mirror of
https://github.com/dlang/phobos.git
synced 2025-04-26 13:10:35 +03:00
323 lines
11 KiB
D
323 lines
11 KiB
D
// Written in the D programming language.
|
|
|
|
/**
|
|
* Contains the elementary mathematical functions (powers, roots,
|
|
* and trigonometric functions), and low-level floating-point operations.
|
|
* Mathematical special functions are available in $(MREF std, mathspecial).
|
|
*
|
|
$(SCRIPT inhibitQuickIndex = 1;)
|
|
|
|
$(DIVC quickindex,
|
|
$(BOOKTABLE ,
|
|
$(TR $(TH Category) $(TH Members) )
|
|
$(TR $(TDNW $(SUBMODULE Constants, constants)) $(TD
|
|
$(SUBREF constants, E)
|
|
$(SUBREF constants, PI)
|
|
$(SUBREF constants, PI_2)
|
|
$(SUBREF constants, PI_4)
|
|
$(SUBREF constants, M_1_PI)
|
|
$(SUBREF constants, M_2_PI)
|
|
$(SUBREF constants, M_2_SQRTPI)
|
|
$(SUBREF constants, LN10)
|
|
$(SUBREF constants, LN2)
|
|
$(SUBREF constants, LOG2)
|
|
$(SUBREF constants, LOG2E)
|
|
$(SUBREF constants, LOG2T)
|
|
$(SUBREF constants, LOG10E)
|
|
$(SUBREF constants, SQRT2)
|
|
$(SUBREF constants, SQRT1_2)
|
|
))
|
|
$(TR $(TDNW $(SUBMODULE Algebraic, algebraic)) $(TD
|
|
$(SUBREF algebraic, abs)
|
|
$(SUBREF algebraic, fabs)
|
|
$(SUBREF algebraic, sqrt)
|
|
$(SUBREF algebraic, cbrt)
|
|
$(SUBREF algebraic, hypot)
|
|
$(SUBREF algebraic, poly)
|
|
$(SUBREF algebraic, nextPow2)
|
|
$(SUBREF algebraic, truncPow2)
|
|
))
|
|
$(TR $(TDNW $(SUBMODULE Trigonometry, trigonometry)) $(TD
|
|
$(SUBREF trigonometry, sin)
|
|
$(SUBREF trigonometry, cos)
|
|
$(SUBREF trigonometry, tan)
|
|
$(SUBREF trigonometry, asin)
|
|
$(SUBREF trigonometry, acos)
|
|
$(SUBREF trigonometry, atan)
|
|
$(SUBREF trigonometry, atan2)
|
|
$(SUBREF trigonometry, sinh)
|
|
$(SUBREF trigonometry, cosh)
|
|
$(SUBREF trigonometry, tanh)
|
|
$(SUBREF trigonometry, asinh)
|
|
$(SUBREF trigonometry, acosh)
|
|
$(SUBREF trigonometry, atanh)
|
|
))
|
|
$(TR $(TDNW $(SUBMODULE Rounding, rounding)) $(TD
|
|
$(SUBREF rounding, ceil)
|
|
$(SUBREF rounding, floor)
|
|
$(SUBREF rounding, round)
|
|
$(SUBREF rounding, lround)
|
|
$(SUBREF rounding, trunc)
|
|
$(SUBREF rounding, rint)
|
|
$(SUBREF rounding, lrint)
|
|
$(SUBREF rounding, nearbyint)
|
|
$(SUBREF rounding, rndtol)
|
|
$(SUBREF rounding, quantize)
|
|
))
|
|
$(TR $(TDNW $(SUBMODULE Exponentiation & Logarithms, exponential)) $(TD
|
|
$(SUBREF exponential, pow)
|
|
$(SUBREF exponential, powmod)
|
|
$(SUBREF exponential, exp)
|
|
$(SUBREF exponential, exp2)
|
|
$(SUBREF exponential, expm1)
|
|
$(SUBREF exponential, ldexp)
|
|
$(SUBREF exponential, frexp)
|
|
$(SUBREF exponential, log)
|
|
$(SUBREF exponential, log2)
|
|
$(SUBREF exponential, log10)
|
|
$(SUBREF exponential, logb)
|
|
$(SUBREF exponential, ilogb)
|
|
$(SUBREF exponential, log1p)
|
|
$(SUBREF exponential, scalbn)
|
|
))
|
|
$(TR $(TDNW $(SUBMODULE Remainder, remainder)) $(TD
|
|
$(SUBREF remainder, fmod)
|
|
$(SUBREF remainder, modf)
|
|
$(SUBREF remainder, remainder)
|
|
$(SUBREF remainder, remquo)
|
|
))
|
|
$(TR $(TDNW $(SUBMODULE Floating-point operations, operations)) $(TD
|
|
$(SUBREF operations, approxEqual)
|
|
$(SUBREF operations, feqrel)
|
|
$(SUBREF operations, fdim)
|
|
$(SUBREF operations, fmax)
|
|
$(SUBREF operations, fmin)
|
|
$(SUBREF operations, fma)
|
|
$(SUBREF operations, isClose)
|
|
$(SUBREF operations, nextDown)
|
|
$(SUBREF operations, nextUp)
|
|
$(SUBREF operations, nextafter)
|
|
$(SUBREF operations, NaN)
|
|
$(SUBREF operations, getNaNPayload)
|
|
$(SUBREF operations, cmp)
|
|
))
|
|
$(TR $(TDNW $(SUBMODULE Introspection, traits)) $(TD
|
|
$(SUBREF traits, isFinite)
|
|
$(SUBREF traits, isIdentical)
|
|
$(SUBREF traits, isInfinity)
|
|
$(SUBREF traits, isNaN)
|
|
$(SUBREF traits, isNormal)
|
|
$(SUBREF traits, isSubnormal)
|
|
$(SUBREF traits, signbit)
|
|
$(SUBREF traits, sgn)
|
|
$(SUBREF traits, copysign)
|
|
$(SUBREF traits, isPowerOf2)
|
|
))
|
|
$(TR $(TDNW $(SUBMODULE Hardware Control, hardware)) $(TD
|
|
$(SUBREF hardware, IeeeFlags)
|
|
$(SUBREF hardware, ieeeFlags)
|
|
$(SUBREF hardware, resetIeeeFlags)
|
|
$(SUBREF hardware, FloatingPointControl)
|
|
))
|
|
)
|
|
)
|
|
|
|
* The functionality closely follows the IEEE754-2008 standard for
|
|
* floating-point arithmetic, including the use of camelCase names rather
|
|
* than C99-style lower case names. All of these functions behave correctly
|
|
* when presented with an infinity or NaN.
|
|
*
|
|
* The following IEEE 'real' formats are currently supported:
|
|
* $(UL
|
|
* $(LI 64 bit Big-endian 'double' (eg PowerPC))
|
|
* $(LI 128 bit Big-endian 'quadruple' (eg SPARC))
|
|
* $(LI 64 bit Little-endian 'double' (eg x86-SSE2))
|
|
* $(LI 80 bit Little-endian, with implied bit 'real80' (eg x87, Itanium))
|
|
* $(LI 128 bit Little-endian 'quadruple' (not implemented on any known processor!))
|
|
* $(LI Non-IEEE 128 bit Big-endian 'doubledouble' (eg PowerPC) has partial support)
|
|
* )
|
|
* Unlike C, there is no global 'errno' variable. Consequently, almost all of
|
|
* these functions are pure nothrow.
|
|
*
|
|
* Macros:
|
|
* SUBMODULE = $(MREF_ALTTEXT $1, std, math, $2)
|
|
* SUBREF = $(REF_ALTTEXT $(TT $2), $2, std, math, $1)$(NBSP)
|
|
*
|
|
* Copyright: Copyright The D Language Foundation 2000 - 2011.
|
|
* D implementations of tan, atan, atan2, exp, expm1, exp2, log, log10, log1p,
|
|
* log2, floor, ceil and lrint functions are based on the CEPHES math library,
|
|
* which is Copyright (C) 2001 Stephen L. Moshier $(LT)steve@moshier.net$(GT)
|
|
* and are incorporated herein by permission of the author. The author
|
|
* reserves the right to distribute this material elsewhere under different
|
|
* copying permissions. These modifications are distributed here under
|
|
* the following terms:
|
|
* License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
|
|
* Authors: $(HTTP digitalmars.com, Walter Bright), Don Clugston,
|
|
* Conversion of CEPHES math library to D by Iain Buclaw and David Nadlinger
|
|
* Source: $(PHOBOSSRC std/math/package.d)
|
|
*/
|
|
module std.math;
|
|
|
|
public import std.math.algebraic;
|
|
public import std.math.constants;
|
|
public import std.math.exponential;
|
|
public import std.math.operations;
|
|
public import std.math.hardware;
|
|
public import std.math.remainder;
|
|
public import std.math.rounding;
|
|
public import std.math.traits;
|
|
public import std.math.trigonometry;
|
|
|
|
package(std): // Not public yet
|
|
/* Return the value that lies halfway between x and y on the IEEE number line.
|
|
*
|
|
* Formally, the result is the arithmetic mean of the binary significands of x
|
|
* and y, multiplied by the geometric mean of the binary exponents of x and y.
|
|
* x and y must have the same sign, and must not be NaN.
|
|
* Note: this function is useful for ensuring O(log n) behaviour in algorithms
|
|
* involving a 'binary chop'.
|
|
*
|
|
* Special cases:
|
|
* If x and y are within a factor of 2, (ie, feqrel(x, y) > 0), the return value
|
|
* is the arithmetic mean (x + y) / 2.
|
|
* If x and y are even powers of 2, the return value is the geometric mean,
|
|
* ieeeMean(x, y) = sqrt(x * y).
|
|
*
|
|
*/
|
|
T ieeeMean(T)(const T x, const T y) @trusted pure nothrow @nogc
|
|
in
|
|
{
|
|
// both x and y must have the same sign, and must not be NaN.
|
|
assert(signbit(x) == signbit(y));
|
|
assert(x == x && y == y);
|
|
}
|
|
do
|
|
{
|
|
// Runtime behaviour for contract violation:
|
|
// If signs are opposite, or one is a NaN, return 0.
|
|
if (!((x >= 0 && y >= 0) || (x <= 0 && y <= 0))) return 0.0;
|
|
|
|
// The implementation is simple: cast x and y to integers,
|
|
// average them (avoiding overflow), and cast the result back to a floating-point number.
|
|
|
|
alias F = floatTraits!(T);
|
|
T u;
|
|
static if (F.realFormat == RealFormat.ieeeExtended ||
|
|
F.realFormat == RealFormat.ieeeExtended53)
|
|
{
|
|
// There's slight additional complexity because they are actually
|
|
// 79-bit reals...
|
|
ushort *ue = cast(ushort *)&u;
|
|
ulong *ul = cast(ulong *)&u;
|
|
ushort *xe = cast(ushort *)&x;
|
|
ulong *xl = cast(ulong *)&x;
|
|
ushort *ye = cast(ushort *)&y;
|
|
ulong *yl = cast(ulong *)&y;
|
|
|
|
// Ignore the useless implicit bit. (Bonus: this prevents overflows)
|
|
ulong m = ((*xl) & 0x7FFF_FFFF_FFFF_FFFFL) + ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL);
|
|
|
|
// @@@ BUG? @@@
|
|
// Cast shouldn't be here
|
|
ushort e = cast(ushort) ((xe[F.EXPPOS_SHORT] & F.EXPMASK)
|
|
+ (ye[F.EXPPOS_SHORT] & F.EXPMASK));
|
|
if (m & 0x8000_0000_0000_0000L)
|
|
{
|
|
++e;
|
|
m &= 0x7FFF_FFFF_FFFF_FFFFL;
|
|
}
|
|
// Now do a multi-byte right shift
|
|
const uint c = e & 1; // carry
|
|
e >>= 1;
|
|
m >>>= 1;
|
|
if (c)
|
|
m |= 0x4000_0000_0000_0000L; // shift carry into significand
|
|
if (e)
|
|
*ul = m | 0x8000_0000_0000_0000L; // set implicit bit...
|
|
else
|
|
*ul = m; // ... unless exponent is 0 (subnormal or zero).
|
|
|
|
ue[4]= e | (xe[F.EXPPOS_SHORT]& 0x8000); // restore sign bit
|
|
}
|
|
else static if (F.realFormat == RealFormat.ieeeQuadruple)
|
|
{
|
|
// This would be trivial if 'ucent' were implemented...
|
|
ulong *ul = cast(ulong *)&u;
|
|
ulong *xl = cast(ulong *)&x;
|
|
ulong *yl = cast(ulong *)&y;
|
|
|
|
// Multi-byte add, then multi-byte right shift.
|
|
import core.checkedint : addu;
|
|
bool carry;
|
|
ulong ml = addu(xl[MANTISSA_LSB], yl[MANTISSA_LSB], carry);
|
|
|
|
ulong mh = carry + (xl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL) +
|
|
(yl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL);
|
|
|
|
ul[MANTISSA_MSB] = (mh >>> 1) | (xl[MANTISSA_MSB] & 0x8000_0000_0000_0000);
|
|
ul[MANTISSA_LSB] = (ml >>> 1) | (mh & 1) << 63;
|
|
}
|
|
else static if (F.realFormat == RealFormat.ieeeDouble)
|
|
{
|
|
ulong *ul = cast(ulong *)&u;
|
|
ulong *xl = cast(ulong *)&x;
|
|
ulong *yl = cast(ulong *)&y;
|
|
ulong m = (((*xl) & 0x7FFF_FFFF_FFFF_FFFFL)
|
|
+ ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL)) >>> 1;
|
|
m |= ((*xl) & 0x8000_0000_0000_0000L);
|
|
*ul = m;
|
|
}
|
|
else static if (F.realFormat == RealFormat.ieeeSingle)
|
|
{
|
|
uint *ul = cast(uint *)&u;
|
|
uint *xl = cast(uint *)&x;
|
|
uint *yl = cast(uint *)&y;
|
|
uint m = (((*xl) & 0x7FFF_FFFF) + ((*yl) & 0x7FFF_FFFF)) >>> 1;
|
|
m |= ((*xl) & 0x8000_0000);
|
|
*ul = m;
|
|
}
|
|
else
|
|
{
|
|
assert(0, "Not implemented");
|
|
}
|
|
return u;
|
|
}
|
|
|
|
@safe pure nothrow @nogc unittest
|
|
{
|
|
assert(ieeeMean(-0.0,-1e-20)<0);
|
|
assert(ieeeMean(0.0,1e-20)>0);
|
|
|
|
assert(ieeeMean(1.0L,4.0L)==2L);
|
|
assert(ieeeMean(2.0*1.013,8.0*1.013)==4*1.013);
|
|
assert(ieeeMean(-1.0L,-4.0L)==-2L);
|
|
assert(ieeeMean(-1.0,-4.0)==-2);
|
|
assert(ieeeMean(-1.0f,-4.0f)==-2f);
|
|
assert(ieeeMean(-1.0,-2.0)==-1.5);
|
|
assert(ieeeMean(-1*(1+8*real.epsilon),-2*(1+8*real.epsilon))
|
|
==-1.5*(1+5*real.epsilon));
|
|
assert(ieeeMean(0x1p60,0x1p-10)==0x1p25);
|
|
|
|
static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended)
|
|
{
|
|
assert(ieeeMean(1.0L,real.infinity)==0x1p8192L);
|
|
assert(ieeeMean(0.0L,real.infinity)==1.5);
|
|
}
|
|
assert(ieeeMean(0.5*real.min_normal*(1-4*real.epsilon),0.5*real.min_normal)
|
|
== 0.5*real.min_normal*(1-2*real.epsilon));
|
|
}
|
|
|
|
|
|
// The following IEEE 'real' formats are currently supported.
|
|
version (LittleEndian)
|
|
{
|
|
static assert(real.mant_dig == 53 || real.mant_dig == 64
|
|
|| real.mant_dig == 113,
|
|
"Only 64-bit, 80-bit, and 128-bit reals"~
|
|
" are supported for LittleEndian CPUs");
|
|
}
|
|
else
|
|
{
|
|
static assert(real.mant_dig == 53 || real.mant_dig == 113,
|
|
"Only 64-bit and 128-bit reals are supported for BigEndian CPUs.");
|
|
}
|