mirror of
https://github.com/dlang/phobos.git
synced 2025-05-04 17:11:26 +03:00

fix Slice change concept implement `sliced` change structure remove comment slice constructors add 1D case fix opSlice 1D implement ND, part1 update to modern syntax generic opIndex fix protection cleanup fix cleanup style fix rename update update implement transpose unittest unittest for properties and methods more examples & fixes move code minor fix add header update make fils update make files dmd bug workaround fix module name update imports style fix fix asserts remove createRefCountedSlice add shape property rework `shape`, add `structrure` ndarray swapped transposed opCast remove save calls everted make Slice(size_t N0, Slice(size_t N1, ...)) virtual huge rework remove space move code fix style add packEverted relax constraints add black comments remove spaces fix macros fix doc fix docs update docs reduce template bloat optimize and fix for arrays. update docs remove space update docs update docs update link update doc fix constructor add toString fix `save` add `reversed` method fix constraints for `reversed` optimisation in unittests add `strided` implement `reversed` for ranges (no arrays) reduce constraints cleanup add Iota for static foreach remove string representation DMD 2.067 support fix style fix opIndexUnary constraints move byElement add shift property add CTFE-able strided huge style fix add macros update `sliced` move private code update docs update allIndexesReversed, renamed to allReversed update docs update docs fix macros fix posix.mak update posix.mak update docs and strided move code update sliced constraints update `sliced` docs move code remove whitespaces add static assert to ndslice add one more opIndexUnary update createSlice docs update ndarray update docs for Transpose operators update docs and fix bugs add pragma inline fix docs update docs update docs add inline pragma ditto replace errors with asserts update docs update doc style update docs remove comes in docs update docs remove whitespaces update docs update docs update comment update test update docs fix typo fix docs review fix transposed description change doc tables remove unused RepeatTypeTuple remove function attributes for templates make constructor private make N and Range private make elementsCount public fix createSlice params naming add assert description to sliced [big] fix range primitives wrong asserts and update documentation regroup primitives minor docs fix minor docs fix fix typo fix Slice constraints add indexing using static arrays make byElement a random access range fix by random access primitives for ByElement update unittest fix random access primitives for ByElement remove trailing space implement slicing for ByElement make ByElement more readable update docs for subspace operators remove one See_also revert last commit update docs add descriptions to asserts add more examples minor doc update add example with allocators add makeSlice for allocators update docs table add range checks add more constructors Add description to asserts. add checks for const/immutable ditto update to DMD 2.069 minor fixes add elements property make makeSlice an unittest remove space update docs remove space update docs update doc fix makeSlice example fix strided make strided template variadic add Guide for Slice/Matrix/BLAS contributers remove unused import add better error messages update guide update docs remove space [minor] fix docs minor error messages update minor doc fix rename package split package update posix.mak update win*.mak ditto fix posix mak update *mak. update docs update man files minor doc update update module headers fix opCast rename pop*N to pop*Exactly remove primitives add popFrontN popBackN to Slice [minor] update docs add package primitives to Slice update operators prototypes add drop* primitives [minor] update docs update docs remove spaces remove allocators minor doc fix [minor] update docs add dropToNCube add diagonal add return type for template for better documentation move pack* to iterators rm allocators [minor] doc update add support of packed slice for diagonal update example for diagonal add blocks rename packed and unpacked to pack and unpack update docs renaming [minor] docs update ditto minor style update rm old files [minor] update docs update docs ditto [minor] update docs add rotated [minor] update docs add byElementInStandardSimplex add windows remove space remove structure update docs add spaces add reshape rename packEverted -> evertPack remove spaces fix ReshapeException minor doc fix update windows/blocks template params fix pack windows/blocks add index @property remove spaces minor doc fix add Slice tuples remove spaces update docs update docs and rename dropToHypercube update docs minor doc update fix links remove version OS constraints for allocators assumeSameStructure fix minor doc fix minor doc update after review minor style fix fix Elaborate Assign add index slice fix NSeq fix bug with diagonal fix sliced slice add main example update docs translation fix comment fix style remove spaces update style fix link Vandermonde matrix remove space move example remove `opCast` add opEquals for arrays update opIndex(Op)Assign update docs update docs fix style update docs (russian will be translated) update tests fix doc style ditto ditto update docs update docs update docs update docs update unittests update docs ditto ditto ditto [major] doc update update docs update docs fix voting conditions (docs, style) minor doc update fix style add unittest for `map` ditto fix string mixins add Params and Returns ditto add headers add descriptions Fix m32 mode in example Minor description fix fix spaces ditto Add Internal Binary Representation ditto ditto ditto ditto ditto ditto ditto add description for binary representation ditto minor style fix ditto ditto ditto ditto ditto ditto inlining remove compiler version check fix braces fix docs add Quick_Start Fix English Add two examples fix style remove object file minor doc update ditto remove spaces fix indexing & add unittests ditto
2654 lines
74 KiB
D
2654 lines
74 KiB
D
/**
|
||
This is a submodule of $(LINK2 std_experimental_ndslice.html, std.experimental.ndslice).
|
||
|
||
License: $(WEB www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
|
||
|
||
Authors: Ilya Yaroshenko
|
||
|
||
Source: $(PHOBOSSRC std/_experimental/_ndslice/_slice.d)
|
||
|
||
Macros:
|
||
SUBMODULE = $(LINK2 std_experimental_ndslice_$1.html, std.experimental.ndslice.$1)
|
||
SUBREF = $(LINK2 std_experimental_ndslice_$1.html#.$2, $(TT $2))$(NBSP)
|
||
T2=$(TR $(TDNW $(LREF $1)) $(TD $+))
|
||
T4=$(TR $(TDNW $(LREF $1)) $(TD $2) $(TD $3) $(TD $4))
|
||
STD = $(TD $(SMALL $0))
|
||
*/
|
||
module std.experimental.ndslice.slice;
|
||
|
||
import std.traits;
|
||
import std.meta;
|
||
import std.typecons; //: Flag;
|
||
|
||
import std.experimental.ndslice.internal;
|
||
|
||
/++
|
||
Creates an n-dimensional slice-shell over a `range`.
|
||
Params:
|
||
range = a random access range or an array; only index operator
|
||
`auto opIndex(size_t index)` is required for ranges. The length of the
|
||
range must be greater than or equal to the sum of shift and the product of
|
||
lengths.
|
||
lengths = list of lengths for each dimension
|
||
shift = index of the first element of a `range`.
|
||
The first `shift` elements of range are ignored.
|
||
Names = names of elements in a slice tuple.
|
||
Slice tuple is a slice, which holds single set of lengths and strides
|
||
for a number of ranges.
|
||
Returns:
|
||
n-dimensional slice
|
||
+/
|
||
auto sliced(ReplaceArrayWithPointer mod = ReplaceArrayWithPointer.yes, Range, Lengths...)(Range range, Lengths lengths)
|
||
if (!isStaticArray!Range && !isNarrowString!Range
|
||
&& allSatisfy!(isIndex, Lengths) && Lengths.length)
|
||
{
|
||
return .sliced!(mod, Lengths.length, Range)(range, [lengths]);
|
||
}
|
||
|
||
///ditto
|
||
auto sliced(ReplaceArrayWithPointer mod = ReplaceArrayWithPointer.yes, size_t N, Range)(Range range, auto ref in size_t[N] lengths, size_t shift = 0)
|
||
if (!isStaticArray!Range && !isNarrowString!Range && N)
|
||
in
|
||
{
|
||
import std.range.primitives: hasLength;
|
||
foreach (len; lengths)
|
||
assert(len > 0,
|
||
"All lengths must be positive."
|
||
~ tailErrorMessage!());
|
||
static if (hasLength!Range)
|
||
assert(lengthsProduct!N(lengths) + shift <= range.length,
|
||
"Range length must be greater than or equal to the sum of shift and the product of lengths."
|
||
~ tailErrorMessage!());
|
||
}
|
||
body
|
||
{
|
||
static if (isDynamicArray!Range && mod)
|
||
{
|
||
Slice!(N, typeof(range.ptr)) ret = void;
|
||
ret._ptr = range.ptr + shift;
|
||
}
|
||
else
|
||
{
|
||
alias S = Slice!(N, ImplicitlyUnqual!(typeof(range)));
|
||
static if (hasElaborateAssign!(S.PureRange))
|
||
S ret;
|
||
else
|
||
S ret = void;
|
||
static if (hasPtrBehavior!(S.PureRange))
|
||
{
|
||
static if (S.NSeq.length == 1)
|
||
ret._ptr = range;
|
||
else
|
||
ret._ptr = range._ptr;
|
||
ret._ptr += shift;
|
||
}
|
||
else
|
||
{
|
||
static if (S.NSeq.length == 1)
|
||
{
|
||
ret._ptr._range = range;
|
||
ret._ptr._shift = shift;
|
||
}
|
||
else
|
||
{
|
||
ret._ptr = range._ptr;
|
||
ret._ptr._shift += range._strides[0] * shift;
|
||
}
|
||
}
|
||
}
|
||
ret._lengths[N - 1] = lengths[N - 1];
|
||
static if (ret.NSeq.length == 1)
|
||
ret._strides[N - 1] = 1;
|
||
else
|
||
ret._strides[N - 1] = range._strides[0];
|
||
foreach_reverse(i; Iota!(0, N - 1))
|
||
{
|
||
ret._lengths[i] = lengths[i];
|
||
ret._strides[i] = ret._strides[i + 1] * ret._lengths[i + 1];
|
||
}
|
||
foreach (i; Iota!(N, ret.PureN))
|
||
{
|
||
ret._lengths[i] = range._lengths[i - N + 1];
|
||
ret._strides[i] = range._strides[i - N + 1];
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
private enum bool _isSlice(T) = is(T : Slice!(N, Range), size_t N, Range);
|
||
|
||
///ditto
|
||
template sliced(Names...)
|
||
if (Names.length && !anySatisfy!(isType, Names) && allSatisfy!(isStringValue, Names))
|
||
{
|
||
mixin (
|
||
"
|
||
auto sliced(
|
||
ReplaceArrayWithPointer mod = ReplaceArrayWithPointer.yes,
|
||
" ~ _Range_Types!Names ~ "
|
||
Lengths...)
|
||
(" ~ _Range_DeclarationList!Names ~
|
||
"Lengths lengths)
|
||
if (allSatisfy!(isIndex, Lengths))
|
||
{
|
||
return .sliced!Names(" ~ _Range_Values!Names ~ "[lengths]);
|
||
}
|
||
|
||
auto sliced(
|
||
ReplaceArrayWithPointer mod = ReplaceArrayWithPointer.yes,
|
||
size_t N, " ~ _Range_Types!Names ~ ")
|
||
(" ~ _Range_DeclarationList!Names ~"
|
||
auto ref in size_t[N] lengths,
|
||
size_t shift = 0)
|
||
{
|
||
alias RS = AliasSeq!(" ~ _Range_Types!Names ~ ");"
|
||
~ q{
|
||
import std.range.primitives: hasLength;
|
||
import std.meta: staticMap;
|
||
static assert(!anySatisfy!(_isSlice, RS),
|
||
`Packed slices are not allowed in slice tuples`
|
||
~ tailErrorMessage!());
|
||
alias PT = PtrTuple!Names;
|
||
alias SPT = PT!(staticMap!(PrepareRangeType, RS));
|
||
static if (hasElaborateAssign!SPT)
|
||
SPT range;
|
||
else
|
||
SPT range = void;
|
||
version(assert) immutable minLength = lengthsProduct!N(lengths) + shift;
|
||
foreach (i, name; Names)
|
||
{
|
||
alias T = typeof(range.ptrs[i]);
|
||
alias R = RS[i];
|
||
static assert(!isStaticArray!R);
|
||
static assert(!isNarrowString!R);
|
||
mixin (`alias r = range_` ~ name ~`;`);
|
||
static if (hasLength!R)
|
||
assert(minLength <= r.length,
|
||
`length of range '` ~ name ~`' must be greater than or equal `
|
||
~ `to the sum of shift and the product of lengths.`
|
||
~ tailErrorMessage!());
|
||
static if (isDynamicArray!T && mod)
|
||
range.ptrs[i] = r.ptr;
|
||
else
|
||
range.ptrs[i] = T(0, r);
|
||
}
|
||
return .sliced!(mod, N, SPT)(range, lengths, shift);
|
||
}
|
||
~ "}");
|
||
}
|
||
|
||
/// Creates a slice from an array.
|
||
pure nothrow unittest
|
||
{
|
||
auto slice = new int [1000].sliced(5, 6, 7);
|
||
assert(slice.length == 5);
|
||
assert(slice.elementsCount == 5 * 6 * 7);
|
||
static assert(is(typeof(slice) == Slice!(3, int*)));
|
||
}
|
||
|
||
/// Creates a slice using shift parameter.
|
||
@safe @nogc pure nothrow unittest
|
||
{
|
||
import std.range: iota;
|
||
auto slice = 1000.iota.sliced([5, 6, 7], 9);
|
||
assert(slice.length == 5);
|
||
assert(slice.elementsCount == 5 * 6 * 7);
|
||
assert(slice[0, 0, 0] == 9);
|
||
}
|
||
|
||
/// $(LINK2 https://en.wikipedia.org/wiki/Vandermonde_matrix, Vandermonde matrix)
|
||
pure nothrow unittest
|
||
{
|
||
pure nothrow
|
||
Slice!(2, double*) vandermondeMatrix(Slice!(1, double*) x)
|
||
{
|
||
auto ret = new double[x.length ^^ 2]
|
||
.sliced(x.length, x.length);
|
||
foreach (i; 0 .. x.length)
|
||
foreach (j; 0 .. x.length)
|
||
ret[i, j] = x[i] ^^ j;
|
||
return ret;
|
||
}
|
||
|
||
auto x = [1.0, 2, 3, 4, 5].sliced(5);
|
||
auto v = vandermondeMatrix(x);
|
||
assert(v ==
|
||
[[ 1.0, 1, 1, 1, 1],
|
||
[ 1.0, 2, 4, 8, 16],
|
||
[ 1.0, 3, 9, 27, 81],
|
||
[ 1.0, 4, 16, 64, 256],
|
||
[ 1.0, 5, 25, 125, 625]]);
|
||
}
|
||
|
||
/++
|
||
Creates a slice composed of named elements, each one of which corresponds
|
||
to a given argument. See also $(LREF assumeSameStructure).
|
||
+/
|
||
pure nothrow unittest
|
||
{
|
||
import std.algorithm.comparison: equal;
|
||
import std.experimental.ndslice.selection: byElement;
|
||
import std.range: iota;
|
||
|
||
auto alpha = 12.iota;
|
||
auto beta = new int[12];
|
||
|
||
auto m = sliced!("a", "b")(alpha, beta, 4, 3);
|
||
foreach (r; m)
|
||
foreach (e; r)
|
||
e.b = e.a;
|
||
assert(equal(alpha, beta));
|
||
|
||
beta[] = 0;
|
||
foreach (e; m.byElement)
|
||
e.b = e.a;
|
||
assert(equal(alpha, beta));
|
||
}
|
||
|
||
/++
|
||
Creates an array and an n-dimensional slice over it.
|
||
+/
|
||
pure nothrow unittest
|
||
{
|
||
auto createSlice(T, Lengths...)(Lengths lengths)
|
||
{
|
||
return createSlice2!(T, Lengths.length)(cast(size_t[Lengths.length])[lengths]);
|
||
}
|
||
|
||
///ditto
|
||
auto createSlice2(T, size_t N)(auto ref size_t[N] lengths)
|
||
{
|
||
size_t length = lengths[0];
|
||
foreach (len; lengths[1 .. N])
|
||
length *= len;
|
||
return new T[length].sliced(lengths);
|
||
}
|
||
|
||
auto slice = createSlice!int(5, 6, 7);
|
||
assert(slice.length == 5);
|
||
assert(slice.elementsCount == 5 * 6 * 7);
|
||
static assert(is(typeof(slice) == Slice!(3, int*)));
|
||
|
||
auto duplicate = createSlice2!int(slice.shape);
|
||
duplicate[] = slice;
|
||
}
|
||
|
||
/++
|
||
Creates a common n-dimensional array.
|
||
+/
|
||
pure nothrow unittest
|
||
{
|
||
auto ndarray(size_t N, Range)(auto ref Slice!(N, Range) slice)
|
||
{
|
||
import std.array: array;
|
||
static if (N == 1)
|
||
{
|
||
return slice.array;
|
||
}
|
||
else
|
||
{
|
||
import std.algorithm.iteration: map;
|
||
return slice.map!(a => ndarray(a)).array;
|
||
}
|
||
}
|
||
|
||
import std.range: iota;
|
||
auto ar = ndarray(100.iota.sliced(3, 4));
|
||
static assert(is(typeof(ar) == int[][]));
|
||
assert(ar == [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]);
|
||
}
|
||
|
||
/++
|
||
Allocates an array through a specified allocator and creates an n-dimensional slice over it.
|
||
See also $(LINK2 std_experimental_allocator.html, std.experimental.allocator).
|
||
+/
|
||
version(Posix)
|
||
unittest
|
||
{
|
||
import std.experimental.allocator;
|
||
|
||
|
||
// `theAllocator.makeSlice(3, 4)` allocates an array with length equal to `12`
|
||
// and returns this array and a `2`-dimensional slice-shell over it.
|
||
auto makeSlice(T, Allocator, Lengths...)(auto ref Allocator alloc, Lengths lengths)
|
||
{
|
||
enum N = Lengths.length;
|
||
struct Result { T[] array; Slice!(N, T*) slice; }
|
||
size_t length = lengths[0];
|
||
foreach (len; lengths[1 .. N])
|
||
length *= len;
|
||
T[] a = alloc.makeArray!T(length);
|
||
return Result(a, a.sliced(lengths));
|
||
}
|
||
|
||
auto tup = makeSlice!int(theAllocator, 2, 3, 4);
|
||
|
||
static assert(is(typeof(tup.array) == int[]));
|
||
static assert(is(typeof(tup.slice) == Slice!(3, int*)));
|
||
|
||
assert(tup.array.length == 24);
|
||
assert(tup.slice.elementsCount == 24);
|
||
assert(tup.array.ptr == &tup.slice[0, 0, 0]);
|
||
|
||
theAllocator.dispose(tup.array);
|
||
}
|
||
|
||
/// Input range primitives for slices over user defined types
|
||
pure nothrow @nogc unittest
|
||
{
|
||
struct MyIota
|
||
{
|
||
//`[index]` operator overloading
|
||
auto opIndex(size_t index)
|
||
{
|
||
return index;
|
||
}
|
||
}
|
||
|
||
alias S = Slice!(3, MyIota);
|
||
auto slice = MyIota().sliced(20, 10);
|
||
|
||
import std.range.primitives;
|
||
static assert(hasLength!S);
|
||
static assert(isInputRange!S);
|
||
static assert(isForwardRange!S == false);
|
||
}
|
||
|
||
/// Random access range primitives for slices over user defined types
|
||
pure nothrow @nogc unittest
|
||
{
|
||
struct MyIota
|
||
{
|
||
//`[index]` operator overloading
|
||
auto opIndex(size_t index)
|
||
{
|
||
return index;
|
||
}
|
||
// `save` property to allow a slice to be a forward range
|
||
auto save() @property
|
||
{
|
||
return this;
|
||
}
|
||
}
|
||
|
||
alias S = Slice!(3, MyIota);
|
||
auto slice = MyIota().sliced(20, 10);
|
||
|
||
import std.range.primitives;
|
||
static assert(hasLength!S);
|
||
static assert(hasSlicing!S);
|
||
static assert(isForwardRange!S);
|
||
static assert(isBidirectionalRange!S);
|
||
static assert(isRandomAccessRange!S);
|
||
}
|
||
|
||
// sliced slice
|
||
pure nothrow unittest
|
||
{
|
||
import std.range: iota;
|
||
auto data = new int[24];
|
||
foreach (int i,ref e; data)
|
||
e = i;
|
||
auto a = data.sliced(10).sliced(2, 3);
|
||
auto b = 24.iota.sliced(10).sliced(2, 3);
|
||
assert(a == b);
|
||
a[] += b;
|
||
foreach (int i, e; data[0..6])
|
||
assert(e == 2*i);
|
||
foreach (int i, e; data[6..$])
|
||
assert(e == i+6);
|
||
auto c = data.sliced(12, 2).sliced(2, 3);
|
||
auto d = 24.iota.sliced(12, 2).sliced(2, 3);
|
||
auto cc = data.sliced(2, 3, 2);
|
||
auto dc = 24.iota.sliced(2, 3, 2);
|
||
assert(c._lengths == cc._lengths);
|
||
assert(c._strides == cc._strides);
|
||
assert(d._lengths == dc._lengths);
|
||
assert(d._strides == dc._strides);
|
||
assert(cc == c);
|
||
assert(dc == d);
|
||
auto e = data.sliced(8, 3).sliced(5);
|
||
auto f = 24.iota.sliced(8, 3).sliced(5);
|
||
assert(e == data.sliced(5, 3));
|
||
assert(f == 24.iota.sliced(5, 3));
|
||
}
|
||
|
||
private template _Range_Types(Names...)
|
||
{
|
||
static if (Names.length)
|
||
enum string _Range_Types = "Range_" ~ Names[0] ~ ", " ~ _Range_Types!(Names[1..$]);
|
||
else
|
||
enum string _Range_Types = "";
|
||
}
|
||
|
||
private template _Range_Values(Names...)
|
||
{
|
||
static if (Names.length)
|
||
enum string _Range_Values = "range_" ~ Names[0] ~ ", " ~ _Range_Values!(Names[1..$]);
|
||
else
|
||
enum string _Range_Values = "";
|
||
}
|
||
|
||
private template _Range_DeclarationList(Names...)
|
||
{
|
||
static if (Names.length)
|
||
enum string _Range_DeclarationList = "Range_" ~ Names[0] ~ " range_" ~ Names[0] ~ ", " ~ _Range_DeclarationList!(Names[1..$]);
|
||
else
|
||
enum string _Range_DeclarationList = "";
|
||
}
|
||
|
||
private template _Slice_DeclarationList(Names...)
|
||
{
|
||
static if (Names.length)
|
||
enum string _Slice_DeclarationList = "Slice!(N, Range_" ~ Names[0] ~ ") slice_" ~ Names[0] ~ ", " ~ _Slice_DeclarationList!(Names[1..$]);
|
||
else
|
||
enum string _Slice_DeclarationList = "";
|
||
}
|
||
|
||
/++
|
||
Groups slices into a slice tuple. The slices must have identical structure.
|
||
Slice tuple is a slice, which holds single set of lengths and strides
|
||
for a number of ranges.
|
||
Params:
|
||
Names = names of elements in a slice tuple
|
||
Returns:
|
||
n-dimensional slice
|
||
See_also: $(LREF .Slice.structure).
|
||
+/
|
||
template assumeSameStructure(Names...)
|
||
if (Names.length && !anySatisfy!(isType, Names) && allSatisfy!(isStringValue, Names))
|
||
{
|
||
mixin (
|
||
"
|
||
auto assumeSameStructure(
|
||
ReplaceArrayWithPointer mod = ReplaceArrayWithPointer.yes,
|
||
size_t N, " ~ _Range_Types!Names ~ ")
|
||
(" ~ _Slice_DeclarationList!Names ~ ")
|
||
{
|
||
alias RS = AliasSeq!(" ~_Range_Types!Names ~ ");"
|
||
~ q{
|
||
import std.meta: staticMap;
|
||
static assert(!anySatisfy!(_isSlice, RS),
|
||
`Packed slices not allowed in slice tuples`
|
||
~ tailErrorMessage!());
|
||
alias PT = PtrTuple!Names;
|
||
alias SPT = PT!(staticMap!(PrepareRangeType, RS));
|
||
static if (hasElaborateAssign!SPT)
|
||
Slice!(N, SPT) ret;
|
||
else
|
||
Slice!(N, SPT) ret = void;
|
||
mixin (`alias slice0 = slice_` ~ Names[0] ~`;`);
|
||
ret._lengths = slice0._lengths;
|
||
ret._strides = slice0._strides;
|
||
ret._ptr.ptrs[0] = slice0._ptr;
|
||
foreach (i, name; Names[1..$])
|
||
{
|
||
mixin (`alias slice = slice_` ~ name ~`;`);
|
||
assert(ret._lengths == slice._lengths,
|
||
`Shapes must be identical`
|
||
~ tailErrorMessage!());
|
||
assert(ret._strides == slice._strides,
|
||
`Strides must be identical`
|
||
~ tailErrorMessage!());
|
||
ret._ptr.ptrs[i+1] = slice._ptr;
|
||
}
|
||
return ret;
|
||
}
|
||
~ "}");
|
||
}
|
||
|
||
///
|
||
pure nothrow unittest
|
||
{
|
||
import std.algorithm.comparison: equal;
|
||
import std.experimental.ndslice.selection: byElement;
|
||
import std.range: iota;
|
||
|
||
auto alpha = 12.iota .sliced(4, 3);
|
||
auto beta = new int[12].sliced(4, 3);
|
||
|
||
auto m = assumeSameStructure!("a", "b")(alpha, beta);
|
||
foreach (r; m)
|
||
foreach (e; r)
|
||
e.b = e.a;
|
||
assert(alpha == beta);
|
||
|
||
beta[] = 0;
|
||
foreach (e; m.byElement)
|
||
e.b = e.a;
|
||
assert(alpha == beta);
|
||
}
|
||
|
||
/++
|
||
If `yes`, the array will be replaced with its pointer to improve performance.
|
||
Use `no` for compile time function evaluation.
|
||
+/
|
||
alias ReplaceArrayWithPointer = Flag!"replaceArrayWithPointer";
|
||
|
||
///
|
||
@safe pure nothrow unittest
|
||
{
|
||
import std.algorithm.iteration: map, sum, reduce;
|
||
import std.algorithm.comparison: max;
|
||
import std.experimental.ndslice.iteration: transposed;
|
||
/// Returns maximal column average.
|
||
auto maxAvg(S)(S matrix) {
|
||
return matrix.transposed.map!sum.reduce!max
|
||
/ matrix.length;
|
||
}
|
||
enum matrix = [1, 2,
|
||
3, 4].sliced!(ReplaceArrayWithPointer.no)(2, 2);
|
||
///Сompile time function evaluation
|
||
static assert(maxAvg(matrix) == 3);
|
||
}
|
||
|
||
|
||
/++
|
||
Returns the element type of the `Slice` type.
|
||
+/
|
||
alias DeepElementType(S : Slice!(N, Range), size_t N, Range) = S.DeepElemType;
|
||
|
||
///
|
||
unittest
|
||
{
|
||
import std.range: iota;
|
||
static assert(is(DeepElementType!(Slice!(4, const(int)[])) == const(int)));
|
||
static assert(is(DeepElementType!(Slice!(4, immutable(int)*)) == immutable(int)));
|
||
static assert(is(DeepElementType!(Slice!(4, typeof(100.iota))) == int));
|
||
//packed slice
|
||
static assert(is(DeepElementType!(Slice!(2, Slice!(5, int*))) == Slice!(4, int*)));
|
||
}
|
||
|
||
/++
|
||
Presents $(LREF .Slice.structure).
|
||
+/
|
||
struct Structure(size_t N)
|
||
{
|
||
///
|
||
size_t[N] lengths;
|
||
///
|
||
sizediff_t[N] strides;
|
||
}
|
||
|
||
/++
|
||
Presents an n-dimensional view over a range.
|
||
|
||
$(H3 Definitions)
|
||
|
||
In order to change data in a slice using
|
||
overloaded operators such as `=`, `+=`, `++`,
|
||
a syntactic structure of type
|
||
`<slice to change>[<index and interval sequence...>]` must be used.
|
||
It is worth noting that just like for regular arrays, operations `a = b`
|
||
and `a[] = b` have different meanings.
|
||
In the first case, after the operation is carried out, `a` simply points at the same data as `b`
|
||
does, and the data which `a` previously pointed at remains unmodified.
|
||
Here, `а` and `b` must be of the same type.
|
||
In the second case, `a` points at the same data as before,
|
||
but the data itself will be changed. In this instance, the number of dimensions of `b`
|
||
may be less than the number of dimensions of `а`; and `b` can be a Slice,
|
||
a regular multidimensional array, or simply a value (e.g. a number).
|
||
|
||
In the following table you will find the definitions you might come across
|
||
in comments on operator overloading.
|
||
|
||
$(BOOKTABLE
|
||
$(TR $(TH Definition) $(TH Examples at `N == 3`))
|
||
$(TR $(TD An $(BLUE interval) is a part of a sequence of type `i .. j`.)
|
||
$(STD `2..$-3`, `0..4`))
|
||
$(TR $(TD An $(BLUE index) is a part of a sequence of type `i`.)
|
||
$(STD `3`, `$-1`))
|
||
$(TR $(TD A $(BLUE partially defined slice) is a sequence composed of
|
||
$(BLUE intervals) and $(BLUE indexes) with an overall length strictly less than `N`.)
|
||
$(STD `[3]`, `[0..$]`, `[3, 3]`, `[0..$,0..3]`, `[0..$,2]`))
|
||
$(TR $(TD A $(BLUE fully defined index) is a sequence
|
||
composed only of $(BLUE indexes) with an overall length equal to `N`.)
|
||
$(STD `[2,3,1]`))
|
||
$(TR $(TD A $(BLUE fully defined slice) is an empty sequence
|
||
or a sequence composed of $(BLUE indexes) and at least one
|
||
$(BLUE interval) with an overall length equal to `N`.)
|
||
$(STD `[]`, `[3..$,0..3,0..$-1]`, `[2,0..$,1]`))
|
||
)
|
||
|
||
$(H3 Internal Binary Representation)
|
||
|
||
Multidimensional $(SUBREF slice, Slice) is a structure that consists of lengths, strides, and a pointer.
|
||
For ranges, a shell is used instead of a pointer.
|
||
This shell contains a shift of the current initial element of a multidimensional slice
|
||
and the range itself. With the exception of overloaded operators, no functions in this
|
||
package change or copy data. The operations are only carried out on lengths, strides,
|
||
and pointers. If a slice is defined over a range, only the shift of the initial element
|
||
changes instead of the pointer.
|
||
|
||
$(H4 Internal Representation for Pointers)
|
||
|
||
Type definition
|
||
|
||
-------
|
||
Slice!(N, T*)
|
||
-------
|
||
|
||
Schema
|
||
|
||
-------
|
||
Slice!(N, T*)
|
||
size_t[N] lengths
|
||
sizediff_t[N] strides
|
||
T* ptr
|
||
-------
|
||
|
||
Example:
|
||
|
||
Definitions
|
||
|
||
-------
|
||
import std.experimental.ndslice;
|
||
auto a = new double[24];
|
||
Slice!(3, double*) s = a.sliced(2, 3, 4);
|
||
Slice!(3, double*) t = s.transposed!(1, 2, 0);
|
||
Slice!(3, double*) r = r.reversed!1;
|
||
-------
|
||
|
||
Representation
|
||
|
||
-------
|
||
s________________________
|
||
lengths[0] ::= 2
|
||
lengths[1] ::= 3
|
||
lengths[2] ::= 4
|
||
|
||
strides[0] ::= 12
|
||
strides[1] ::= 4
|
||
strides[2] ::= 1
|
||
|
||
ptr ::= &a[0]
|
||
|
||
t____transposed!(1, 2, 0)
|
||
lengths[0] ::= 3
|
||
lengths[1] ::= 4
|
||
lengths[2] ::= 2
|
||
|
||
strides[0] ::= 4
|
||
strides[1] ::= 1
|
||
strides[2] ::= 12
|
||
|
||
ptr ::= &a[0]
|
||
|
||
r______________reversed!1
|
||
lengths[0] ::= 2
|
||
lengths[1] ::= 3
|
||
lengths[2] ::= 4
|
||
|
||
strides[0] ::= 12
|
||
strides[1] ::= -4
|
||
strides[2] ::= 1
|
||
|
||
ptr ::= &a[8] // (old_strides[1] * (lengths[1] - 1)) = 8
|
||
-------
|
||
|
||
$(H4 Internal Representation for Ranges)
|
||
|
||
Type definition
|
||
|
||
-------
|
||
Slice!(N, Range)
|
||
-------
|
||
|
||
Representation
|
||
|
||
-------
|
||
Slice!(N, Range)
|
||
size_t[N] lengths
|
||
sizediff_t[N] strides
|
||
PtrShell!T ptr
|
||
sizediff_t shift
|
||
Range range
|
||
-------
|
||
|
||
|
||
Example:
|
||
|
||
Definitions
|
||
|
||
-------
|
||
import std.experimental.ndslice;
|
||
import std.range: iota;
|
||
auto a = iota(24);
|
||
alias A = typeof(a);
|
||
Slice!(3, A) s = a.sliced(2, 3, 4);
|
||
Slice!(3, A) t = s.transposed!(1, 2, 0);
|
||
Slice!(3, A) r = r.reversed!1;
|
||
-------
|
||
|
||
Representation
|
||
|
||
-------
|
||
s________________________
|
||
lengths[0] ::= 2
|
||
lengths[1] ::= 3
|
||
lengths[2] ::= 4
|
||
|
||
strides[0] ::= 12
|
||
strides[1] ::= 4
|
||
strides[2] ::= 1
|
||
|
||
shift ::= 0
|
||
range ::= a
|
||
|
||
t____transposed!(1, 2, 0)
|
||
lengths[0] ::= 3
|
||
lengths[1] ::= 4
|
||
lengths[2] ::= 2
|
||
|
||
strides[0] ::= 4
|
||
strides[1] ::= 1
|
||
strides[2] ::= 12
|
||
|
||
shift ::= 0
|
||
range ::= a
|
||
|
||
r______________reversed!1
|
||
lengths[0] ::= 2
|
||
lengths[1] ::= 3
|
||
lengths[2] ::= 4
|
||
|
||
strides[0] ::= 12
|
||
strides[1] ::= -4
|
||
strides[2] ::= 1
|
||
|
||
shift ::= 8 // (old_strides[1] * (lengths[1] - 1)) = 8
|
||
range ::= a
|
||
-------
|
||
+/
|
||
struct Slice(size_t _N, _Range)
|
||
if (_N && _N < 256LU && ((!is(Unqual!_Range : Slice!(N0, Range0), size_t N0, Range0)
|
||
&& (isPointer!_Range || is(typeof(_Range.init[size_t.init]))))
|
||
|| is(_Range == Slice!(N1, Range1), size_t N1, Range1)))
|
||
{
|
||
package:
|
||
|
||
enum doUnittest = is(_Range == int*) && _N == 1;
|
||
|
||
alias N = _N;
|
||
alias Range = _Range;
|
||
|
||
alias This = Slice!(N, Range);
|
||
static if (is(Range == Slice!(N_, Range_), size_t N_, Range_))
|
||
{
|
||
enum size_t PureN = N + Range.PureN - 1;
|
||
alias PureRange = Range.PureRange;
|
||
alias NSeq = AliasSeq!(N, Range.NSeq);
|
||
}
|
||
else
|
||
{
|
||
alias PureN = N;
|
||
alias PureRange = Range;
|
||
alias NSeq = AliasSeq!(N);
|
||
}
|
||
alias PureThis = Slice!(PureN, PureRange);
|
||
|
||
static assert(PureN < 256, "Slice: Pure N should be less than 256");
|
||
|
||
static if (N == 1)
|
||
alias ElemType = typeof(Range.init[size_t.init]);
|
||
else
|
||
alias ElemType = Slice!(N-1, Range);
|
||
|
||
static if (NSeq.length == 1)
|
||
alias DeepElemType = typeof(Range.init[size_t.init]);
|
||
else
|
||
static if (Range.N == 1)
|
||
alias DeepElemType = Range.ElemType;
|
||
else
|
||
alias DeepElemType = Slice!(Range.N - 1, Range.Range);
|
||
|
||
enum hasAccessByRef = isPointer!PureRange ||
|
||
__traits(compiles, { auto a = &(_ptr[0]); } );
|
||
|
||
enum PureIndexLength(Slices...) = Filter!(isIndex, Slices).length;
|
||
template isFullPureIndex(Indexes...)
|
||
{
|
||
static if (allSatisfy!(isIndex, Indexes))
|
||
enum isFullPureIndex = Indexes.length == N;
|
||
else
|
||
static if (Indexes.length == 1 && isStaticArray!(Indexes[0]))
|
||
enum isFullPureIndex = Indexes[0].length == N && isIndex!(ForeachType!(Indexes[0]));
|
||
else
|
||
enum isFullPureIndex = false;
|
||
}
|
||
enum isPureSlice(Slices...) =
|
||
Slices.length <= N
|
||
&& PureIndexLength!Slices < N
|
||
&& Filter!(isStaticArray, Slices).length == 0;
|
||
|
||
enum isFullPureSlice(Slices...) =
|
||
Slices.length == 0
|
||
|| Slices.length == N
|
||
&& PureIndexLength!Slices < N
|
||
&& Filter!(isStaticArray, Slices).length == 0;
|
||
|
||
size_t[PureN] _lengths;
|
||
sizediff_t[PureN] _strides;
|
||
static if (hasPtrBehavior!PureRange)
|
||
PureRange _ptr;
|
||
else
|
||
PtrShell!PureRange _ptr;
|
||
|
||
sizediff_t backIndex(size_t dimension = 0)() @property const
|
||
if (dimension < N)
|
||
{
|
||
return _strides[dimension] * (_lengths[dimension] - 1);
|
||
}
|
||
|
||
size_t indexStride(Indexes...)(Indexes _indexes)
|
||
if (isFullPureIndex!Indexes)
|
||
{
|
||
static if (isStaticArray!(Indexes[0]))
|
||
{
|
||
size_t stride;
|
||
foreach (i; Iota!(0, N)) //static
|
||
{
|
||
assert(_indexes[0][i] < _lengths[i], "indexStride: index must be less than lengths");
|
||
stride += _strides[i] * _indexes[0][i];
|
||
}
|
||
return stride;
|
||
}
|
||
else
|
||
{
|
||
size_t stride;
|
||
foreach (i, index; _indexes) //static
|
||
{
|
||
assert(index < _lengths[i], "indexStride: index must be less than lengths");
|
||
stride += _strides[i] * index;
|
||
}
|
||
return stride;
|
||
}
|
||
}
|
||
|
||
this(ref in size_t[PureN] lengths, ref in sizediff_t[PureN] strides, PureRange range)
|
||
{
|
||
foreach (i; Iota!(0, PureN))
|
||
_lengths[i] = lengths[i];
|
||
foreach (i; Iota!(0, PureN))
|
||
_strides[i] = strides[i];
|
||
static if (hasPtrBehavior!PureRange)
|
||
_ptr = range;
|
||
else
|
||
_ptr._range = range;
|
||
|
||
}
|
||
|
||
static if (!hasPtrBehavior!PureRange)
|
||
this(ref in size_t[PureN] lengths, ref in sizediff_t[PureN] strides, PtrShell!PureRange shell)
|
||
{
|
||
foreach (i; Iota!(0, PureN))
|
||
_lengths[i] = lengths[i];
|
||
foreach (i; Iota!(0, PureN))
|
||
_strides[i] = strides[i];
|
||
_ptr = shell;
|
||
}
|
||
|
||
public:
|
||
|
||
/++
|
||
Returns: static array of lengths
|
||
See_also: $(LREF .Slice.structure)
|
||
+/
|
||
size_t[N] shape() @property const
|
||
{
|
||
pragma(inline, true);
|
||
return _lengths[0 .. N];
|
||
}
|
||
|
||
static if (doUnittest)
|
||
/// Regular slice
|
||
@safe @nogc pure nothrow unittest
|
||
{
|
||
import std.range: iota;
|
||
assert(100.iota
|
||
.sliced(3, 4, 5)
|
||
.shape == cast(size_t[3])[3, 4, 5]);
|
||
}
|
||
|
||
static if (doUnittest)
|
||
/// Packed slice
|
||
@safe @nogc pure nothrow unittest
|
||
{
|
||
import std.experimental.ndslice.selection: pack;
|
||
import std.range: iota;
|
||
assert(10000.iota
|
||
.sliced(3, 4, 5, 6, 7)
|
||
.pack!2
|
||
.shape == cast(size_t[3])[3, 4, 5]);
|
||
}
|
||
|
||
/++
|
||
Returns: static array of lengths and static array of strides
|
||
See_also: $(LREF .Slice.shape)
|
||
+/
|
||
Structure!N structure() @property const
|
||
{
|
||
pragma(inline, true);
|
||
return typeof(return)(_lengths[0 .. N], _strides[0 .. N]);
|
||
}
|
||
|
||
static if (doUnittest)
|
||
/// Regular slice
|
||
@safe @nogc pure nothrow unittest
|
||
{
|
||
import std.range: iota;
|
||
assert(100.iota
|
||
.sliced(3, 4, 5)
|
||
.structure == Structure!3([3, 4, 5], [20, 5, 1]));
|
||
}
|
||
|
||
static if (doUnittest)
|
||
/// Modified regular slice
|
||
@safe @nogc pure nothrow unittest
|
||
{
|
||
import std.experimental.ndslice.selection: pack;
|
||
import std.experimental.ndslice.iteration: reversed, strided, transposed;
|
||
import std.range: iota;
|
||
assert(1000.iota
|
||
.sliced(3, 4, 50)
|
||
.reversed!2 //makes stride negative
|
||
.strided!2(6) //multiplies stride by 6 and changes corresponding length
|
||
.transposed!2 //brings dimension `2` to the first position
|
||
.structure == Structure!3([9, 3, 4], [-6, 200, 50]));
|
||
}
|
||
|
||
static if (doUnittest)
|
||
/// Packed slice
|
||
@safe @nogc pure nothrow unittest
|
||
{
|
||
import std.experimental.ndslice.selection: pack;
|
||
import std.range: iota;
|
||
assert(10000.iota
|
||
.sliced(3, 4, 5, 6, 7)
|
||
.pack!2
|
||
.structure == Structure!3([3, 4, 5], [20 * 42, 5 * 42, 1 * 42]));
|
||
}
|
||
|
||
/++
|
||
Range primitive.
|
||
Defined only if `Range` is a forward range or a pointer type.
|
||
+/
|
||
static if (canSave!PureRange)
|
||
auto save() @property
|
||
{
|
||
static if (isPointer!PureRange)
|
||
return typeof(this)(_lengths, _strides, _ptr);
|
||
else
|
||
return typeof(this)(_lengths, _strides, _ptr.save);
|
||
}
|
||
|
||
static if (doUnittest)
|
||
/// Forward range
|
||
@safe @nogc pure nothrow unittest
|
||
{
|
||
import std.range: iota;
|
||
auto slice = 100.iota.sliced(2, 3).save;
|
||
}
|
||
|
||
static if (doUnittest)
|
||
/// Pointer type.
|
||
pure nothrow unittest
|
||
{
|
||
//slice type is `Slice!(2, int*)`
|
||
auto slice = new int[6].sliced(2, 3).save;
|
||
}
|
||
|
||
|
||
/++
|
||
Multidimensional `length` property.
|
||
Returns: length of the corresponding dimension
|
||
See_also: $(LREF .Slice.shape), $(LREF .Slice.structure)
|
||
+/
|
||
size_t length(size_t dimension = 0)() @property const
|
||
if (dimension < N)
|
||
{
|
||
pragma(inline, true);
|
||
return _lengths[dimension];
|
||
}
|
||
|
||
static if (doUnittest)
|
||
///
|
||
@safe @nogc pure nothrow unittest
|
||
{
|
||
import std.range: iota;
|
||
auto slice = 100.iota.sliced(3, 4, 5);
|
||
assert(slice.length == 3);
|
||
assert(slice.length!0 == 3);
|
||
assert(slice.length!1 == 4);
|
||
assert(slice.length!2 == 5);
|
||
}
|
||
|
||
alias opDollar = length;
|
||
|
||
/++
|
||
Multidimensional `stride` property.
|
||
Returns: stride of the corresponding dimension
|
||
See_also: $(LREF .Slice.structure)
|
||
+/
|
||
size_t stride(size_t dimension = 0)() @property const
|
||
if (dimension < N)
|
||
{
|
||
return _strides[dimension];
|
||
}
|
||
|
||
static if (doUnittest)
|
||
/// Regular slice
|
||
@safe @nogc pure nothrow unittest
|
||
{
|
||
import std.range: iota;
|
||
auto slice = 100.iota.sliced(3, 4, 5);
|
||
assert(slice.stride == 20);
|
||
assert(slice.stride!0 == 20);
|
||
assert(slice.stride!1 == 5);
|
||
assert(slice.stride!2 == 1);
|
||
}
|
||
|
||
static if (doUnittest)
|
||
/// Modified regular slice
|
||
@safe @nogc pure nothrow unittest
|
||
{
|
||
import std.experimental.ndslice.iteration: reversed, strided, swapped;
|
||
import std.range: iota;
|
||
assert(1000.iota
|
||
.sliced(3, 4, 50)
|
||
.reversed!2 //makes stride negative
|
||
.strided!2(6) //multiplies stride by 6 and changes the corresponding length
|
||
.swapped!(1, 2) //swaps dimensions `1` and `2`
|
||
.stride!1 == -6);
|
||
}
|
||
|
||
/++
|
||
Multidimensional input range primitive.
|
||
+/
|
||
bool empty(size_t dimension = 0)()
|
||
@property const
|
||
if (dimension < N)
|
||
{
|
||
pragma(inline, true);
|
||
return _lengths[dimension] == 0;
|
||
}
|
||
|
||
///ditto
|
||
auto ref front(size_t dimension = 0)() @property
|
||
if (dimension < N)
|
||
{
|
||
assert(!empty!dimension);
|
||
static if (PureN == 1)
|
||
{
|
||
static if (__traits(compiles,{ auto _f = _ptr.front; }))
|
||
return _ptr.front;
|
||
else
|
||
return _ptr[0];
|
||
}
|
||
else
|
||
{
|
||
static if (hasElaborateAssign!PureRange)
|
||
ElemType ret;
|
||
else
|
||
ElemType ret = void;
|
||
foreach (i; Iota!(0, dimension))
|
||
{
|
||
ret._lengths[i] = _lengths[i];
|
||
ret._strides[i] = _strides[i];
|
||
}
|
||
foreach (i; Iota!(dimension, PureN-1))
|
||
{
|
||
ret._lengths[i] = _lengths[i + 1];
|
||
ret._strides[i] = _strides[i + 1];
|
||
}
|
||
ret._ptr = _ptr;
|
||
return ret;
|
||
}
|
||
}
|
||
|
||
static if (PureN == 1 && isMutable!DeepElemType && !hasAccessByRef)
|
||
{
|
||
///ditto
|
||
auto front(size_t dimension = 0, T)(T value) @property
|
||
if (dimension == 0)
|
||
{
|
||
assert(!empty!dimension);
|
||
static if (__traits(compiles, { _ptr.front = value; }))
|
||
return _ptr.front = value;
|
||
else
|
||
return _ptr[0] = value;
|
||
}
|
||
}
|
||
|
||
///ditto
|
||
auto ref back(size_t dimension = 0)() @property
|
||
if (dimension < N)
|
||
{
|
||
assert(!empty!dimension);
|
||
static if (PureN == 1)
|
||
{
|
||
return _ptr[backIndex];
|
||
}
|
||
else
|
||
{
|
||
static if (hasElaborateAssign!PureRange)
|
||
ElemType ret;
|
||
else
|
||
ElemType ret = void;
|
||
foreach (i; Iota!(0, dimension))
|
||
{
|
||
ret._lengths[i] = _lengths[i];
|
||
ret._strides[i] = _strides[i];
|
||
}
|
||
foreach (i; Iota!(dimension, PureN-1))
|
||
{
|
||
ret._lengths[i] = _lengths[i + 1];
|
||
ret._strides[i] = _strides[i + 1];
|
||
}
|
||
ret._ptr = _ptr + backIndex!dimension;
|
||
return ret;
|
||
}
|
||
}
|
||
|
||
static if (PureN == 1 && isMutable!DeepElemType && !hasAccessByRef)
|
||
{
|
||
///ditto
|
||
auto back(size_t dimension = 0, T)(T value) @property
|
||
if (dimension == 0)
|
||
{
|
||
assert(!empty!dimension);
|
||
return _ptr[backIndex] = value;
|
||
}
|
||
}
|
||
|
||
///ditto
|
||
void popFront(size_t dimension = 0)()
|
||
if (dimension < N)
|
||
{
|
||
pragma(inline, true);
|
||
assert(_lengths[dimension], __FUNCTION__ ~ ": length!" ~ dimension.stringof ~ " should be greater than 0.");
|
||
_lengths[dimension]--;
|
||
_ptr += _strides[dimension];
|
||
}
|
||
|
||
///ditto
|
||
void popBack(size_t dimension = 0)()
|
||
if (dimension < N)
|
||
{
|
||
pragma(inline, true);
|
||
assert(_lengths[dimension], __FUNCTION__ ~ ": length!" ~ dimension.stringof ~ " should be greater than 0.");
|
||
_lengths[dimension]--;
|
||
}
|
||
|
||
///ditto
|
||
void popFrontExactly(size_t dimension = 0)(size_t n)
|
||
if (dimension < N)
|
||
{
|
||
pragma(inline, true);
|
||
assert(n <= _lengths[dimension], __FUNCTION__ ~ ": n should be less than or equal to length!" ~ dimension.stringof);
|
||
_lengths[dimension] -= n;
|
||
_ptr += _strides[dimension] * n;
|
||
}
|
||
|
||
///ditto
|
||
void popBackExactly(size_t dimension = 0)(size_t n)
|
||
if (dimension < N)
|
||
{
|
||
pragma(inline, true);
|
||
assert(n <= _lengths[dimension], __FUNCTION__ ~ ": n should be less than or equal to length!" ~ dimension.stringof);
|
||
_lengths[dimension] -= n;
|
||
}
|
||
|
||
///ditto
|
||
void popFrontN(size_t dimension = 0)(size_t n)
|
||
if (dimension < N)
|
||
{
|
||
pragma(inline, true);
|
||
import std.algorithm.comparison: min;
|
||
popFrontExactly!dimension(min(n, _lengths[dimension]));
|
||
}
|
||
|
||
///ditto
|
||
void popBackN(size_t dimension = 0)(size_t n)
|
||
if (dimension < N)
|
||
{
|
||
pragma(inline, true);
|
||
import std.algorithm.comparison: min;
|
||
popBackExactly!dimension(min(n, _lengths[dimension]));
|
||
}
|
||
|
||
static if (doUnittest)
|
||
///
|
||
@safe @nogc pure nothrow unittest
|
||
{
|
||
import std.range: iota;
|
||
import std.range.primitives;
|
||
auto slice = 10000.iota.sliced(10, 20, 30);
|
||
|
||
static assert(isRandomAccessRange!(typeof(slice)));
|
||
static assert(hasSlicing!(typeof(slice)));
|
||
static assert(hasLength!(typeof(slice)));
|
||
|
||
assert(slice.shape == cast(size_t[3])[10, 20, 30]);
|
||
slice.popFront;
|
||
slice.popFront!1;
|
||
slice.popBackExactly!2(4);
|
||
assert(slice.shape == cast(size_t[3])[9, 19, 26]);
|
||
|
||
auto matrix = slice.front!1;
|
||
assert(matrix.shape == cast(size_t[2])[9, 26]);
|
||
|
||
auto column = matrix.back!1;
|
||
assert(column.shape == cast(size_t[1])[9]);
|
||
|
||
slice.popFrontExactly!1(slice.length!1);
|
||
assert(slice.empty == false);
|
||
assert(slice.empty!1 == true);
|
||
assert(slice.empty!2 == false);
|
||
assert(slice.shape == cast(size_t[3])[9, 0, 26]);
|
||
|
||
assert(slice.back.front!1.empty);
|
||
|
||
slice.popFrontN!0(40);
|
||
slice.popFrontN!2(40);
|
||
assert(slice.shape == cast(size_t[3])[0, 0, 0]);
|
||
}
|
||
|
||
package void popFront(size_t dimension)
|
||
{
|
||
assert(dimension < N, __FUNCTION__ ~ ": dimension should be less than N = " ~ N.stringof);
|
||
assert(_lengths[dimension], ": length!dim should be greater than 0.");
|
||
_lengths[dimension]--;
|
||
_ptr += _strides[dimension];
|
||
}
|
||
|
||
|
||
package void popBack(size_t dimension)
|
||
{
|
||
assert(dimension < N, __FUNCTION__ ~ ": dimension should be less than N = " ~ N.stringof);
|
||
assert(_lengths[dimension], ": length!dim should be greater than 0.");
|
||
_lengths[dimension]--;
|
||
}
|
||
|
||
package void popFrontExactly(size_t dimension, size_t n)
|
||
{
|
||
assert(dimension < N, __FUNCTION__ ~ ": dimension should be less than N = " ~ N.stringof);
|
||
assert(n <= _lengths[dimension], __FUNCTION__ ~ ": n should be less than or equal to length!dim");
|
||
_lengths[dimension] -= n;
|
||
_ptr += _strides[dimension] * n;
|
||
}
|
||
|
||
package void popBackExactly(size_t dimension, size_t n)
|
||
{
|
||
assert(dimension < N, __FUNCTION__ ~ ": dimension should be less than N = " ~ N.stringof);
|
||
assert(n <= _lengths[dimension], __FUNCTION__ ~ ": n should be less than or equal to length!dim");
|
||
_lengths[dimension] -= n;
|
||
}
|
||
|
||
package void popFrontN(size_t dimension, size_t n)
|
||
{
|
||
assert(dimension < N, __FUNCTION__ ~ ": dimension should be less than N = " ~ N.stringof);
|
||
import std.algorithm.comparison: min;
|
||
popFrontExactly(dimension, min(n, _lengths[dimension]));
|
||
}
|
||
|
||
package void popBackN(size_t dimension, size_t n)
|
||
{
|
||
assert(dimension < N, __FUNCTION__ ~ ": dimension should be less than N = " ~ N.stringof);
|
||
import std.algorithm.comparison: min;
|
||
popBackExactly(dimension, min(n, _lengths[dimension]));
|
||
}
|
||
|
||
/++
|
||
Returns: total number of elements in a slice
|
||
+/
|
||
size_t elementsCount() const
|
||
{
|
||
size_t len = 1;
|
||
foreach (i; Iota!(0, N))
|
||
len *= _lengths[i];
|
||
return len;
|
||
}
|
||
|
||
static if (doUnittest)
|
||
/// Regular slice
|
||
@safe @nogc pure nothrow unittest
|
||
{
|
||
import std.range: iota;
|
||
assert(100.iota.sliced(3, 4, 5).elementsCount == 60);
|
||
}
|
||
|
||
|
||
static if (doUnittest)
|
||
/// Packed slice
|
||
@safe @nogc pure nothrow unittest
|
||
{
|
||
import std.experimental.ndslice.selection: pack, evertPack;
|
||
import std.range: iota;
|
||
auto slice = 50000.iota.sliced(3, 4, 5, 6, 7, 8);
|
||
auto p = slice.pack!2;
|
||
assert(p.elementsCount == 360);
|
||
assert(p[0, 0, 0, 0].elementsCount == 56);
|
||
assert(p.evertPack.elementsCount == 56);
|
||
}
|
||
|
||
/++
|
||
Overloading `==` and `!=`
|
||
+/
|
||
bool opEquals(size_t NR, RangeR)(auto ref Slice!(NR, RangeR) rslice)
|
||
if (Slice!(NR, RangeR).PureN == PureN)
|
||
{
|
||
if (this._lengths != rslice._lengths)
|
||
return false;
|
||
static if (
|
||
!hasReference!(typeof(this))
|
||
&& !hasReference!(typeof(rslice))
|
||
&& __traits(compiles, this._ptr == rslice._ptr)
|
||
)
|
||
{
|
||
if (this._strides == rslice._strides && this._ptr == rslice._ptr)
|
||
return true;
|
||
}
|
||
return opEqualsImpl(this, rslice);
|
||
}
|
||
|
||
///ditto
|
||
bool opEquals(T)(T[] rarrary)
|
||
{
|
||
if (this.length != rarrary.length)
|
||
return false;
|
||
foreach(i, ref e; rarrary)
|
||
if(e != this[i])
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
static if (doUnittest)
|
||
///
|
||
pure nothrow unittest
|
||
{
|
||
auto a = [1, 2, 3, 4].sliced(2, 2);
|
||
|
||
assert(a != [1, 2, 3, 4, 5, 6].sliced(2, 3));
|
||
assert(a != [[1, 2, 3], [4, 5, 6]]);
|
||
|
||
assert(a == [1, 2, 3, 4].sliced(2, 2));
|
||
assert(a == [[1, 2], [3, 4]]);
|
||
|
||
assert(a != [9, 2, 3, 4].sliced(2, 2));
|
||
assert(a != [[9, 2], [3, 4]]);
|
||
}
|
||
|
||
_Slice opSlice(size_t dimension)(size_t i, size_t j)
|
||
if (dimension < N)
|
||
in {
|
||
assert(i <= j,
|
||
"Slice.opSlice!" ~ dimension.stringof ~ ": the left bound must be less than or equal to the right bound.");
|
||
assert(j - i <= _lengths[dimension],
|
||
"Slice.opSlice!" ~ dimension.stringof ~
|
||
": difference between the right and the left bounds must be less than or equal to the length of the given dimension.");
|
||
}
|
||
body
|
||
{
|
||
pragma(inline, true);
|
||
return typeof(return)(i, j);
|
||
}
|
||
|
||
/++
|
||
$(BLUE Fully defined index).
|
||
+/
|
||
auto ref opIndex(Indexes...)(Indexes _indexes)
|
||
if (isFullPureIndex!Indexes)
|
||
{
|
||
static if (PureN == N)
|
||
return _ptr[indexStride(_indexes)];
|
||
else
|
||
return DeepElemType(_lengths[N .. $], _strides[N .. $], _ptr + indexStride(_indexes));
|
||
}
|
||
|
||
static if(doUnittest)
|
||
///
|
||
pure nothrow unittest
|
||
{
|
||
auto slice = new int[10].sliced(5, 2);
|
||
|
||
auto p = &slice[1, 1];
|
||
*p = 3;
|
||
assert(slice[1, 1] == 3);
|
||
|
||
size_t[2] index = [1, 1];
|
||
assert(slice[index] == 3);
|
||
}
|
||
|
||
/++
|
||
$(BLUE Partially or fully defined slice).
|
||
+/
|
||
auto opIndex(Slices...)(Slices slices)
|
||
if (isPureSlice!Slices)
|
||
{
|
||
static if (Slices.length)
|
||
{
|
||
|
||
enum size_t j(size_t n) = n - Filter!(isIndex, Slices[0 .. n+1]).length;
|
||
enum size_t F = PureIndexLength!Slices;
|
||
enum size_t S = Slices.length;
|
||
static assert(N-F > 0);
|
||
size_t stride;
|
||
static if (hasElaborateAssign!PureRange)
|
||
Slice!(N-F, Range) ret;
|
||
else
|
||
Slice!(N-F, Range) ret = void;
|
||
foreach (i, slice; slices) //static
|
||
{
|
||
static if (isIndex!(Slices[i]))
|
||
{
|
||
assert(slice < _lengths[i], "Slice.opIndex: index must be less than length");
|
||
stride += _strides[i] * slice;
|
||
}
|
||
else
|
||
{
|
||
stride += _strides[i] * slice.i;
|
||
ret._lengths[j!i] = slice.j - slice.i;
|
||
ret._strides[j!i] = _strides[i];
|
||
}
|
||
}
|
||
foreach (i; Iota!(S, PureN))
|
||
{
|
||
ret._lengths[i - F] = _lengths[i];
|
||
ret._strides[i - F] = _strides[i];
|
||
}
|
||
ret._ptr = _ptr + stride;
|
||
return ret;
|
||
}
|
||
else
|
||
{
|
||
return this;
|
||
}
|
||
}
|
||
|
||
static if(doUnittest)
|
||
///
|
||
pure nothrow unittest
|
||
{
|
||
auto slice = new int[15].sliced(5, 3);
|
||
|
||
/// Fully defined slice
|
||
assert(slice[] == slice);
|
||
auto sublice = slice[0..$-2, 1..$];
|
||
|
||
/// Partially defined slice
|
||
auto row = slice[3];
|
||
auto col = slice[0..$, 1];
|
||
}
|
||
|
||
static if(doUnittest)
|
||
pure nothrow unittest
|
||
{
|
||
auto slice = new int[15].sliced!(ReplaceArrayWithPointer.no)(5, 3);
|
||
|
||
/// Fully defined slice
|
||
assert(slice[] == slice);
|
||
auto sublice = slice[0..$-2, 1..$];
|
||
|
||
/// Partially defined slice
|
||
auto row = slice[3];
|
||
auto col = slice[0..$, 1];
|
||
}
|
||
|
||
static if (isMutable!DeepElemType && PureN == N)
|
||
{
|
||
private void opIndexAssignImpl(string op, size_t RN, RRange, Slices...)(Slice!(RN, RRange) value, Slices slices)
|
||
if (isFullPureSlice!Slices
|
||
&& RN <= ReturnType!(opIndex!Slices).N)
|
||
{
|
||
auto slice = this[slices];
|
||
assert(slice._lengths[$ - RN .. $] == value._lengths, __FUNCTION__ ~ ": argument must have the corresponding shape.");
|
||
version(none) //future optimization
|
||
static if((isPointer!Range || isDynamicArray!Range) && (isPointer!RRange || isDynamicArray!RRange))
|
||
{
|
||
enum d = slice.N - value.N;
|
||
foreach_reverse (i; Iota!(0, value.N))
|
||
if (slice._lengths[i + d] == 1)
|
||
{
|
||
if (value._lengths[i] == 1)
|
||
{
|
||
static if (i != value.N - 1)
|
||
{
|
||
import std.experimental.ndslice.iteration: swapped;
|
||
slice = slice.swapped(i + d, slice.N - 1);
|
||
value = value.swapped(i , value.N - 1);
|
||
}
|
||
goto L1;
|
||
}
|
||
else
|
||
{
|
||
goto L2;
|
||
}
|
||
}
|
||
L1:
|
||
_indexAssign!(true, op)(slice, value);
|
||
return;
|
||
}
|
||
L2:
|
||
_indexAssign!(false, op)(slice, value);
|
||
}
|
||
|
||
private void opIndexAssignImpl(string op, T, Slices...)(T[] value, Slices slices)
|
||
if (isFullPureSlice!Slices
|
||
&& !isDynamicArray!DeepElemType
|
||
&& DynamicArrayDimensionsCount!(T[]) <= ReturnType!(opIndex!Slices).N)
|
||
{
|
||
auto slice = this[slices];
|
||
version(none) //future optimization
|
||
static if (isPointer!Range || isDynamicArray!Range)
|
||
{
|
||
if (slice._lengths[$-1] == 1)
|
||
{
|
||
_indexAssign!(true, op)(slice, value);
|
||
return;
|
||
}
|
||
}
|
||
_indexAssign!(false, op)(slice, value);
|
||
}
|
||
|
||
private void opIndexAssignImpl(string op, T, Slices...)(T value, Slices slices)
|
||
if (isFullPureSlice!Slices
|
||
&& (!isDynamicArray!T || isDynamicArray!DeepElemType)
|
||
&& !is(T : Slice!(RN, RRange), size_t RN, RRange))
|
||
{
|
||
auto slice = this[slices];
|
||
version(none) //future optimization
|
||
static if (isPointer!Range || isDynamicArray!Range)
|
||
{
|
||
if (slice._lengths[$-1] == 1)
|
||
{
|
||
_indexAssign!(true, op)(slice, value);
|
||
return;
|
||
}
|
||
}
|
||
_indexAssign!(false, op)(slice, value);
|
||
}
|
||
|
||
/++
|
||
Assignment of a value of `Slice` type to a $(BLUE fully defined slice).
|
||
+/
|
||
void opIndexAssign(size_t RN, RRange, Slices...)(Slice!(RN, RRange) value, Slices slices)
|
||
if (isFullPureSlice!Slices
|
||
&& RN <= ReturnType!(opIndex!Slices).N)
|
||
{
|
||
opIndexAssignImpl!""(value, slices);
|
||
}
|
||
|
||
static if(doUnittest)
|
||
///
|
||
pure nothrow unittest
|
||
{
|
||
auto a = new int[6].sliced(2, 3);
|
||
auto b = [1, 2, 3, 4].sliced(2, 2);
|
||
|
||
a[0..$, 0..$-1] = b;
|
||
assert(a == [[1, 2, 0], [3, 4, 0]]);
|
||
|
||
a[0..$, 0..$-1] = b[0];
|
||
assert(a == [[1, 2, 0], [1, 2, 0]]);
|
||
|
||
a[1, 0..$-1] = b[1];
|
||
assert(a[1] == [3, 4, 0]);
|
||
|
||
a[1, 0..$-1][] = b[0];
|
||
assert(a[1] == [1, 2, 0]);
|
||
}
|
||
|
||
static if(doUnittest)
|
||
pure nothrow unittest
|
||
{
|
||
auto a = new int[6].sliced!(ReplaceArrayWithPointer.no)(2, 3);
|
||
auto b = [1, 2, 3, 4].sliced(2, 2);
|
||
|
||
a[0..$, 0..$-1] = b;
|
||
assert(a == [[1, 2, 0], [3, 4, 0]]);
|
||
|
||
a[0..$, 0..$-1] = b[0];
|
||
assert(a == [[1, 2, 0], [1, 2, 0]]);
|
||
|
||
a[1, 0..$-1] = b[1];
|
||
assert(a[1] == [3, 4, 0]);
|
||
|
||
a[1, 0..$-1][] = b[0];
|
||
assert(a[1] == [1, 2, 0]);
|
||
}
|
||
|
||
/++
|
||
Assignment of a regular multidimensional array to a $(BLUE fully defined slice).
|
||
+/
|
||
void opIndexAssign(T, Slices...)(T[] value, Slices slices)
|
||
if (isFullPureSlice!Slices
|
||
&& !isDynamicArray!DeepElemType
|
||
&& DynamicArrayDimensionsCount!(T[]) <= ReturnType!(opIndex!Slices).N)
|
||
{
|
||
opIndexAssignImpl!""(value, slices);
|
||
}
|
||
|
||
static if(doUnittest)
|
||
///
|
||
pure nothrow unittest
|
||
{
|
||
auto a = new int[6].sliced(2, 3);
|
||
auto b = [[1, 2], [3, 4]];
|
||
|
||
a[] = [[1, 2, 3], [4, 5, 6]];
|
||
assert(a == [[1, 2, 3], [4, 5, 6]]);
|
||
|
||
a[0..$, 0..$-1] = [[1, 2], [3, 4]];
|
||
assert(a == [[1, 2, 3], [3, 4, 6]]);
|
||
|
||
a[0..$, 0..$-1] = [1, 2];
|
||
assert(a == [[1, 2, 3], [1, 2, 6]]);
|
||
|
||
a[1, 0..$-1] = [3, 4];
|
||
assert(a[1] == [3, 4, 6]);
|
||
|
||
a[1, 0..$-1][] = [3, 4];
|
||
assert(a[1] == [3, 4, 6]);
|
||
}
|
||
|
||
static if(doUnittest)
|
||
pure nothrow unittest
|
||
{
|
||
auto a = new int[6].sliced!(ReplaceArrayWithPointer.no)(2, 3);
|
||
auto b = [[1, 2], [3, 4]];
|
||
|
||
a[] = [[1, 2, 3], [4, 5, 6]];
|
||
assert(a == [[1, 2, 3], [4, 5, 6]]);
|
||
|
||
a[0..$, 0..$-1] = [[1, 2], [3, 4]];
|
||
assert(a == [[1, 2, 3], [3, 4, 6]]);
|
||
|
||
a[0..$, 0..$-1] = [1, 2];
|
||
assert(a == [[1, 2, 3], [1, 2, 6]]);
|
||
|
||
a[1, 0..$-1] = [3, 4];
|
||
assert(a[1] == [3, 4, 6]);
|
||
|
||
a[1, 0..$-1][] = [3, 4];
|
||
assert(a[1] == [3, 4, 6]);
|
||
}
|
||
|
||
/++
|
||
Assignment of a value (e.g. a number) to a $(BLUE fully defined slice).
|
||
+/
|
||
void opIndexAssign(T, Slices...)(T value, Slices slices)
|
||
if (isFullPureSlice!Slices
|
||
&& (!isDynamicArray!T || isDynamicArray!DeepElemType)
|
||
&& !is(T : Slice!(RN, RRange), size_t RN, RRange))
|
||
{
|
||
opIndexAssignImpl!""(value, slices);
|
||
}
|
||
|
||
static if(doUnittest)
|
||
///
|
||
pure nothrow unittest
|
||
{
|
||
auto a = new int[6].sliced(2, 3);
|
||
|
||
a[] = 9;
|
||
assert(a == [[9, 9, 9], [9, 9, 9]]);
|
||
|
||
a[0..$, 0..$-1] = 1;
|
||
assert(a == [[1, 1, 9], [1, 1, 9]]);
|
||
|
||
a[0..$, 0..$-1] = 2;
|
||
assert(a == [[2, 2, 9], [2, 2, 9]]);
|
||
|
||
a[1, 0..$-1] = 3;
|
||
assert(a[1] == [3, 3, 9]);
|
||
|
||
a[1, 0..$-1] = 4;
|
||
assert(a[1] == [4, 4, 9]);
|
||
|
||
a[1, 0..$-1][] = 5;
|
||
assert(a[1] == [5, 5, 9]);
|
||
}
|
||
|
||
static if(doUnittest)
|
||
pure nothrow unittest
|
||
{
|
||
auto a = new int[6].sliced!(ReplaceArrayWithPointer.no)(2, 3);
|
||
|
||
a[] = 9;
|
||
assert(a == [[9, 9, 9], [9, 9, 9]]);
|
||
|
||
a[0..$, 0..$-1] = 1;
|
||
assert(a == [[1, 1, 9], [1, 1, 9]]);
|
||
|
||
a[0..$, 0..$-1] = 2;
|
||
assert(a == [[2, 2, 9], [2, 2, 9]]);
|
||
|
||
a[1, 0..$-1] = 3;
|
||
assert(a[1] == [3, 3, 9]);
|
||
|
||
a[1, 0..$-1] = 4;
|
||
assert(a[1] == [4, 4, 9]);
|
||
|
||
a[1, 0..$-1][] = 5;
|
||
assert(a[1] == [5, 5, 9]);
|
||
}
|
||
|
||
/++
|
||
Assignment of a value (e.g. a number) to a $(BLUE fully defined index).
|
||
+/
|
||
auto ref opIndexAssign(T, Indexes...)(T value, Indexes _indexes)
|
||
if (isFullPureIndex!Indexes)
|
||
{
|
||
return _ptr[indexStride(_indexes)] = value;
|
||
}
|
||
|
||
static if(doUnittest)
|
||
///
|
||
pure nothrow unittest
|
||
{
|
||
auto a = new int[6].sliced(2, 3);
|
||
|
||
a[1, 2] = 3;
|
||
assert(a[1, 2] == 3);
|
||
}
|
||
|
||
static if(doUnittest)
|
||
pure nothrow unittest
|
||
{
|
||
auto a = new int[6].sliced!(ReplaceArrayWithPointer.no)(2, 3);
|
||
|
||
a[1, 2] = 3;
|
||
assert(a[1, 2] == 3);
|
||
}
|
||
|
||
/++
|
||
Op Assignment `op=` of a value (e.g. a number) to a $(BLUE fully defined index).
|
||
+/
|
||
auto ref opIndexOpAssign(string op, T, Indexes...)(T value, Indexes _indexes)
|
||
if (isFullPureIndex!Indexes)
|
||
{
|
||
mixin (`return _ptr[indexStride(_indexes)] ` ~ op ~ `= value;`);
|
||
}
|
||
|
||
static if(doUnittest)
|
||
///
|
||
pure nothrow unittest
|
||
{
|
||
auto a = new int[6].sliced(2, 3);
|
||
|
||
a[1, 2] += 3;
|
||
assert(a[1, 2] == 3);
|
||
}
|
||
|
||
static if(doUnittest)
|
||
pure nothrow unittest
|
||
{
|
||
auto a = new int[6].sliced!(ReplaceArrayWithPointer.no)(2, 3);
|
||
|
||
a[1, 2] += 3;
|
||
assert(a[1, 2] == 3);
|
||
}
|
||
|
||
/++
|
||
Op Assignment `op=` of a value of `Slice` type to a $(BLUE fully defined slice).
|
||
+/
|
||
void opIndexOpAssign(string op, size_t RN, RRange, Slices...)(Slice!(RN, RRange) value, Slices slices)
|
||
if (isFullPureSlice!Slices
|
||
&& RN <= ReturnType!(opIndex!Slices).N)
|
||
{
|
||
opIndexAssignImpl!op(value, slices);
|
||
}
|
||
|
||
static if(doUnittest)
|
||
///
|
||
pure nothrow unittest
|
||
{
|
||
auto a = new int[6].sliced(2, 3);
|
||
auto b = [1, 2, 3, 4].sliced(2, 2);
|
||
|
||
a[0..$, 0..$-1] += b;
|
||
assert(a == [[1, 2, 0], [3, 4, 0]]);
|
||
|
||
a[0..$, 0..$-1] += b[0];
|
||
assert(a == [[2, 4, 0], [4, 6, 0]]);
|
||
|
||
a[1, 0..$-1] += b[1];
|
||
assert(a[1] == [7, 10, 0]);
|
||
|
||
a[1, 0..$-1][] += b[0];
|
||
assert(a[1] == [8, 12, 0]);
|
||
}
|
||
|
||
static if(doUnittest)
|
||
pure nothrow unittest
|
||
{
|
||
auto a = new int[6].sliced!(ReplaceArrayWithPointer.no)(2, 3);
|
||
auto b = [1, 2, 3, 4].sliced(2, 2);
|
||
|
||
a[0..$, 0..$-1] += b;
|
||
assert(a == [[1, 2, 0], [3, 4, 0]]);
|
||
|
||
a[0..$, 0..$-1] += b[0];
|
||
assert(a == [[2, 4, 0], [4, 6, 0]]);
|
||
|
||
a[1, 0..$-1] += b[1];
|
||
assert(a[1] == [7, 10, 0]);
|
||
|
||
a[1, 0..$-1][] += b[0];
|
||
assert(a[1] == [8, 12, 0]);
|
||
}
|
||
|
||
/++
|
||
Op Assignment `op=` of a regular multidimensional array to a $(BLUE fully defined slice).
|
||
+/
|
||
void opIndexOpAssign(string op, T, Slices...)(T[] value, Slices slices)
|
||
if (isFullPureSlice!Slices
|
||
&& !isDynamicArray!DeepElemType
|
||
&& DynamicArrayDimensionsCount!(T[]) <= ReturnType!(opIndex!Slices).N)
|
||
{
|
||
opIndexAssignImpl!op(value, slices);
|
||
}
|
||
|
||
static if(doUnittest)
|
||
///
|
||
pure nothrow unittest
|
||
{
|
||
auto a = new int[6].sliced(2, 3);
|
||
|
||
a[0..$, 0..$-1] += [[1, 2], [3, 4]];
|
||
assert(a == [[1, 2, 0], [3, 4, 0]]);
|
||
|
||
a[0..$, 0..$-1] += [1, 2];
|
||
assert(a == [[2, 4, 0], [4, 6, 0]]);
|
||
|
||
a[1, 0..$-1] += [3, 4];
|
||
assert(a[1] == [7, 10, 0]);
|
||
|
||
a[1, 0..$-1][] += [1, 2];
|
||
assert(a[1] == [8, 12, 0]);
|
||
}
|
||
|
||
static if(doUnittest)
|
||
pure nothrow unittest
|
||
{
|
||
auto a = new int[6].sliced!(ReplaceArrayWithPointer.no)(2, 3);
|
||
|
||
a[0..$, 0..$-1] += [[1, 2], [3, 4]];
|
||
assert(a == [[1, 2, 0], [3, 4, 0]]);
|
||
|
||
a[0..$, 0..$-1] += [1, 2];
|
||
assert(a == [[2, 4, 0], [4, 6, 0]]);
|
||
|
||
a[1, 0..$-1] += [3, 4];
|
||
assert(a[1] == [7, 10, 0]);
|
||
|
||
a[1, 0..$-1][] += [1, 2];
|
||
assert(a[1] == [8, 12, 0]);
|
||
}
|
||
|
||
/++
|
||
Op Assignment `op=` of a value (e.g. a number) to a $(BLUE fully defined slice).
|
||
+/
|
||
void opIndexOpAssign(string op, T, Slices...)(T value, Slices slices)
|
||
if (isFullPureSlice!Slices
|
||
&& (!isDynamicArray!T || isDynamicArray!DeepElemType)
|
||
&& !is(T : Slice!(RN, RRange), size_t RN, RRange))
|
||
{
|
||
opIndexAssignImpl!op(value, slices);
|
||
}
|
||
|
||
static if(doUnittest)
|
||
///
|
||
pure nothrow unittest
|
||
{
|
||
auto a = new int[6].sliced(2, 3);
|
||
|
||
a[] += 1;
|
||
assert(a == [[1, 1, 1], [1, 1, 1]]);
|
||
|
||
a[0..$, 0..$-1] += 2;
|
||
assert(a == [[3, 3, 1], [3, 3, 1]]);
|
||
|
||
a[1, 0..$-1] += 3;
|
||
assert(a[1] == [6, 6, 1]);
|
||
}
|
||
|
||
static if(doUnittest)
|
||
pure nothrow unittest
|
||
{
|
||
auto a = new int[6].sliced!(ReplaceArrayWithPointer.no)(2, 3);
|
||
|
||
a[] += 1;
|
||
assert(a == [[1, 1, 1], [1, 1, 1]]);
|
||
|
||
a[0..$, 0..$-1] += 2;
|
||
assert(a == [[3, 3, 1], [3, 3, 1]]);
|
||
|
||
a[1, 0..$-1] += 3;
|
||
assert(a[1] == [6, 6, 1]);
|
||
}
|
||
|
||
/++
|
||
Increment `++` and Decrement `--` operators for a $(BLUE fully defined index).
|
||
+/
|
||
auto ref opIndexUnary(string op, Indexes...)(Indexes _indexes)
|
||
if (isFullPureIndex!Indexes && (op == `++` || op == `--`))
|
||
{
|
||
mixin (`return ` ~ op ~ `_ptr[indexStride(_indexes)];`);
|
||
}
|
||
|
||
static if(doUnittest)
|
||
///
|
||
pure nothrow unittest
|
||
{
|
||
auto a = new int[6].sliced(2, 3);
|
||
|
||
++a[1, 2];
|
||
assert(a[1, 2] == 1);
|
||
}
|
||
|
||
static if(doUnittest)
|
||
pure nothrow unittest
|
||
{
|
||
auto a = new int[6].sliced!(ReplaceArrayWithPointer.no)(2, 3);
|
||
|
||
++a[1, 2];
|
||
assert(a[1, 2] == 1);
|
||
}
|
||
|
||
/++
|
||
Increment `++` and Decrement `--` operators for a $(BLUE fully defined slice).
|
||
+/
|
||
void opIndexUnary(string op, Slices...)(Slices slices)
|
||
if (isFullPureSlice!Slices && (op == `++` || op == `--`))
|
||
{
|
||
auto sl = this[slices];
|
||
static if (sl.N == 1)
|
||
{
|
||
for (; sl.length; sl.popFront)
|
||
{
|
||
mixin (op ~ `sl.front;`);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
foreach (v; sl)
|
||
{
|
||
mixin (op ~ `v[];`);
|
||
}
|
||
}
|
||
}
|
||
|
||
static if(doUnittest)
|
||
///
|
||
pure nothrow unittest
|
||
{
|
||
auto a = new int[6].sliced(2, 3);
|
||
|
||
++a[];
|
||
assert(a == [[1, 1, 1], [1, 1, 1]]);
|
||
|
||
--a[1, 0..$-1];
|
||
assert(a[1] == [0, 0, 1]);
|
||
}
|
||
|
||
static if(doUnittest)
|
||
pure nothrow unittest
|
||
{
|
||
auto a = new int[6].sliced!(ReplaceArrayWithPointer.no)(2, 3);
|
||
|
||
++a[];
|
||
assert(a == [[1, 1, 1], [1, 1, 1]]);
|
||
|
||
--a[1, 0..$-1];
|
||
assert(a[1] == [0, 0, 1]);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/++
|
||
Slicing, indexing, and arithmetic operations.
|
||
+/
|
||
pure nothrow unittest
|
||
{
|
||
import std.array: array;
|
||
import std.range: iota;
|
||
import std.experimental.ndslice.iteration: transposed;
|
||
|
||
auto tensor = 60.iota.array.sliced(3, 4, 5);
|
||
|
||
assert(tensor[1, 2] == tensor[1][2]);
|
||
assert(tensor[1, 2, 3] == tensor[1][2][3]);
|
||
|
||
assert( tensor[0..$, 0..$, 4] == tensor.transposed!2[4]);
|
||
assert(&tensor[0..$, 0..$, 4][1, 2] is &tensor[1, 2, 4]);
|
||
|
||
tensor[1, 2, 3]++; //`opIndex` returns value by reference.
|
||
--tensor[1, 2, 3]; //`opUnary`
|
||
|
||
++tensor[];
|
||
tensor[] -= 1;
|
||
|
||
// `opIndexAssing` accepts only fully defined indexes and slices.
|
||
// Use an additional empty slice `[]`.
|
||
static assert(!__traits(compiles), tensor[0 .. 2] *= 2);
|
||
|
||
tensor[0 .. 2][] *= 2; //OK, empty slice
|
||
tensor[0 .. 2, 3, 0..$] /= 2; //OK, 3 index or slice positions are defined.
|
||
|
||
//fully defined index may be replaced by a static array
|
||
size_t[3] index = [1, 2, 3];
|
||
assert(tensor[index] == tensor[1, 2, 3]);
|
||
}
|
||
|
||
/++
|
||
Operations with rvalue slices.
|
||
+/
|
||
pure nothrow unittest
|
||
{
|
||
import std.experimental.ndslice.iteration: transposed, everted;
|
||
|
||
auto tensor = new int[60].sliced(3, 4, 5);
|
||
auto matrix = new int[12].sliced(3, 4);
|
||
auto vector = new int[ 3].sliced(3);
|
||
|
||
foreach (i; 0..3)
|
||
vector[i] = i;
|
||
|
||
// fills matrix columns
|
||
matrix.transposed[] = vector;
|
||
|
||
// fills tensor with vector
|
||
// transposed tensor shape is (4, 5, 3)
|
||
// vector shape is ( 3)
|
||
tensor.transposed!(1, 2)[] = vector;
|
||
|
||
|
||
// transposed tensor shape is (5, 3, 4)
|
||
// matrix shape is ( 3, 4)
|
||
tensor.transposed!2[] += matrix;
|
||
|
||
// transposed tensor shape is (5, 4, 3)
|
||
// transposed matrix shape is ( 4, 3)
|
||
tensor.everted[] ^= matrix.transposed; // XOR
|
||
}
|
||
|
||
/++
|
||
Creating a slice from text.
|
||
See also $(LINK2 std_format.html, std.format).
|
||
+/
|
||
unittest
|
||
{
|
||
import std.algorithm, std.conv, std.exception, std.format,
|
||
std.functional, std.string, std.range;
|
||
|
||
Slice!(2, int*) toMatrix(string str)
|
||
{
|
||
string[][] data = str.lineSplitter.filter!(not!empty).map!split.array;
|
||
|
||
size_t rows = data .length.enforce("empty input");
|
||
size_t columns = data[0].length.enforce("empty first row");
|
||
|
||
data.each!(a => enforce(a.length == columns, "rows have different lengths"));
|
||
|
||
auto slice = new int[rows * columns].sliced(rows, columns);
|
||
foreach (i, line; data)
|
||
foreach (j, num; line)
|
||
slice[i, j] = num.to!int;
|
||
return slice;
|
||
}
|
||
|
||
auto input = "\r1 2 3\r\n 4 5 6\n";
|
||
|
||
auto matrix = toMatrix(input);
|
||
assert(matrix == [[1, 2, 3], [4, 5, 6]]);
|
||
|
||
// back to text
|
||
auto text2 = format("%(%(%s %)\n%)\n", matrix);
|
||
assert(text2 == "1 2 3\n4 5 6\n");
|
||
}
|
||
|
||
// Slicing
|
||
@safe @nogc pure nothrow unittest
|
||
{
|
||
import std.range: iota;
|
||
auto a = 1000000.iota.sliced(10, 20, 30, 40);
|
||
auto b = a[0..$, 10, 4 .. 27, 4];
|
||
auto c = b[2 .. 9, 5 .. 10];
|
||
auto d = b[3..$, $-2];
|
||
assert(b[4, 17] == a[4, 10, 21, 4]);
|
||
assert(c[1, 2] == a[3, 10, 11, 4]);
|
||
assert(d[3] == a[6, 10, 25, 4]);
|
||
}
|
||
|
||
// Operator overloading. # 1
|
||
pure nothrow unittest
|
||
{
|
||
import std.range: iota;
|
||
import std.array: array;
|
||
auto fun(ref int x) { x *= 3; }
|
||
|
||
auto tensor = 1000
|
||
.iota
|
||
.array
|
||
.sliced(8, 9, 10);
|
||
|
||
++tensor[];
|
||
fun(tensor[0, 0, 0]);
|
||
|
||
assert(tensor[0, 0, 0] == 3);
|
||
|
||
tensor[0, 0, 0] *= 4;
|
||
tensor[0, 0, 0]--;
|
||
assert(tensor[0, 0, 0] == 11);
|
||
}
|
||
|
||
// Operator overloading. # 2
|
||
pure nothrow unittest
|
||
{
|
||
import std.algorithm.iteration: map;
|
||
import std.array: array;
|
||
import std.bigint;
|
||
import std.range: iota;
|
||
|
||
auto matrix = 100
|
||
.iota
|
||
.map!(i => BigInt(i))
|
||
.array
|
||
.sliced(8, 9);
|
||
|
||
matrix[3 .. 6, 2] += 100;
|
||
foreach (i; 0 .. 8)
|
||
foreach (j; 0 .. 9)
|
||
if (i >= 3 && i < 6 && j == 2)
|
||
assert(matrix[i, j] >= 100);
|
||
else
|
||
assert(matrix[i, j] < 100);
|
||
}
|
||
|
||
// Operator overloading. # 3
|
||
pure nothrow unittest
|
||
{
|
||
import std.algorithm.iteration: map;
|
||
import std.array: array;
|
||
import std.range: iota;
|
||
|
||
auto matrix = 100
|
||
.iota
|
||
.array
|
||
.sliced(8, 9);
|
||
|
||
matrix[] = matrix;
|
||
matrix[] += matrix;
|
||
assert(matrix[2, 3] == (2 * 9 + 3) * 2);
|
||
|
||
auto vec = iota(100, 200).sliced(9);
|
||
matrix[] = vec;
|
||
foreach (v; matrix)
|
||
assert(v == vec);
|
||
|
||
matrix[] += vec;
|
||
foreach (vector; matrix)
|
||
foreach (elem; vector)
|
||
assert(elem >= 200);
|
||
}
|
||
|
||
// Type deduction
|
||
unittest
|
||
{
|
||
// Arrays
|
||
foreach (T; AliasSeq!(int, const int, immutable int))
|
||
static assert(is(typeof((T[]).init.sliced(3, 4)) == Slice!(2, T*)));
|
||
|
||
// Container Array
|
||
import std.container.array;
|
||
Array!int ar;
|
||
static assert(is(typeof(ar[].sliced(3, 4)) == Slice!(2, typeof(ar[]))));
|
||
|
||
// Implicit conversion of a range to its unqualified type.
|
||
import std.range: iota;
|
||
auto i0 = 100.iota;
|
||
const i1 = 100.iota;
|
||
immutable i2 = 100.iota;
|
||
alias S = Slice!(3, typeof(iota(0)));
|
||
foreach (i; AliasSeq!(i0, i1, i2))
|
||
static assert(is(typeof(i.sliced(3, 4, 5)) == S));
|
||
}
|
||
|
||
// Test for map #1
|
||
unittest
|
||
{
|
||
import std.algorithm.iteration: map;
|
||
import std.range.primitives;
|
||
auto slice = [1, 2, 3, 4].sliced(2, 2);
|
||
|
||
auto r = slice.map!(a => a.map!(a => a * 6));
|
||
assert(r.front.front == 6);
|
||
assert(r.front.back == 12);
|
||
assert(r.back.front == 18);
|
||
assert(r.back.back == 24);
|
||
assert(r[0][0] == 6);
|
||
assert(r[0][1] == 12);
|
||
assert(r[1][0] == 18);
|
||
assert(r[1][1] == 24);
|
||
static assert(hasSlicing!(typeof(r)));
|
||
static assert(isForwardRange!(typeof(r)));
|
||
static assert(isRandomAccessRange!(typeof(r)));
|
||
|
||
}
|
||
|
||
// Test for map #2
|
||
unittest
|
||
{
|
||
import std.algorithm.iteration: map;
|
||
import std.range.primitives;
|
||
auto data = [1, 2, 3, 4].map!(a => a * 2);
|
||
static assert(hasSlicing!(typeof(data)));
|
||
static assert(isForwardRange!(typeof(data)));
|
||
static assert(isRandomAccessRange!(typeof(data)));
|
||
auto slice = data.sliced(2, 2);
|
||
static assert(hasSlicing!(typeof(slice)));
|
||
static assert(isForwardRange!(typeof(slice)));
|
||
static assert(isRandomAccessRange!(typeof(slice)));
|
||
auto r = slice.map!(a => a.map!(a => a * 3));
|
||
static assert(hasSlicing!(typeof(r)));
|
||
static assert(isForwardRange!(typeof(r)));
|
||
static assert(isRandomAccessRange!(typeof(r)));
|
||
assert(r.front.front == 6);
|
||
assert(r.front.back == 12);
|
||
assert(r.back.front == 18);
|
||
assert(r.back.back == 24);
|
||
assert(r[0][0] == 6);
|
||
assert(r[0][1] == 12);
|
||
assert(r[1][0] == 18);
|
||
assert(r[1][1] == 24);
|
||
}
|
||
|
||
private bool opEqualsImpl
|
||
(size_t NL, RangeL, size_t NR, RangeR)(
|
||
auto ref Slice!(NL, RangeL) ls,
|
||
auto ref Slice!(NR, RangeR) rs)
|
||
in
|
||
{
|
||
assert(ls._lengths == rs._lengths);
|
||
}
|
||
body
|
||
{
|
||
foreach (i; 0 .. ls.length)
|
||
{
|
||
static if (Slice!(NL, RangeL).PureN == 1)
|
||
{
|
||
if (ls[i] != rs[i])
|
||
return false;
|
||
}
|
||
else
|
||
{
|
||
if (!opEqualsImpl(ls[i], rs[i]))
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
private struct PtrShell(Range)
|
||
{
|
||
sizediff_t _shift;
|
||
Range _range;
|
||
|
||
enum hasAccessByRef = isPointer!Range ||
|
||
__traits(compiles, { auto a = &(_range[0]); } );
|
||
|
||
void opOpAssign(string op)(sizediff_t shift)
|
||
if (op == `+` || op == `-`)
|
||
{
|
||
pragma(inline, true);
|
||
mixin (`_shift ` ~ op ~ `= shift;`);
|
||
}
|
||
|
||
auto opBinary(string op)(sizediff_t shift)
|
||
if (op == `+` || op == `-`)
|
||
{
|
||
mixin (`return typeof(this)(_shift ` ~ op ~ ` shift, _range);`);
|
||
}
|
||
|
||
auto ref opIndex(sizediff_t index)
|
||
in
|
||
{
|
||
assert(_shift + index >= 0);
|
||
import std.range.primitives: hasLength;
|
||
static if (hasLength!Range)
|
||
assert(_shift + index <= _range.length);
|
||
}
|
||
body
|
||
{
|
||
return _range[_shift + index];
|
||
}
|
||
|
||
static if (!hasAccessByRef)
|
||
{
|
||
auto ref opIndexAssign(T)(T value, sizediff_t index)
|
||
in
|
||
{
|
||
assert(_shift + index >= 0);
|
||
static if (hasLength!Range)
|
||
assert(_shift + index <= _range.length);
|
||
}
|
||
body
|
||
{
|
||
return _range[_shift + index] = value;
|
||
}
|
||
|
||
auto ref opIndexOpAssign(string op, T)(T value, sizediff_t index)
|
||
in
|
||
{
|
||
assert(_shift + index >= 0);
|
||
static if (hasLength!Range)
|
||
assert(_shift + index <= _range.length);
|
||
}
|
||
body
|
||
{
|
||
mixin (`return _range[_shift + index] ` ~ op ~ `= value;`);
|
||
}
|
||
}
|
||
|
||
static if (canSave!Range)
|
||
auto save() @property
|
||
{
|
||
static if (isDynamicArray!Range)
|
||
return typeof(this)(_shift, _range);
|
||
else
|
||
return typeof(this)(_shift, _range.save);
|
||
}
|
||
}
|
||
|
||
private auto ptrShell(Range)(Range range, sizediff_t shift = 0)
|
||
{
|
||
return PtrShell!Range(shift, range);
|
||
}
|
||
|
||
version(none) // TODO: Remove before merge
|
||
// @safe pure nothrow ?
|
||
unittest
|
||
{
|
||
import std.internal.test.dummyrange;
|
||
foreach (RB; AliasSeq!(ReturnBy.Reference, ReturnBy.Value))
|
||
{
|
||
DummyRange!(RB, Length.Yes, RangeType.Random) range;
|
||
assert(range.length >= 10);
|
||
auto ptr = range.ptrShell;
|
||
assert(ptr[0] == range[0]);
|
||
auto save0 = range[0];
|
||
ptr[0] += 10;
|
||
++ptr[0];
|
||
assert(ptr[0] == save0 + 11);
|
||
(ptr + 5)[2] = 333;
|
||
assert(range[7] == 333);
|
||
}
|
||
}
|
||
|
||
private enum isSlicePointer(T) = isPointer!T || is(T : PtrShell!R, R);
|
||
|
||
private struct LikePtr {}
|
||
|
||
package template hasPtrBehavior(T)
|
||
{
|
||
static if (isPointer!T)
|
||
enum hasPtrBehavior = true;
|
||
else
|
||
static if (!isAggregateType!T)
|
||
enum hasPtrBehavior = false;
|
||
else
|
||
enum hasPtrBehavior = hasUDA!(T, LikePtr);
|
||
}
|
||
|
||
private template PtrTuple(Names...)
|
||
{
|
||
@LikePtr struct PtrTuple(Ptrs...)
|
||
if (allSatisfy!(isSlicePointer, Ptrs) && Ptrs.length == Names.length)
|
||
{
|
||
Ptrs ptrs;
|
||
|
||
static if (allSatisfy!(canSave, Ptrs))
|
||
auto save() @property
|
||
{
|
||
static if (anySatisfy!(hasElaborateAssign, Ptrs))
|
||
PtrTuple p;
|
||
else
|
||
PtrTuple p = void;
|
||
foreach (i, ref ptr; ptrs)
|
||
static if (isPointer!(Ptrs[i]))
|
||
p.ptrs[i] = ptr;
|
||
else
|
||
p.ptrs[i] = ptr.save;
|
||
|
||
return p;
|
||
}
|
||
|
||
void opOpAssign(string op)(sizediff_t shift)
|
||
if (op == `+` || op == `-`)
|
||
{
|
||
foreach (ref ptr; ptrs)
|
||
mixin (`ptr ` ~ op ~ `= shift;`);
|
||
}
|
||
|
||
auto opBinary(string op)(sizediff_t shift)
|
||
if (op == `+` || op == `-`)
|
||
{
|
||
auto ret = this.ptrs;
|
||
ret.opOpAssign!op(shift);
|
||
return ret;
|
||
}
|
||
|
||
public struct Index
|
||
{
|
||
Ptrs _ptrs__;
|
||
mixin (PtrTupleFrontMembers!Names);
|
||
}
|
||
|
||
auto opIndex(sizediff_t index)
|
||
{
|
||
auto p = ptrs;
|
||
foreach (ref ptr; p)
|
||
ptr += index;
|
||
return Index(p);
|
||
}
|
||
|
||
auto front() @property
|
||
{
|
||
return Index(ptrs);
|
||
}
|
||
}
|
||
}
|
||
|
||
pure nothrow unittest
|
||
{
|
||
auto a = new int[20], b = new int[20];
|
||
import std.stdio;
|
||
alias T = PtrTuple!("a", "b");
|
||
alias S = T!(int*, int*);
|
||
auto t = S(a.ptr, b.ptr);
|
||
t[4].a++;
|
||
auto r = t[4];
|
||
r.b = r.a * 2;
|
||
assert(b[4] == 2);
|
||
t.front.a++;
|
||
r = t.front;
|
||
r.b = r.a * 2;
|
||
assert(b[0] == 2);
|
||
}
|
||
|
||
private template PtrTupleFrontMembers(Names...)
|
||
if (Names.length <= 32)
|
||
{
|
||
static if (Names.length)
|
||
{
|
||
alias Top = Names[0..$-1];
|
||
enum int m = Top.length;
|
||
enum PtrTupleFrontMembers = PtrTupleFrontMembers!Top
|
||
~ "
|
||
@property auto ref " ~ Names[$-1] ~ "() {
|
||
static if (__traits(compiles,{ auto _f = _ptrs__[" ~ m.stringof ~ "].front; }))
|
||
return _ptrs__[" ~ m.stringof ~ "].front;
|
||
else
|
||
return _ptrs__[" ~ m.stringof ~ "][0];
|
||
}
|
||
";
|
||
}
|
||
else
|
||
{
|
||
enum PtrTupleFrontMembers = "";
|
||
}
|
||
}
|
||
|
||
|
||
private template PrepareRangeType(Range)
|
||
{
|
||
static if (isPointer!Range)
|
||
alias PrepareRangeType = Range;
|
||
else
|
||
alias PrepareRangeType = PtrShell!Range;
|
||
}
|
||
|
||
private enum bool isType(alias T) = false;
|
||
|
||
private enum bool isType(T) = true;
|
||
|
||
private enum isStringValue(alias T) = is(typeof(T) : string);
|
||
|
||
private void _indexAssign(bool lastStrideEquals1, string op, size_t N, size_t RN, Range, RRange)(Slice!(N, Range) slice, Slice!(RN, RRange) value)
|
||
if (N >= RN)
|
||
{
|
||
static if (N == 1)
|
||
{
|
||
static if(lastStrideEquals1 && (isPointer!Range || isDynamicArray!Range) && (isPointer!RRange || isDynamicArray!RRange))
|
||
{
|
||
static if(isPointer!Range)
|
||
auto l = slice._ptr;
|
||
else
|
||
auto l = slice._ptr._range[slice._ptr._shift .. slice._ptr._shift + slice._lengths[0]];
|
||
static if(isPointer!RRange)
|
||
auto r = value._ptr;
|
||
else
|
||
auto r = value._ptr._range[value._ptr._shift .. value._ptr._shift + value._lengths[0]];
|
||
auto len = slice._lengths[0];
|
||
for (size_t i; i < len; i++)
|
||
{
|
||
mixin("l[i]" ~ op ~ "= r[i];");
|
||
}
|
||
}
|
||
else
|
||
{
|
||
while (slice._lengths[0])
|
||
{
|
||
mixin("slice.front " ~ op ~ "= value.front;");
|
||
slice.popFront;
|
||
value.popFront;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
static if (N == RN)
|
||
{
|
||
while (slice._lengths[0])
|
||
{
|
||
_indexAssign!(lastStrideEquals1, op)(slice.front, value.front);
|
||
slice.popFront;
|
||
value.popFront;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
while (slice._lengths[0])
|
||
{
|
||
_indexAssign!(lastStrideEquals1, op)(slice.front, value);
|
||
slice.popFront;
|
||
}
|
||
}
|
||
}
|
||
|
||
private void _indexAssign(bool lastStrideEquals1, string op, size_t N, Range, T)(Slice!(N, Range) slice, T[] value)
|
||
if (DynamicArrayDimensionsCount!(T[]) <= N)
|
||
{
|
||
assert(slice.length == value.length, __FUNCTION__ ~ ": argument must have the same length.");
|
||
static if (N == 1)
|
||
{
|
||
static if(lastStrideEquals1 && (isPointer!Range || isDynamicArray!Range))
|
||
{
|
||
static if(isPointer!Range)
|
||
auto l = slice._ptr;
|
||
else
|
||
auto l = slice._ptr._range[slice._ptr._shift .. slice._ptr._shift + slice._lengths[0]];
|
||
auto r = value;
|
||
auto len = slice._lengths[0];
|
||
for (size_t i; i < len; i++)
|
||
{
|
||
mixin("l[i]" ~ op ~ "= r[i];");
|
||
}
|
||
}
|
||
else
|
||
{
|
||
while (slice._lengths[0])
|
||
{
|
||
mixin("slice.front " ~ op ~ "= value[0];");
|
||
slice.popFront;
|
||
value = value[1..$];
|
||
}
|
||
}
|
||
}
|
||
else
|
||
static if (N == DynamicArrayDimensionsCount!(T[]))
|
||
{
|
||
while (slice._lengths[0])
|
||
{
|
||
_indexAssign!(lastStrideEquals1, op)(slice.front, value[0]);
|
||
slice.popFront;
|
||
value = value[1 .. $];
|
||
}
|
||
}
|
||
else
|
||
{
|
||
while (slice._lengths[0])
|
||
{
|
||
_indexAssign!(lastStrideEquals1, op)(slice.front, value);
|
||
slice.popFront;
|
||
}
|
||
}
|
||
}
|
||
|
||
private void _indexAssign(bool lastStrideEquals1, string op, size_t N, Range, T)(Slice!(N, Range) slice, T value)
|
||
if ((!isDynamicArray!T || isDynamicArray!(Slice!(N, Range).DeepElemType))
|
||
&& !is(T : Slice!(RN, RRange), size_t RN, RRange))
|
||
{
|
||
static if (N == 1)
|
||
{
|
||
static if(lastStrideEquals1 && (isPointer!Range || isDynamicArray!Range))
|
||
{
|
||
static if(isPointer!Range)
|
||
auto l = slice._ptr;
|
||
else
|
||
auto l = slice._ptr._range[slice._ptr._shift .. $];
|
||
auto len = slice._lengths[0];
|
||
for (size_t i; i < len; i++)
|
||
{
|
||
mixin("l[i]" ~ op ~ "= value;");
|
||
}
|
||
}
|
||
else
|
||
{
|
||
while (slice._lengths[0])
|
||
{
|
||
mixin("slice.front " ~ op ~ "= value;");
|
||
slice.popFront;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
while (slice._lengths[0])
|
||
{
|
||
_indexAssign!(lastStrideEquals1, op)(slice.front, value);
|
||
slice.popFront;
|
||
}
|
||
}
|
||
}
|