// Written in the D programming language. /** Facilities for random number generation. The old-style functions $(D_PARAM rand_seed) and $(D_PARAM rand) will soon be deprecated as they rely on global state and as such are subjected to various thread-related issues. The new-style generator objects hold their own state so they are immune of threading issues. The generators feature a number of well-known and well-documented methods of generating random numbers. An overall fast and reliable means to generate random numbers is the $(D_PARAM Mt19937) generator, which derives its name from "$(LUCKY Mersenne Twister) with a period of 2 to the power of 19937". In memory-constrained situations, $(LUCKY linear congruential) generators such as $(D MinstdRand0) and $(D MinstdRand) might be useful. The standard library provides an alias $(D_PARAM Random) for whichever generator it considers the most fit for the target environment. Example: ---- // Generate a uniformly-distributed integer in the range [0, 14] auto i = uniform(0, 15); // Generate a uniformly-distributed real in the range [0, 100$(RPAREN) // using a specific random generator Random gen; auto r = uniform(0.0L, 100.0L, gen); ---- In addition to random number generators, this module features distributions, which skew a generator's output statistical distribution in various ways. So far the uniform distribution for integers and real numbers have been implemented. Source: $(PHOBOSSRC std/_random.d) Macros: WIKI = Phobos/StdRandom Copyright: Copyright Andrei Alexandrescu 2008 - 2009. License: Boost License 1.0. Authors: $(WEB erdani.org, Andrei Alexandrescu) Masahiro Nakagawa (Xorshift randome generator) Credits: The entire random number library architecture is derived from the excellent $(WEB open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2461.pdf, C++0X) random number facility proposed by Jens Maurer and contributed to by researchers at the Fermi laboratory(excluding Xorshift). */ /* Copyright Andrei Alexandrescu 2008 - 2009. Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) */ module std.random; import std.algorithm, std.c.time, std.conv, std.datetime, std.exception, std.math, std.numeric, std.process, std.range, std.stdio, std.traits, core.thread; version(unittest) import std.typetuple; // Segments of the code in this file Copyright (c) 1997 by Rick Booth // From "Inner Loops" by Rick Booth, Addison-Wesley // Work derived from: /* A C-program for MT19937, with initialization improved 2002/1/26. Coded by Takuji Nishimura and Makoto Matsumoto. Before using, initialize the state by using init_genrand(seed) or init_by_array(init_key, key_length). Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. The names of its contributors may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Any feedback is very welcome. http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space) */ version (Win32) { extern(Windows) int QueryPerformanceCounter(ulong *count); } version (Posix) { private import core.sys.posix.sys.time; } /** Linear Congruential generator. */ struct LinearCongruentialEngine(UIntType, UIntType a, UIntType c, UIntType m) { /// Does this generator have a fixed range? ($(D_PARAM true)). enum bool hasFixedRange = true; /// Lowest generated value ($(D 1) if $(D c == 0), $(D 0) otherwise). enum UIntType min = ( c == 0 ? 1 : 0 ); /// Highest generated value ($(D modulus - 1)). enum UIntType max = m - 1; /** The parameters of this distribution. The random number is $(D_PARAM x = (x * multipler + increment) % modulus). */ enum UIntType multiplier = a; ///ditto enum UIntType increment = c; ///ditto enum UIntType modulus = m; static assert(isIntegral!(UIntType)); static assert(m == 0 || a < m); static assert(m == 0 || c < m); static assert(m == 0 || (cast(ulong)a * (m-1) + c) % m == (c < a ? c - a + m : c - a)); // Check for maximum range private static ulong gcd(ulong a, ulong b) { while (b) { auto t = b; b = a % b; a = t; } return a; } private static ulong primeFactorsOnly(ulong n) { ulong result = 1; ulong iter = 2; for (; n >= iter * iter; iter += 2 - (iter == 2)) { if (n % iter) continue; result *= iter; do { n /= iter; } while (n % iter == 0); } return result * n; } unittest { static assert(primeFactorsOnly(100) == 10); //writeln(primeFactorsOnly(11)); static assert(primeFactorsOnly(11) == 11); static assert(primeFactorsOnly(7 * 7 * 7 * 11 * 15 * 11) == 7 * 11 * 15); static assert(primeFactorsOnly(129 * 2) == 129 * 2); // enum x = primeFactorsOnly(7 * 7 * 7 * 11 * 15); // static assert(x == 7 * 11 * 15); } private static bool properLinearCongruentialParameters(ulong m, ulong a, ulong c) { if (m == 0) { static if (is(UIntType == uint)) { // Assume m is uint.max + 1 m = (1uL << 32); } else { return false; } } // Bounds checking if (a == 0 || a >= m || c >= m) return false; // c and m are relatively prime if (c > 0 && gcd(c, m) != 1) return false; // a - 1 is divisible by all prime factors of m if ((a - 1) % primeFactorsOnly(m)) return false; // if a - 1 is multiple of 4, then m is a multiple of 4 too. if ((a - 1) % 4 == 0 && m % 4) return false; // Passed all tests return true; } // check here static assert(c == 0 || properLinearCongruentialParameters(m, a, c), "Incorrect instantiation of LinearCongruentialEngine"); /** Constructs a $(D_PARAM LinearCongruentialEngine) generator seeded with $(D x0). */ this(UIntType x0) { seed(x0); } /** (Re)seeds the generator. */ void seed(UIntType x0 = 1) { static if (c == 0) { enforce(x0, "Invalid (zero) seed for " ~ LinearCongruentialEngine.stringof); } _x = modulus ? (x0 % modulus) : x0; popFront; } /** Advances the random sequence. */ void popFront() { static if (m) { static if (is(UIntType == uint) && m == uint.max) { immutable ulong x = (cast(ulong) a * _x + c), v = x >> 32, w = x & uint.max; immutable y = cast(uint)(v + w); _x = (y < v || y == uint.max) ? (y + 1) : y; } else static if (is(UIntType == uint) && m == int.max) { immutable ulong x = (cast(ulong) a * _x + c), v = x >> 31, w = x & int.max; immutable uint y = cast(uint)(v + w); _x = (y >= int.max) ? (y - int.max) : y; } else { _x = cast(UIntType) ((cast(ulong) a * _x + c) % m); } } else { _x = a * _x + c; } } /** Returns the current number in the random sequence. */ @property UIntType front() { return _x; } /// @property typeof(this) save() { return this; } /** Always $(D false) (random generators are infinite ranges). */ enum bool empty = false; /** Compares against $(D_PARAM rhs) for equality. */ bool opEquals(ref const LinearCongruentialEngine rhs) const { return _x == rhs._x; } private UIntType _x = m ? (a + c) % m : (a + c); } /** Define $(D_PARAM LinearCongruentialEngine) generators with well-chosen parameters. $(D MinstdRand0) implements Park and Miller's "minimal standard" $(WEB wikipedia.org/wiki/Park%E2%80%93Miller_random_number_generator, generator) that uses 16807 for the multiplier. $(D MinstdRand) implements a variant that has slightly better spectral behavior by using the multiplier 48271. Both generators are rather simplistic. Example: ---- // seed with a constant auto rnd0 = MinstdRand0(1); auto n = rnd0.front; // same for each run // Seed with an unpredictable value rnd0.seed(unpredictableSeed); n = rnd0.front; // different across runs ---- */ alias LinearCongruentialEngine!(uint, 16807, 0, 2147483647) MinstdRand0; /// ditto alias LinearCongruentialEngine!(uint, 48271, 0, 2147483647) MinstdRand; unittest { static assert(isForwardRange!MinstdRand); // The correct numbers are taken from The Database of Integer Sequences // http://www.research.att.com/~njas/sequences/eisBTfry00128.txt auto checking0 = [ 16807UL,282475249,1622650073,984943658,1144108930,470211272, 101027544,1457850878,1458777923,2007237709,823564440,1115438165, 1784484492,74243042,114807987,1137522503,1441282327,16531729, 823378840,143542612 ]; //auto rnd0 = MinstdRand0(1); MinstdRand0 rnd0; foreach (e; checking0) { assert(rnd0.front == e); rnd0.popFront; } // Test the 10000th invocation // Correct value taken from: // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2461.pdf rnd0.seed; popFrontN(rnd0, 9999); assert(rnd0.front == 1043618065); // Test MinstdRand auto checking = [48271UL,182605794,1291394886,1914720637,2078669041, 407355683]; //auto rnd = MinstdRand(1); MinstdRand rnd; foreach (e; checking) { assert(rnd.front == e); rnd.popFront; } // Test the 10000th invocation // Correct value taken from: // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2461.pdf rnd.seed; popFrontN(rnd, 9999); assert(rnd.front == 399268537); } /** The $(LUCKY Mersenne Twister) generator. */ struct MersenneTwisterEngine( UIntType, size_t w, size_t n, size_t m, size_t r, UIntType a, size_t u, size_t s, UIntType b, size_t t, UIntType c, size_t l) { static assert(UIntType.min == 0); /** Parameter for the generator. */ enum size_t wordSize = w; enum size_t stateSize = n; enum size_t shiftSize = m; enum size_t maskBits = r; enum UIntType xorMask = a; enum UIntType temperingU = u; enum size_t temperingS = s; enum UIntType temperingB = b; enum size_t temperingT = t; enum UIntType temperingC = c; enum size_t temperingL = l; /// Smallest generated value (0). enum UIntType min = 0; /// Largest generated value. enum UIntType max = w == UIntType.sizeof * 8 ? UIntType.max : (1u << w) - 1; /// The default seed value. enum UIntType defaultSeed = 5489u; static assert(1 <= m && m <= n); static assert(0 <= r && 0 <= u && 0 <= s && 0 <= t && 0 <= l); static assert(r <= w && u <= w && s <= w && t <= w && l <= w); static assert(0 <= a && 0 <= b && 0 <= c); static assert(a <= max && b <= max && c <= max); /** Constructs a MersenneTwisterEngine object. */ this(UIntType value) { seed(value); } /** Seeds a MersenneTwisterEngine object. */ void seed(UIntType value = defaultSeed) { static if (w == UIntType.sizeof * 8) { mt[0] = value; } else { static assert(max + 1 > 0); mt[0] = value % (max + 1); } for (mti = 1; mti < n; ++mti) { mt[mti] = cast(UIntType) (1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> (w - 2))) + mti); /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */ /* In the previous versions, MSBs of the seed affect */ /* only MSBs of the array mt[]. */ /* 2002/01/09 modified by Makoto Matsumoto */ //mt[mti] &= ResultType.max; /* for >32 bit machines */ } popFront; } /** Advances the generator. */ void popFront() { if (mti == size_t.max) seed(); enum UIntType upperMask = ~((cast(UIntType) 1u << (UIntType.sizeof * 8 - (w - r))) - 1), lowerMask = (cast(UIntType) 1u << r) - 1; static immutable UIntType mag01[2] = [0x0UL, a]; ulong y = void; if (mti >= n) { /* generate N words at one time */ int kk = 0; const limit1 = n - m; for (; kk < limit1; ++kk) { y = (mt[kk] & upperMask)|(mt[kk + 1] & lowerMask); mt[kk] = cast(UIntType) (mt[kk + m] ^ (y >> 1) ^ mag01[cast(UIntType) y & 0x1U]); } const limit2 = n - 1; for (; kk < limit2; ++kk) { y = (mt[kk] & upperMask)|(mt[kk + 1] & lowerMask); mt[kk] = cast(UIntType) (mt[kk + (m -n)] ^ (y >> 1) ^ mag01[cast(UIntType) y & 0x1U]); } y = (mt[n -1] & upperMask)|(mt[0] & lowerMask); mt[n - 1] = cast(UIntType) (mt[m - 1] ^ (y >> 1) ^ mag01[cast(UIntType) y & 0x1U]); mti = 0; } y = mt[mti++]; /* Tempering */ y ^= (y >> temperingU); y ^= (y << temperingS) & temperingB; y ^= (y << temperingT) & temperingC; y ^= (y >> temperingL); _y = cast(UIntType) y; } /** Returns the current random value. */ @property UIntType front() { if (mti == size_t.max) seed(); return _y; } /// @property typeof(this) save() { return this; } /** Always $(D false). */ enum bool empty = false; private UIntType mt[n]; private size_t mti = size_t.max; /* means mt is not initialized */ UIntType _y = UIntType.max; } /** A $(D MersenneTwisterEngine) instantiated with the parameters of the original engine $(WEB math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html, MT19937), generating uniformly-distributed 32-bit numbers with a period of 2 to the power of 19937. Recommended for random number generation unless memory is severely restricted, in which case a $(D LinearCongruentialEngine) would be the generator of choice. Example: ---- // seed with a constant Mt19937 gen; auto n = gen.front; // same for each run // Seed with an unpredictable value gen.seed(unpredictableSeed); n = gen.front; // different across runs ---- */ alias MersenneTwisterEngine!(uint, 32, 624, 397, 31, 0x9908b0df, 11, 7, 0x9d2c5680, 15, 0xefc60000, 18) Mt19937; unittest { Mt19937 gen; popFrontN(gen, 9999); assert(gen.front == 4123659995); } unittest { uint a, b; { Mt19937 gen; a = gen.front; } { Mt19937 gen; gen.popFront; //popFrontN(gen, 1); // skip 1 element b = gen.front; } assert(a != b); } /** * Xorshift generator using 32bit algorithm. * * Implemented according to $(WEB www.jstatsoft.org/v08/i14/paper, Xorshift RNGs). * * $(BOOKTABLE $(TEXTWITHCOMMAS Supporting bits are below, $(D bits) means second parameter of XorshiftEngine.), * $(TR $(TH bits) $(TH period)) * $(TR $(TD 32) $(TD 2^32 - 1)) * $(TR $(TD 64) $(TD 2^64 - 1)) * $(TR $(TD 96) $(TD 2^96 - 1)) * $(TR $(TD 128) $(TD 2^128 - 1)) * $(TR $(TD 160) $(TD 2^160 - 1)) * $(TR $(TD 192) $(TD 2^192 - 2^32)) * ) */ struct XorshiftEngine(UIntType, UIntType bits, UIntType a, UIntType b, UIntType c) { static assert(bits == 32 || bits == 64 || bits == 96 || bits == 128 || bits == 160 || bits == 192, "Supporting bits are 32, 64, 96, 128, 160 and 192. " ~ to!string(bits) ~ " is not supported."); public: /// Always $(D false) (random generators are infinite ranges). enum empty = false; /// Smallest generated value. enum UIntType min = 0; /// Largest generated value. enum UIntType max = UIntType.max; private: enum Size = bits / 32; static if (bits == 32) { UIntType[Size] seeds_ = [2463534242]; } else static if (bits == 64) { UIntType[Size] seeds_ = [123456789, 362436069]; } else static if (bits == 96) { UIntType[Size] seeds_ = [123456789, 362436069, 521288629]; } else static if (bits == 128) { UIntType[Size] seeds_ = [123456789, 362436069, 521288629, 88675123]; } else static if (bits == 160) { UIntType[Size] seeds_ = [123456789, 362436069, 521288629, 88675123, 5783321]; } else { // 192bits UIntType[Size] seeds_ = [123456789, 362436069, 521288629, 88675123, 5783321, 6615241]; UIntType value_; } public: /** * Constructs a $(D XorshiftEngine) generator seeded with $(D_PARAM x0). */ @safe this(UIntType x0) { seed(x0); } /** * (Re)seeds the generator. */ @safe nothrow void seed(UIntType x0) { // Initialization routine from MersenneTwisterEngine. foreach (i, e; seeds_) seeds_[i] = x0 = cast(UIntType)(1812433253U * (x0 ^ (x0 >> 30)) + i + 1); // All seeds must not be 0. sanitizeSeeds(seeds_); popFront(); } /** * Returns the current number in the random sequence. */ @property @safe nothrow UIntType front() { static if (bits == 192) { return value_; } else { return seeds_[Size - 1]; } } /** * Advances the random sequence. */ @safe nothrow void popFront() { UIntType temp; static if (bits == 32) { temp = seeds_[0] ^ (seeds_[0] << a); temp = temp >> b; seeds_[0] = temp ^ (temp << c); } else static if (bits == 64) { temp = seeds_[0] ^ (seeds_[0] << a); seeds_[0] = seeds_[1]; seeds_[1] = seeds_[1] ^ (seeds_[1] >> c) ^ temp ^ (temp >> b); } else static if (bits == 96) { temp = seeds_[0] ^ (seeds_[0] << a); seeds_[0] = seeds_[1]; seeds_[1] = seeds_[2]; seeds_[2] = seeds_[2] ^ (seeds_[2] >> c) ^ temp ^ (temp >> b); } else static if (bits == 128){ temp = seeds_[0] ^ (seeds_[0] << a); seeds_[0] = seeds_[1]; seeds_[1] = seeds_[2]; seeds_[2] = seeds_[3]; seeds_[3] = seeds_[3] ^ (seeds_[3] >> c) ^ temp ^ (temp >> b); } else static if (bits == 160){ temp = seeds_[0] ^ (seeds_[0] >> a); seeds_[0] = seeds_[1]; seeds_[1] = seeds_[2]; seeds_[2] = seeds_[3]; seeds_[3] = seeds_[4]; seeds_[4] = seeds_[4] ^ (seeds_[4] >> c) ^ temp ^ (temp >> b); } else { // 192bits temp = seeds_[0] ^ (seeds_[0] >> a); seeds_[0] = seeds_[1]; seeds_[1] = seeds_[2]; seeds_[2] = seeds_[3]; seeds_[3] = seeds_[4]; seeds_[4] = seeds_[4] ^ (seeds_[4] << c) ^ temp ^ (temp << b); value_ = seeds_[4] + (seeds_[5] += 362437); } } /** * Captures a range state. */ @property typeof(this) save() { return this; } /** * Compares against $(D_PARAM rhs) for equality. */ @safe nothrow bool opEquals(ref const XorshiftEngine rhs) const { return seeds_ == rhs.seeds_; } private: @safe static nothrow void sanitizeSeeds(ref UIntType[Size] seeds) { for (uint i; i < seeds.length; i++) { if (seeds[i] == 0) seeds[i] = i + 1; } } unittest { static if (Size == 4) // Other bits too { UIntType[Size] seeds = [1, 0, 0, 4]; sanitizeSeeds(seeds); assert(seeds == [1, 2, 3, 4]); } } } /** * Define $(D XorshiftEngine) generators with well-chosen parameters. See each bits examples of "Xorshift RNGs". * $(D Xorshift) is a Xorshift128's alias because 128bits implementation is mostly used. * * Example: * ----- * // Seed with a constant * auto rnd = Xorshift(1); * auto num = rnd.front; // same for each run * * // Seed with an unpredictable value * rnd.seed(unpredictableSeed()); * num = rnd.front; // different across runs * ----- */ alias XorshiftEngine!(uint, 32, 13, 17, 5) Xorshift32; alias XorshiftEngine!(uint, 64, 10, 13, 10) Xorshift64; /// ditto alias XorshiftEngine!(uint, 96, 10, 5, 26) Xorshift96; /// ditto alias XorshiftEngine!(uint, 128, 11, 8, 19) Xorshift128; /// ditto alias XorshiftEngine!(uint, 160, 2, 1, 4) Xorshift160; /// ditto alias XorshiftEngine!(uint, 192, 2, 1, 4) Xorshift192; /// ditto alias Xorshift128 Xorshift; /// ditto unittest { static assert(isForwardRange!Xorshift); // Result from reference implementation. auto checking = [ [2463534242UL, 267649, 551450, 53765, 108832, 215250, 435468, 860211, 660133, 263375], [362436069UL, 2113136921, 19051112, 3010520417, 951284840, 1213972223, 3173832558, 2611145638, 2515869689, 2245824891], [521288629UL, 1950277231, 185954712, 1582725458, 3580567609, 2303633688, 2394948066, 4108622809, 1116800180, 3357585673], [88675123UL, 3701687786, 458299110, 2500872618, 3633119408, 516391518, 2377269574, 2599949379, 717229868, 137866584], [5783321UL, 93724048, 491642011, 136638118, 246438988, 238186808, 140181925, 533680092, 285770921, 462053907], [0UL, 246875399, 3690007200, 1264581005, 3906711041, 1866187943, 2481925219, 2464530826, 1604040631, 3653403911] ]; foreach (I, Type; TypeTuple!(Xorshift32, Xorshift64, Xorshift96, Xorshift128, Xorshift160, Xorshift192)) { Type rnd; foreach (e; checking[I]) { assert(rnd.front == e); rnd.popFront(); } } } /** A "good" seed for initializing random number engines. Initializing with $(D_PARAM unpredictableSeed) makes engines generate different random number sequences every run. Example: ---- auto rnd = Random(unpredictableSeed); auto n = rnd.front; ... ---- */ uint unpredictableSeed() { static bool seeded; static MinstdRand0 rand; if (!seeded) { uint threadID = cast(uint) cast(void*) Thread.getThis(); rand.seed((getpid + threadID) ^ cast(uint) Clock.currSystemTick().length); seeded = true; } rand.popFront; return cast(uint) (Clock.currSystemTick().length ^ rand.front); } unittest { // not much to test here auto a = unpredictableSeed; static assert(is(typeof(a) == uint)); } /** The "default", "favorite", "suggested" random number generator type on the current platform. It is an alias for one of the previously-defined generators. You may want to use it if (1) you need to generate some nice random numbers, and (2) you don't care for the minutiae of the method being used. */ alias Mt19937 Random; /** Global random number generator used by various functions in this module whenever no generator is specified. It is allocated per-thread and initialized to an unpredictable value for each thread. */ ref Random rndGen() { static Random result; static bool initialized; if (!initialized) { result = Random(unpredictableSeed); initialized = true; } return result; } /** Generates a number between $(D a) and $(D b). The $(D boundaries) parameter controls the shape of the interval (open vs. closed on either side). Valid values for $(D boundaries) are $(D "[]"), $(D "$(LPAREN)]"), $(D "[$(RPAREN)"), and $(D "()"). The default interval is closed to the left and open to the right. The version that does not take $(D urng) uses the default generator $(D rndGen). Example: ---- Random gen(unpredictableSeed); // Generate an integer in [0, 1023] auto a = uniform(0, 1024, gen); // Generate a float in [0, 1$(RPAREN) auto a = uniform(0.0f, 1.0f, gen); ---- */ version(StdDdoc) CommonType!(T1, T2) uniform(string boundaries = "[$(RPAREN)", T1, T2, UniformRandomNumberGenerator) (T1 a, T2 b, ref UniformRandomNumberGenerator urng); /** ditto */ version(StdDdoc) CommonType!(T1, T2) uniform(string boundaries = "[$(RPAREN)", T1, T2) (T1 a, T2 b) if (!is(CommonType!(T1, T2) == void)); auto uniform(string boundaries = "[)", T1, T2) (T1 a, T2 b) if (!is(CommonType!(T1, T2) == void)) { return uniform!(boundaries, T1, T2, Random)(a, b, rndGen); } unittest { MinstdRand0 gen; foreach (i; 0 .. 20) { auto x = uniform(0., 15., gen); assert(0 <= x && x < 15); } foreach (i; 0 .. 20) { auto x = uniform!"[]"('a', 'z', gen); assert('a' <= x && x <= 'z'); } foreach (i; 0 .. 20) { auto x = uniform('a', 'z', gen); assert('a' <= x && x < 'z'); } foreach(i; 0 .. 20) { immutable ubyte a = 0; immutable ubyte b = 15; auto x = uniform(a, b, gen); assert(a <= x && x < b); } } // Implementation of uniform for floating-point types auto uniform(string boundaries = "[)", T1, T2, UniformRandomNumberGenerator) (T1 a, T2 b, ref UniformRandomNumberGenerator urng) if (isFloatingPoint!(CommonType!(T1, T2))) { alias Unqual!(CommonType!(T1, T2)) NumberType; static if (boundaries[0] == '(') { NumberType _a = nextafter(cast(NumberType) a, NumberType.infinity); } else { NumberType _a = a; } static if (boundaries[1] == ')') { NumberType _b = nextafter(cast(NumberType) b, -NumberType.infinity); } else { NumberType _b = b; } enforce(_a <= _b, text("std.random.uniform(): invalid bounding interval ", boundaries[0], a, ", ", b, boundaries[1])); NumberType result = _a + (_b - _a) * cast(NumberType) (urng.front - urng.min) / (urng.max - urng.min); urng.popFront(); return result; } // Implementation of uniform for integral types auto uniform(string boundaries = "[)", T1, T2, UniformRandomNumberGenerator) (T1 a, T2 b, ref UniformRandomNumberGenerator urng) if (isIntegral!(CommonType!(T1, T2)) || isSomeChar!(CommonType!(T1, T2))) { alias Unqual!(CommonType!(T1, T2)) ResultType; // We handle the case "[)' as the common case, and we adjust all // other cases to fit it. static if (boundaries[0] == '(') { enforce(cast(ResultType) a < ResultType.max, text("std.random.uniform(): invalid left bound ", a)); ResultType min = cast(ResultType) a + 1; } else { ResultType min = a; } static if (boundaries[1] == ']') { enforce(min <= cast(ResultType) b, text("std.random.uniform(): invalid bounding interval ", boundaries[0], a, ", ", b, boundaries[1])); if (b == ResultType.max && min == ResultType.min) { // Special case - all bits are occupied return .uniform!ResultType(urng); } auto count = unsigned(b - min) + 1u; static assert(count.min == 0); } else { enforce(min < cast(ResultType) b, text("std.random.uniform(): invalid bounding interval ", boundaries[0], a, ", ", b, boundaries[1])); auto count = unsigned(b - min); static assert(count.min == 0); } assert(count != 0); if (count == 1) return min; alias typeof(count) CountType; static assert(CountType.min == 0); auto bucketSize = 1u + (CountType.max - count + 1) / count; CountType r; do { r = cast(CountType) (uniform!CountType(urng) / bucketSize); } while (r >= count); return cast(typeof(return)) (min + r); } unittest { auto gen = Mt19937(unpredictableSeed); static assert(isForwardRange!(typeof(gen))); auto a = uniform(0, 1024, gen); assert(0 <= a && a <= 1024); auto b = uniform(0.0f, 1.0f, gen); assert(0 <= b && b < 1, to!string(b)); auto c = uniform(0.0, 1.0); assert(0 <= c && c < 1); } /** Generates a uniformly-distributed number in the range $(D [T.min, T.max]) for any integral type $(D T). If no random number generator is passed, uses the default $(D rndGen). */ auto uniform(T, UniformRandomNumberGenerator) (ref UniformRandomNumberGenerator urng) if (isIntegral!T || isSomeChar!T) { auto r = urng.front; urng.popFront(); static if (T.sizeof <= r.sizeof) { return cast(T) r; } else { static assert(T.sizeof == 8 && r.sizeof == 4); T r1 = urng.front | (r << 32); urng.popFront(); return r1; } } /// Ditto auto uniform(T)() if (isIntegral!T || isSomeChar!T) { return uniform!T(rndGen); } unittest { {auto a = uniform!char(); } {auto a = uniform!wchar();} {auto a = uniform!dchar();} {auto a = uniform!byte();} {auto a = uniform!ubyte();} {auto a = uniform!short();} {auto a = uniform!ushort();} {auto a = uniform!int();} {auto a = uniform!uint();} {auto a = uniform!long();} {auto a = uniform!ulong();} } /** Generates a uniform probability distribution of size $(D n), i.e., an array of size $(D n) of positive numbers of type $(D F) that sum to $(D 1). If $(D useThis) is provided, it is used as storage. */ F[] uniformDistribution(F = double)(size_t n, F[] useThis = null) { useThis.length = n; foreach (ref e; useThis) { e = uniform(0.0, 1); } normalize(useThis); return useThis; } unittest { static assert(is(CommonType!(double, int) == double)); auto a = uniformDistribution(5); enforce(a.length == 5); enforce(approxEqual(reduce!"a + b"(a), 1)); a = uniformDistribution(10, a); enforce(a.length == 10); enforce(approxEqual(reduce!"a + b"(a), 1)); } /** Shuffles elements of $(D r) using $(D r) as a shuffler. $(D r) must be a random-access range with length. */ void randomShuffle(Range, RandomGen = Random)(Range r, ref RandomGen gen = rndGen) { foreach (i; 0 .. r.length) { swapAt(r, i, i + uniform(0, r.length - i, gen)); } } unittest { auto a = ([ 1, 2, 3, 4, 5, 6, 7, 8, 9 ]).dup; auto b = a.dup; Mt19937 gen; randomShuffle(a, gen); assert(a.sort == b.sort); randomShuffle(a); assert(a.sort == b.sort); } /** Rolls a dice with relative probabilities stored in $(D proportions). Returns the index in $(D proportions) that was chosen. Example: ---- auto x = dice(0.5, 0.5); // x is 0 or 1 in equal proportions auto y = dice(50, 50); // y is 0 or 1 in equal proportions auto z = dice(70, 20, 10); // z is 0 70% of the time, 1 30% of the time, // and 2 10% of the time ---- */ size_t dice(Rng, Num)(ref Rng rnd, Num[] proportions...) if (isNumeric!Num && isForwardRange!Rng) { return diceImpl(rnd, proportions); } /// Ditto size_t dice(R, Range)(ref R rnd, Range proportions) if (isForwardRange!Range && isNumeric!(ElementType!Range) && !isArray!Range) { return diceImpl(rnd, proportions); } /// Ditto size_t dice(Range)(Range proportions) if (isForwardRange!Range && isNumeric!(ElementType!Range) && !isArray!Range) { return diceImpl(rndGen(), proportions); } /// Ditto size_t dice(Num)(Num[] proportions...) if (isNumeric!Num) { return diceImpl(rndGen(), proportions); } private size_t diceImpl(Rng, Range)(ref Rng rng, Range proportions) if (isForwardRange!Range && isNumeric!(ElementType!Range) && isForwardRange!Rng) { double sum = reduce!("(assert(b >= 0), a + b)")(0.0, proportions.save); enforce(sum > 0, "Proportions in a dice cannot sum to zero"); immutable point = uniform(0.0, sum, rng); assert(point < sum); auto mass = 0.0; size_t i = 0; foreach (e; proportions) { mass += e; if (point < mass) return i; i++; } // this point should not be reached assert(false); } unittest { auto rnd = Random(unpredictableSeed); auto i = dice(rnd, 0.0, 100.0); assert(i == 1); i = dice(rnd, 100.0, 0.0); assert(i == 0); i = dice(100U, 0U); assert(i == 0); } /** Covers a given range $(D r) in a random manner, i.e. goes through each element of $(D r) once and only once, just in a random order. $(D r) must be a random-access range with length. Example: ---- int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]; auto rnd = Random(unpredictableSeed); foreach (e; randomCover(a, rnd)) { writeln(e); } ---- */ struct RandomCover(Range, Random) { private Range _input; private Random _rnd; private bool[] _chosen; private uint _current; private uint _alreadyChosen; this(Range input, Random rnd) { _input = input; _rnd = rnd; _chosen.length = _input.length; popFront; } static if (hasLength!Range) @property size_t length() { return (1 + _input.length) - _alreadyChosen; } @property auto ref front() { return _input[_current]; } void popFront() { if (_alreadyChosen >= _input.length) { // No more elements ++_alreadyChosen; // means we're done return; } size_t k = _input.length - _alreadyChosen; uint i; foreach (e; _input) { if (_chosen[i]) { ++i; continue; } // Roll a dice with k faces auto chooseMe = uniform(0, k, _rnd) == 0; assert(k > 1 || chooseMe); if (chooseMe) { _chosen[i] = true; _current = i; ++_alreadyChosen; return; } --k; ++i; } assert(false); } @property typeof(this) save() { auto ret = this; ret._input = _input.save; ret._rnd = _rnd.save; return ret; } @property bool empty() { return _alreadyChosen > _input.length; } } /// Ditto RandomCover!(Range, Random) randomCover(Range, Random)(Range r, Random rnd) { return typeof(return)(r, rnd); } unittest { int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8 ]; auto rnd = Random(unpredictableSeed); RandomCover!(int[], Random) rc = randomCover(a, rnd); static assert(isForwardRange!(typeof(rc))); int[] b = new int[9]; uint i; foreach (e; rc) { //writeln(e); b[i++] = e; } sort(b); assert(a == b, text(b)); } // RandomSample /** Selects a random subsample out of $(D r), containing exactly $(D n) elements. The order of elements is the same as in the original range. The total length of $(D r) must be known. If $(D total) is passed in, the total number of sample is considered to be $(D total). Otherwise, $(D RandomSample) uses $(D r.length). If the number of elements is not exactly $(D total), $(D RandomSample) throws an exception. This is because $(D total) is essential to computing the probability of selecting elements in the range. Example: ---- int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]; // Print 5 random elements picked off from r foreach (e; randomSample(n, 5)) { writeln(e); } ---- */ struct RandomSample(R) { private size_t _available, _toSelect; private R _input; private size_t _index; private enum bool byRef = is(typeof(&(R.init.front()))); /** Constructor. */ static if (hasLength!R) this(R input, size_t howMany) { this(input, howMany, input.length); } /// Ditto this(R input, size_t howMany, size_t total) { _input = input; _available = total; _toSelect = howMany; enforce(_toSelect <= _available); // we should skip some elements initially so we don't always // start with the first prime; } /** Range primitives. */ @property bool empty() const { return _toSelect == 0; } mixin((byRef ? "ref " : "")~ q{ElementType!R front() { assert(!empty); return _input.front; }}); /// Ditto void popFront() { _input.popFront; --_available; --_toSelect; ++_index; prime; } /// Ditto @property typeof(this) save() { auto ret = this; ret._input = _input.save; return ret; } /// Ditto @property size_t length() { return _toSelect; } /** Returns the index of the visited record. */ size_t index() { return _index; } private void prime() { if (empty) return; assert(_available && _available >= _toSelect); for (;;) { auto r = uniform(0, _available); if (r < _toSelect) { // chosen! return; } // not chosen, retry assert(!_input.empty); _input.popFront; ++_index; --_available; assert(_available > 0); } } } /// Ditto RandomSample!R randomSample(R)(R r, size_t n, size_t total) { return typeof(return)(r, n, total); } /// Ditto RandomSample!R randomSample(R)(R r, size_t n) //if (hasLength!R) // @@@BUG@@@ { return typeof(return)(r, n, r.length); } unittest { int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]; static assert(isForwardRange!(typeof(randomSample(a, 5)))); //int[] a = [ 0, 1, 2 ]; assert(randomSample(a, 5).length == 5); uint i; foreach (e; randomSample(randomCover(a, rndGen), 5)) { ++i; //writeln(e); } assert(i == 5); } //__EOF__ /* ===================== Random ========================= */ // seed and index are deliberately thread local private uint seed; // starting seed private uint index; // ith random number /** The random number generator is seeded at program startup with a random value. This ensures that each program generates a different sequence of random numbers. To generate a repeatable sequence, use $(D rand_seed()) to start the sequence. seed and index start it, and each successive value increments index. This means that the $(I n)th random number of the sequence can be directly generated by passing index + $(I n) to $(D rand_seed()). Note: This is more random, but slower, than C's $(D rand()) function. To use C's $(D rand()) instead, import $(D std.c.stdlib). BUGS: Shares a global single state, not multithreaded. SCHEDULED FOR DEPRECATION. */ void rand_seed(uint seed, uint index) { .seed = seed; .index = index; } /** Get the popFront random number in sequence. BUGS: Shares a global single state, not multithreaded. SCHEDULED FOR DEPRECATION. */ deprecated uint rand() { static uint xormix1[20] = [ 0xbaa96887, 0x1e17d32c, 0x03bcdc3c, 0x0f33d1b2, 0x76a6491d, 0xc570d85d, 0xe382b1e3, 0x78db4362, 0x7439a9d4, 0x9cea8ac5, 0x89537c5c, 0x2588f55d, 0x415b5e1d, 0x216e3d95, 0x85c662e7, 0x5e8ab368, 0x3ea5cc8c, 0xd26a0f74, 0xf3a9222b, 0x48aad7e4 ]; static uint xormix2[20] = [ 0x4b0f3b58, 0xe874f0c3, 0x6955c5a6, 0x55a7ca46, 0x4d9a9d86, 0xfe28a195, 0xb1ca7865, 0x6b235751, 0x9a997a61, 0xaa6e95c8, 0xaaa98ee1, 0x5af9154c, 0xfc8e2263, 0x390f5e8c, 0x58ffd802, 0xac0a5eba, 0xac4874f6, 0xa9df0913, 0x86be4c74, 0xed2c123b ]; uint hiword, loword, hihold, temp, itmpl, itmph, i; loword = seed; hiword = index++; for (i = 0; i < 4; i++) // loop limit can be 2..20, we choose 4 { hihold = hiword; // save hiword for later temp = hihold ^ xormix1[i]; // mix up bits of hiword itmpl = temp & 0xffff; // decompose to hi & lo itmph = temp >> 16; // 16-bit words temp = itmpl * itmpl + ~(itmph * itmph); // do a multiplicative mix temp = (temp >> 16) | (temp << 16); // swap hi and lo halves hiword = loword ^ ((temp ^ xormix2[i]) + itmpl * itmph); //loword mix loword = hihold; // old hiword is loword } return hiword; } // disabling because it's commented out anyways, and this causes a cyclic // dependency with std.encoding. version(none) { shared static this() { ulong s; version(Win32) { QueryPerformanceCounter(&s); } version(Posix) { // time.h // sys/time.h timeval tv; if (gettimeofday(&tv, null)) { // Some error happened - try time() instead s = core.sys.posix.sys.time.time(null); } else { s = cast(ulong)((cast(long)tv.tv_sec << 32) + tv.tv_usec); } } //rand_seed(cast(uint) s, cast(uint)(s >> 32)); } } deprecated unittest { static uint results[10] = [ 0x8c0188cb, 0xb161200c, 0xfc904ac5, 0x2702e049, 0x9705a923, 0x1c139d89, 0x346b6d1f, 0xf8c33e32, 0xdb9fef76, 0xa97fcb3f ]; int i; uint seedsave = seed; uint indexsave = index; rand_seed(1234, 5678); for (i = 0; i < 10; i++) { uint r = rand(); //printf("0x%x,\n", rand()); assert(r == results[i]); } seed = seedsave; index = indexsave; }