others unchanged.
// (0, 0) => 1; (0, 1) => 0; (1, 0) => 1; (1, 1) => 1
e |= ~_heap._control.rep[i];
}
// Now zero all control bits
_heap._control[] = 0;
// EXCEPT for the _allocStart block itself
markAsUsed(_allocStart.rep);
}
/// Ditto
bool markAsUsed(void[] b)
{
// Locate position
auto pos = b.ptr - _heap._payload.ptr;
assert(pos % _heap.blockSize == 0);
auto blockIdx = pos / _heap.blockSize;
if (_heap._control[blockIdx]) return false;
// Round up size to multiple of block size
auto blocks = b.length.divideRoundUp(_heap.blockSize);
_heap._control[blockIdx .. blockIdx + blocks] = 1;
return true;
}
/// Ditto
void doneMarking()
{
// Nothing to do, what's free stays free.
}
}
unittest
{
auto h = HeapBlockWithInternalPointers!(4096)(new void[4096 * 1024]);
auto b = h.allocate(123);
assert(b.length == 123);
auto p = h.resolveInternalPointer(b.ptr + 17);
assert(p.ptr is b.ptr);
assert(p.length >= b.length);
b = h.allocate(4096);
assert(h.resolveInternalPointer(b.ptr) is b);
assert(h.resolveInternalPointer(b.ptr + 11) is b);
assert(h.resolveInternalPointer(b.ptr - 40970) is null);
assert(h.expand(b, 1));
assert(b.length == 4097);
assert(h.resolveInternalPointer(b.ptr + 4096).ptr is b.ptr);
}
/**
Returns the number of most significant ones before a zero can be found in $(D
x). If $(D x) contains no zeros (i.e. is equal to $(D ulong.max)), returns 64.
*/
private uint leadingOnes(ulong x)
{
uint result = 0;
while (cast(long) x < 0)
{
++result;
x <<= 1;
}
return result;
}
unittest
{
assert(leadingOnes(0) == 0);
assert(leadingOnes(~0UL) == 64);
assert(leadingOnes(0xF000_0000_0000_0000) == 4);
assert(leadingOnes(0xE400_0000_0000_0000) == 3);
assert(leadingOnes(0xC700_0200_0000_0000) == 2);
assert(leadingOnes(0x8000_0030_0000_0000) == 1);
assert(leadingOnes(0x2000_0000_0000_0000) == 0);
}
/**
Finds a run of contiguous ones in $(D x) of length at least $(D n).
*/
private uint findContigOnes(ulong x, uint n)
{
while (n > 1)
{
immutable s = n >> 1;
x &= x << s;
n -= s;
}
return leadingOnes(~x);
}
unittest
{
assert(findContigOnes(0x0000_0000_0000_0300, 2) == 54);
assert(findContigOnes(~0UL, 1) == 0);
assert(findContigOnes(~0UL, 2) == 0);
assert(findContigOnes(~0UL, 32) == 0);
assert(findContigOnes(~0UL, 64) == 0);
assert(findContigOnes(0UL, 1) == 64);
assert(findContigOnes(0x4000_0000_0000_0000, 1) == 1);
assert(findContigOnes(0x0000_0F00_0000_0000, 4) == 20);
}
/*
Unconditionally sets the bits from lsb through msb in w to zero.
*/
private void setBits(ref ulong w, uint lsb, uint msb)
{
assert(lsb <= msb && msb < 64);
const mask = (ulong.max << lsb) & (ulong.max >> (63 - msb));
w |= mask;
}
unittest
{
ulong w;
w = 0; setBits(w, 0, 63); assert(w == ulong.max);
w = 0; setBits(w, 1, 63); assert(w == ulong.max - 1);
w = 6; setBits(w, 0, 1); assert(w == 7);
w = 6; setBits(w, 3, 3); assert(w == 14);
}
/* Are bits from lsb through msb in w zero? If so, make then 1
and return the resulting w. Otherwise, just return 0.
*/
private bool setBitsIfZero(ref ulong w, uint lsb, uint msb)
{
assert(lsb <= msb && msb < 64);
const mask = (ulong.max << lsb) & (ulong.max >> (63 - msb));
if (w & mask) return false;
w |= mask;
return true;
}
// Assigns bits in w from lsb through msb to zero.
private void resetBits(ref ulong w, uint lsb, uint msb)
{
assert(lsb <= msb && msb < 64);
const mask = (ulong.max << lsb) & (ulong.max >> (63 - msb));
w &= ~mask;
}
/*
Bit disposition is MSB=0 (leftmost, big endian).
*/
private struct BitVector
{
ulong[] _rep;
auto rep() { return _rep; }
this(ulong[] data) { _rep = data; }
void opSliceAssign(bool b) { _rep[] = b ? ulong.max : 0; }
void opSliceAssign(bool b, ulong x, ulong y)
{
assert(x <= y && y <= _rep.length * 64);
if (x == y) return;
--y;
assert(x / 64 <= size_t.max);
immutable i1 = cast(size_t) (x / 64);
immutable uint b1 = 63 - x % 64;
assert(y / 64 <= size_t.max);
immutable i2 = cast(size_t) (y / 64);
immutable uint b2 = 63 - y % 64;
assert(i1 <= i2 && i2 < _rep.length);
if (i1 == i2)
{
// Inside the same word
assert(b1 >= b2);
if (b) setBits(_rep[i1], b2, b1);
else resetBits(_rep[i1], b2, b1);
}
else
{
// Spans multiple words
assert(i1 < i2);
if (b) setBits(_rep[i1], 0, b1);
else resetBits(_rep[i1], 0, b1);
_rep[i1 + 1 .. i2] = b;
if (b) setBits(_rep[i2], b2, 63);
else resetBits(_rep[i2], b2, 63);
}
}
bool opIndex(ulong x)
{
assert(x < length);
return (_rep[cast(size_t) (x / 64)]
& (0x8000_0000_0000_0000UL >> (x % 64))) != 0;
}
void opIndexAssign(bool b, ulong x)
{
assert(x / 64 <= size_t.max);
auto i = cast(size_t) (x / 64),
j = 0x8000_0000_0000_0000UL >> (x % 64);
if (b) _rep[i] |= j;
else _rep[i] &= ~j;
}
ulong length() const
{
return _rep.length * 64;
}
/* Returns the index of the first 1 to the right of i (including i itself),
or length if not found.
*/
ulong find1(ulong i)
{
assert(i < length);
assert(i / 64 <= size_t.max);
auto w = cast(size_t) (i / 64);
auto b = i % 64; // 0 through 63, 0 when i == 0
auto mask = ulong.max >> b;
if (auto current = _rep[w] & mask)
{
// Great, found
return w * 64 + leadingOnes(~current);
}
// The current word doesn't have the solution, find the leftmost 1
// going to the right.
for (++w; w < _rep.length; ++w)
{
if (auto current = _rep[w])
{
return w * 64 + leadingOnes(~current);
}
}
return length;
}
/* Returns the index of the first 1 to the left of i (including i itself),
or ulong.max if not found.
*/
ulong find1Backward(ulong i)
{
assert(i < length);
auto w = cast(size_t) (i / 64);
auto b = 63 - (i % 64); // 0 through 63, 63 when i == 0
auto mask = ~((1UL << b) - 1);
assert(mask != 0);
// First, let's see if the current word has a bit larger than ours.
if (auto currentWord = _rep[w] & mask)
{
// Great, this word contains the result.
return w * 64 + 63 - currentWord.trailingZeros;
}
// The current word doesn't have the solution, find the rightmost 1
// going to the left.
while (w >= 1)
{
--w;
if (auto currentWord = _rep[w])
return w * 64 + (63 - currentWord.trailingZeros);
}
return ulong.max;
}
/// Are all bits zero?
bool allAre0() const
{
foreach (w; _rep) if (w) return false;
return true;
}
/// Are all bits one?
bool allAre1() const
{
foreach (w; _rep) if (w != ulong.max) return false;
return true;
}
ulong findZeros(immutable size_t howMany, ulong start)
{
assert(start < length);
assert(howMany > 64);
auto i = cast(size_t) (start / 64);
while (_rep[i] & 1)
{
// No trailing zeros in this word, try the next one
if (++i == _rep.length) return ulong.max;
start = i * 64;
}
// Adjust start to have only trailing zeros after it
auto prefixLength = 64;
while (_rep[i] & (ulong.max >> (64 - prefixLength)))
{
assert(prefixLength > 0);
--prefixLength;
++start;
}
assert(howMany > prefixLength);
auto needed = howMany - prefixLength;
for (++i; needed >= 64; needed -= 64, ++i)
{
if (i >= _rep.length) return ulong.max;
if (_rep[i] != 0) return findZeros(howMany, i * 64);
}
// Leftover < 64 bits
assert(needed < 64);
if (!needed) return start;
if (i >= _rep.length) return ulong.max;
if (leadingOnes(~_rep[i]) >= needed) return start;
return findZeros(howMany, i * 64);
}
}
unittest
{
auto v = BitVector(new ulong[10]);
assert(v.length == 640);
v[] = 0;
v[53] = 1;
assert(v[52] == 0);
assert(v[53] == 1);
assert(v[54] == 0);
v[] = 0;
v[53 .. 55] = 1;
assert(v[52] == 0);
assert(v[53] == 1);
assert(v[54] == 1);
assert(v[55] == 0);
v[] = 0;
v[2 .. 65] = 1;
assert(v.rep[0] == 0x3FFF_FFFF_FFFF_FFFF);
assert(v.rep[1] == 0x8000_0000_0000_0000);
assert(v.rep[2] == 0);
v[] = 0;
assert(v.find1Backward(0) == ulong.max);
assert(v.find1Backward(43) == ulong.max);
assert(v.find1Backward(83) == ulong.max);
v[0] = 1;
assert(v.find1Backward(0) == 0);
assert(v.find1Backward(43) == 0);
import std.conv : text;
assert(v.find1Backward(83) == 0, text(v.find1Backward(83)));
v[0] = 0;
v[101] = 1;
assert(v.find1Backward(0) == ulong.max);
assert(v.find1Backward(43) == ulong.max);
assert(v.find1Backward(83) == ulong.max);
assert(v.find1Backward(100) == ulong.max);
assert(v.find1Backward(101) == 101);
assert(v.find1Backward(553) == 101);
v[0 .. v.length] = 0;
v[v.length .. v.length] = 0;
v[0 .. 0] = 0;
v[] = 0;
assert(v.find1(0) == v.length);
v[139] = 1;
assert(v.find1(0) == 139);
assert(v.find1(100) == 139);
assert(v.find1(138) == 139);
assert(v.find1(139) == 139);
assert(v.find1(140) == v.length);
v[] = 0;
assert(v.findZeros(100, 0) == 0);
foreach (i; 0 .. 500)
assert(v.findZeros(100, i) == i, text(v.findZeros(100, i), " != ", i));
assert(v.findZeros(540, 99) == 99);
assert(v.findZeros(99, 540) == 540);
assert(v.findZeros(540, 100) == 100);
assert(v.findZeros(640, 0) == 0);
assert(v.findZeros(641, 1) == ulong.max);
assert(v.findZeros(641, 100) == ulong.max);
}