// Written in the D programming language /** * Elementary mathematical functions. * * The functionality closely follows the IEEE754-2008 standard for * floating-point arithmetic, including the use of camelCase names rather * than C99-style lower case names. All of these functions behave correctly * when presented with an infinity or NaN. * * Unlike C, there is no global errno variable. Consequently, almost all of * these functions are pure nothrow. * * Authors: * Walter Bright, Don Clugston * * Macros: * WIKI = Phobos/StdMath * * TABLE_SV = * * $0
Special Values
* SVH = $(TR $(TH $1) $(TH $2)) * SV = $(TR $(TD $1) $(TD $2)) * * NAN = $(RED NAN) * SUP = $0 * GAMMA = Γ * THETA = θ * INTEGRAL = ∫ * INTEGRATE = $(BIG ∫$(SMALL $1)$2) * POWER = $1$2 * SUB = $1$2 * BIGSUM = $(BIG Σ $2$(SMALL $1)) * CHOOSE = $(BIG () $(SMALL $1)$(SMALL $2) $(BIG )) * PLUSMN = ± * INFIN = ∞ * PLUSMNINF = ±∞ * PI = π * LT = < * GT = > * SQRT = &radix; * HALF = ½ */ /* * Copyright: * Copyright (c) 2001-2005 by Digital Mars, * All Rights Reserved, * www.digitalmars.com * License: * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * */ module(system) std.math; //debug=math; // uncomment to turn on debugging printf's private import std.stdio; private import std.c.stdio; private import std.string; private import std.c.math; private import std.traits; version(GNU){ // GDC can't actually do inline asm. } else version(D_InlineAsm_X86) { version = Naked_D_InlineAsm_X86; } else version(LDC) { import ldc.intrinsics; version(X86) { version = LDC_X86; } } private: /* * The following IEEE 'real' formats are currently supported: * 64 bit Big-endian 'double' (eg PowerPC) * 128 bit Big-endian 'quadruple' (eg SPARC) * 64 bit Little-endian 'double' (eg x86-SSE2) * 80 bit Little-endian, with implied bit 'real80' (eg x87, Itanium). * 128 bit Little-endian 'quadruple' (not implemented on any known processor!) * * Non-IEEE 128 bit Big-endian 'doubledouble' (eg PowerPC) has partial support */ version(LittleEndian) { static assert(real.mant_dig == 53 || real.mant_dig==64 || real.mant_dig == 113, "Only 64-bit, 80-bit, and 128-bit reals" " are supported for LittleEndian CPUs"); } else { static assert(real.mant_dig == 53 || real.mant_dig==106 || real.mant_dig == 113, "Only 64-bit and 128-bit reals are supported for BigEndian CPUs." " double-double reals have partial support"); } // Constants used for extracting the components of the representation. // They supplement the built-in floating point properties. template floatTraits(T) { // EXPMASK is a ushort mask to select the exponent portion (without sign) // EXPPOS_SHORT is the index of the exponent when represented as a ushort array. // SIGNPOS_BYTE is the index of the sign when represented as a ubyte array. // RECIP_EPSILON is the value such that (smallest_denormal) * RECIP_EPSILON == T.min enum T RECIP_EPSILON = (1/T.epsilon); static if (T.mant_dig == 24) { // float enum ushort EXPMASK = 0x7F80; enum ushort EXPBIAS = 0x3F00; enum uint EXPMASK_INT = 0x7F80_0000; enum uint MANTISSAMASK_INT = 0x007F_FFFF; version(LittleEndian) { enum EXPPOS_SHORT = 1; } else { enum EXPPOS_SHORT = 0; } } else static if (T.mant_dig == 53) { // double, or real==double enum ushort EXPMASK = 0x7FF0; enum ushort EXPBIAS = 0x3FE0; enum uint EXPMASK_INT = 0x7FF0_0000; enum uint MANTISSAMASK_INT = 0x000F_FFFF; // for the MSB only version(LittleEndian) { enum EXPPOS_SHORT = 3; enum SIGNPOS_BYTE = 7; } else { enum EXPPOS_SHORT = 0; enum SIGNPOS_BYTE = 0; } } else static if (T.mant_dig == 64) { // real80 enum ushort EXPMASK = 0x7FFF; enum ushort EXPBIAS = 0x3FFE; version(LittleEndian) { enum EXPPOS_SHORT = 4; enum SIGNPOS_BYTE = 9; } else { enum EXPPOS_SHORT = 0; enum SIGNPOS_BYTE = 0; } } else static if (T.mant_dig == 113){ // quadruple enum ushort EXPMASK = 0x7FFF; version(LittleEndian) { enum EXPPOS_SHORT = 7; enum SIGNPOS_BYTE = 15; } else { enum EXPPOS_SHORT = 0; enum SIGNPOS_BYTE = 0; } } else static if (T.mant_dig == 106) { // doubledouble enum ushort EXPMASK = 0x7FF0; // the exponent byte is not unique version(LittleEndian) { enum EXPPOS_SHORT = 7; // [3] is also an exp short enum SIGNPOS_BYTE = 15; } else { enum EXPPOS_SHORT = 0; // [4] is also an exp short enum SIGNPOS_BYTE = 0; } } } // These apply to all floating-point types version(LittleEndian) { enum MANTISSA_LSB = 0; enum MANTISSA_MSB = 1; } else { enum MANTISSA_LSB = 1; enum MANTISSA_MSB = 0; } public: class NotImplemented : Error { this(string msg) { super(msg ~ " not implemented"); } } enum real E = 2.7182818284590452354L; /** e */ // 0x1.5BF0A8B1_45769535_5FF5p+1L enum real LOG2T = 0x1.a934f0979a3715fcp+1; /** $(SUB log, 2)10 */ // 3.32193 fldl2t enum real LOG2E = 0x1.71547652b82fe178p+0; /** $(SUB log, 2)e */ // 1.4427 fldl2e enum real LOG2 = 0x1.34413509f79fef32p-2; /** $(SUB log, 10)2 */ // 0.30103 fldlg2 enum real LOG10E = 0.43429448190325182765; /** $(SUB log, 10)e */ enum real LN2 = 0x1.62e42fefa39ef358p-1; /** ln 2 */ // 0.693147 fldln2 enum real LN10 = 2.30258509299404568402; /** ln 10 */ enum real PI = 0x1.921fb54442d1846ap+1; /** $(_PI) */ // 3.14159 fldpi enum real PI_2 = 1.57079632679489661923; /** $(PI) / 2 */ enum real PI_4 = 0.78539816339744830962; /** $(PI) / 4 */ enum real M_1_PI = 0.31830988618379067154; /** 1 / $(PI) */ enum real M_2_PI = 0.63661977236758134308; /** 2 / $(PI) */ enum real M_2_SQRTPI = 1.12837916709551257390; /** 2 / $(SQRT)$(PI) */ enum real SQRT2 = 1.41421356237309504880; /** $(SQRT)2 */ enum real SQRT1_2 = 0.70710678118654752440; /** $(SQRT)$(HALF) */ /* Octal versions: PI/64800 0.00001 45530 36176 77347 02143 15351 61441 26767 PI/180 0.01073 72152 11224 72344 25603 54276 63351 22056 PI/8 0.31103 75524 21026 43021 51423 06305 05600 67016 SQRT(1/PI) 0.44067 27240 41233 33210 65616 51051 77327 77303 2/PI 0.50574 60333 44710 40522 47741 16537 21752 32335 PI/4 0.62207 73250 42055 06043 23046 14612 13401 56034 SQRT(2/PI) 0.63041 05147 52066 24106 41762 63612 00272 56161 PI 3.11037 55242 10264 30215 14230 63050 56006 70163 LOG2 0.23210 11520 47674 77674 61076 11263 26013 37111 */ /*********************************** * Calculates the absolute value * * For complex numbers, abs(z) = sqrt( $(POWER z.re, 2) + $(POWER z.im, 2) ) * = hypot(z.re, z.im). */ Num abs(Num)(Num x) if (is(typeof(Num >= 0)) && is(typeof(-Num)) && !(is(Num* : const(ifloat*)) || is(Num* : const(idouble*)) || is(Num* : const(ireal*)))) { static if (isFloatingPoint!(Num)) return fabs(x); else return x>=0 ? x : -x; } auto abs(Num)(Num z) if (is(Num* : const(cfloat*)) || is(Num* : const(cdouble*)) || is(Num* : const(creal*))) { return hypot(z.re, z.im); } /** ditto */ real abs(Num)(Num y) if (is(Num* : const(ifloat*)) || is(Num* : const(idouble*)) || is(Num* : const(ireal*))) { return fabs(y.im); } unittest { assert(isIdentical(abs(-0.0L), 0.0L)); assert(isNaN(abs(real.nan))); assert(abs(-real.infinity) == real.infinity); assert(abs(-3.2Li) == 3.2L); assert(abs(71.6Li) == 71.6L); assert(abs(-56) == 56); assert(abs(2321312L) == 2321312L); assert(abs(-1+1i) == sqrt(2.0)); } /*********************************** * Complex conjugate * * conj(x + iy) = x - iy * * Note that z * conj(z) = $(POWER z.re, 2) - $(POWER z.im, 2) * is always a real number */ creal conj(creal z) { return z.re - z.im*1i; } /** ditto */ ireal conj(ireal y) { return -y; } unittest { assert(conj(7 + 3i) == 7-3i); ireal z = -3.2Li; assert(conj(z) == -z); } /*********************************** * Returns cosine of x. x is in radians. * * $(TABLE_SV * $(TR $(TH x) $(TH cos(x)) $(TH invalid?)) * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes) ) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) $(TD yes) ) * ) * Bugs: * Results are undefined if |x| >= $(POWER 2,64). */ pure nothrow real cos(real x); /* intrinsic */ /*********************************** * Returns sine of x. x is in radians. * * $(TABLE_SV * $(TR $(TH x) $(TH sin(x)) $(TH invalid?)) * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) * $(TR $(TD $(PLUSMNINF)) $(TD $(NAN)) $(TD yes)) * ) * Bugs: * Results are undefined if |x| >= $(POWER 2,64). */ pure nothrow real sin(real x); /* intrinsic */ /*********************************** * sine, complex and imaginary * * sin(z) = sin(z.re)*cosh(z.im) + cos(z.re)*sinh(z.im)i * * If both sin($(THETA)) and cos($(THETA)) are required, * it is most efficient to use expi($(THETA)). */ creal sin(creal z) { creal cs = expi(z.re); creal csh = coshisinh(z.im); return cs.im * csh.re + cs.re * csh.im * 1i; } /** ditto */ ireal sin(ireal y) { return cosh(y.im)*1i; } unittest { assert(sin(0.0+0.0i) == 0.0); assert(sin(2.0+0.0i) == sin(2.0L) ); } /*********************************** * cosine, complex and imaginary * * cos(z) = cos(z.re)*cosh(z.im) - sin(z.re)*sinh(z.im)i */ creal cos(creal z) { creal cs = expi(z.re); creal csh = coshisinh(z.im); return cs.re * csh.re - cs.im * csh.im * 1i; } /** ditto */ real cos(ireal y) { return cosh(y.im); } unittest{ assert(cos(0.0+0.0i)==1.0); assert(cos(1.3L+0.0i)==cos(1.3L)); assert(cos(5.2Li)== cosh(5.2L)); } /**************************************************************************** * Returns tangent of x. x is in radians. * * $(TABLE_SV * $(TR $(TH x) $(TH tan(x)) $(TH invalid?)) * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) * $(TR $(TD $(PLUSMNINF)) $(TD $(NAN)) $(TD yes)) * ) */ pure nothrow real tan(real x) { version(Naked_D_InlineAsm_X86) { asm { fld x[EBP] ; // load theta fxam ; // test for oddball values fstsw AX ; sahf ; jc trigerr ; // x is NAN, infinity, or empty // 387's can handle denormals SC18: fptan ; fstp ST(0) ; // dump X, which is always 1 fstsw AX ; sahf ; jnp Lret ; // C2 = 1 (x is out of range) // Do argument reduction to bring x into range fldpi ; fxch ; SC17: fprem1 ; fstsw AX ; sahf ; jp SC17 ; fstp ST(1) ; // remove pi from stack jmp SC18 ; trigerr: jnp Lret ; // if theta is NAN, return theta fstp ST(0) ; // dump theta } return real.nan; Lret: ; } else { return stdc.math.tanl(x); } } unittest { static real vals[][2] = // angle,tan [ [ 0, 0], [ .5, .5463024898], [ 1, 1.557407725], [ 1.5, 14.10141995], [ 2, -2.185039863], [ 2.5,-.7470222972], [ 3, -.1425465431], [ 3.5, .3745856402], [ 4, 1.157821282], [ 4.5, 4.637332055], [ 5, -3.380515006], [ 5.5,-.9955840522], [ 6, -.2910061914], [ 6.5, .2202772003], [ 10, .6483608275], // special angles [ PI_4, 1], //[ PI_2, real.infinity], // PI_2 is not _exactly_ pi/2. [ 3*PI_4, -1], [ PI, 0], [ 5*PI_4, 1], //[ 3*PI_2, -real.infinity], [ 7*PI_4, -1], [ 2*PI, 0], ]; int i; for (i = 0; i < vals.length; i++) { real x = vals[i][0]; real r = vals[i][1]; real t = tan(x); //printf("tan(%Lg) = %Lg, should be %Lg\n", x, t, r); if (!isIdentical(r, t)) assert(fabs(r-t) <= .0000001); x = -x; r = -r; t = tan(x); //printf("tan(%Lg) = %Lg, should be %Lg\n", x, t, r); if (!isIdentical(r, t) && !(r!<>=0 && t!<>=0)) assert(fabs(r-t) <= .0000001); } // overflow assert(isNaN(tan(real.infinity))); assert(isNaN(tan(-real.infinity))); // NaN propagation assert(isIdentical( tan(NaN(0x0123L)), NaN(0x0123L) )); } /*************** * Calculates the arc cosine of x, * returning a value ranging from -$(PI)/2 to $(PI)/2. * * $(TABLE_SV * $(TR $(TH x) $(TH acos(x)) $(TH invalid?)) * $(TR $(TD $(GT)1.0) $(TD $(NAN)) $(TD yes)) * $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD yes)) * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes)) * ) */ float acos(float x) { return std.c.math.acosf(x); } /// ditto double acos(double x) { return std.c.math.acos(x); } /// ditto real acos(real x) { return std.c.math.acosl(x); } /*************** * Calculates the arc sine of x, * returning a value ranging from -$(PI)/2 to $(PI)/2. * * $(TABLE_SV * $(TR $(TH x) $(TH asin(x)) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) * $(TR $(TD $(GT)1.0) $(TD $(NAN)) $(TD yes)) * $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD yes)) * ) */ float asin(float x) { return std.c.math.asinf(x); } /// ditto double asin(double x) { return std.c.math.asin(x); } /// ditto real asin(real x) { return std.c.math.asinl(x); } /*************** * Calculates the arc tangent of x, * returning a value ranging from -$(PI)/2 to $(PI)/2. * * $(TABLE_SV * $(TR $(TH x) $(TH atan(x)) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) $(TD yes)) * ) */ float atan(float x) { return std.c.math.atanf(x); } /// ditto double atan(double x) { return std.c.math.atan(x); } /// ditto real atan(real x) { return std.c.math.atanl(x); } /*************** * Calculates the arc tangent of y / x, * returning a value ranging from -$(PI) to $(PI). * * $(TABLE_SV * $(TR $(TH y) $(TH x) $(TH atan(y, x))) * $(TR $(TD $(NAN)) $(TD anything) $(TD $(NAN)) ) * $(TR $(TD anything) $(TD $(NAN)) $(TD $(NAN)) ) * $(TR $(TD $(PLUSMN)0.0) $(TD $(GT)0.0) $(TD $(PLUSMN)0.0) ) * $(TR $(TD $(PLUSMN)0.0) $(TD +0.0) $(TD $(PLUSMN)0.0) ) * $(TR $(TD $(PLUSMN)0.0) $(TD $(LT)0.0) $(TD $(PLUSMN)$(PI))) * $(TR $(TD $(PLUSMN)0.0) $(TD -0.0) $(TD $(PLUSMN)$(PI))) * $(TR $(TD $(GT)0.0) $(TD $(PLUSMN)0.0) $(TD $(PI)/2) ) * $(TR $(TD $(LT)0.0) $(TD $(PLUSMN)0.0) $(TD -$(PI)/2) ) * $(TR $(TD $(GT)0.0) $(TD $(INFIN)) $(TD $(PLUSMN)0.0) ) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD anything) $(TD $(PLUSMN)$(PI)/2)) * $(TR $(TD $(GT)0.0) $(TD -$(INFIN)) $(TD $(PLUSMN)$(PI)) ) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(INFIN)) $(TD $(PLUSMN)$(PI)/4)) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD -$(INFIN)) $(TD $(PLUSMN)3$(PI)/4)) * ) */ float atan2(float y, float x) { return std.c.math.atan2f(y,x); } /// ditto double atan2(double y, double x) { return std.c.math.atan2(y,x); } /// ditto real atan2(real y, real x) { return std.c.math.atan2l(y,x); } /*********************************** * Calculates the hyperbolic cosine of x. * * $(TABLE_SV * $(TR $(TH x) $(TH cosh(x)) $(TH invalid?)) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)0.0) $(TD no) ) * ) */ real cosh(real x) { // cosh = (exp(x)+exp(-x))/2. // The naive implementation works correctly. real y = exp(x); return (y + 1.0/y) * 0.5; } /// ditto double cosh(double x) { return cosh(cast(real)x); } /// ditto float cosh(float x) { return cosh(cast(real)x); } /*********************************** * Calculates the hyperbolic sine of x. * * $(TABLE_SV * $(TR $(TH x) $(TH sinh(x)) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)$(INFIN)) $(TD no)) * ) */ real sinh(real x) { // sinh(x) = (exp(x)-exp(-x))/2; // Very large arguments could cause an overflow, but // the maximum value of x for which exp(x) + exp(-x)) != exp(x) // is x = 0.5 * (real.mant_dig) * LN2. // = 22.1807 for real80. if (fabs(x) > real.mant_dig * LN2) { return copysign(0.5 * exp(fabs(x)), x); } real y = expm1(x); return 0.5 * y / (y+1) * (y+2); } /// ditto double sinh(double x) { return sinh(cast(real)x); } /// ditto float sinh(float x) { return sinh(cast(real)x); } /*********************************** * Calculates the hyperbolic tangent of x. * * $(TABLE_SV * $(TR $(TH x) $(TH tanh(x)) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) ) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)1.0) $(TD no)) * ) */ real tanh(real x) { // tanh(x) = (exp(x) - exp(-x))/(exp(x)+exp(-x)) if (fabs(x) > real.mant_dig * LN2) { return copysign(1, x); } real y = expm1(2*x); return y / (y + 2); } /// ditto double tanh(double x) { return tanh(cast(real)x); } /// ditto float tanh(float x) { return tanh(cast(real)x); } private: /* Returns cosh(x) + I * sinh(x) * Only one call to exp() is performed. */ creal coshisinh(real x) { // See comments for cosh, sinh. if (fabs(x) > real.mant_dig * LN2) { real y = exp(fabs(x)); return y * 0.5 + 0.5i * copysign(y, x); } else { real y = expm1(x); return (y + 1.0 + 1.0/(y + 1.0)) * 0.5 + 0.5i * y / (y+1) * (y+2); } } unittest { creal c = coshisinh(3.0); assert(c.re == cosh(3.0)); assert(c.im == sinh(3.0)); } public: /*********************************** * Calculates the inverse hyperbolic cosine of x. * * Mathematically, acosh(x) = log(x + sqrt( x*x - 1)) * * $(TABLE_DOMRG * $(DOMAIN 1..$(INFIN)) * $(RANGE 1..log(real.max), $(INFIN)) ) * $(TABLE_SV * $(SVH x, acosh(x) ) * $(SV $(NAN), $(NAN) ) * $(SV <1, $(NAN) ) * $(SV 1, 0 ) * $(SV +$(INFIN),+$(INFIN)) * ) */ real acosh(real x) { if (x > 1/real.epsilon) return LN2 + log(x); else return log(x + sqrt(x*x - 1)); } /// ditto double acosh(double x) { return acosh(cast(real)x); } /// ditto float acosh(float x) { return acosh(cast(real)x); } unittest { assert(isNaN(acosh(0.9))); assert(isNaN(acosh(real.nan))); assert(acosh(1.0)==0.0); assert(acosh(real.infinity) == real.infinity); } /*********************************** * Calculates the inverse hyperbolic sine of x. * * Mathematically, * --------------- * asinh(x) = log( x + sqrt( x*x + 1 )) // if x >= +0 * asinh(x) = -log(-x + sqrt( x*x + 1 )) // if x <= -0 * ------------- * * $(TABLE_SV * $(SVH x, asinh(x) ) * $(SV $(NAN), $(NAN) ) * $(SV $(PLUSMN)0, $(PLUSMN)0 ) * $(SV $(PLUSMN)$(INFIN),$(PLUSMN)$(INFIN)) * ) */ real asinh(real x) { if (fabs(x) > 1 / real.epsilon) { // beyond this point, x*x + 1 == x*x return copysign(LN2 + log(fabs(x)), x); } else { // sqrt(x*x + 1) == 1 + x * x / ( 1 + sqrt(x*x + 1) ) return copysign(log1p(fabs(x) + x*x / (1 + sqrt(x*x + 1)) ), x); } } /// ditto double asinh(double x) { return asinh(cast(real)x); } /// ditto float asinh(float x) { return asinh(cast(real)x); } unittest { assert(isIdentical(asinh(0.0), 0.0)); assert(isIdentical(asinh(-0.0), -0.0)); assert(asinh(real.infinity) == real.infinity); assert(asinh(-real.infinity) == -real.infinity); assert(isNaN(asinh(real.nan))); } /*********************************** * Calculates the inverse hyperbolic tangent of x, * returning a value from ranging from -1 to 1. * * Mathematically, atanh(x) = log( (1+x)/(1-x) ) / 2 * * * $(TABLE_DOMRG * $(DOMAIN -$(INFIN)..$(INFIN)) * $(RANGE -1..1) ) * $(TABLE_SV * $(SVH x, acosh(x) ) * $(SV $(NAN), $(NAN) ) * $(SV $(PLUSMN)0, $(PLUSMN)0) * $(SV -$(INFIN), -0) * ) */ real atanh(real x) { // log( (1+x)/(1-x) ) == log ( 1 + (2*x)/(1-x) ) return 0.5 * log1p( 2 * x / (1 - x) ); } /// ditto double atanh(double x) { return atanh(cast(real)x); } /// ditto float atanh(float x) { return atanh(cast(real)x); } unittest { assert(isIdentical(atanh(0.0), 0.0)); assert(isIdentical(atanh(-0.0),-0.0)); assert(isNaN(atanh(real.nan))); assert(isNaN(atanh(-real.infinity))); } /***************************************** * Returns x rounded to a long value using the current rounding mode. * If the integer value of x is * greater than long.max, the result is * indeterminate. */ pure nothrow long rndtol(real x); /* intrinsic */ /***************************************** * Returns x rounded to a long value using the FE_TONEAREST rounding mode. * If the integer value of x is * greater than long.max, the result is * indeterminate. */ extern (C) real rndtonl(real x); /*************************************** * Compute square root of x. * * $(TABLE_SV * $(TR $(TH x) $(TH sqrt(x)) $(TH invalid?)) * $(TR $(TD -0.0) $(TD -0.0) $(TD no)) * $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD yes)) * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no)) * ) */ pure nothrow { float sqrt(float x); /* intrinsic */ double sqrt(double x); /* intrinsic */ /// ditto real sqrt(real x); /* intrinsic */ /// ditto } creal sqrt(creal z) { creal c; real x,y,w,r; if (z == 0) { c = 0 + 0i; } else { real z_re = z.re; real z_im = z.im; x = fabs(z_re); y = fabs(z_im); if (x >= y) { r = y / x; w = sqrt(x) * sqrt(0.5 * (1 + sqrt(1 + r * r))); } else { r = x / y; w = sqrt(y) * sqrt(0.5 * (r + sqrt(1 + r * r))); } if (z_re >= 0) { c = w + (z_im / (w + w)) * 1.0i; } else { if (z_im < 0) w = -w; c = z_im / (w + w) + w * 1.0i; } } return c; } /** * Calculates e$(SUP x). * * $(TABLE_SV * $(TR $(TH x) $(TH e$(SUP x)) ) * $(TD +$(INFIN)) $(TD +$(INFIN)) ) * $(TD -$(INFIN)) $(TD +0.0) ) * $(TR $(TD $(NAN)) $(TD $(NAN)) ) * ) */ real exp(real x) { version(Naked_D_InlineAsm_X86) { // e^x = 2^(LOG2E*x) // (This is valid because the overflow & underflow limits for exp // and exp2 are so similar). return exp2(LOG2E*x); } else { return std.c.math.exp(x); } } /// ditto double exp(double x) { return exp(cast(real)x); } /// ditto float exp(float x) { return exp(cast(real)x); } /** * Calculates the value of the natural logarithm base (e) * raised to the power of x, minus 1. * * For very small x, expm1(x) is more accurate * than exp(x)-1. * * $(TABLE_SV * $(TR $(TH x) $(TH e$(SUP x)-1) ) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) ) * $(TD +$(INFIN)) $(TD +$(INFIN)) ) * $(TD -$(INFIN)) $(TD -1.0) ) * $(TR $(TD $(NAN)) $(TD $(NAN)) ) * ) */ real expm1(real x) { version(Naked_D_InlineAsm_X86) { enum { PARAMSIZE = (real.sizeof+3)&(0xFFFF_FFFC) } // always a multiple of 4 asm { /* expm1() for x87 80-bit reals, IEEE754-2008 conformant. * Author: Don Clugston. * * expm1(x) = 2^(rndint(y))* 2^(y-rndint(y)) - 1 where y = LN2*x. * = 2rndy * 2ym1 + 2rndy - 1, where 2rndy = 2^(rndint(y)) * and 2ym1 = (2^(y-rndint(y))-1). * If 2rndy < 0.5*real.epsilon, result is -1. * Implementation is otherwise the same as for exp2() */ naked; fld real ptr [ESP+4] ; // x mov AX, [ESP+4+8]; // AX = exponent and sign sub ESP, 12+8; // Create scratch space on the stack // [ESP,ESP+2] = scratchint // [ESP+4..+6, +8..+10, +10] = scratchreal // set scratchreal mantissa = 1.0 mov dword ptr [ESP+8], 0; mov dword ptr [ESP+8+4], 0x80000000; and AX, 0x7FFF; // drop sign bit cmp AX, 0x401D; // avoid InvalidException in fist jae L_extreme; fldl2e; fmul ; // y = x*log2(e) fist dword ptr [ESP]; // scratchint = rndint(y) fisub dword ptr [ESP]; // y - rndint(y) // and now set scratchreal exponent mov EAX, [ESP]; add EAX, 0x3fff; jle short L_largenegative; cmp EAX,0x8000; jge short L_largepositive; mov [ESP+8+8],AX; f2xm1; // 2^(y-rndint(y)) -1 fld real ptr [ESP+8] ; // 2^rndint(y) fmul ST(1), ST; fld1; fsubp ST(1), ST; fadd; add ESP,12+8; ret PARAMSIZE; L_extreme: // Extreme exponent. X is very large positive, very // large negative, infinity, or NaN. fxam; fstsw AX; test AX, 0x0400; // NaN_or_zero, but we already know x!=0 jz L_was_nan; // if x is NaN, returns x test AX, 0x0200; jnz L_largenegative; L_largepositive: // Set scratchreal = real.max. // squaring it will create infinity, and set overflow flag. mov word ptr [ESP+8+8], 0x7FFE; fstp ST(0), ST; fld real ptr [ESP+8]; // load scratchreal fmul ST(0), ST; // square it, to create havoc! L_was_nan: add ESP,12+8; ret PARAMSIZE; L_largenegative: fstp ST(0), ST; fld1; fchs; // return -1. Underflow flag is not set. add ESP,12+8; ret PARAMSIZE; } } else { return std.c.math.expm1(x); } } /** * Calculates 2$(SUP x). * * $(TABLE_SV * $(TR $(TH x) $(TH exp2(x) ) * $(TD +$(INFIN)) $(TD +$(INFIN)) ) * $(TD -$(INFIN)) $(TD +0.0) ) * $(TR $(TD $(NAN)) $(TD $(NAN)) ) * ) */ real exp2(real x) { version(Naked_D_InlineAsm_X86) { enum { PARAMSIZE = (real.sizeof+3)&(0xFFFF_FFFC) } // always a multiple of 4 asm { /* exp2() for x87 80-bit reals, IEEE754-2008 conformant. * Author: Don Clugston. * * exp2(x) = 2^(rndint(x))* 2^(y-rndint(x)) * The trick for high performance is to avoid the fscale(28cycles on core2), * frndint(19 cycles), leaving f2xm1(19 cycles) as the only slow instruction. * * We can do frndint by using fist. BUT we can't use it for huge numbers, * because it will set the Invalid Operation flag is overflow or NaN occurs. * Fortunately, whenever this happens the result would be zero or infinity. * * We can perform fscale by directly poking into the exponent. BUT this doesn't * work for the (very rare) cases where the result is subnormal. So we fall back * to the slow method in that case. */ naked; fld real ptr [ESP+4] ; // x mov AX, [ESP+4+8]; // AX = exponent and sign sub ESP, 12+8; // Create scratch space on the stack // [ESP,ESP+2] = scratchint // [ESP+4..+6, +8..+10, +10] = scratchreal // set scratchreal mantissa = 1.0 mov dword ptr [ESP+8], 0; mov dword ptr [ESP+8+4], 0x80000000; and AX, 0x7FFF; // drop sign bit cmp AX, 0x401D; // avoid InvalidException in fist jae L_extreme; fist dword ptr [ESP]; // scratchint = rndint(x) fisub dword ptr [ESP]; // x - rndint(x) // and now set scratchreal exponent mov EAX, [ESP]; add EAX, 0x3fff; jle short L_subnormal; cmp EAX,0x8000; jge short L_overflow; mov [ESP+8+8],AX; L_normal: f2xm1; fld1; fadd; // 2^(x-rndint(x)) fld real ptr [ESP+8] ; // 2^rndint(x) add ESP,12+8; fmulp ST(1), ST; ret PARAMSIZE; L_subnormal: // Result will be subnormal. // In this rare case, the simple poking method doesn't work. // The speed doesn't matter, so use the slow fscale method. fild dword ptr [ESP]; // scratchint fld1; fscale; fstp real ptr [ESP+8]; // scratchreal = 2^scratchint fstp ST(0),ST; // drop scratchint jmp L_normal; L_extreme: // Extreme exponent. X is very large positive, very // large negative, infinity, or NaN. fxam; fstsw AX; test AX, 0x0400; // NaN_or_zero, but we already know x!=0 jz L_was_nan; // if x is NaN, returns x // set scratchreal = real.min // squaring it will return 0, setting underflow flag mov word ptr [ESP+8+8], 1; test AX, 0x0200; jnz L_waslargenegative; L_overflow: // Set scratchreal = real.max. // squaring it will create infinity, and set overflow flag. mov word ptr [ESP+8+8], 0x7FFE; L_waslargenegative: fstp ST(0), ST; fld real ptr [ESP+8]; // load scratchreal fmul ST(0), ST; // square it, to create havoc! L_was_nan: add ESP,12+8; ret PARAMSIZE; } } else { return std.c.math.exp2(x); } } /// ditto double exp2(double x) { return exp2(cast(real)x); } /// ditto float exp2(float x) { return exp2(cast(real)x); } unittest{ assert(exp2(0.5L)== SQRT2); assert(exp2(8.0L) == 256.0); assert(exp2(-9.0L)== 1.0L/512.0); assert(exp(3.0L) == E*E*E); } /** * Calculate cos(y) + i sin(y). * * On many CPUs (such as x86), this is a very efficient operation; * almost twice as fast as calculating sin(y) and cos(y) separately, * and is the preferred method when both are required. */ creal expi(real y) { version(D_InlineAsm_X86) { asm { fld y; fsincos; fxch ST(1), ST(0); } } else { return cos(y) + sin(y)*1i; } } unittest { assert(expi(1.3e5L) == cos(1.3e5L) + sin(1.3e5L) * 1i); assert(expi(0.0L) == 1L + 0.0Li); } /********************************************************************* * Separate floating point value into significand and exponent. * * Returns: * Calculate and return $(I x) and $(I exp) such that * value =$(I x)*2$(SUP exp) and * .5 $(LT)= |$(I x)| $(LT) 1.0 * * $(I x) has same sign as value. * * $(TABLE_SV * $(TR $(TH value) $(TH returns) $(TH exp)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD 0)) * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD int.max)) * $(TR $(TD -$(INFIN)) $(TD -$(INFIN)) $(TD int.min)) * $(TR $(TD $(PLUSMN)$(NAN)) $(TD $(PLUSMN)$(NAN)) $(TD int.min)) * ) */ real frexp(real value, out int exp) { ushort* vu = cast(ushort*)&value; long* vl = cast(long*)&value; uint ex; alias floatTraits!(real) F; ex = vu[F.EXPPOS_SHORT] & F.EXPMASK; static if (real.mant_dig == 64) { // real80 if (ex) { // If exponent is non-zero if (ex == F.EXPMASK) { // infinity or NaN if (*vl & 0x7FFF_FFFF_FFFF_FFFF) { // NaN *vl |= 0xC000_0000_0000_0000; // convert NaNS to NaNQ exp = int.min; } else if (vu[F.EXPPOS_SHORT] & 0x8000) { // negative infinity exp = int.min; } else { // positive infinity exp = int.max; } } else { exp = ex - F.EXPBIAS; vu[F.EXPPOS_SHORT] = (0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FFE; } } else if (!*vl) { // value is +-0.0 exp = 0; } else { // denormal value *= F.RECIP_EPSILON; ex = vu[F.EXPPOS_SHORT] & F.EXPMASK; exp = ex - F.EXPBIAS - 63; vu[F.EXPPOS_SHORT] = (0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FFE; } } else static if (real.mant_dig == 113) { // quadruple if (ex) { // If exponent is non-zero if (ex == F.EXPMASK) { // infinity or NaN if (vl[MANTISSA_LSB] | ( vl[MANTISSA_MSB] & 0x0000_FFFF_FFFF_FFFF)) { // NaN // convert NaNS to NaNQ vl[MANTISSA_MSB] |= 0x0000_8000_0000_0000; exp = int.min; } else if (vu[F.EXPPOS_SHORT] & 0x8000) { // negative infinity exp = int.min; } else { // positive infinity exp = int.max; } } else { exp = ex - F.EXPBIAS; vu[F.EXPPOS_SHORT] = cast(ushort)((0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FFE); } } else if ((vl[MANTISSA_LSB] |(vl[MANTISSA_MSB] & 0x0000_FFFF_FFFF_FFFF)) == 0) { // value is +-0.0 exp = 0; } else { // denormal value *= F.RECIP_EPSILON; ex = vu[F.EXPPOS_SHORT] & F.EXPMASK; exp = ex - F.EXPBIAS - 113; vu[F.EXPPOS_SHORT] = cast(ushort)((0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FFE); } } else static if (real.mant_dig==53) { // real is double if (ex) { // If exponent is non-zero if (ex == F.EXPMASK) { // infinity or NaN if (*vl == 0x7FF0_0000_0000_0000) { // positive infinity exp = int.max; } else if (*vl == 0xFFF0_0000_0000_0000) { // negative infinity exp = int.min; } else { // NaN *vl |= 0x0008_0000_0000_0000; // convert NaNS to NaNQ exp = int.min; } } else { exp = (ex - F.EXPBIAS) >>> 4; vu[F.EXPPOS_SHORT] = cast(ushort)((0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FE0); } } else if (!(*vl & 0x7FFF_FFFF_FFFF_FFFF)) { // value is +-0.0 exp = 0; } else { // denormal ushort sgn; sgn = cast(ushort)((0x8000 & vu[F.EXPPOS_SHORT])| 0x3FE0); *vl &= 0x7FFF_FFFF_FFFF_FFFF; int i = -0x3FD + 11; do { i--; *vl <<= 1; } while (*vl > 0); exp = i; vu[F.EXPPOS_SHORT] = sgn; } } else { //static if(real.mant_dig==106) // doubledouble throw new NotImplemented("frexp"); } return value; } unittest { static real vals[][3] = // x,frexp,exp [ [0.0, 0.0, 0], [-0.0, -0.0, 0], [1.0, .5, 1], [-1.0, -.5, 1], [2.0, .5, 2], [double.min/2.0, .5, -1022], [real.infinity,real.infinity,int.max], [-real.infinity,-real.infinity,int.min], [real.nan,real.nan,int.min], [-real.nan,-real.nan,int.min], ]; int i; for (i = 0; i < vals.length; i++) { real x = vals[i][0]; real e = vals[i][1]; int exp = cast(int)vals[i][2]; int eptr; real v = frexp(x, eptr); // printf("frexp(%La) = %La, should be %La, eptr = %d, should be %d\n", // x, v, e, eptr, exp); assert(isIdentical(e, v)); assert(exp == eptr); } static if (real.mant_dig == 64) { static real extendedvals[][3] = [ // x,frexp,exp [0x1.a5f1c2eb3fe4efp+73, 0x1.A5F1C2EB3FE4EFp-1, 74], // normal [0x1.fa01712e8f0471ap-1064, 0x1.fa01712e8f0471ap-1, -1063], [real.min, .5, -16381], [real.min/2.0L, .5, -16382] // denormal ]; for (i = 0; i < extendedvals.length; i++) { real x = extendedvals[i][0]; real e = extendedvals[i][1]; int exp = cast(int)extendedvals[i][2]; int eptr; real v = frexp(x, eptr); assert(isIdentical(e, v)); assert(exp == eptr); } } } /****************************************** * Extracts the exponent of x as a signed integral value. * * If x is not a special value, the result is the same as * $(D cast(int)logb(x)). * * $(TABLE_SV * $(TR $(TH x) $(TH ilogb(x)) $(TH Range error?)) * $(TR $(TD 0) $(TD FP_ILOGB0) $(TD yes)) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD int.max) $(TD no)) * $(TR $(TD $(NAN)) $(TD FP_ILOGBNAN) $(TD no)) * ) */ int ilogb(real x) { return std.c.math.ilogbl(x); } alias std.c.math.FP_ILOGB0 FP_ILOGB0; alias std.c.math.FP_ILOGBNAN FP_ILOGBNAN; /******************************************* * Compute n * 2$(SUP exp) * References: frexp */ pure nothrow real ldexp(real n, int exp); /* intrinsic */ /************************************** * Calculate the natural logarithm of x. * * $(TABLE_SV * $(TR $(TH x) $(TH log(x)) $(TH divide by 0?) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no)) * $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes)) * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no)) * ) */ real log(real x) { return std.c.math.logl(x); } /************************************** * Calculate the base-10 logarithm of x. * * $(TABLE_SV * $(TR $(TH x) $(TH log10(x)) $(TH divide by 0?) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no)) * $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes)) * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no)) * ) */ real log10(real x) { return std.c.math.log10l(x); } /****************************************** * Calculates the natural logarithm of 1 + x. * * For very small x, log1p(x) will be more accurate than * log(1 + x). * * $(TABLE_SV * $(TR $(TH x) $(TH log1p(x)) $(TH divide by 0?) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) $(TD no)) * $(TR $(TD -1.0) $(TD -$(INFIN)) $(TD yes) $(TD no)) * $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD no) $(TD yes)) * $(TR $(TD +$(INFIN)) $(TD -$(INFIN)) $(TD no) $(TD no)) * ) */ real log1p(real x) { return std.c.math.log1pl(x); } /*************************************** * Calculates the base-2 logarithm of x: * $(SUB log, 2)x * * $(TABLE_SV * $(TR $(TH x) $(TH log2(x)) $(TH divide by 0?) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no) ) * $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes) ) * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no) ) * ) */ real log2(real x) { return std.c.math.log2l(x); } /***************************************** * Extracts the exponent of x as a signed integral value. * * If x is subnormal, it is treated as if it were normalized. * For a positive, finite x: * * 1 $(LT)= $(I x) * FLT_RADIX$(SUP -logb(x)) $(LT) FLT_RADIX * * $(TABLE_SV * $(TR $(TH x) $(TH logb(x)) $(TH divide by 0?) ) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD +$(INFIN)) $(TD no)) * $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) ) * ) */ real logb(real x) { return std.c.math.logbl(x); } /************************************ * Calculates the remainder from the calculation x/y. * Returns: * The value of x - i * y, where i is the number of times that y can * be completely subtracted from x. The result has the same sign as x. * * $(TABLE_SV * $(TR $(TH x) $(TH y) $(TH modf(x, y)) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD not 0.0) $(TD $(PLUSMN)0.0) $(TD no)) * $(TR $(TD $(PLUSMNINF)) $(TD anything) $(TD $(NAN)) $(TD yes)) * $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD $(NAN)) $(TD yes)) * $(TR $(TD !=$(PLUSMNINF)) $(TD $(PLUSMNINF)) $(TD x) $(TD no)) * ) */ real modf(real x, inout real y) { return std.c.math.modfl(x,&y); } /************************************* * Efficiently calculates x * 2$(SUP n). * * scalbn handles underflow and overflow in * the same fashion as the basic arithmetic operators. * * $(TABLE_SV * $(TR $(TH x) $(TH scalb(x))) * $(TR $(TD $(PLUSMNINF)) $(TD $(PLUSMNINF)) ) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) ) * ) */ real scalbn(real x, int n) { version(D_InlineAsm_X86) { // scalbnl is not supported on DMD-Windows, so use asm. asm { fild n; fld x; fscale; fstp ST(1), ST; } } else { return std.c.math.scalbnl(x, n); } } unittest { assert(scalbn(-real.infinity, 5) == -real.infinity); } /*************** * Calculates the cube root of x. * * $(TABLE_SV * $(TR $(TH $(I x)) $(TH cbrt(x)) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) ) * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes) ) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)$(INFIN)) $(TD no) ) * ) */ real cbrt(real x) { return std.c.math.cbrtl(x); } /******************************* * Returns |x| * * $(TABLE_SV * $(TR $(TH x) $(TH fabs(x))) * $(TR $(TD $(PLUSMN)0.0) $(TD +0.0) ) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD +$(INFIN)) ) * ) */ pure nothrow real fabs(real x); /* intrinsic */ /*********************************************************************** * Calculates the length of the * hypotenuse of a right-angled triangle with sides of length x and y. * The hypotenuse is the value of the square root of * the sums of the squares of x and y: * * sqrt($(POW x, 2) + $(POW y, 2)) * * Note that hypot(x, y), hypot(y, x) and * hypot(x, -y) are equivalent. * * $(TABLE_SV * $(TR $(TH x) $(TH y) $(TH hypot(x, y)) $(TH invalid?)) * $(TR $(TD x) $(TD $(PLUSMN)0.0) $(TD |x|) $(TD no)) * $(TR $(TD $(PLUSMNINF)) $(TD y) $(TD +$(INFIN)) $(TD no)) * $(TR $(TD $(PLUSMNINF)) $(TD $(NAN)) $(TD +$(INFIN)) $(TD no)) * ) */ real hypot(real x, real y) { /* * This is based on code from: * Cephes Math Library Release 2.1: January, 1989 * Copyright 1984, 1987, 1989 by Stephen L. Moshier * Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ enum int PRECL = 32; enum int MAXEXPL = real.max_exp; //16384; enum int MINEXPL = real.min_exp; //-16384; real xx, yy, b, re, im; int ex, ey, e; // Note, hypot(INFINITY, NAN) = INFINITY. if (isInfinity(x) || isInfinity(y)) return real.infinity; if (isNaN(x)) return x; if (isNaN(y)) return y; re = fabs(x); im = fabs(y); if (re == 0.0) return im; if (im == 0.0) return re; // Get the exponents of the numbers xx = frexp(re, ex); yy = frexp(im, ey); // Check if one number is tiny compared to the other e = ex - ey; if (e > PRECL) return re; if (e < -PRECL) return im; // Find approximate exponent e of the geometric mean. e = (ex + ey) >> 1; // Rescale so mean is about 1 xx = ldexp(re, -e); yy = ldexp(im, -e); // Hypotenuse of the right triangle b = sqrt(xx * xx + yy * yy); // Compute the exponent of the answer. yy = frexp(b, ey); ey = e + ey; // Check it for overflow and underflow. if (ey > MAXEXPL + 2) { //return __matherr(_OVERFLOW, INFINITY, x, y, "hypotl"); return real.infinity; } if (ey < MINEXPL - 2) return 0.0; // Undo the scaling b = ldexp(b, e); return b; } unittest { static real vals[][3] = // x,y,hypot [ [ 0, 0, 0], [ 0, -0, 0], [ 3, 4, 5], [ -300, -400, 500], [ real.min, real.min, 0x1.6a09e667f3bcc908p-16382L], [ real.max/2, real.max/2, 0x1.6a09e667f3bcc908p+16383L], [ real.infinity, real.nan, real.infinity], [ real.nan, real.nan, real.nan], ]; for (int i = 0; i < vals.length; i++) { real x = vals[i][0]; real y = vals[i][1]; real z = vals[i][2]; real h = hypot(x, y); assert(isIdentical(z, h)); } } /********************************** * Returns the error function of x. * * error function */ real erf(real x) { return std.c.math.erfl(x); } /********************************** * Returns the complementary error function of x, which is 1 - erf(x). * * complementary error function */ real erfc(real x) { return std.c.math.erfcl(x); } /*********************************** * Natural logarithm of gamma function. * * Returns the base e (2.718...) logarithm of the absolute * value of the gamma function of the argument. * * For reals, lgamma is equivalent to log(fabs(gamma(x))). * * $(TABLE_SV * $(TR $(TH x) $(TH lgamma(x)) $(TH invalid?)) * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes)) * $(TR $(TD integer <= 0) $(TD +$(INFIN)) $(TD yes)) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD +$(INFIN)) $(TD no)) * ) */ /* Documentation prepared by Don Clugston */ real lgamma(real x) { return std.c.math.lgammal(x); // Use etc.gamma.lgamma for those C systems that are missing it } /*********************************** * The Gamma function, $(GAMMA)(x) * * $(GAMMA)(x) is a generalisation of the factorial function * to real and complex numbers. * Like x!, $(GAMMA)(x+1) = x*$(GAMMA)(x). * * Mathematically, if z.re > 0 then * $(GAMMA)(z) = $(INTEGRATE 0, $(INFIN)) $(POWER t, z-1)$(POWER e, -t) dt * * $(TABLE_SV * $(TR $(TH x) $(TH $(GAMMA)(x)) $(TH invalid?)) * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMNINF)) $(TD yes)) * $(TR $(TD integer $(GT)0) $(TD (x-1)!) $(TD no)) * $(TR $(TD integer $(LT)0) $(TD $(NAN)) $(TD yes)) * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no)) * $(TR $(TD -$(INFIN)) $(TD $(NAN)) $(TD yes)) * ) * * References: * $(LINK http://en.wikipedia.org/wiki/Gamma_function), * $(LINK http://www.netlib.org/cephes/ldoubdoc.html#gamma) */ real tgamma(real x) { return std.c.math.tgammal(x); // Use etc.gamma.tgamma for those C systems that are missing it } /************************************** * Returns the value of x rounded upward to the next integer * (toward positive infinity). */ real ceil(real x) { return std.c.math.ceill(x); } /************************************** * Returns the value of x rounded downward to the next integer * (toward negative infinity). */ real floor(real x) { return std.c.math.floorl(x); } /****************************************** * Rounds x to the nearest integer value, using the current rounding * mode. * * Unlike the rint functions, nearbyint does not raise the * FE_INEXACT exception. */ real nearbyint(real x) { return std.c.math.nearbyintl(x); } /********************************** * Rounds x to the nearest integer value, using the current rounding * mode. * If the return value is not equal to x, the FE_INEXACT * exception is raised. * $(B nearbyint) performs * the same operation, but does not set the FE_INEXACT exception. */ pure nothrow real rint(real x); /* intrinsic */ /*************************************** * Rounds x to the nearest integer value, using the current rounding * mode. * * This is generally the fastest method to convert a floating-point number * to an integer. Note that the results from this function * depend on the rounding mode, if the fractional part of x is exactly 0.5. * If using the default rounding mode (ties round to even integers) * lrint(4.5) == 4, lrint(5.5)==6. */ long lrint(real x) { version (Posix) return std.c.math.llrintl(x); else version(D_InlineAsm_X86) { long n; asm { fld x; fistp n; } return n; } else throw new NotImplemented("lrint"); } /******************************************* * Return the value of x rounded to the nearest integer. * If the fractional part of x is exactly 0.5, the return value is rounded to * the even integer. */ real round(real x) { return std.c.math.roundl(x); } /********************************************** * Return the value of x rounded to the nearest integer. * * If the fractional part of x is exactly 0.5, the return value is rounded * away from zero. * * Note: Not supported on windows */ long lround(real x) { version (Posix) return std.c.math.llroundl(x); else throw new NotImplemented("lround"); } /**************************************************** * Returns the integer portion of x, dropping the fractional portion. * * This is also known as "chop" rounding. */ real trunc(real x) { return std.c.math.truncl(x); } /**************************************************** * Calculate the remainder x REM y, following IEC 60559. * * REM is the value of x - y * n, where n is the integer nearest the exact * value of x / y. * If |n - x / y| == 0.5, n is even. * If the result is zero, it has the same sign as x. * Otherwise, the sign of the result is the sign of x / y. * Precision mode has no effect on the remainder functions. * * remquo returns n in the parameter n. * * $(TABLE_SV * $(TR $(TH x) $(TH y) $(TH remainder(x, y)) $(TH n) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD not 0.0) $(TD $(PLUSMN)0.0) $(TD 0.0) $(TD no)) * $(TR $(TD $(PLUSMNINF)) $(TD anything) $(TD $(NAN)) $(TD ?) $(TD yes)) * $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD $(NAN)) $(TD ?) $(TD yes)) * $(TR $(TD != $(PLUSMNINF)) $(TD $(PLUSMNINF)) $(TD x) $(TD ?) $(TD no)) * ) * * Note: remquo not supported on windows */ real remainder(real x, real y) { return std.c.math.remainderl(x, y); } real remquo(real x, real y, out int n) /// ditto { version (Posix) return std.c.math.remquol(x, y, &n); else throw new NotImplemented("remquo"); } /********************************* * Returns !=0 if e is a NaN. */ int isNaN(real x) { alias floatTraits!(real) F; static if (real.mant_dig==53) { // double ulong* p = cast(ulong *)&x; return (*p & 0x7FF0_0000_0000_0000 == 0x7FF0_0000_0000_0000) && *p & 0x000F_FFFF_FFFF_FFFF; } else static if (real.mant_dig==64) { // real80 ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; ulong* ps = cast(ulong *)&x; return e == F.EXPMASK && *ps & 0x7FFF_FFFF_FFFF_FFFF; // not infinity } else static if (real.mant_dig==113) { // quadruple ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; ulong* ps = cast(ulong *)&x; return e == F.EXPMASK && (ps[MANTISSA_LSB] | (ps[MANTISSA_MSB]& 0x0000_FFFF_FFFF_FFFF))!=0; } else { return x!=x; } } unittest { assert(isNaN(float.nan)); assert(isNaN(-double.nan)); assert(isNaN(real.nan)); assert(!isNaN(53.6)); assert(!isNaN(float.infinity)); } /********************************* * Returns !=0 if e is finite (not infinite or $(NAN)). */ int isFinite(real e) { alias floatTraits!(real) F; ushort* pe = cast(ushort *)&e; return (pe[F.EXPPOS_SHORT] & F.EXPMASK) != F.EXPMASK; } unittest { assert(isFinite(1.23)); assert(!isFinite(double.infinity)); assert(!isFinite(float.nan)); } /********************************* * Returns !=0 if x is normalized (not zero, subnormal, infinite, or $(NAN)). */ /* Need one for each format because subnormal floats might * be converted to normal reals. */ int isNormal(X)(X x) { alias floatTraits!(X) F; static if(real.mant_dig==106) { // doubledouble // doubledouble is normal if the least significant part is normal. return isNormal((cast(double*)&x)[MANTISSA_LSB]); } else { ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; return (e != F.EXPMASK && e!=0); } } unittest { float f = 3; double d = 500; real e = 10e+48; assert(isNormal(f)); assert(isNormal(d)); assert(isNormal(e)); f = d = e = 0; assert(!isNormal(f)); assert(!isNormal(d)); assert(!isNormal(e)); assert(!isNormal(real.infinity)); assert(isNormal(-real.max)); assert(!isNormal(real.min/4)); } /********************************* * Is number subnormal? (Also called "denormal".) * Subnormals have a 0 exponent and a 0 most significant mantissa bit. */ /* Need one for each format because subnormal floats might * be converted to normal reals. */ int isSubnormal(float f) { uint *p = cast(uint *)&f; return (*p & 0x7F80_0000) == 0 && *p & 0x007F_FFFF; } unittest { float f = 3.0; for (f = 1.0; !isSubnormal(f); f /= 2) assert(f != 0); } /// ditto int isSubnormal(double d) { uint *p = cast(uint *)&d; return (p[MANTISSA_MSB] & 0x7FF0_0000) == 0 && (p[MANTISSA_LSB] || p[MANTISSA_MSB] & 0x000F_FFFF); } unittest { double f; for (f = 1; !isSubnormal(f); f /= 2) assert(f != 0); } /// ditto int isSubnormal(real x) { alias floatTraits!(real) F; static if (real.mant_dig == 53) { // double return isSubnormal(cast(double)x); } else static if (real.mant_dig == 113) { // quadruple ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; long* ps = cast(long *)&x; return (e == 0 && (((ps[MANTISSA_LSB]|(ps[MANTISSA_MSB]& 0x0000_FFFF_FFFF_FFFF))) !=0)); } else static if (real.mant_dig==64) { // real80 ushort* pe = cast(ushort *)&x; long* ps = cast(long *)&x; return (pe[F.EXPPOS_SHORT] & F.EXPMASK) == 0 && *ps > 0; } else { // double double return isSubnormal((cast(double*)&x)[MANTISSA_MSB]); } } unittest { real f; for (f = 1; !issubnormal(f); f /= 2) assert(f != 0); } /********************************* * Return !=0 if e is $(PLUSMN)$(INFIN). */ int isInfinity(real x) { alias floatTraits!(real) F; static if (real.mant_dig == 53) { // double return ((*cast(ulong *)&x) & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FF8_0000_0000_0000; } else static if(real.mant_dig == 106) { //doubledouble return (((cast(ulong *)&x)[MANTISSA_MSB]) & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FF8_0000_0000_0000; } else static if (real.mant_dig == 113) { // quadruple long* ps = cast(long *)&x; return (ps[MANTISSA_LSB] == 0) && (ps[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_0000_0000_0000; } else { // real80 ushort e = cast(ushort)(F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]); ulong* ps = cast(ulong *)&x; return e == F.EXPMASK && *ps == 0x8000_0000_0000_0000; } } unittest { assert(isInfinity(float.infinity)); assert(!isInfinity(float.nan)); assert(isInfinity(double.infinity)); assert(isInfinity(-real.infinity)); assert(isInfinity(-1.0 / 0.0)); } /********************************* * Is the binary representation of x identical to y? * * Same as ==, except that positive and negative zero are not identical, * and two $(NAN)s are identical if they have the same 'payload'. */ bool isIdentical(real x, real y) { // We're doing a bitwise comparison so the endianness is irrelevant. long* pxs = cast(long *)&x; long* pys = cast(long *)&y; static if (real.mant_dig == 53){ //double return pxs[0] == pys[0]; } else static if (real.mant_dig == 113 || real.mant_dig==106) { // quadruple or doubledouble return pxs[0] == pys[0] && pxs[1] == pys[1]; } else { // real80 ushort* pxe = cast(ushort *)&x; ushort* pye = cast(ushort *)&y; return pxe[4] == pye[4] && pxs[0] == pys[0]; } } /********************************* * Return 1 if sign bit of e is set, 0 if not. */ int signbit(real x) { return ((cast(ubyte *)&x)[floatTraits!(real).SIGNPOS_BYTE] & 0x80) != 0; } unittest { debug (math) printf("math.signbit.unittest\n"); assert(!signbit(float.nan)); assert(signbit(-float.nan)); assert(!signbit(168.1234)); assert(signbit(-168.1234)); assert(!signbit(0.0)); assert(signbit(-0.0)); } /********************************* * Return a value composed of to with from's sign bit. */ real copysign(real to, real from) { ubyte* pto = cast(ubyte *)&to; const ubyte* pfrom = cast(ubyte *)&from; alias floatTraits!(real) F; pto[F.SIGNPOS_BYTE] &= 0x7F; pto[F.SIGNPOS_BYTE] |= pfrom[F.SIGNPOS_BYTE] & 0x80; return to; } unittest { real e; e = copysign(21, 23.8); assert(e == 21); e = copysign(-21, 23.8); assert(e == 21); e = copysign(21, -23.8); assert(e == -21); e = copysign(-21, -23.8); assert(e == -21); e = copysign(real.nan, -23.8); assert(isNaN(e) && signbit(e)); } /********************************* Returns $(D -1) if $(D x < 0), $(D x) if $(D x == 0), $(D 1) if $(D x > 0), and $(NAN) if x==$(NAN). */ F sgn(F)(F x) { // @@@TODO@@@: make this faster return x > 0 ? 1 : x < 0 ? -1 : x; } unittest { debug (math) printf("math.sgn.unittest\n"); assert(sgn(168.1234) == 1); assert(sgn(-168.1234) == -1); assert(sgn(0.0) == 0); assert(sgn(-0.0) == 0); } // Functions for NaN payloads /* * A 'payload' can be stored in the significand of a $(NAN). One bit is required * to distinguish between a quiet and a signalling $(NAN). This leaves 22 bits * of payload for a float; 51 bits for a double; 62 bits for an 80-bit real; * and 111 bits for a 128-bit quad. */ /** * Create a quiet $(NAN), storing an integer inside the payload. * * For floats, the largest possible payload is 0x3F_FFFF. * For doubles, it is 0x3_FFFF_FFFF_FFFF. * For 80-bit or 128-bit reals, it is 0x3FFF_FFFF_FFFF_FFFF. */ pure nothrow real NaN(ulong payload) { static if (real.mant_dig == 64) { //real80 ulong v = 3; // implied bit = 1, quiet bit = 1 } else { ulong v = 2; // no implied bit. quiet bit = 1 } ulong a = payload; // 22 Float bits ulong w = a & 0x3F_FFFF; a -= w; v <<=22; v |= w; a >>=22; // 29 Double bits v <<=29; w = a & 0xFFF_FFFF; v |= w; a -= w; a >>=29; static if (real.mant_dig == 53) { // double v |=0x7FF0_0000_0000_0000; real x; * cast(ulong *)(&x) = v; return x; } else { v <<=11; a &= 0x7FF; v |= a; real x = real.nan; // Extended real bits static if (real.mant_dig==113) { //quadruple v<<=1; // there's no implicit bit version(LittleEndian) { *cast(ulong*)(6+cast(ubyte*)(&x)) = v; } else { *cast(ulong*)(2+cast(ubyte*)(&x)) = v; } } else { // real80 * cast(ulong *)(&x) = v; } return x; } } /** * Extract an integral payload from a $(NAN). * * Returns: * the integer payload as a ulong. * * For floats, the largest possible payload is 0x3F_FFFF. * For doubles, it is 0x3_FFFF_FFFF_FFFF. * For 80-bit or 128-bit reals, it is 0x3FFF_FFFF_FFFF_FFFF. */ pure nothrow ulong getNaNPayload(real x) { // assert(isNaN(x)); static if (real.mant_dig == 53) { ulong m = *cast(ulong *)(&x); // Make it look like an 80-bit significand. // Skip exponent, and quiet bit m &= 0x0007_FFFF_FFFF_FFFF; m <<= 10; } else static if (real.mant_dig==113) { // quadruple version(LittleEndian) { ulong m = *cast(ulong*)(6+cast(ubyte*)(&x)); } else { ulong m = *cast(ulong*)(2+cast(ubyte*)(&x)); } m>>=1; // there's no implicit bit } else { ulong m = *cast(ulong *)(&x); } // ignore implicit bit and quiet bit ulong f = m & 0x3FFF_FF00_0000_0000L; ulong w = f >>> 40; w |= (m & 0x00FF_FFFF_F800L) << (22 - 11); w |= (m & 0x7FF) << 51; return w; } debug(UnitTest) { unittest { real nan4 = NaN(0x789_ABCD_EF12_3456); static if (real.mant_dig == 64 || real.mant_dig==113) { assert (getNaNPayload(nan4) == 0x789_ABCD_EF12_3456); } else { assert (getNaNPayload(nan4) == 0x1_ABCD_EF12_3456); } double nan5 = nan4; assert (getNaNPayload(nan5) == 0x1_ABCD_EF12_3456); float nan6 = nan4; assert (getNaNPayload(nan6) == 0x12_3456); nan4 = NaN(0xFABCD); assert (getNaNPayload(nan4) == 0xFABCD); nan6 = nan4; assert (getNaNPayload(nan6) == 0xFABCD); nan5 = NaN(0x100_0000_0000_3456); assert(getNaNPayload(nan5) == 0x0000_0000_3456); } } /** * Calculate the next largest floating point value after x. * * Return the least number greater than x that is representable as a real; * thus, it gives the next point on the IEEE number line. * * $(TABLE_SV * $(SVH x, nextUp(x) ) * $(SV -$(INFIN), -real.max ) * $(SV $(PLUSMN)0.0, real.min*real.epsilon ) * $(SV real.max, $(INFIN) ) * $(SV $(INFIN), $(INFIN) ) * $(SV $(NAN), $(NAN) ) * ) * * Remarks: * This function is included in the forthcoming IEEE 754R standard. */ real nextUp(real x) { alias floatTraits!(real) F; static if (real.mant_dig == 53) { // double return nextUp(cast(double)x); } else static if(real.mant_dig==113) { // quadruple ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; if (e == F.EXPMASK) { // NaN or Infinity if (x == -real.infinity) return -real.max; return x; // +Inf and NaN are unchanged. } ulong* ps = cast(ulong *)&e; if (ps[MANTISSA_LSB] & 0x8000_0000_0000_0000) { // Negative number if (ps[MANTISSA_LSB] == 0 && ps[MANTISSA_MSB] == 0x8000_0000_0000_0000) { // it was negative zero, change to smallest subnormal ps[MANTISSA_LSB] = 0x0000_0000_0000_0001; ps[MANTISSA_MSB] = 0; return x; } --*ps; if (ps[MANTISSA_LSB]==0) --ps[MANTISSA_MSB]; } else { // Positive number ++ps[MANTISSA_LSB]; if (ps[MANTISSA_LSB]==0) ++ps[MANTISSA_MSB]; } return x; } else static if(real.mant_dig==64){ // real80 // For 80-bit reals, the "implied bit" is a nuisance... ushort *pe = cast(ushort *)&x; ulong *ps = cast(ulong *)&x; if ((pe[F.EXPPOS_SHORT] & F.EXPMASK) == F.EXPMASK) { // First, deal with NANs and infinity if (x == -real.infinity) return -real.max; return x; // +Inf and NaN are unchanged. } if (pe[F.EXPPOS_SHORT] & 0x8000) { // Negative number -- need to decrease the significand --*ps; // Need to mask with 0x7FFF... so subnormals are treated correctly. if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_FFFF_FFFF_FFFF) { if (pe[F.EXPPOS_SHORT] == 0x8000) { // it was negative zero *ps = 1; pe[F.EXPPOS_SHORT] = 0; // smallest subnormal. return x; } --pe[F.EXPPOS_SHORT]; if (pe[F.EXPPOS_SHORT] == 0x8000) { return x; // it's become a subnormal, implied bit stays low. } *ps = 0xFFFF_FFFF_FFFF_FFFF; // set the implied bit return x; } return x; } else { // Positive number -- need to increase the significand. // Works automatically for positive zero. ++*ps; if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0) { // change in exponent ++pe[F.EXPPOS_SHORT]; *ps = 0x8000_0000_0000_0000; // set the high bit } } return x; } else { // doubledouble assert(0, "Not implemented"); } } /** ditto */ double nextUp(double x) { ulong *ps = cast(ulong *)&x; if ((*ps & 0x7FF0_0000_0000_0000) == 0x7FF0_0000_0000_0000) { // First, deal with NANs and infinity if (x == -x.infinity) return -x.max; return x; // +INF and NAN are unchanged. } if (*ps & 0x8000_0000_0000_0000) { // Negative number if (*ps == 0x8000_0000_0000_0000) { // it was negative zero *ps = 0x0000_0000_0000_0001; // change to smallest subnormal return x; } --*ps; } else { // Positive number ++*ps; } return x; } /** ditto */ float nextUp(float x) { uint *ps = cast(uint *)&x; if ((*ps & 0x7F80_0000) == 0x7F80_0000) { // First, deal with NANs and infinity if (x == -x.infinity) return -x.max; return x; // +INF and NAN are unchanged. } if (*ps & 0x8000_0000) { // Negative number if (*ps == 0x8000_0000) { // it was negative zero *ps = 0x0000_0001; // change to smallest subnormal return x; } --*ps; } else { // Positive number ++*ps; } return x; } /** * Calculate the next smallest floating point value before x. * * Return the greatest number less than x that is representable as a real; * thus, it gives the previous point on the IEEE number line. * * $(TABLE_SV * $(SVH x, nextDown(x) ) * $(SV $(INFIN), real.max ) * $(SV $(PLUSMN)0.0, -real.min*real.epsilon ) * $(SV -real.max, -$(INFIN) ) * $(SV -$(INFIN), -$(INFIN) ) * $(SV $(NAN), $(NAN) ) * ) * * Remarks: * This function is included in the forthcoming IEEE 754R standard. */ real nextDown(real x) { return -nextUp(-x); } /** ditto */ double nextDown(double x) { return -nextUp(-x); } /** ditto */ float nextDown(float x) { return -nextUp(-x); } unittest { assert( nextDown(1.0 + real.epsilon) == 1.0); } /****************************************** * Calculates the next representable value after x in the direction of y. * * If y > x, the result will be the next largest floating-point value; * if y < x, the result will be the next smallest value. * If x == y, the result is y. * * Remarks: * This function is not generally very useful; it's almost always better to use * the faster functions nextUp() or nextDown() instead. * * IEEE 754 requirements not implemented on Windows: * The FE_INEXACT and FE_OVERFLOW exceptions will be raised if x is finite and * the function result is infinite. The FE_INEXACT and FE_UNDERFLOW * exceptions will be raised if the function value is subnormal, and x is * not equal to y. */ real nextafter(real x, real y) { version (Windows) { if (x==y) return y; return (y>x) ? nextUp(x) : nextDown(x); } else { return std.c.math.nextafterl(x, y); } } /// ditto float nextafter(float x, float y) { version (Windows) { if (x==y) return y; return (y>x) ? nextUp(x) : nextDown(x); } else { return std.c.math.nextafterf(x, y); } } /// ditto double nextafter(double x, double y) { version (Windows) { if (x==y) return y; return (y>x) ? nextUp(x) : nextDown(x); } else { return std.c.math.nextafter(x, y); } } unittest { float a = 1; assert(is(typeof(nextafter(a, a)) == float)); assert(nextafter(a, a.infinity) > a); double b = 2; assert(is(typeof(nextafter(b, b)) == double)); assert(nextafter(b, b.infinity) > b); real c = 3; assert(is(typeof(nextafter(c, c)) == real)); assert(nextafter(c, c.infinity) > c); } //real nexttoward(real x, real y) { return std.c.math.nexttowardl(x, y); } /******************************************* * Returns the positive difference between x and y. * Returns: * $(TABLE_SV * $(TR $(TH x, y) $(TH fdim(x, y))) * $(TR $(TD x $(GT) y) $(TD x - y)) * $(TR $(TD x $(LT)= y) $(TD +0.0)) * ) */ real fdim(real x, real y) { return (x > y) ? x - y : +0.0; } /**************************************** * Returns the larger of x and y. */ real fmax(real x, real y) { return x > y ? x : y; } /**************************************** * Returns the smaller of x and y. */ real fmin(real x, real y) { return x < y ? x : y; } /************************************** * Returns (x * y) + z, rounding only once according to the * current rounding mode. * * BUGS: Not currently implemented - rounds twice. */ real fma(real x, real y, real z) { return (x * y) + z; } /******************************************************************* * Fast integral powers. */ F pow(F)(F x, uint n) if (isFloatingPoint!(F)) { if (n > int.max) { assert(n >> 1 <= int.max); // must reduce n so we can call the pow(real, int) overload invariant result = pow(x*x, cast(int) (n >> 1)); return (n & 1) ? result * x // odd power : result; } return pow(x, cast(int) n); } /// Ditto F pow(F)(F x, int n) if (isFloatingPoint!(F)) { real p = 1.0, v = void; if (n < 0) { switch (n) { case -1: return 1 / x; case -2: return 1 / (x * x); default: } n = -n; v = p / x; } else { switch (n) { case 0: return 1.0; case 1: return x; case 2: return x * x; default: } v = x; } while (1) { if (n & 1) p *= v; n >>= 1; if (!n) break; v *= v; } return p; } /********************************************* * Calculates x$(SUP y). * * $(TABLE_SV * $(TR $(TH x) $(TH y) $(TH pow(x, y)) * $(TH div 0) $(TH invalid?)) * $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD 1.0) * $(TD no) $(TD no) ) * $(TR $(TD |x| $(GT) 1) $(TD +$(INFIN)) $(TD +$(INFIN)) * $(TD no) $(TD no) ) * $(TR $(TD |x| $(LT) 1) $(TD +$(INFIN)) $(TD +0.0) * $(TD no) $(TD no) ) * $(TR $(TD |x| $(GT) 1) $(TD -$(INFIN)) $(TD +0.0) * $(TD no) $(TD no) ) * $(TR $(TD |x| $(LT) 1) $(TD -$(INFIN)) $(TD +$(INFIN)) * $(TD no) $(TD no) ) * $(TR $(TD +$(INFIN)) $(TD $(GT) 0.0) $(TD +$(INFIN)) * $(TD no) $(TD no) ) * $(TR $(TD +$(INFIN)) $(TD $(LT) 0.0) $(TD +0.0) * $(TD no) $(TD no) ) * $(TR $(TD -$(INFIN)) $(TD odd integer $(GT) 0.0) $(TD -$(INFIN)) * $(TD no) $(TD no) ) * $(TR $(TD -$(INFIN)) $(TD $(GT) 0.0, not odd integer) $(TD +$(INFIN)) * $(TD no) $(TD no)) * $(TR $(TD -$(INFIN)) $(TD odd integer $(LT) 0.0) $(TD -0.0) * $(TD no) $(TD no) ) * $(TR $(TD -$(INFIN)) $(TD $(LT) 0.0, not odd integer) $(TD +0.0) * $(TD no) $(TD no) ) * $(TR $(TD $(PLUSMN)1.0) $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) * $(TD no) $(TD yes) ) * $(TR $(TD $(LT) 0.0) $(TD finite, nonintegral) $(TD $(NAN)) * $(TD no) $(TD yes)) * $(TR $(TD $(PLUSMN)0.0) $(TD odd integer $(LT) 0.0) $(TD $(PLUSMNINF)) * $(TD yes) $(TD no) ) * $(TR $(TD $(PLUSMN)0.0) $(TD $(LT) 0.0, not odd integer) $(TD +$(INFIN)) * $(TD yes) $(TD no)) * $(TR $(TD $(PLUSMN)0.0) $(TD odd integer $(GT) 0.0) $(TD $(PLUSMN)0.0) * $(TD no) $(TD no) ) * $(TR $(TD $(PLUSMN)0.0) $(TD $(GT) 0.0, not odd integer) $(TD +0.0) * $(TD no) $(TD no) ) * ) */ F pow(F)(F x, F y) if (isFloatingPoint!(F)) { version (linux) // C pow() often does not handle special values correctly { if (isNaN(y)) return y; if (y == 0) return 1; // even if x is $(NAN) if (isNaN(x) && y != 0) return x; if (isInfinity(y)) { if (fabs(x) > 1) { if (signbit(y)) return +0.0; else return F.infinity; } else if (fabs(x) == 1) { return F.nan; } else // < 1 { if (signbit(y)) return F.infinity; else return +0.0; } } if (isInfinity(x)) { if (signbit(x)) { long i; i = cast(long)y; if (y > 0) { if (i == y && i & 1) return -F.infinity; else return F.infinity; } else if (y < 0) { if (i == y && i & 1) return -0.0; else return +0.0; } } else { if (y > 0) return F.infinity; else if (y < 0) return +0.0; } } if (x == 0.0) { if (signbit(x)) { long i; i = cast(long)y; if (y > 0) { if (i == y && i & 1) return -0.0; else return +0.0; } else if (y < 0) { if (i == y && i & 1) return -F.infinity; else return F.infinity; } } else { if (y > 0) return +0.0; else if (y < 0) return F.infinity; } } } return std.c.math.powl(x, y); } unittest { real x = 46; assert(pow(x,0) == 1.0); assert(pow(x,1) == x); assert(pow(x,2) == x * x); assert(pow(x,3) == x * x * x); assert(pow(x,8) == (x * x) * (x * x) * (x * x) * (x * x)); assert(pow(x, -1) == 1 / x); assert(pow(x, -2) == 1 / (x * x)); assert(pow(x, -3) == 1 / (x * x * x)); assert(pow(x, -8) == 1 / ((x * x) * (x * x) * (x * x) * (x * x))); } /************************************** * To what precision is x equal to y? * * Returns: the number of mantissa bits which are equal in x and y. * eg, 0x1.F8p+60 and 0x1.F1p+60 are equal to 5 bits of precision. * * $(TABLE_SV * $(TR $(TH x) $(TH y) $(TH feqrel(x, y))) * $(TR $(TD x) $(TD x) $(TD real.mant_dig)) * $(TR $(TD x) $(TD $(GT)= 2*x) $(TD 0)) * $(TR $(TD x) $(TD $(LT)= x/2) $(TD 0)) * $(TR $(TD $(NAN)) $(TD any) $(TD 0)) * $(TR $(TD any) $(TD $(NAN)) $(TD 0)) * ) */ int feqrel(X)(X x, X y) { /* Public Domain. Author: Don Clugston, 18 Aug 2005. */ static assert(is(X==real) || is(X==double) || is(X==float), "Only float, double, and real are supported by feqrel"); static if (X.mant_dig == 106) { // doubledouble. if (cast(double*)(&x)[MANTISSA_MSB] == cast(double*)(&y)[MANTISSA_MSB]) { return double.mant_dig + feqrel(cast(double*)(&x)[MANTISSA_LSB], cast(double*)(&y)[MANTISSA_LSB]); } else { return feqrel(cast(double*)(&x)[MANTISSA_MSB], cast(double*)(&y)[MANTISSA_MSB]); } } else static if (X.mant_dig==64 || X.mant_dig==113 || X.mant_dig==53) { if (x == y) return X.mant_dig; // ensure diff!=0, cope with INF. X diff = fabs(x - y); ushort *pa = cast(ushort *)(&x); ushort *pb = cast(ushort *)(&y); ushort *pd = cast(ushort *)(&diff); alias floatTraits!(X) F; // The difference in abs(exponent) between x or y and abs(x-y) // is equal to the number of significand bits of x which are // equal to y. If negative, x and y have different exponents. // If positive, x and y are equal to 'bitsdiff' bits. // AND with 0x7FFF to form the absolute value. // To avoid out-by-1 errors, we subtract 1 so it rounds down // if the exponents were different. This means 'bitsdiff' is // always 1 lower than we want, except that if bitsdiff==0, // they could have 0 or 1 bits in common. static if (X.mant_dig==64 || X.mant_dig==113) { // real80 or quadruple int bitsdiff = ( ((pa[F.EXPPOS_SHORT] & F.EXPMASK) + (pb[F.EXPPOS_SHORT] & F.EXPMASK) - 1) >> 1) - pd[F.EXPPOS_SHORT]; } else static if (X.mant_dig==53) { // double int bitsdiff = (( ((pa[F.EXPPOS_SHORT]&0x7FF0) + (pb[F.EXPPOS_SHORT]&0x7FF0)-0x10)>>1) - (pd[F.EXPPOS_SHORT]&0x7FF0))>>4; } if (pd[F.EXPPOS_SHORT] == 0) { // Difference is denormal // For denormals, we need to add the number of zeros that // lie at the start of diff's significand. // We do this by multiplying by 2^real.mant_dig diff *= F.RECIP_EPSILON; return bitsdiff + X.mant_dig - pd[F.EXPPOS_SHORT]; } if (bitsdiff > 0) return bitsdiff + 1; // add the 1 we subtracted before // Avoid out-by-1 errors when factor is almost 2. static if (X.mant_dig==64 || X.mant_dig==113) { // real80 or quadruple return (bitsdiff == 0) ? (pa[F.EXPPOS_SHORT] == pb[F.EXPPOS_SHORT]) : 0; } else static if (X.mant_dig==53) { // double if (bitsdiff == 0 && !((pa[F.EXPPOS_SHORT] ^ pb[F.EXPPOS_SHORT])& F.EXPMASK)) { return 1; } else return 0; } } else { throw new NotImplemented("feqrel"); } } unittest { // Exact equality assert(feqrel(real.max,real.max)==real.mant_dig); assert(feqrel(0.0L,0.0L)==real.mant_dig); assert(feqrel(7.1824L,7.1824L)==real.mant_dig); assert(feqrel(real.infinity,real.infinity)==real.mant_dig); // a few bits away from exact equality real w=1; for (int i=1; i 0), the return value * is the arithmetic mean (x + y) / 2. * If x and y are even powers of 2, the return value is the geometric mean, * ieeeMean(x, y) = sqrt(x * y). * */ T ieeeMean(T)(T x, T y) in { // both x and y must have the same sign, and must not be NaN. assert(signbit(x) == signbit(y)); assert(x<>=0 && y<>=0); } body { // Runtime behaviour for contract violation: // If signs are opposite, or one is a NaN, return 0. if (!((x>=0 && y>=0) || (x<=0 && y<=0))) return 0.0; // The implementation is simple: cast x and y to integers, // average them (avoiding overflow), and cast the result back to a floating-point number. alias floatTraits!(real) F; T u; static if (T.mant_dig==64) { // real80 // There's slight additional complexity because they are actually // 79-bit reals... ushort *ue = cast(ushort *)&u; ulong *ul = cast(ulong *)&u; ushort *xe = cast(ushort *)&x; ulong *xl = cast(ulong *)&x; ushort *ye = cast(ushort *)&y; ulong *yl = cast(ulong *)&y; // Ignore the useless implicit bit. (Bonus: this prevents overflows) ulong m = ((*xl) & 0x7FFF_FFFF_FFFF_FFFFL) + ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL); ushort e = (xe[F.EXPPOS_SHORT] & F.EXPMASK) + (ye[F.EXPPOS_SHORT] & F.EXPMASK); if (m & 0x8000_0000_0000_0000L) { ++e; m &= 0x7FFF_FFFF_FFFF_FFFFL; } // Now do a multi-byte right shift uint c = e & 1; // carry e >>= 1; m >>>= 1; if (c) m |= 0x4000_0000_0000_0000L; // shift carry into significand if (e) *ul = m | 0x8000_0000_0000_0000L; // set implicit bit... else *ul = m; // ... unless exponent is 0 (denormal or zero). ue[4]= e | (xe[F.EXPPOS_SHORT]& 0x8000); // restore sign bit } else static if(T.mant_dig == 113) { //quadruple // This would be trivial if 'ucent' were implemented... ulong *ul = cast(ulong *)&u; ulong *xl = cast(ulong *)&x; ulong *yl = cast(ulong *)&y; // Multi-byte add, then multi-byte right shift. ulong mh = ((xl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL) + (yl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL)); // Discard the lowest bit (to avoid overflow) ulong ml = (xl[MANTISSA_LSB]>>>1) + (yl[MANTISSA_LSB]>>>1); // add the lowest bit back in, if necessary. if (xl[MANTISSA_LSB] & yl[MANTISSA_LSB] & 1) { ++ml; if (ml==0) ++mh; } mh >>>=1; ul[MANTISSA_MSB] = mh | (xl[MANTISSA_MSB] & 0x8000_0000_0000_0000); ul[MANTISSA_LSB] = ml; } else static if (T.mant_dig == double.mant_dig) { ulong *ul = cast(ulong *)&u; ulong *xl = cast(ulong *)&x; ulong *yl = cast(ulong *)&y; ulong m = (((*xl) & 0x7FFF_FFFF_FFFF_FFFFL) + ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL)) >>> 1; m |= ((*xl) & 0x8000_0000_0000_0000L); *ul = m; } else static if (T.mant_dig == float.mant_dig) { uint *ul = cast(uint *)&u; uint *xl = cast(uint *)&x; uint *yl = cast(uint *)&y; uint m = (((*xl) & 0x7FFF_FFFF) + ((*yl) & 0x7FFF_FFFF)) >>> 1; m |= ((*xl) & 0x8000_0000); *ul = m; } else { assert(0, "Not implemented"); } return u; } unittest { assert(ieeeMean(-0.0,-1e-20)<0); assert(ieeeMean(0.0,1e-20)>0); assert(ieeeMean(1.0L,4.0L)==2L); assert(ieeeMean(2.0*1.013,8.0*1.013)==4*1.013); assert(ieeeMean(-1.0L,-4.0L)==-2L); assert(ieeeMean(-1.0,-4.0)==-2); assert(ieeeMean(-1.0f,-4.0f)==-2f); assert(ieeeMean(-1.0,-2.0)==-1.5); assert(ieeeMean(-1*(1+8*real.epsilon),-2*(1+8*real.epsilon)) ==-1.5*(1+5*real.epsilon)); assert(ieeeMean(0x1p60,0x1p-10)==0x1p25); static if (real.mant_dig==64) { // x87, 80-bit reals assert(ieeeMean(1.0L,real.infinity)==0x1p8192L); assert(ieeeMean(0.0L,real.infinity)==1.5); } assert(ieeeMean(0.5*real.min*(1-4*real.epsilon),0.5*real.min) == 0.5*real.min*(1-2*real.epsilon)); } public: /*********************************** * Evaluate polynomial A(x) = $(SUB a, 0) + $(SUB a, 1)x + $(SUB a, 2)$(POWER x,2) * + $(SUB a,3)$(POWER x,3); ... * * Uses Horner's rule A(x) = $(SUB a, 0) + x($(SUB a, 1) + x($(SUB a, 2) * + x($(SUB a, 3) + ...))) * Params: * A = array of coefficients $(SUB a, 0), $(SUB a, 1), etc. */ real poly(real x, const real[] A) in { assert(A.length > 0); } body { version (D_InlineAsm_X86) { version (Windows) { // BUG: This code assumes a frame pointer in EBP. asm // assembler by W. Bright { // EDX = (A.length - 1) * real.sizeof mov ECX,A[EBP] ; // ECX = A.length dec ECX ; lea EDX,[ECX][ECX*8] ; add EDX,ECX ; add EDX,A+4[EBP] ; fld real ptr [EDX] ; // ST0 = coeff[ECX] jecxz return_ST ; fld x[EBP] ; // ST0 = x fxch ST(1) ; // ST1 = x, ST0 = r align 4 ; L2: fmul ST,ST(1) ; // r *= x fld real ptr -10[EDX] ; sub EDX,10 ; // deg-- faddp ST(1),ST ; dec ECX ; jne L2 ; fxch ST(1) ; // ST1 = r, ST0 = x fstp ST(0) ; // dump x align 4 ; return_ST: ; ; } } else version (linux) { asm // assembler by W. Bright { // EDX = (A.length - 1) * real.sizeof mov ECX,A[EBP] ; // ECX = A.length dec ECX ; lea EDX,[ECX*8] ; lea EDX,[EDX][ECX*4] ; add EDX,A+4[EBP] ; fld real ptr [EDX] ; // ST0 = coeff[ECX] jecxz return_ST ; fld x[EBP] ; // ST0 = x fxch ST(1) ; // ST1 = x, ST0 = r align 4 ; L2: fmul ST,ST(1) ; // r *= x fld real ptr -12[EDX] ; sub EDX,12 ; // deg-- faddp ST(1),ST ; dec ECX ; jne L2 ; fxch ST(1) ; // ST1 = r, ST0 = x fstp ST(0) ; // dump x align 4 ; return_ST: ; ; } } else version (OSX) { asm // assembler by W. Bright { // EDX = (A.length - 1) * real.sizeof mov ECX,A[EBP] ; // ECX = A.length dec ECX ; lea EDX,[ECX*8] ; add EDX,EDX ; add EDX,A+4[EBP] ; fld real ptr [EDX] ; // ST0 = coeff[ECX] jecxz return_ST ; fld x[EBP] ; // ST0 = x fxch ST(1) ; // ST1 = x, ST0 = r align 4 ; L2: fmul ST,ST(1) ; // r *= x fld real ptr -16[EDX] ; sub EDX,16 ; // deg-- faddp ST(1),ST ; dec ECX ; jne L2 ; fxch ST(1) ; // ST1 = r, ST0 = x fstp ST(0) ; // dump x align 4 ; return_ST: ; ; } } else { static assert(0); } } else { int i = A.length - 1; real r = A[i]; while (--i >= 0) { r *= x; r += A[i]; } return r; } } unittest { debug (math) printf("math.poly.unittest\n"); real x = 3.1; static real pp[] = [56.1, 32.7, 6]; assert( poly(x, pp) == (56.1L + (32.7L + 6L * x) * x) ); } /** Computes whether $(D lhs) is approximately equal to $(D rhs) admitting a maximum relative difference $(D maxRelDiff) and a maximum absolute difference $(D maxAbsDiff). */ bool approxEqual(T, U, V)(T lhs, U rhs, V maxRelDiff, V maxAbsDiff = 0) { static if (isArray!(T)) { invariant n = lhs.length; static if (isArray!(U)) { // Two arrays assert(n == rhs.length); for (uint i = 0; i != n; ++i) { if (!approxEqual(lhs[i], rhs[i], maxRelDiff, maxAbsDiff)) return false; } } else { // lhs is array, rhs is number for (uint i = 0; i != n; ++i) { if (!approxEqual(lhs[i], rhs, maxRelDiff, maxAbsDiff)) return false; } } return true; } else { static if (isArray!(U)) { // lhs is number, rhs is array return approxEqual(rhs, lhs, maxRelDiff); } else { // two numbers //static assert(is(T : real) && is(U : real)); if (rhs == 0) { return (lhs == 0 ? 0 : 1) <= maxRelDiff; } return fabs((lhs - rhs) / rhs) <= maxRelDiff || maxAbsDiff != 0 && fabs(lhs - rhs) < maxAbsDiff; } } } /** Returns $(D approxEqual(lhs, rhs, 0.01)). */ bool approxEqual(T, U)(T lhs, U rhs) { return approxEqual(lhs, rhs, 0.01); } unittest { assert(approxEqual(1.0, 1.0099)); assert(!approxEqual(1.0, 1.011)); float[] arr1 = [ 1.0, 2.0, 3.0 ]; double[] arr2 = [ 1.001, 1.999, 3 ]; assert(approxEqual(arr1, arr2)); } // Included for backwards compatibility with Phobos1 alias isNaN isnan; alias isFinite isfinite; alias isNormal isnormal; alias isSubnormal issubnormal; alias isInfinity isinf;