// Written in the D programming language. /** This is a submodule of $(MREF std, algorithm). It contains generic _sorting algorithms. $(BOOKTABLE Cheat Sheet, $(TR $(TH Function Name) $(TH Description)) $(T2 completeSort, If $(D a = [10, 20, 30]) and $(D b = [40, 6, 15]), then $(D completeSort(a, b)) leaves $(D a = [6, 10, 15]) and $(D b = [20, 30, 40]). The range $(D a) must be sorted prior to the call, and as a result the combination $(D $(REF chain, std,range)(a, b)) is sorted.) $(T2 isPartitioned, $(D isPartitioned!"a < 0"([-1, -2, 1, 0, 2])) returns $(D true) because the predicate is $(D true) for a portion of the range and $(D false) afterwards.) $(T2 isSorted, $(D isSorted([1, 1, 2, 3])) returns $(D true).) $(T2 isStrictlyMonotonic, $(D isStrictlyMonotonic([1, 1, 2, 3])) returns $(D false).) $(T2 ordered, $(D ordered(1, 1, 2, 3)) returns $(D true).) $(T2 strictlyOrdered, $(D strictlyOrdered(1, 1, 2, 3)) returns $(D false).) $(T2 makeIndex, Creates a separate index for a range.) $(T2 merge, Lazily merges two or more sorted ranges.) $(T2 multiSort, Sorts by multiple keys.) $(T2 nextEvenPermutation, Computes the next lexicographically greater even permutation of a range in-place.) $(T2 nextPermutation, Computes the next lexicographically greater permutation of a range in-place.) $(T2 partialSort, If $(D a = [5, 4, 3, 2, 1]), then $(D partialSort(a, 3)) leaves $(D a[0 .. 3] = [1, 2, 3]). The other elements of $(D a) are left in an unspecified order.) $(T2 partition, Partitions a range according to a unary predicate.) $(T2 partition3, Partitions a range according to a binary predicate in three parts (less than, equal, greater than the given pivot). Pivot is not given as an index, but instead as an element independent from the range's content.) $(T2 pivotPartition, Partitions a range according to a binary predicate in two parts: less than or equal, and greater than or equal to the given pivot, passed as an index in the range.) $(T2 schwartzSort, Sorts with the help of the $(LUCKY Schwartzian transform).) $(T2 sort, Sorts.) $(T2 topN, Separates the top elements in a range.) $(T2 topNCopy, Copies out the top elements of a range.) $(T2 topNIndex, Builds an index of the top elements of a range.) ) Copyright: Andrei Alexandrescu 2008-. License: $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0). Authors: $(HTTP erdani.com, Andrei Alexandrescu) Source: $(PHOBOSSRC std/algorithm/_sorting.d) Macros: T2=$(TR $(TDNW $(LREF $1)) $(TD $+)) */ module std.algorithm.sorting; import std.typecons : Flag; import std.algorithm.mutation : SwapStrategy; import std.functional; // : unaryFun, binaryFun; import std.range.primitives; // FIXME import std.range; // : SortedRange; import std.traits; import std.meta; // : allSatisfy; /** Specifies whether the output of certain algorithm is desired in sorted format. If set to $(D SortOutput.no), the output should not be sorted. Otherwise if set to $(D SortOutput.yes), the output should be sorted. */ alias SortOutput = Flag!"sortOutput"; // completeSort /** Sorts the random-access range $(D chain(lhs, rhs)) according to predicate $(D less). The left-hand side of the range $(D lhs) is assumed to be already sorted; $(D rhs) is assumed to be unsorted. The exact strategy chosen depends on the relative sizes of $(D lhs) and $(D rhs). Performs $(BIGOH lhs.length + rhs.length * log(rhs.length)) (best case) to $(BIGOH (lhs.length + rhs.length) * log(lhs.length + rhs.length)) (worst-case) evaluations of $(D swap). Params: less = The predicate to sort by. ss = The swapping strategy to use. lhs = The sorted, left-hand side of the random access range to be sorted. rhs = The unsorted, right-hand side of the random access range to be sorted. */ void completeSort(alias less = "a < b", SwapStrategy ss = SwapStrategy.unstable, RandomAccessRange1, RandomAccessRange2)(SortedRange!(RandomAccessRange1, less) lhs, RandomAccessRange2 rhs) if (hasLength!(RandomAccessRange2) && hasSlicing!(RandomAccessRange2)) { import std.algorithm.mutation : bringToFront; import std.range : chain, assumeSorted; // Probably this algorithm can be optimized by using in-place // merge auto lhsOriginal = lhs.release(); foreach (i; 0 .. rhs.length) { auto sortedSoFar = chain(lhsOriginal, rhs[0 .. i]); auto ub = assumeSorted!less(sortedSoFar).upperBound(rhs[i]); if (!ub.length) continue; bringToFront(ub.release(), rhs[i .. i + 1]); } } /// @safe unittest { import std.range : assumeSorted; int[] a = [ 1, 2, 3 ]; int[] b = [ 4, 0, 6, 5 ]; completeSort(assumeSorted(a), b); assert(a == [ 0, 1, 2 ]); assert(b == [ 3, 4, 5, 6 ]); } // isSorted /** Checks whether a forward range is sorted according to the comparison operation $(D less). Performs $(BIGOH r.length) evaluations of $(D less). Unlike `isSorted`, `isStrictlyMonotonic` does not allow for equal values, i.e. values for which both `less(a, b)` and `less(b, a)` are false. With either function, the predicate must be a strict ordering just like with `isSorted`. For example, using `"a <= b"` instead of `"a < b"` is incorrect and will cause failed assertions. Params: less = Predicate the range should be sorted by. r = Forward range to check for sortedness. Returns: `true` if the range is sorted, false otherwise. `isSorted` allows duplicates, `isStrictlyMonotonic` not. */ bool isSorted(alias less = "a < b", Range)(Range r) if (isForwardRange!(Range)) { if (r.empty) return true; static if (isRandomAccessRange!Range && hasLength!Range) { immutable limit = r.length - 1; foreach (i; 0 .. limit) { if (!binaryFun!less(r[i + 1], r[i])) continue; assert( !binaryFun!less(r[i], r[i + 1]), "Predicate for isSorted is not antisymmetric. Both" ~ " pred(a, b) and pred(b, a) are true for certain values."); return false; } } else { auto ahead = r.save; ahead.popFront(); size_t i; for (; !ahead.empty; ahead.popFront(), r.popFront(), ++i) { if (!binaryFun!less(ahead.front, r.front)) continue; // Check for antisymmetric predicate assert( !binaryFun!less(r.front, ahead.front), "Predicate for isSorted is not antisymmetric. Both" ~ " pred(a, b) and pred(b, a) are true for certain values."); return false; } } return true; } /// @safe unittest { assert([1, 1, 2].isSorted); // strictly monotonic doesn't allow duplicates assert(![1, 1, 2].isStrictlyMonotonic); int[] arr = [4, 3, 2, 1]; assert(!isSorted(arr)); assert(!isStrictlyMonotonic(arr)); assert(isSorted!"a > b"(arr)); assert(isStrictlyMonotonic!"a > b"(arr)); sort(arr); assert(isSorted(arr)); assert(isStrictlyMonotonic(arr)); } @safe unittest { import std.conv : to; // Issue 9457 auto x = "abcd"; assert(isSorted(x)); auto y = "acbd"; assert(!isSorted(y)); int[] a = [1, 2, 3]; assert(isSorted(a)); int[] b = [1, 3, 2]; assert(!isSorted(b)); // ignores duplicates int[] c = [1, 1, 2]; assert(isSorted(c)); dchar[] ds = "コーヒーが好きです"d.dup; sort(ds); string s = to!string(ds); assert(isSorted(ds)); // random-access assert(isSorted(s)); // bidirectional } @nogc @safe nothrow pure unittest { static immutable a = [1, 2, 3]; assert(a.isSorted); } /// ditto bool isStrictlyMonotonic(alias less = "a < b", Range)(Range r) if (isForwardRange!Range) { import std.algorithm.searching : findAdjacent; return findAdjacent!((a,b) => !binaryFun!less(a,b))(r).empty; } @safe unittest { import std.conv : to; assert("abcd".isStrictlyMonotonic); assert(!"aacd".isStrictlyMonotonic); assert(!"acb".isStrictlyMonotonic); assert([1, 2, 3].isStrictlyMonotonic); assert(![1, 3, 2].isStrictlyMonotonic); assert(![1, 1, 2].isStrictlyMonotonic); // ー occurs twice -> can't be strict dchar[] ds = "コーヒーが好きです"d.dup; sort(ds); string s = to!string(ds); assert(!isStrictlyMonotonic(ds)); // random-access assert(!isStrictlyMonotonic(s)); // bidirectional dchar[] ds2 = "コーヒが好きです"d.dup; sort(ds2); string s2 = to!string(ds2); assert(isStrictlyMonotonic(ds2)); // random-access assert(isStrictlyMonotonic(s2)); // bidirectional } @nogc @safe nothrow pure unittest { static immutable a = [1, 2, 3]; assert(a.isStrictlyMonotonic); } /** Like $(D isSorted), returns $(D true) if the given $(D values) are ordered according to the comparison operation $(D less). Unlike $(D isSorted), takes values directly instead of structured in a range. $(D ordered) allows repeated values, e.g. $(D ordered(1, 1, 2)) is $(D true). To verify that the values are ordered strictly monotonically, use $(D strictlyOrdered); $(D strictlyOrdered(1, 1, 2)) is $(D false). With either function, the predicate must be a strict ordering. For example, using $(D "a <= b") instead of $(D "a < b") is incorrect and will cause failed assertions. Params: values = The tested value less = The comparison predicate Returns: $(D true) if the values are ordered; $(D ordered) allows for duplicates, $(D strictlyOrdered) does not. */ bool ordered(alias less = "a < b", T...)(T values) if ((T.length == 2 && is(typeof(binaryFun!less(values[1], values[0])) : bool)) || (T.length > 2 && is(typeof(ordered!less(values[0 .. 1 + $ / 2]))) && is(typeof(ordered!less(values[$ / 2 .. $])))) ) { foreach (i, _; T[0 .. $ - 1]) { if (binaryFun!less(values[i + 1], values[i])) { assert(!binaryFun!less(values[i], values[i + 1]), __FUNCTION__ ~ ": incorrect non-strict predicate."); return false; } } return true; } /// ditto bool strictlyOrdered(alias less = "a < b", T...)(T values) if (is(typeof(ordered!less(values)))) { foreach (i, _; T[0 .. $ - 1]) { if (!binaryFun!less(values[i], values[i + 1])) { return false; } assert(!binaryFun!less(values[i + 1], values[i]), __FUNCTION__ ~ ": incorrect non-strict predicate."); } return true; } /// @safe unittest { assert(ordered(42, 42, 43)); assert(!strictlyOrdered(43, 42, 45)); assert(ordered(42, 42, 43)); assert(!strictlyOrdered(42, 42, 43)); assert(!ordered(43, 42, 45)); // Ordered lexicographically assert(ordered("Jane", "Jim", "Joe")); assert(strictlyOrdered("Jane", "Jim", "Joe")); // Incidentally also ordered by length decreasing assert(ordered!((a, b) => a.length > b.length)("Jane", "Jim", "Joe")); // ... but not strictly so: "Jim" and "Joe" have the same length assert(!strictlyOrdered!((a, b) => a.length > b.length)("Jane", "Jim", "Joe")); } // partition /** Partitions a range in two using the given $(D predicate). Specifically, reorders the range $(D r = [left, right$(RPAREN)) using $(D swap) such that all elements $(D i) for which $(D predicate(i)) is $(D true) come before all elements $(D j) for which $(D predicate(j)) returns $(D false). Performs $(BIGOH r.length) (if unstable or semistable) or $(BIGOH r.length * log(r.length)) (if stable) evaluations of $(D less) and $(D swap). The unstable version computes the minimum possible evaluations of $(D swap) (roughly half of those performed by the semistable version). Params: predicate = The predicate to partition by. ss = The swapping strategy to employ. r = The random-access range to partition. Returns: The right part of $(D r) after partitioning. If $(D ss == SwapStrategy.stable), $(D partition) preserves the relative ordering of all elements $(D a), $(D b) in $(D r) for which $(D predicate(a) == predicate(b)). If $(D ss == SwapStrategy.semistable), $(D partition) preserves the relative ordering of all elements $(D a), $(D b) in the left part of $(D r) for which $(D predicate(a) == predicate(b)). See_Also: STL's $(HTTP sgi.com/tech/stl/_partition.html, _partition)$(BR) STL's $(HTTP sgi.com/tech/stl/stable_partition.html, stable_partition) */ Range partition(alias predicate, SwapStrategy ss, Range)(Range r) if (ss == SwapStrategy.stable && isRandomAccessRange!(Range) && hasLength!Range && hasSlicing!Range) { import std.algorithm.mutation : bringToFront; alias pred = unaryFun!(predicate); if (r.empty) return r; if (r.length == 1) { if (pred(r.front)) r.popFront(); return r; } const middle = r.length / 2; alias recurse = .partition!(pred, ss, Range); auto lower = recurse(r[0 .. middle]); auto upper = recurse(r[middle .. r.length]); bringToFront(lower, r[middle .. r.length - upper.length]); return r[r.length - lower.length - upper.length .. r.length]; } ///ditto Range partition(alias predicate, SwapStrategy ss = SwapStrategy.unstable, Range)(Range r) if (ss != SwapStrategy.stable && isInputRange!Range && hasSwappableElements!Range) { import std.algorithm.mutation : swap; alias pred = unaryFun!(predicate); static if (ss == SwapStrategy.semistable) { if (r.empty) return r; for (; !r.empty; r.popFront()) { // skip the initial portion of "correct" elements if (pred(r.front)) continue; // hit the first "bad" element auto result = r; for (r.popFront(); !r.empty; r.popFront()) { if (!pred(r.front)) continue; swap(result.front, r.front); result.popFront(); } return result; } return r; } else { // Inspired from www.stepanovpapers.com/PAM3-partition_notes.pdf, // section "Bidirectional Partition Algorithm (Hoare)" static if (isDynamicArray!Range) { import std.algorithm.mutation : swapAt; // For dynamic arrays prefer index-based manipulation if (!r.length) return r; size_t lo = 0, hi = r.length - 1; for (;;) { for (;;) { if (lo > hi) return r[lo .. r.length]; if (!pred(r[lo])) break; ++lo; } // found the left bound assert(lo <= hi); for (;;) { if (lo == hi) return r[lo .. r.length]; if (pred(r[hi])) break; --hi; } // found the right bound, swap & make progress r.swapAt(lo++, hi--); } } else { import std.algorithm.mutation : swap; auto result = r; for (;;) { for (;;) { if (r.empty) return result; if (!pred(r.front)) break; r.popFront(); result.popFront(); } // found the left bound assert(!r.empty); for (;;) { if (pred(r.back)) break; r.popBack(); if (r.empty) return result; } // found the right bound, swap & make progress static if (is(typeof(swap(r.front, r.back)))) { swap(r.front, r.back); } else { auto t1 = r.moveFront(), t2 = r.moveBack(); r.front = t2; r.back = t1; } r.popFront(); result.popFront(); r.popBack(); } } } } /// @safe unittest { import std.algorithm.searching : count, find; import std.conv : text; import std.range.primitives : empty; import std.algorithm.mutation : SwapStrategy; auto Arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; auto arr = Arr.dup; static bool even(int a) { return (a & 1) == 0; } // Partition arr such that even numbers come first auto r = partition!(even)(arr); // Now arr is separated in evens and odds. // Numbers may have become shuffled due to instability assert(r == arr[5 .. $]); assert(count!(even)(arr[0 .. 5]) == 5); assert(find!(even)(r).empty); // Can also specify the predicate as a string. // Use 'a' as the predicate argument name arr[] = Arr[]; r = partition!(q{(a & 1) == 0})(arr); assert(r == arr[5 .. $]); // Now for a stable partition: arr[] = Arr[]; r = partition!(q{(a & 1) == 0}, SwapStrategy.stable)(arr); // Now arr is [2 4 6 8 10 1 3 5 7 9], and r points to 1 assert(arr == [2, 4, 6, 8, 10, 1, 3, 5, 7, 9] && r == arr[5 .. $]); // In case the predicate needs to hold its own state, use a delegate: arr[] = Arr[]; int x = 3; // Put stuff greater than 3 on the left bool fun(int a) { return a > x; } r = partition!(fun, SwapStrategy.semistable)(arr); // Now arr is [4 5 6 7 8 9 10 2 3 1] and r points to 2 assert(arr == [4, 5, 6, 7, 8, 9, 10, 2, 3, 1] && r == arr[7 .. $]); } @safe unittest { import std.algorithm.internal : rndstuff; static bool even(int a) { return (a & 1) == 0; } // test with random data auto a = rndstuff!int(); partition!even(a); assert(isPartitioned!even(a)); auto b = rndstuff!string(); partition!`a.length < 5`(b); assert(isPartitioned!`a.length < 5`(b)); } // pivotPartition /** Partitions `r` around `pivot` using comparison function `less`, algorithm akin to $(LUCKY Hoare partition). Specifically, permutes elements of `r` and returns an index $(D k < r.length) such that: $(UL $(LI `r[pivot]` is swapped to `r[k]`) $(LI All elements `e` in subrange $(D r[0 .. k]) satisfy $(D !less(r[k], e)) (i.e. `r[k]` is greater than or equal to each element to its left according to predicate `less`)) $(LI All elements `e` in subrange $(D r[0 .. k]) satisfy $(D !less(e, r[k])) (i.e. `r[k]` is less than or equal to each element to its right according to predicate `less`))) If `r` contains equivalent elements, multiple permutations of `r` satisfy these constraints. In such cases, `pivotPartition` attempts to distribute equivalent elements fairly to the left and right of `k` such that `k` stays close to $(D r.length / 2). Params: less = The predicate used for comparison, modeled as a $(LUCKY strict weak ordering) (irreflexive, antisymmetric, transitive, and implying a transitive equivalence) r = The range being partitioned pivot = The index of the pivot for partitioning, must be less than `r.length` or `0` is `r.length` is `0` Returns: The new position of the pivot See_Also: $(HTTP jgrcs.info/index.php/jgrcs/article/view/142, Engineering of a Quicksort Partitioning Algorithm), D. Abhyankar, Journal of Global Research in Computer Science, February 2011. $(HTTPS youtube.com/watch?v=AxnotgLql0k, ACCU 2016 Keynote), Andrei Alexandrescu. */ size_t pivotPartition(alias less = "a < b", Range) (Range r, size_t pivot) if (isRandomAccessRange!Range && hasLength!Range && hasSlicing!Range) { assert(pivot < r.length || r.length == 0 && pivot == 0); if (r.length <= 1) return 0; import std.algorithm.mutation : swapAt, move; alias lt = binaryFun!less; // Pivot at the front r.swapAt(pivot, 0); // Fork implementation depending on nothrow copy, assignment, and // comparison. If all of these are nothrow, use the specialized // implementation discussed at https://youtube.com/watch?v=AxnotgLql0k. static if (is(typeof( () nothrow { auto x = r.front; x = r.front; return lt(x, x); } ))) { auto p = r[0]; // Plant the pivot in the end as well as a sentinel size_t lo = 0, hi = r.length - 1; auto save = move(r[hi]); r[hi] = p; // Vacancy is in r[$ - 1] now // Start process for (;;) { // Loop invariant version(unittest) { import std.algorithm.searching : all; assert(r[0 .. lo].all!(x => !lt(p, x))); assert(r[hi + 1 .. r.length].all!(x => !lt(x, p))); } do ++lo; while (lt(r[lo], p)); r[hi] = r[lo]; // Vacancy is now in r[lo] do --hi; while (lt(p, r[hi])); if (lo >= hi) break; r[lo] = r[hi]; // Vacancy is not in r[hi] } // Fixup assert(lo - hi <= 2); assert(!lt(p, r[hi])); if (lo == hi + 2) { assert(!lt(r[hi + 1], p)); r[lo] = r[hi + 1]; --lo; } r[lo] = save; if (lt(p, save)) --lo; assert(!lt(p, r[lo])); } else { size_t lo = 1, hi = r.length - 1; loop: for (;; lo++, hi--) { for (;; ++lo) { if (lo > hi) break loop; if (!lt(r[lo], r[0])) break; } // found the left bound: r[lo] >= r[0] assert(lo <= hi); for (;; --hi) { if (lo >= hi) break loop; if (!lt(r[0], r[hi])) break; } // found the right bound: r[hi] <= r[0], swap & make progress assert(!lt(r[lo], r[hi])); r.swapAt(lo, hi); } --lo; } r.swapAt(lo, 0); return lo; } /// @safe nothrow unittest { int[] a = [5, 3, 2, 6, 4, 1, 3, 7]; size_t pivot = pivotPartition(a, a.length / 2); import std.algorithm.searching : all; assert(a[0 .. pivot].all!(x => x <= a[pivot])); assert(a[pivot .. $].all!(x => x >= a[pivot])); } @safe unittest { void test(alias less)() { int[] a; size_t pivot; a = [-9, -4, -2, -2, 9]; pivot = pivotPartition!less(a, a.length / 2); import std.algorithm.searching : all; assert(a[0 .. pivot].all!(x => x <= a[pivot])); assert(a[pivot .. $].all!(x => x >= a[pivot])); a = [9, 2, 8, -5, 5, 4, -8, -4, 9]; pivot = pivotPartition!less(a, a.length / 2); assert(a[0 .. pivot].all!(x => x <= a[pivot])); assert(a[pivot .. $].all!(x => x >= a[pivot])); a = [ 42 ]; pivot = pivotPartition!less(a, a.length / 2); assert(pivot == 0); assert(a == [ 42 ]); a = [ 43, 42 ]; pivot = pivotPartition!less(a, 0); assert(pivot == 1); assert(a == [ 42, 43 ]); a = [ 43, 42 ]; pivot = pivotPartition!less(a, 1); assert(pivot == 0); assert(a == [ 42, 43 ]); a = [ 42, 42 ]; pivot = pivotPartition!less(a, 0); assert(pivot == 0 || pivot == 1); assert(a == [ 42, 42 ]); pivot = pivotPartition!less(a, 1); assert(pivot == 0 || pivot == 1); assert(a == [ 42, 42 ]); import std.random; import std.algorithm.iteration : map; import std.stdio; auto s = unpredictableSeed; auto g = Random(s); a = iota(0, uniform(1, 1000, g)) .map!(_ => uniform(-1000, 1000, g)) .array; scope(failure) writeln("RNG seed was ", s); pivot = pivotPartition!less(a, a.length / 2); assert(a[0 .. pivot].all!(x => x <= a[pivot])); assert(a[pivot .. $].all!(x => x >= a[pivot])); } test!"a < b"; static bool myLess(int a, int b) { static bool bogus; if (bogus) throw new Exception(""); // just to make it no-nothrow return a < b; } test!myLess; } /** Params: pred = The predicate that the range should be partitioned by. r = The range to check. Returns: $(D true) if $(D r) is partitioned according to predicate $(D pred). */ bool isPartitioned(alias pred, Range)(Range r) if (isForwardRange!(Range)) { for (; !r.empty; r.popFront()) { if (unaryFun!(pred)(r.front)) continue; for (r.popFront(); !r.empty; r.popFront()) { if (unaryFun!(pred)(r.front)) return false; } break; } return true; } /// @safe unittest { int[] r = [ 1, 3, 5, 7, 8, 2, 4, ]; assert(isPartitioned!"a & 1"(r)); } // partition3 /** Rearranges elements in $(D r) in three adjacent ranges and returns them. The first and leftmost range only contains elements in $(D r) less than $(D pivot). The second and middle range only contains elements in $(D r) that are equal to $(D pivot). Finally, the third and rightmost range only contains elements in $(D r) that are greater than $(D pivot). The less-than test is defined by the binary function $(D less). Params: less = The predicate to use for the rearrangement. ss = The swapping strategy to use. r = The random-access range to rearrange. pivot = The pivot element. Returns: A $(REF Tuple, std,typecons) of the three resulting ranges. These ranges are slices of the original range. BUGS: stable $(D partition3) has not been implemented yet. */ auto partition3(alias less = "a < b", SwapStrategy ss = SwapStrategy.unstable, Range, E) (Range r, E pivot) if (ss == SwapStrategy.unstable && isRandomAccessRange!Range && hasSwappableElements!Range && hasLength!Range && hasSlicing!Range && is(typeof(binaryFun!less(r.front, pivot)) == bool) && is(typeof(binaryFun!less(pivot, r.front)) == bool) && is(typeof(binaryFun!less(r.front, r.front)) == bool)) { // The algorithm is described in "Engineering a sort function" by // Jon Bentley et al, pp 1257. import std.algorithm.mutation : swap, swapAt, swapRanges; import std.algorithm.comparison : min; import std.typecons : tuple; alias lessFun = binaryFun!less; size_t i, j, k = r.length, l = k; bigloop: for (;;) { for (;; ++j) { if (j == k) break bigloop; assert(j < r.length); if (lessFun(r[j], pivot)) continue; if (lessFun(pivot, r[j])) break; r.swapAt(i++, j); } assert(j < k); for (;;) { assert(k > 0); if (!lessFun(pivot, r[--k])) { if (lessFun(r[k], pivot)) break; r.swapAt(k, --l); } if (j == k) break bigloop; } // Here we know r[j] > pivot && r[k] < pivot r.swapAt(j++, k); } // Swap the equal ranges from the extremes into the middle auto strictlyLess = j - i, strictlyGreater = l - k; auto swapLen = min(i, strictlyLess); swapRanges(r[0 .. swapLen], r[j - swapLen .. j]); swapLen = min(r.length - l, strictlyGreater); swapRanges(r[k .. k + swapLen], r[r.length - swapLen .. r.length]); return tuple(r[0 .. strictlyLess], r[strictlyLess .. r.length - strictlyGreater], r[r.length - strictlyGreater .. r.length]); } /// @safe unittest { auto a = [ 8, 3, 4, 1, 4, 7, 4 ]; auto pieces = partition3(a, 4); assert(pieces[0] == [ 1, 3 ]); assert(pieces[1] == [ 4, 4, 4 ]); assert(pieces[2] == [ 8, 7 ]); } @safe unittest { import std.random : uniform; auto a = new int[](uniform(0, 100)); foreach (ref e; a) { e = uniform(0, 50); } auto pieces = partition3(a, 25); assert(pieces[0].length + pieces[1].length + pieces[2].length == a.length); foreach (e; pieces[0]) { assert(e < 25); } foreach (e; pieces[1]) { assert(e == 25); } foreach (e; pieces[2]) { assert(e > 25); } } // makeIndex /** Computes an index for $(D r) based on the comparison $(D less). The index is a sorted array of pointers or indices into the original range. This technique is similar to sorting, but it is more flexible because (1) it allows "sorting" of immutable collections, (2) allows binary search even if the original collection does not offer random access, (3) allows multiple indexes, each on a different predicate, and (4) may be faster when dealing with large objects. However, using an index may also be slower under certain circumstances due to the extra indirection, and is always larger than a sorting-based solution because it needs space for the index in addition to the original collection. The complexity is the same as $(D sort)'s. The first overload of $(D makeIndex) writes to a range containing pointers, and the second writes to a range containing offsets. The first overload requires $(D Range) to be a forward range, and the latter requires it to be a random-access range. $(D makeIndex) overwrites its second argument with the result, but never reallocates it. Params: less = The comparison to use. ss = The swapping strategy. r = The range to index. index = The resulting index. Returns: The pointer-based version returns a $(D SortedRange) wrapper over index, of type $(D SortedRange!(RangeIndex, (a, b) => binaryFun!less(*a, *b))) thus reflecting the ordering of the index. The index-based version returns $(D void) because the ordering relation involves not only $(D index) but also $(D r). Throws: If the second argument's length is less than that of the range indexed, an exception is thrown. */ SortedRange!(RangeIndex, (a, b) => binaryFun!less(*a, *b)) makeIndex( alias less = "a < b", SwapStrategy ss = SwapStrategy.unstable, Range, RangeIndex) (Range r, RangeIndex index) if (isForwardRange!(Range) && isRandomAccessRange!(RangeIndex) && is(ElementType!(RangeIndex) : ElementType!(Range)*)) { import std.algorithm.internal : addressOf; import std.exception : enforce; // assume collection already ordered size_t i; for (; !r.empty; r.popFront(), ++i) index[i] = addressOf(r.front); enforce(index.length == i); // sort the index sort!((a, b) => binaryFun!less(*a, *b), ss)(index); return typeof(return)(index); } /// Ditto void makeIndex( alias less = "a < b", SwapStrategy ss = SwapStrategy.unstable, Range, RangeIndex) (Range r, RangeIndex index) if (isRandomAccessRange!Range && !isInfinite!Range && isRandomAccessRange!RangeIndex && !isInfinite!RangeIndex && isIntegral!(ElementType!RangeIndex)) { import std.exception : enforce; import std.conv : to; alias IndexType = Unqual!(ElementType!RangeIndex); enforce(r.length == index.length, "r and index must be same length for makeIndex."); static if (IndexType.sizeof < size_t.sizeof) { enforce(r.length <= IndexType.max, "Cannot create an index with " ~ "element type " ~ IndexType.stringof ~ " with length " ~ to!string(r.length) ~ "."); } for (IndexType i = 0; i < r.length; ++i) { index[cast(size_t) i] = i; } // sort the index sort!((a, b) => binaryFun!less(r[cast(size_t) a], r[cast(size_t) b]), ss) (index); } /// @system unittest { immutable(int[]) arr = [ 2, 3, 1, 5, 0 ]; // index using pointers auto index1 = new immutable(int)*[arr.length]; makeIndex!("a < b")(arr, index1); assert(isSorted!("*a < *b")(index1)); // index using offsets auto index2 = new size_t[arr.length]; makeIndex!("a < b")(arr, index2); assert(isSorted! ((size_t a, size_t b){ return arr[a] < arr[b];}) (index2)); } @system unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); immutable(int)[] arr = [ 2, 3, 1, 5, 0 ]; // index using pointers auto index1 = new immutable(int)*[arr.length]; alias ImmRange = typeof(arr); alias ImmIndex = typeof(index1); static assert(isForwardRange!(ImmRange)); static assert(isRandomAccessRange!(ImmIndex)); static assert(!isIntegral!(ElementType!(ImmIndex))); static assert(is(ElementType!(ImmIndex) : ElementType!(ImmRange)*)); makeIndex!("a < b")(arr, index1); assert(isSorted!("*a < *b")(index1)); // index using offsets auto index2 = new long[arr.length]; makeIndex(arr, index2); assert(isSorted! ((long a, long b){ return arr[cast(size_t) a] < arr[cast(size_t) b]; })(index2)); // index strings using offsets string[] arr1 = ["I", "have", "no", "chocolate"]; auto index3 = new byte[arr1.length]; makeIndex(arr1, index3); assert(isSorted! ((byte a, byte b){ return arr1[a] < arr1[b];}) (index3)); } struct Merge(alias less = "a < b", Rs...) if (Rs.length >= 2 && allSatisfy!(isInputRange, Rs) && !is(CommonType!(staticMap!(ElementType, Rs)) == void)) { public Rs source; private size_t _lastFrontIndex = size_t.max; static if (isBidirectional) { private size_t _lastBackIndex = size_t.max; // `size_t.max` means uninitialized, } import std.functional : binaryFun; import std.traits : isCopyable; import std.typetuple : anySatisfy; private alias comp = binaryFun!less; private alias ElementType = CommonType!(staticMap!(.ElementType, Rs)); private enum isBidirectional = allSatisfy!(isBidirectionalRange, staticMap!(Unqual, Rs)); debug private enum canCheckSortedness = isCopyable!ElementType && !hasAliasing!ElementType; this(Rs source) { this.source = source; this._lastFrontIndex = frontIndex; } static if (anySatisfy!(isInfinite, Rs)) { enum bool empty = false; // propagate infiniteness } else { @property bool empty() { return _lastFrontIndex == size_t.max; } } @property auto ref front() { final switch (_lastFrontIndex) { foreach (i, _; Rs) { case i: assert(!source[i].empty); return source[i].front; } } } private size_t frontIndex() { size_t bestIndex = size_t.max; // indicate undefined Unqual!ElementType bestElement; foreach (i, _; Rs) { if (source[i].empty) continue; if (bestIndex == size_t.max || // either this is the first or comp(source[i].front, bestElement)) { bestIndex = i; bestElement = source[i].front; } } return bestIndex; } void popFront() { sw: final switch (_lastFrontIndex) { foreach (i, R; Rs) { case i: debug static if (canCheckSortedness) { ElementType previousFront = source[i].front(); } source[i].popFront(); debug static if (canCheckSortedness) { if (!source[i].empty) { assert(previousFront == source[i].front || comp(previousFront, source[i].front), "Input " ~ i.stringof ~ " is unsorted"); // @nogc } } break sw; } } _lastFrontIndex = frontIndex; } static if (isBidirectional) { @property auto ref back() { if (_lastBackIndex == size_t.max) { this._lastBackIndex = backIndex; // lazy initialization } final switch (_lastBackIndex) { foreach (i, _; Rs) { case i: assert(!source[i].empty); return source[i].back; } } } private size_t backIndex() { size_t bestIndex = size_t.max; // indicate undefined Unqual!ElementType bestElement; foreach (i, _; Rs) { if (source[i].empty) continue; if (bestIndex == size_t.max || // either this is the first or comp(bestElement, source[i].back)) { bestIndex = i; bestElement = source[i].back; } } return bestIndex; } void popBack() { if (_lastBackIndex == size_t.max) { this._lastBackIndex = backIndex; // lazy initialization } sw: final switch (_lastBackIndex) { foreach (i, R; Rs) { case i: debug static if (canCheckSortedness) { ElementType previousBack = source[i].back(); } source[i].popBack(); debug static if (canCheckSortedness) { if (!source[i].empty) { assert(previousBack == source[i].back || comp(source[i].back, previousBack), "Input " ~ i.stringof ~ " is unsorted"); // @nogc } } break sw; } } _lastBackIndex = backIndex; if (_lastBackIndex == size_t.max) // if emptied { _lastFrontIndex = size_t.max; } } } static if (allSatisfy!(isForwardRange, staticMap!(Unqual, Rs))) { @property auto save() { auto result = this; foreach (i, _; Rs) { result.source[i] = result.source[i].save; } return result; } } static if (allSatisfy!(hasLength, Rs)) { @property size_t length() { size_t result; foreach (i, _; Rs) { result += source[i].length; } return result; } alias opDollar = length; } } /** Merge multiple sorted ranges `rs` with less-than predicate function `pred` into one single sorted output range containing the sorted union of the elements of inputs. Duplicates are not eliminated, meaning that the total number of elements in the output is the sum of all elements in the ranges passed to it; the `length` member is offered if all inputs also have `length`. The element types of all the inputs must have a common type `CommonType`. Params: less = Predicate the given ranges are sorted by. rs = The ranges to compute the union for. Returns: A range containing the union of the given ranges. Details: All of its inputs are assumed to be sorted. This can mean that inputs are instances of $(REF SortedRange, std,range). Use the result of $(REF sort, std,algorithm,sorting), or $(REF assumeSorted, std,range) to merge ranges known to be sorted (show in the example below). Note that there is currently no way of ensuring that two or more instances of $(REF SortedRange, std,range) are sorted using a specific comparison function `pred`. Therefore no checking is done here to assure that all inputs `rs` are instances of $(REF SortedRange, std,range). This algorithm is lazy, doing work progressively as elements are pulled off the result. Time complexity is proportional to the sum of element counts over all inputs. If all inputs have the same element type and offer it by `ref`, output becomes a range with mutable `front` (and `back` where appropriate) that reflects in the original inputs. If any of the inputs `rs` is infinite so is the result (`empty` being always `false`). */ Merge!(less, Rs) merge(alias less = "a < b", Rs...)(Rs rs) if (Rs.length >= 2 && allSatisfy!(isInputRange, Rs) && !is(CommonType!(staticMap!(ElementType, Rs)) == void)) { return typeof(return)(rs); } /// @safe pure nothrow unittest { import std.algorithm.comparison : equal; import std.range : retro; int[] a = [1, 3, 5]; int[] b = [2, 3, 4]; assert(a.merge(b).equal([1, 2, 3, 3, 4, 5])); assert(a.merge(b).retro.equal([5, 4, 3, 3, 2, 1])); } @safe pure nothrow unittest { import std.algorithm.comparison : equal; int[] a = [ 1, 2, 4, 5, 7, 9 ]; int[] b = [ 0, 1, 2, 4, 7, 8 ]; double[] c = [ 10.5 ]; assert(merge(a, b).length == a.length + b.length); assert(equal(merge(a, b), [0, 1, 1, 2, 2, 4, 4, 5, 7, 7, 8, 9][])); assert(equal(merge(a, c, b), [0, 1, 1, 2, 2, 4, 4, 5, 7, 7, 8, 9, 10.5][])); auto u = merge(a, b); u.front--; assert(equal(u, [-1, 1, 1, 2, 2, 4, 4, 5, 7, 7, 8, 9][])); } @safe pure nothrow unittest { // save import std.range : dropOne; int[] a = [1, 2]; int[] b = [0, 3]; auto arr = a.merge(b); assert(arr.front == 0); assert(arr.save.dropOne.front == 1); assert(arr.front == 0); } @safe pure nothrow unittest { import std.algorithm.comparison : equal; import std.internal.test.dummyrange; auto dummyResult1 = [1, 1, 1.5, 2, 3, 4, 5, 5.5, 6, 7, 8, 9, 10]; auto dummyResult2 = [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10]; foreach (DummyType; AllDummyRanges) { DummyType d; assert(d.merge([1, 1.5, 5.5]).equal(dummyResult1)); assert(d.merge(d).equal(dummyResult2)); } } @nogc @safe pure nothrow unittest { import std.algorithm.comparison : equal; static immutable a = [1, 3, 5]; static immutable b = [2, 3, 4]; static immutable r = [1, 2, 3, 3, 4, 5]; assert(a.merge(b).equal(r)); } /// test bi-directional access and common type @safe pure nothrow unittest { import std.algorithm.comparison : equal; import std.range : retro; import std.traits : CommonType; alias S = short; alias I = int; alias D = double; S[] a = [1, 2, 3]; I[] b = [50, 60]; D[] c = [10, 20, 30, 40]; auto m = merge(a, b, c); static assert(is(typeof(m.front) == CommonType!(S, I, D))); assert(equal(m, [1, 2, 3, 10, 20, 30, 40, 50, 60])); assert(equal(m.retro, [60, 50, 40, 30, 20, 10, 3, 2, 1])); m.popFront(); assert(equal(m, [2, 3, 10, 20, 30, 40, 50, 60])); m.popBack(); assert(equal(m, [2, 3, 10, 20, 30, 40, 50])); m.popFront(); assert(equal(m, [3, 10, 20, 30, 40, 50])); m.popBack(); assert(equal(m, [3, 10, 20, 30, 40])); m.popFront(); assert(equal(m, [10, 20, 30, 40])); m.popBack(); assert(equal(m, [10, 20, 30])); m.popFront(); assert(equal(m, [20, 30])); m.popBack(); assert(equal(m, [20])); m.popFront(); assert(m.empty); } private template validPredicates(E, less...) { static if (less.length == 0) enum validPredicates = true; else static if (less.length == 1 && is(typeof(less[0]) == SwapStrategy)) enum validPredicates = true; else enum validPredicates = is(typeof((E a, E b){ bool r = binaryFun!(less[0])(a, b); })) && validPredicates!(E, less[1 .. $]); } /** $(D auto multiSort(Range)(Range r) if (validPredicates!(ElementType!Range, less));) Sorts a range by multiple keys. The call $(D multiSort!("a.id < b.id", "a.date > b.date")(r)) sorts the range $(D r) by $(D id) ascending, and sorts elements that have the same $(D id) by $(D date) descending. Such a call is equivalent to $(D sort!"a.id != b.id ? a.id < b.id : a.date > b.date"(r)), but $(D multiSort) is faster because it does fewer comparisons (in addition to being more convenient). Returns: The initial range wrapped as a $(D SortedRange) with its predicates converted to an equivalent single predicate. */ template multiSort(less...) //if (less.length > 1) { auto multiSort(Range)(Range r) if (validPredicates!(ElementType!Range, less)) { import std.range : assumeSorted; import std.meta : AliasSeq; static if (is(typeof(less[$ - 1]) == SwapStrategy)) { enum ss = less[$ - 1]; alias funs = less[0 .. $ - 1]; } else { enum ss = SwapStrategy.unstable; alias funs = less; } static if (funs.length == 0) static assert(false, "No sorting predicate provided for multiSort"); else static if (funs.length == 1) return sort!(funs[0], ss, Range)(r); else { multiSortImpl!(Range, ss, funs)(r); return assumeSorted!(multiSortPredFun!(Range, funs))(r); } } } private bool multiSortPredFun(Range, funs...)(ElementType!Range a, ElementType!Range b) { foreach (f; funs) { alias lessFun = binaryFun!(f); if (lessFun(a, b)) return true; if (lessFun(b, a)) return false; } return false; } private void multiSortImpl(Range, SwapStrategy ss, funs...)(Range r) { alias lessFun = binaryFun!(funs[0]); static if (funs.length > 1) { while (r.length > 1) { auto p = getPivot!lessFun(r); auto t = partition3!(funs[0], ss)(r, r[p]); if (t[0].length <= t[2].length) { multiSortImpl!(Range, ss, funs)(t[0]); multiSortImpl!(Range, ss, funs[1 .. $])(t[1]); r = t[2]; } else { multiSortImpl!(Range, ss, funs[1 .. $])(t[1]); multiSortImpl!(Range, ss, funs)(t[2]); r = t[0]; } } } else { sort!(lessFun, ss)(r); } } /// @safe unittest { import std.algorithm.mutation : SwapStrategy; static struct Point { int x, y; } auto pts1 = [ Point(0, 0), Point(5, 5), Point(0, 1), Point(0, 2) ]; auto pts2 = [ Point(0, 0), Point(0, 1), Point(0, 2), Point(5, 5) ]; multiSort!("a.x < b.x", "a.y < b.y", SwapStrategy.unstable)(pts1); assert(pts1 == pts2); } @safe unittest { import std.algorithm.comparison : equal; import std.range; static struct Point { int x, y; } auto pts1 = [ Point(5, 6), Point(1, 0), Point(5, 7), Point(1, 1), Point(1, 2), Point(0, 1) ]; auto pts2 = [ Point(0, 1), Point(1, 0), Point(1, 1), Point(1, 2), Point(5, 6), Point(5, 7) ]; static assert(validPredicates!(Point, "a.x < b.x", "a.y < b.y")); multiSort!("a.x < b.x", "a.y < b.y", SwapStrategy.unstable)(pts1); assert(pts1 == pts2); auto pts3 = indexed(pts1, iota(pts1.length)); assert(pts3.multiSort!("a.x < b.x", "a.y < b.y", SwapStrategy.unstable).release.equal(pts2)); auto pts4 = iota(10).array; assert(pts4.multiSort!("a > b").release.equal(iota(10).retro)); } @safe unittest //issue 9160 (L-value only comparators) { static struct A { int x; int y; } static bool byX(const ref A lhs, const ref A rhs) { return lhs.x < rhs.x; } static bool byY(const ref A lhs, const ref A rhs) { return lhs.y < rhs.y; } auto points = [ A(4, 1), A(2, 4)]; multiSort!(byX, byY)(points); assert(points[0] == A(2, 4)); assert(points[1] == A(4, 1)); } @safe unittest // issue 16179 (cannot access frame of function) { auto arr = [[1, 2], [2, 0], [1, 0], [1, 1]]; int c = 3; arr.multiSort!( (a, b) => a[0] < b[0], (a, b) => c*a[1] < c*b[1] ); assert(arr == [[1, 0], [1, 1], [1, 2], [2, 0]]); } @safe unittest //Issue 16413 - @system comparison function { bool lt(int a, int b) { return a < b; } static @system auto a = [2, 1]; a.multiSort!(lt, lt); assert(a == [1, 2]); } private size_t getPivot(alias less, Range)(Range r) { auto mid = r.length / 2; if (r.length < 512) { if (r.length >= 32) medianOf!less(r, size_t(0), mid, r.length - 1); return mid; } // The plan here is to take the median of five by taking five elements in // the array, segregate around their median, and return the position of the // third. We choose first, mid, last, and two more in between those. auto quarter = r.length / 4; medianOf!less(r, size_t(0), mid - quarter, mid, mid + quarter, r.length - 1); return mid; } /* Sorting routine that is optimized for short ranges. Note: uses insertion sort going downward. Benchmarked a similar routine that goes upward, for some reason it's slower. */ private void shortSort(alias less, Range)(Range r) { import std.algorithm.mutation : swapAt; alias pred = binaryFun!(less); switch (r.length) { case 0: case 1: return; case 2: if (pred(r[1], r[0])) r.swapAt(0, 1); return; case 3: if (pred(r[2], r[0])) { if (pred(r[0], r[1])) { r.swapAt(0, 1); r.swapAt(0, 2); } else { r.swapAt(0, 2); if (pred(r[1], r[0])) r.swapAt(0, 1); } } else { if (pred(r[1], r[0])) { r.swapAt(0, 1); } else { if (pred(r[2], r[1])) r.swapAt(1, 2); } } return; case 4: if (pred(r[1], r[0])) r.swapAt(0, 1); if (pred(r[3], r[2])) r.swapAt(2, 3); if (pred(r[2], r[0])) r.swapAt(0, 2); if (pred(r[3], r[1])) r.swapAt(1, 3); if (pred(r[2], r[1])) r.swapAt(1, 2); return; default: sort5!pred(r[r.length - 5 .. r.length]); if (r.length == 5) return; break; } assert(r.length >= 6); /* The last 5 elements of the range are sorted. Proceed with expanding the sorted portion downward. */ immutable maxJ = r.length - 2; for (size_t i = r.length - 6; ; --i) { static if (is(typeof(() nothrow { auto t = r[0]; if (pred(t, r[0])) r[0] = r[0]; }))) // Can we afford to temporarily invalidate the array? { size_t j = i + 1; auto temp = r[i]; if (pred(r[j], temp)) { do { r[j - 1] = r[j]; ++j; } while (j < r.length && pred(r[j], temp)); r[j - 1] = temp; } } else { size_t j = i; while (pred(r[j + 1], r[j])) { r.swapAt(j, j + 1); if (j == maxJ) break; ++j; } } if (i == 0) break; } } @safe unittest { import std.random : Random, uniform; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); auto rnd = Random(1); auto a = new int[uniform(100, 200, rnd)]; foreach (ref e; a) { e = uniform(-100, 100, rnd); } shortSort!(binaryFun!("a < b"), int[])(a); assert(isSorted(a)); } /* Sorts the first 5 elements exactly of range r. */ private void sort5(alias lt, Range)(Range r) { assert(r.length >= 5); import std.algorithm.mutation : swapAt; // 1. Sort first two pairs if (lt(r[1], r[0])) r.swapAt(0, 1); if (lt(r[3], r[2])) r.swapAt(2, 3); // 2. Arrange first two pairs by the largest element if (lt(r[3], r[1])) { r.swapAt(0, 2); r.swapAt(1, 3); } assert(!lt(r[1], r[0]) && !lt(r[3], r[1]) && !lt(r[3], r[2])); // 3. Insert 4 into [0, 1, 3] if (lt(r[4], r[1])) { r.swapAt(3, 4); r.swapAt(1, 3); if (lt(r[1], r[0])) { r.swapAt(0, 1); } } else if (lt(r[4], r[3])) { r.swapAt(3, 4); } assert(!lt(r[1], r[0]) && !lt(r[3], r[1]) && !lt(r[4], r[3])); // 4. Insert 2 into [0, 1, 3, 4] (note: we already know the last is greater) assert(!lt(r[4], r[2])); if (lt(r[2], r[1])) { r.swapAt(1, 2); if (lt(r[1], r[0])) { r.swapAt(0, 1); } } else if (lt(r[3], r[2])) { r.swapAt(2, 3); } // 7 comparisons, 0-9 swaps } @safe unittest { import std.algorithm.iteration : permutations; import std.algorithm.mutation : copy; int[5] buf; foreach (per; iota(5).permutations) { per.copy(buf[]); sort5!((a, b) => a < b)(buf[]); assert(buf[].isSorted); } } // sort /** Sorts a random-access range according to the predicate $(D less). Performs $(BIGOH r.length * log(r.length)) evaluations of $(D less). If `less` involves expensive computations on the _sort key, it may be worthwhile to use $(LREF schwartzSort) instead. Stable sorting requires $(D hasAssignableElements!Range) to be true. $(D sort) returns a $(REF SortedRange, std,range) over the original range, allowing functions that can take advantage of sorted data to know that the range is sorted and adjust accordingly. The $(REF SortedRange, std,range) is a wrapper around the original range, so both it and the original range are sorted. Other functions can't know that the original range has been sorted, but they $(I can) know that $(REF SortedRange, std,range) has been sorted. Preconditions: The predicate is expected to satisfy certain rules in order for $(D sort) to behave as expected - otherwise, the program may fail on certain inputs (but not others) when not compiled in release mode, due to the cursory $(D assumeSorted) check. Specifically, $(D sort) expects $(D less(a,b) && less(b,c)) to imply $(D less(a,c)) (transitivity), and, conversely, $(D !less(a,b) && !less(b,c)) to imply $(D !less(a,c)). Note that the default predicate ($(D "a < b")) does not always satisfy these conditions for floating point types, because the expression will always be $(D false) when either $(D a) or $(D b) is NaN. Use $(REF cmp, std,math) instead. Params: less = The predicate to sort by. ss = The swapping strategy to use. r = The range to sort. Returns: The initial range wrapped as a $(D SortedRange) with the predicate $(D binaryFun!less). Algorithms: $(HTTP en.wikipedia.org/wiki/Introsort, Introsort) is used for unstable sorting and $(HTTP en.wikipedia.org/wiki/Timsort, Timsort) is used for stable sorting. Each algorithm has benefits beyond stability. Introsort is generally faster but Timsort may achieve greater speeds on data with low entropy or if predicate calls are expensive. Introsort performs no allocations whereas Timsort will perform one or more allocations per call. Both algorithms have $(BIGOH n log n) worst-case time complexity. See_Also: $(REF assumeSorted, std,range)$(BR) $(REF SortedRange, std,range)$(BR) $(REF SwapStrategy, std,algorithm,mutation)$(BR) $(REF binaryFun, std,functional) */ SortedRange!(Range, less) sort(alias less = "a < b", SwapStrategy ss = SwapStrategy.unstable, Range)(Range r) if (((ss == SwapStrategy.unstable && (hasSwappableElements!Range || hasAssignableElements!Range)) || (ss != SwapStrategy.unstable && hasAssignableElements!Range)) && isRandomAccessRange!Range && hasSlicing!Range && hasLength!Range) /+ Unstable sorting uses the quicksort algorithm, which uses swapAt, which either uses swap(...), requiring swappable elements, or just swaps using assignment. Stable sorting uses TimSort, which needs to copy elements into a buffer, requiring assignable elements. +/ { import std.range : assumeSorted; alias lessFun = binaryFun!(less); alias LessRet = typeof(lessFun(r.front, r.front)); // instantiate lessFun static if (is(LessRet == bool)) { static if (ss == SwapStrategy.unstable) quickSortImpl!(lessFun)(r, r.length); else //use Tim Sort for semistable & stable TimSortImpl!(lessFun, Range).sort(r, null); assert(isSorted!lessFun(r), "Failed to sort range of type " ~ Range.stringof); } else { static assert(false, "Invalid predicate passed to sort: " ~ less.stringof); } return assumeSorted!less(r); } /// @safe pure nothrow unittest { int[] array = [ 1, 2, 3, 4 ]; // sort in descending order array.sort!("a > b"); assert(array == [ 4, 3, 2, 1 ]); // sort in ascending order array.sort(); assert(array == [ 1, 2, 3, 4 ]); // sort with reusable comparator and chain alias myComp = (x, y) => x > y; assert(array.sort!(myComp).release == [ 4, 3, 2, 1 ]); } /// @safe unittest { // Showcase stable sorting import std.algorithm.mutation : SwapStrategy; string[] words = [ "aBc", "a", "abc", "b", "ABC", "c" ]; sort!("toUpper(a) < toUpper(b)", SwapStrategy.stable)(words); assert(words == [ "a", "aBc", "abc", "ABC", "b", "c" ]); } /// @safe unittest { // Sorting floating-point numbers in presence of NaN double[] numbers = [-0.0, 3.0, -2.0, double.nan, 0.0, -double.nan]; import std.math : cmp, isIdentical; import std.algorithm.comparison : equal; sort!((a, b) => cmp(a, b) < 0)(numbers); double[] sorted = [-double.nan, -2.0, -0.0, 0.0, 3.0, double.nan]; assert(numbers.equal!isIdentical(sorted)); } @safe unittest { // Simple regression benchmark import std.random, std.algorithm.iteration, std.algorithm.mutation; Random rng; int[] a = iota(20148).map!(_ => uniform(-1000, 1000, rng)).array; static uint comps; static bool less(int a, int b) { ++comps; return a < b; } sort!less(a); // random numbers sort!less(a); // sorted ascending a.reverse(); sort!less(a); // sorted descending a[] = 0; sort!less(a); // all equal // This should get smaller with time. On occasion it may go larger, but only // if there's thorough justification. debug enum uint watermark = 1676280; else enum uint watermark = 1676220; import std.conv; assert(comps <= watermark, text("You seem to have pessimized sort! ", watermark, " < ", comps)); assert(comps >= watermark, text("You seem to have improved sort!", " Please update watermark from ", watermark, " to ", comps)); } @safe unittest { import std.algorithm.internal : rndstuff; import std.algorithm.mutation : swapRanges; import std.random : Random, unpredictableSeed, uniform; import std.uni : toUpper; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); // sort using delegate auto a = new int[100]; auto rnd = Random(unpredictableSeed); foreach (ref e; a) { e = uniform(-100, 100, rnd); } int i = 0; bool greater2(int a, int b) @safe { return a + i > b + i; } auto greater = &greater2; sort!(greater)(a); assert(isSorted!(greater)(a)); // sort using string sort!("a < b")(a); assert(isSorted!("a < b")(a)); // sort using function; all elements equal foreach (ref e; a) { e = 5; } static bool less(int a, int b) { return a < b; } sort!(less)(a); assert(isSorted!(less)(a)); string[] words = [ "aBc", "a", "abc", "b", "ABC", "c" ]; bool lessi(string a, string b) { return toUpper(a) < toUpper(b); } sort!(lessi, SwapStrategy.stable)(words); assert(words == [ "a", "aBc", "abc", "ABC", "b", "c" ]); // sort using ternary predicate //sort!("b - a")(a); //assert(isSorted!(less)(a)); a = rndstuff!(int)(); sort(a); assert(isSorted(a)); auto b = rndstuff!(string)(); sort!("toLower(a) < toLower(b)")(b); assert(isSorted!("toUpper(a) < toUpper(b)")(b)); { // Issue 10317 enum E_10317 { a, b } auto a_10317 = new E_10317[10]; sort(a_10317); } { // Issue 7767 // Unstable sort should complete without an excessive number of predicate calls // This would suggest it's running in quadratic time // Compilation error if predicate is not static, i.e. a nested function static uint comp; static bool pred(size_t a, size_t b) { ++comp; return a < b; } size_t[] arr; arr.length = 1024; foreach (k; 0 .. arr.length) arr[k] = k; swapRanges(arr[0..$/2], arr[$/2..$]); sort!(pred, SwapStrategy.unstable)(arr); assert(comp < 25_000); } { import std.algorithm.mutation : swap; bool proxySwapCalled; struct S { int i; alias i this; void proxySwap(ref S other) { swap(i, other.i); proxySwapCalled = true; } @disable void opAssign(S value); } alias R = S[]; R r = [S(3), S(2), S(1)]; static assert(hasSwappableElements!R); static assert(!hasAssignableElements!R); r.sort(); assert(proxySwapCalled); } } private void quickSortImpl(alias less, Range)(Range r, size_t depth) { import std.algorithm.mutation : swap, swapAt; import std.algorithm.comparison : min, max; alias Elem = ElementType!(Range); enum size_t shortSortGetsBetter = max(32, 1024 / Elem.sizeof); static assert(shortSortGetsBetter >= 1); // partition while (r.length > shortSortGetsBetter) { if (depth == 0) { HeapOps!(less, Range).heapSort(r); return; } depth = depth >= depth.max / 2 ? (depth / 3) * 2 : (depth * 2) / 3; const pivotIdx = getPivot!(less)(r); auto pivot = r[pivotIdx]; // partition r.swapAt(pivotIdx, r.length - 1); size_t lessI = size_t.max, greaterI = r.length - 1; outer: for (;;) { alias pred = binaryFun!less; while (pred(r[++lessI], pivot)) {} assert(lessI <= greaterI, "sort: invalid comparison function."); for (;;) { if (greaterI == lessI) break outer; if (!pred(pivot, r[--greaterI])) break; } assert(lessI <= greaterI, "sort: invalid comparison function."); if (lessI == greaterI) break; r.swapAt(lessI, greaterI); } r.swapAt(r.length - 1, lessI); auto left = r[0 .. lessI], right = r[lessI + 1 .. r.length]; if (right.length > left.length) { swap(left, right); } .quickSortImpl!(less, Range)(right, depth); r = left; } // residual sort static if (shortSortGetsBetter > 1) { shortSort!(less, Range)(r); } } // Heap operations for random-access ranges package(std) template HeapOps(alias less, Range) { import std.algorithm.mutation : swapAt; static assert(isRandomAccessRange!Range); static assert(hasLength!Range); static assert(hasSwappableElements!Range || hasAssignableElements!Range); alias lessFun = binaryFun!less; //template because of @@@12410@@@ void heapSort()(Range r) { // If true, there is nothing to do if (r.length < 2) return; // Build Heap buildHeap(r); // Sort for (size_t i = r.length - 1; i > 0; --i) { r.swapAt(0, i); percolate(r, 0, i); } } //template because of @@@12410@@@ void buildHeap()(Range r) { immutable n = r.length; for (size_t i = n / 2; i-- > 0; ) { siftDown(r, i, n); } assert(isHeap(r)); } bool isHeap()(Range r) { size_t parent = 0; foreach (child; 1 .. r.length) { if (lessFun(r[parent], r[child])) return false; // Increment parent every other pass parent += !(child & 1); } return true; } // Sifts down r[parent] (which is initially assumed to be messed up) so the // heap property is restored for r[parent .. end]. // template because of @@@12410@@@ void siftDown()(Range r, size_t parent, immutable size_t end) { for (;;) { auto child = (parent + 1) * 2; if (child >= end) { // Leftover left child? if (child == end && lessFun(r[parent], r[--child])) r.swapAt(parent, child); break; } auto leftChild = child - 1; if (lessFun(r[child], r[leftChild])) child = leftChild; if (!lessFun(r[parent], r[child])) break; r.swapAt(parent, child); parent = child; } } // Alternate version of siftDown that performs fewer comparisons, see // https://en.wikipedia.org/wiki/Heapsort#Bottom-up_heapsort. The percolate // process first sifts the parent all the way down (without comparing it // against the leaves), and then a bit up until the heap property is // restored. So there are more swaps but fewer comparisons. Gains are made // when the final position is likely to end toward the bottom of the heap, // so not a lot of sifts back are performed. //template because of @@@12410@@@ void percolate()(Range r, size_t parent, immutable size_t end) { immutable root = parent; // Sift down for (;;) { auto child = (parent + 1) * 2; if (child >= end) { if (child == end) { // Leftover left node. --child; r.swapAt(parent, child); parent = child; } break; } auto leftChild = child - 1; if (lessFun(r[child], r[leftChild])) child = leftChild; r.swapAt(parent, child); parent = child; } // Sift up for (auto child = parent; child > root; child = parent) { parent = (child - 1) / 2; if (!lessFun(r[parent], r[child])) break; r.swapAt(parent, child); } } } // Tim Sort implementation private template TimSortImpl(alias pred, R) { import core.bitop : bsr; import std.array : uninitializedArray; static assert(isRandomAccessRange!R); static assert(hasLength!R); static assert(hasSlicing!R); static assert(hasAssignableElements!R); alias T = ElementType!R; alias less = binaryFun!pred; alias greater = (a, b) => less(b, a); alias greaterEqual = (a, b) => !less(a, b); alias lessEqual = (a, b) => !less(b, a); enum minimalMerge = 128; enum minimalGallop = 7; enum minimalStorage = 256; enum stackSize = 40; struct Slice{ size_t base, length; } // Entry point for tim sort void sort()(R range, T[] temp) { import std.algorithm.comparison : min; // Do insertion sort on small range if (range.length <= minimalMerge) { binaryInsertionSort(range); return; } immutable minRun = minRunLength(range.length); immutable minTemp = min(range.length / 2, minimalStorage); size_t minGallop = minimalGallop; Slice[stackSize] stack = void; size_t stackLen = 0; // Allocate temporary memory if not provided by user if (temp.length < minTemp) temp = () @trusted { return uninitializedArray!(T[])(minTemp); }(); for (size_t i = 0; i < range.length; ) { // Find length of first run in list size_t runLen = firstRun(range[i .. range.length]); // If run has less than minRun elements, extend using insertion sort if (runLen < minRun) { // Do not run farther than the length of the range immutable force = range.length - i > minRun ? minRun : range.length - i; binaryInsertionSort(range[i .. i + force], runLen); runLen = force; } // Push run onto stack stack[stackLen++] = Slice(i, runLen); i += runLen; // Collapse stack so that (e1 > e2 + e3 && e2 > e3) // STACK is | ... e1 e2 e3 > while (stackLen > 1) { immutable run4 = stackLen - 1; immutable run3 = stackLen - 2; immutable run2 = stackLen - 3; immutable run1 = stackLen - 4; if ( (stackLen > 2 && stack[run2].length <= stack[run3].length + stack[run4].length) || (stackLen > 3 && stack[run1].length <= stack[run3].length + stack[run2].length) ) { immutable at = stack[run2].length < stack[run4].length ? run2 : run3; mergeAt(range, stack[0 .. stackLen], at, minGallop, temp); } else if (stack[run3].length > stack[run4].length) break; else mergeAt(range, stack[0 .. stackLen], run3, minGallop, temp); stackLen -= 1; } // Assert that the code above established the invariant correctly version (assert) { if (stackLen == 2) assert(stack[0].length > stack[1].length); else if (stackLen > 2) { foreach (k; 2 .. stackLen) { assert(stack[k - 2].length > stack[k - 1].length + stack[k].length); assert(stack[k - 1].length > stack[k].length); } } } } // Force collapse stack until there is only one run left while (stackLen > 1) { immutable run3 = stackLen - 1; immutable run2 = stackLen - 2; immutable run1 = stackLen - 3; immutable at = stackLen >= 3 && stack[run1].length <= stack[run3].length ? run1 : run2; mergeAt(range, stack[0 .. stackLen], at, minGallop, temp); --stackLen; } } // Calculates optimal value for minRun: // take first 6 bits of n and add 1 if any lower bits are set size_t minRunLength()(size_t n) { immutable shift = bsr(n)-5; auto result = (n>>shift) + !!(n & ~((1< lower; upper--) range[upper] = range.moveAt(upper - 1); range[lower] = move(item); } } // Merge two runs in stack (at, at + 1) void mergeAt()(R range, Slice[] stack, immutable size_t at, ref size_t minGallop, ref T[] temp) in { assert(stack.length >= 2); assert(stack.length - at == 2 || stack.length - at == 3); } body { immutable base = stack[at].base; immutable mid = stack[at].length; immutable len = stack[at + 1].length + mid; // Pop run from stack stack[at] = Slice(base, len); if (stack.length - at == 3) stack[$ - 2] = stack[$ - 1]; // Merge runs (at, at + 1) return merge(range[base .. base + len], mid, minGallop, temp); } // Merge two runs in a range. Mid is the starting index of the second run. // minGallop and temp are references; The calling function must receive the updated values. void merge()(R range, size_t mid, ref size_t minGallop, ref T[] temp) in { if (!__ctfe) { assert(isSorted!pred(range[0 .. mid])); assert(isSorted!pred(range[mid .. range.length])); } } body { assert(mid < range.length); // Reduce range of elements immutable firstElement = gallopForwardUpper(range[0 .. mid], range[mid]); immutable lastElement = gallopReverseLower(range[mid .. range.length], range[mid - 1]) + mid; range = range[firstElement .. lastElement]; mid -= firstElement; if (mid == 0 || mid == range.length) return; // Call function which will copy smaller run into temporary memory if (mid <= range.length / 2) { temp = ensureCapacity(mid, temp); minGallop = mergeLo(range, mid, minGallop, temp); } else { temp = ensureCapacity(range.length - mid, temp); minGallop = mergeHi(range, mid, minGallop, temp); } } // Enlarge size of temporary memory if needed T[] ensureCapacity()(size_t minCapacity, T[] temp) out(ret) { assert(ret.length >= minCapacity); } body { if (temp.length < minCapacity) { size_t newSize = 1<<(bsr(minCapacity)+1); //Test for overflow if (newSize < minCapacity) newSize = minCapacity; if (__ctfe) temp.length = newSize; else temp = () @trusted { return uninitializedArray!(T[])(newSize); }(); } return temp; } // Merge front to back. Returns new value of minGallop. // temp must be large enough to store range[0 .. mid] size_t mergeLo()(R range, immutable size_t mid, size_t minGallop, T[] temp) out { if (!__ctfe) assert(isSorted!pred(range)); } body { import std.algorithm.mutation : copy; assert(mid <= range.length); assert(temp.length >= mid); // Copy run into temporary memory temp = temp[0 .. mid]; copy(range[0 .. mid], temp); // Move first element into place range[0] = range[mid]; size_t i = 1, lef = 0, rig = mid + 1; size_t count_lef, count_rig; immutable lef_end = temp.length - 1; if (lef < lef_end && rig < range.length) outer: while (true) { count_lef = 0; count_rig = 0; // Linear merge while ((count_lef | count_rig) < minGallop) { if (lessEqual(temp[lef], range[rig])) { range[i++] = temp[lef++]; if (lef >= lef_end) break outer; ++count_lef; count_rig = 0; } else { range[i++] = range[rig++]; if (rig >= range.length) break outer; count_lef = 0; ++count_rig; } } // Gallop merge do { count_lef = gallopForwardUpper(temp[lef .. $], range[rig]); foreach (j; 0 .. count_lef) range[i++] = temp[lef++]; if (lef >= temp.length) break outer; count_rig = gallopForwardLower(range[rig .. range.length], temp[lef]); foreach (j; 0 .. count_rig) range[i++] = range[rig++]; if (rig >= range.length) while (true) { range[i++] = temp[lef++]; if (lef >= temp.length) break outer; } if (minGallop > 0) --minGallop; } while (count_lef >= minimalGallop || count_rig >= minimalGallop); minGallop += 2; } // Move remaining elements from right while (rig < range.length) range[i++] = range[rig++]; // Move remaining elements from left while (lef < temp.length) range[i++] = temp[lef++]; return minGallop > 0 ? minGallop : 1; } // Merge back to front. Returns new value of minGallop. // temp must be large enough to store range[mid .. range.length] size_t mergeHi()(R range, immutable size_t mid, size_t minGallop, T[] temp) out { if (!__ctfe) assert(isSorted!pred(range)); } body { import std.algorithm.mutation : copy; assert(mid <= range.length); assert(temp.length >= range.length - mid); // Copy run into temporary memory temp = temp[0 .. range.length - mid]; copy(range[mid .. range.length], temp); // Move first element into place range[range.length - 1] = range[mid - 1]; size_t i = range.length - 2, lef = mid - 2, rig = temp.length - 1; size_t count_lef, count_rig; outer: while (true) { count_lef = 0; count_rig = 0; // Linear merge while ((count_lef | count_rig) < minGallop) { if (greaterEqual(temp[rig], range[lef])) { range[i--] = temp[rig]; if (rig == 1) { // Move remaining elements from left while (true) { range[i--] = range[lef]; if (lef == 0) break; --lef; } // Move last element into place range[i] = temp[0]; break outer; } --rig; count_lef = 0; ++count_rig; } else { range[i--] = range[lef]; if (lef == 0) while (true) { range[i--] = temp[rig]; if (rig == 0) break outer; --rig; } --lef; ++count_lef; count_rig = 0; } } // Gallop merge do { count_rig = rig - gallopReverseLower(temp[0 .. rig], range[lef]); foreach (j; 0 .. count_rig) { range[i--] = temp[rig]; if (rig == 0) break outer; --rig; } count_lef = lef - gallopReverseUpper(range[0 .. lef], temp[rig]); foreach (j; 0 .. count_lef) { range[i--] = range[lef]; if (lef == 0) while (true) { range[i--] = temp[rig]; if (rig == 0) break outer; --rig; } --lef; } if (minGallop > 0) --minGallop; } while (count_lef >= minimalGallop || count_rig >= minimalGallop); minGallop += 2; } return minGallop > 0 ? minGallop : 1; } // false = forward / lower, true = reverse / upper template gallopSearch(bool forwardReverse, bool lowerUpper) { // Gallop search on range according to attributes forwardReverse and lowerUpper size_t gallopSearch(R)(R range, T value) out(ret) { assert(ret <= range.length); } body { size_t lower = 0, center = 1, upper = range.length; alias gap = center; static if (forwardReverse) { static if (!lowerUpper) alias comp = lessEqual; // reverse lower static if (lowerUpper) alias comp = less; // reverse upper // Gallop Search Reverse while (gap <= upper) { if (comp(value, range[upper - gap])) { upper -= gap; gap *= 2; } else { lower = upper - gap; break; } } // Binary Search Reverse while (upper != lower) { center = lower + (upper - lower) / 2; if (comp(value, range[center])) upper = center; else lower = center + 1; } } else { static if (!lowerUpper) alias comp = greater; // forward lower static if (lowerUpper) alias comp = greaterEqual; // forward upper // Gallop Search Forward while (lower + gap < upper) { if (comp(value, range[lower + gap])) { lower += gap; gap *= 2; } else { upper = lower + gap; break; } } // Binary Search Forward while (lower != upper) { center = lower + (upper - lower) / 2; if (comp(value, range[center])) lower = center + 1; else upper = center; } } return lower; } } alias gallopForwardLower = gallopSearch!(false, false); alias gallopForwardUpper = gallopSearch!(false, true); alias gallopReverseLower = gallopSearch!( true, false); alias gallopReverseUpper = gallopSearch!( true, true); } @safe unittest { import std.random : Random, uniform, randomShuffle; // Element type with two fields static struct E { size_t value, index; } // Generates data especially for testing sorting with Timsort static E[] genSampleData(uint seed) @safe { import std.algorithm.mutation : swap, swapRanges; auto rnd = Random(seed); E[] arr; arr.length = 64 * 64; // We want duplicate values for testing stability foreach (i, ref v; arr) v.value = i / 64; // Swap ranges at random middle point (test large merge operation) immutable mid = uniform(arr.length / 4, arr.length / 4 * 3, rnd); swapRanges(arr[0 .. mid], arr[mid .. $]); // Shuffle last 1/8 of the array (test insertion sort and linear merge) randomShuffle(arr[$ / 8 * 7 .. $], rnd); // Swap few random elements (test galloping mode) foreach (i; 0 .. arr.length / 64) { immutable a = uniform(0, arr.length, rnd), b = uniform(0, arr.length, rnd); swap(arr[a], arr[b]); } // Now that our test array is prepped, store original index value // This will allow us to confirm the array was sorted stably foreach (i, ref v; arr) v.index = i; return arr; } // Tests the Timsort function for correctness and stability static bool testSort(uint seed) { auto arr = genSampleData(seed); // Now sort the array! static bool comp(E a, E b) { return a.value < b.value; } sort!(comp, SwapStrategy.stable)(arr); // Test that the array was sorted correctly assert(isSorted!comp(arr)); // Test that the array was sorted stably foreach (i; 0 .. arr.length - 1) { if (arr[i].value == arr[i + 1].value) assert(arr[i].index < arr[i + 1].index); } return true; } enum seed = 310614065; testSort(seed); enum result = testSort(seed); } @safe unittest {//bugzilla 4584 assert(isSorted!"a < b"(sort!("a < b", SwapStrategy.stable)( [83, 42, 85, 86, 87, 22, 89, 30, 91, 46, 93, 94, 95, 6, 97, 14, 33, 10, 101, 102, 103, 26, 105, 106, 107, 6] ))); } @safe unittest { //test stable sort + zip import std.range; auto x = [10, 50, 60, 60, 20]; dchar[] y = "abcde"d.dup; sort!("a[0] < b[0]", SwapStrategy.stable)(zip(x, y)); assert(x == [10, 20, 50, 60, 60]); assert(y == "aebcd"d); } @safe unittest { // Issue 14223 import std.range, std.array; auto arr = chain(iota(0, 384), iota(0, 256), iota(0, 80), iota(0, 64), iota(0, 96)).array; sort!("a < b", SwapStrategy.stable)(arr); } // schwartzSort /** Alternative sorting method that should be used when comparing keys involves an expensive computation. Instead of using `less(a, b)` for comparing elements, `schwartzSort` uses `less(transform(a), transform(b))`. The values of the `transform` function are precomputed in a temporary array, thus saving on repeatedly computing it. Conversely, if the cost of `transform` is small compared to the cost of allocating and filling the precomputed array, `sort` may be faster and therefore preferable. This approach to sorting is akin to the $(HTTP wikipedia.org/wiki/Schwartzian_transform, Schwartzian transform), also known as the decorate-sort-undecorate pattern in Python and Lisp. The complexity is the same as that of the corresponding `sort`, but `schwartzSort` evaluates `transform` only `r.length` times (less than half when compared to regular sorting). The usage can be best illustrated with an example. Example: ---- uint hashFun(string) { ... expensive computation ... } string[] array = ...; // Sort strings by hash, slow sort!((a, b) => hashFun(a) < hashFun(b))(array); // Sort strings by hash, fast (only computes arr.length hashes): schwartzSort!(hashFun, "a < b")(array); ---- The $(D schwartzSort) function might require less temporary data and be faster than the Perl idiom or the decorate-sort-undecorate idiom present in Python and Lisp. This is because sorting is done in-place and only minimal extra data (one array of transformed elements) is created. To check whether an array was sorted and benefit of the speedup of Schwartz sorting, a function $(D schwartzIsSorted) is not provided because the effect can be achieved by calling $(D isSorted!less(map!transform(r))). Params: transform = The transformation to apply. less = The predicate to sort by. ss = The swapping strategy to use. r = The range to sort. Returns: The initial range wrapped as a $(D SortedRange) with the predicate $(D (a, b) => binaryFun!less(transform(a), transform(b))). */ SortedRange!(R, ((a, b) => binaryFun!less(unaryFun!transform(a), unaryFun!transform(b)))) schwartzSort(alias transform, alias less = "a < b", SwapStrategy ss = SwapStrategy.unstable, R)(R r) if (isRandomAccessRange!R && hasLength!R) { import std.conv : emplace; import std.string : representation; import std.range : zip, SortedRange; alias T = typeof(unaryFun!transform(r.front)); static trustedMalloc(size_t len) @trusted { import core.stdc.stdlib : malloc; import core.checkedint : mulu; bool overflow; const nbytes = mulu(len, T.sizeof, overflow); if (overflow) assert(0); return (cast(T*) malloc(nbytes))[0 .. len]; } auto xform1 = trustedMalloc(r.length); size_t length; scope(exit) { static if (hasElaborateDestructor!T) { foreach (i; 0 .. length) collectException(destroy(xform1[i])); } static void trustedFree(T[] p) @trusted { import core.stdc.stdlib : free; free(p.ptr); } trustedFree(xform1); } for (; length != r.length; ++length) { emplace(&xform1[length], unaryFun!transform(r[length])); } // Make sure we use ubyte[] and ushort[], not char[] and wchar[] // for the intermediate array, lest zip gets confused. static if (isNarrowString!(typeof(xform1))) { auto xform = xform1.representation(); } else { alias xform = xform1; } zip(xform, r).sort!((a, b) => binaryFun!less(a[0], b[0]), ss)(); return typeof(return)(r); } /// @safe unittest { import std.algorithm.iteration : map; import std.numeric : entropy; auto lowEnt = [ 1.0, 0, 0 ], midEnt = [ 0.1, 0.1, 0.8 ], highEnt = [ 0.31, 0.29, 0.4 ]; auto arr = new double[][3]; arr[0] = midEnt; arr[1] = lowEnt; arr[2] = highEnt; schwartzSort!(entropy, "a > b")(arr); assert(arr[0] == highEnt); assert(arr[1] == midEnt); assert(arr[2] == lowEnt); assert(isSorted!("a > b")(map!(entropy)(arr))); } @safe unittest { import std.algorithm.iteration : map; import std.numeric : entropy; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); auto lowEnt = [ 1.0, 0, 0 ], midEnt = [ 0.1, 0.1, 0.8 ], highEnt = [ 0.31, 0.29, 0.4 ]; auto arr = new double[][3]; arr[0] = midEnt; arr[1] = lowEnt; arr[2] = highEnt; schwartzSort!(entropy, "a < b")(arr); assert(arr[0] == lowEnt); assert(arr[1] == midEnt); assert(arr[2] == highEnt); assert(isSorted!("a < b")(map!(entropy)(arr))); } @safe unittest { // issue 4909 import std.typecons : Tuple; Tuple!(char)[] chars; schwartzSort!"a[0]"(chars); } @safe unittest { // issue 5924 import std.typecons : Tuple; Tuple!(char)[] chars; schwartzSort!((Tuple!(char) c){ return c[0]; })(chars); } // partialSort /** Reorders the random-access range $(D r) such that the range $(D r[0 .. mid]) is the same as if the entire $(D r) were sorted, and leaves the range $(D r[mid .. r.length]) in no particular order. Performs $(BIGOH r.length * log(mid)) evaluations of $(D pred). The implementation simply calls $(D topN!(less, ss)(r, n)) and then $(D sort!(less, ss)(r[0 .. n])). Params: less = The predicate to sort by. ss = The swapping strategy to use. r = The random-access range to reorder. n = The length of the initial segment of `r` to sort. */ void partialSort(alias less = "a < b", SwapStrategy ss = SwapStrategy.unstable, Range)(Range r, size_t n) if (isRandomAccessRange!(Range) && hasLength!(Range) && hasSlicing!(Range)) { partialSort!(less, ss)(r[0 .. n], r[n .. $]); } /// @system unittest { int[] a = [ 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 ]; partialSort(a, 5); assert(a[0 .. 5] == [ 0, 1, 2, 3, 4 ]); } /** Stores the smallest elements of the two ranges in the left-hand range in sorted order. Params: less = The predicate to sort by. ss = The swapping strategy to use. r1 = The first range. r2 = The second range. */ void partialSort(alias less = "a < b", SwapStrategy ss = SwapStrategy.unstable, Range1, Range2)(Range1 r1, Range2 r2) if (isRandomAccessRange!(Range1) && hasLength!Range1 && isInputRange!Range2 && is(ElementType!Range1 == ElementType!Range2) && hasLvalueElements!Range1 && hasLvalueElements!Range2) { topN!(less, ss)(r1, r2); sort!(less, ss)(r1); } /// @system unittest { int[] a = [5, 7, 2, 6, 7]; int[] b = [2, 1, 5, 6, 7, 3, 0]; partialSort(a, b); assert(a == [0, 1, 2, 2, 3]); } // topN /** Reorders the range $(D r) using $(D swap) such that $(D r[nth]) refers to the element that would fall there if the range were fully sorted. In addition, it also partitions $(D r) such that all elements $(D e1) from $(D r[0]) to $(D r[nth]) satisfy $(D !less(r[nth], e1)), and all elements $(D e2) from $(D r[nth]) to $(D r[r.length]) satisfy $(D !less(e2, r[nth])). Effectively, it finds the nth smallest (according to $(D less)) elements in $(D r). Performs an expected $(BIGOH r.length) (if unstable) or $(BIGOH r.length * log(r.length)) (if stable) evaluations of $(D less) and $(D swap). If $(D n >= r.length), the algorithm has no effect and returns `r[0 .. r.length]`. Params: less = The predicate to sort by. ss = The swapping strategy to use. r = The random-access range to reorder. nth = The index of the element that should be in sorted position after the function is done. See_Also: $(LREF topNIndex), $(HTTP sgi.com/tech/stl/nth_element.html, STL's nth_element) BUGS: Stable topN has not been implemented yet. */ auto topN(alias less = "a < b", SwapStrategy ss = SwapStrategy.unstable, Range)(Range r, size_t nth) if (isRandomAccessRange!(Range) && hasLength!Range && hasSlicing!Range) { static assert(ss == SwapStrategy.unstable, "Stable topN not yet implemented"); if (nth >= r.length) return r[0 .. r.length]; auto ret = r[0 .. nth]; if (false) { // Workaround for https://issues.dlang.org/show_bug.cgi?id=16528 // Safety checks: enumerate all potentially unsafe generic primitives // then use a @trusted implementation. auto b = binaryFun!less(r[0], r[r.length - 1]); import std.algorithm.mutation : swapAt; r.swapAt(size_t(0), size_t(0)); auto len = r.length; static assert(is(typeof(len) == size_t)); pivotPartition!less(r, 0); } bool useSampling = true; topNImpl!(binaryFun!less)(r, nth, useSampling); return ret; } private @trusted void topNImpl(alias less, R)(R r, size_t n, ref bool useSampling) { for (;;) { import std.algorithm.mutation : swapAt; assert(n < r.length); size_t pivot = void; // Decide strategy for partitioning if (n == 0) { pivot = 0; foreach (i; 1 .. r.length) if (less(r[i], r[pivot])) pivot = i; r.swapAt(n, pivot); return; } if (n + 1 == r.length) { pivot = 0; foreach (i; 1 .. r.length) if (less(r[pivot], r[i])) pivot = i; r.swapAt(n, pivot); return; } if (r.length <= 12) { pivot = pivotPartition!less(r, r.length / 2); } else if (n * 16 <= (r.length - 1) * 7) { pivot = topNPartitionOffMedian!(less, No.leanRight) (r, n, useSampling); // Quality check if (useSampling) { if (pivot < n) { if (pivot * 4 < r.length) { useSampling = false; } } else if ((r.length - pivot) * 8 < r.length * 3) { useSampling = false; } } } else if (n * 16 >= (r.length - 1) * 9) { pivot = topNPartitionOffMedian!(less, Yes.leanRight) (r, n, useSampling); // Quality check if (useSampling) { if (pivot < n) { if (pivot * 8 < r.length * 3) { useSampling = false; } } else if ((r.length - pivot) * 4 < r.length) { useSampling = false; } } } else { pivot = topNPartition!less(r, n, useSampling); // Quality check if (useSampling && (pivot * 9 < r.length * 2 || pivot * 9 > r.length * 7)) { // Failed - abort sampling going forward useSampling = false; } } assert(pivot != size_t.max); // See how the pivot fares if (pivot == n) { return; } if (pivot > n) { r = r[0 .. pivot]; } else { n -= pivot + 1; r = r[pivot + 1 .. r.length]; } } } /// @safe unittest { int[] v = [ 25, 7, 9, 2, 0, 5, 21 ]; topN!"a < b"(v, 100); assert(v == [ 25, 7, 9, 2, 0, 5, 21 ]); auto n = 4; topN!"a < b"(v, n); assert(v[n] == 9); } private size_t topNPartition(alias lp, R)(R r, size_t n, bool useSampling) { assert(r.length >= 9 && n < r.length); immutable ninth = r.length / 9; auto pivot = ninth / 2; // Position subrange r[lo .. hi] to have length equal to ninth and its upper // median r[lo .. hi][$ / 2] in exactly the same place as the upper median // of the entire range r[$ / 2]. This is to improve behavior for searching // the median in already sorted ranges. immutable lo = r.length / 2 - pivot, hi = lo + ninth; // We have either one straggler on the left, one on the right, or none. assert(lo - (r.length - hi) <= 1 || (r.length - hi) - lo <= 1); assert(lo >= ninth * 4); assert(r.length - hi >= ninth * 4); // Partition in groups of 3, and the mid tertile again in groups of 3 if (!useSampling) p3!lp(r, lo - ninth, hi + ninth); p3!lp(r, lo, hi); // Get the median of medians of medians // Map the full interval of n to the full interval of the ninth pivot = (n * (ninth - 1)) / (r.length - 1); topNImpl!lp(r[lo .. hi], pivot, useSampling); return expandPartition!lp(r, lo, pivot + lo, hi); } private void p3(alias less, Range)(Range r, size_t lo, immutable size_t hi) { assert(lo <= hi && hi < r.length); immutable ln = hi - lo; for (; lo < hi; ++lo) { assert(lo >= ln); assert(lo + ln < r.length); medianOf!less(r, lo - ln, lo, lo + ln); } } private void p4(alias less, Flag!"leanRight" f, Range) (Range r, size_t lo, immutable size_t hi) { assert(lo <= hi && hi < r.length); immutable ln = hi - lo, _2ln = ln * 2; for (; lo < hi; ++lo) { assert(lo >= ln); assert(lo + ln < r.length); static if (f == Yes.leanRight) medianOf!(less, f)(r, lo - _2ln, lo - ln, lo, lo + ln); else medianOf!(less, f)(r, lo - ln, lo, lo + ln, lo + _2ln); } } private size_t topNPartitionOffMedian(alias lp, Flag!"leanRight" f, R) (R r, size_t n, bool useSampling) { assert(r.length >= 12); assert(n < r.length); immutable _4 = r.length / 4; static if (f == Yes.leanRight) immutable leftLimit = 2 * _4; else immutable leftLimit = _4; // Partition in groups of 4, and the left quartile again in groups of 3 if (!useSampling) { p4!(lp, f)(r, leftLimit, leftLimit + _4); } immutable _12 = _4 / 3; immutable lo = leftLimit + _12, hi = lo + _12; p3!lp(r, lo, hi); // Get the median of medians of medians // Map the full interval of n to the full interval of the ninth immutable pivot = (n * (_12 - 1)) / (r.length - 1); topNImpl!lp(r[lo .. hi], pivot, useSampling); return expandPartition!lp(r, lo, pivot + lo, hi); } /* Params: less = predicate r = range to partition pivot = pivot to partition around lo = value such that r[lo .. pivot] already less than r[pivot] hi = value such that r[pivot .. hi] already greater than r[pivot] Returns: new position of pivot */ private size_t expandPartition(alias lp, R)(R r, size_t lo, size_t pivot, size_t hi) in { import std.algorithm.searching : all; assert(lo <= pivot); assert(pivot < hi); assert(hi <= r.length); assert(r[lo .. pivot + 1].all!(x => !lp(r[pivot], x))); assert(r[pivot + 1 .. hi].all!(x => !lp(x, r[pivot]))); } out { import std.algorithm.searching : all; assert(r[0 .. pivot + 1].all!(x => !lp(r[pivot], x))); assert(r[pivot + 1 .. r.length].all!(x => !lp(x, r[pivot]))); } body { import std.algorithm.mutation : swapAt; import std.algorithm.searching : all; // We work with closed intervals! --hi; size_t left = 0, rite = r.length - 1; loop: for (;; ++left, --rite) { for (;; ++left) { if (left == lo) break loop; if (!lp(r[left], r[pivot])) break; } for (;; --rite) { if (rite == hi) break loop; if (!lp(r[pivot], r[rite])) break; } r.swapAt(left, rite); } assert(r[lo .. pivot + 1].all!(x => !lp(r[pivot], x))); assert(r[pivot + 1 .. hi + 1].all!(x => !lp(x, r[pivot]))); assert(r[0 .. left].all!(x => !lp(r[pivot], x))); assert(r[rite + 1 .. r.length].all!(x => !lp(x, r[pivot]))); immutable oldPivot = pivot; if (left < lo) { // First loop: spend r[lo .. pivot] for (; lo < pivot; ++left) { if (left == lo) goto done; if (!lp(r[oldPivot], r[left])) continue; --pivot; assert(!lp(r[oldPivot], r[pivot])); r.swapAt(left, pivot); } // Second loop: make left and pivot meet for (;; ++left) { if (left == pivot) goto done; if (!lp(r[oldPivot], r[left])) continue; for (;;) { if (left == pivot) goto done; --pivot; if (lp(r[pivot], r[oldPivot])) { r.swapAt(left, pivot); break; } } } } // First loop: spend r[lo .. pivot] for (; hi != pivot; --rite) { if (rite == hi) goto done; if (!lp(r[rite], r[oldPivot])) continue; ++pivot; assert(!lp(r[pivot], r[oldPivot])); r.swapAt(rite, pivot); } // Second loop: make left and pivot meet outer: for (; rite > pivot; --rite) { if (!lp(r[rite], r[oldPivot])) continue; while (rite > pivot) { ++pivot; if (lp(r[oldPivot], r[pivot])) { r.swapAt(rite, pivot); break; } } } done: r.swapAt(oldPivot, pivot); return pivot; } @safe unittest { auto a = [ 10, 5, 3, 4, 8, 11, 13, 3, 9, 4, 10 ]; assert(expandPartition!((a, b) => a < b)(a, 4, 5, 6) == 9); a = randomArray; if (a.length == 0) return; expandPartition!((a, b) => a < b)(a, a.length / 2, a.length / 2, a.length / 2 + 1); } version(unittest) private T[] randomArray(Flag!"exactSize" flag = No.exactSize, T = int)( size_t maxSize = 1000, T minValue = 0, T maxValue = 255) { import std.random : unpredictableSeed, Random, uniform; import std.algorithm.iteration : map; auto size = flag == Yes.exactSize ? maxSize : uniform(1, maxSize); return iota(0, size).map!(_ => uniform(minValue, maxValue)).array; } @safe unittest { import std.algorithm.comparison : max, min; import std.algorithm.iteration : reduce; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); //scope(failure) writeln(stderr, "Failure testing algorithm"); //auto v = [ 25, 7, 9, 2, 0, 5, 21 ]; int[] v = [ 7, 6, 5, 4, 3, 2, 1, 0 ]; ptrdiff_t n = 3; topN!("a < b")(v, n); assert(reduce!max(v[0 .. n]) <= v[n]); assert(reduce!min(v[n + 1 .. $]) >= v[n]); // v = [3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5]; n = 3; topN(v, n); assert(reduce!max(v[0 .. n]) <= v[n]); assert(reduce!min(v[n + 1 .. $]) >= v[n]); // v = [3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5]; n = 1; topN(v, n); assert(reduce!max(v[0 .. n]) <= v[n]); assert(reduce!min(v[n + 1 .. $]) >= v[n]); // v = [3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5]; n = v.length - 1; topN(v, n); assert(v[n] == 7); // v = [3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5]; n = 0; topN(v, n); assert(v[n] == 1); double[][] v1 = [[-10, -5], [-10, -3], [-10, -5], [-10, -4], [-10, -5], [-9, -5], [-9, -3], [-9, -5],]; // double[][] v1 = [ [-10, -5], [-10, -4], [-9, -5], [-9, -5], // [-10, -5], [-10, -3], [-10, -5], [-9, -3],]; double[]*[] idx = [ &v1[0], &v1[1], &v1[2], &v1[3], &v1[4], &v1[5], &v1[6], &v1[7], ]; auto mid = v1.length / 2; topN!((a, b){ return (*a)[1] < (*b)[1]; })(idx, mid); foreach (e; idx[0 .. mid]) assert((*e)[1] <= (*idx[mid])[1]); foreach (e; idx[mid .. $]) assert((*e)[1] >= (*idx[mid])[1]); } @safe unittest { import std.algorithm.comparison : max, min; import std.algorithm.iteration : reduce; import std.random : uniform; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int[] a = new int[uniform(1, 10000)]; foreach (ref e; a) e = uniform(-1000, 1000); auto k = uniform(0, a.length); topN(a, k); if (k > 0) { auto left = reduce!max(a[0 .. k]); assert(left <= a[k]); } if (k + 1 < a.length) { auto right = reduce!min(a[k + 1 .. $]); assert(right >= a[k]); } } // bug 12987 @safe unittest { int[] a = [ 25, 7, 9, 2, 0, 5, 21 ]; auto n = 4; auto t = topN(a, n); sort(t); assert(t == [0, 2, 5, 7]); } /** Stores the smallest elements of the two ranges in the left-hand range. Params: less = The predicate to sort by. ss = The swapping strategy to use. r1 = The first range. r2 = The second range. */ auto topN(alias less = "a < b", SwapStrategy ss = SwapStrategy.unstable, Range1, Range2)(Range1 r1, Range2 r2) if (isRandomAccessRange!(Range1) && hasLength!Range1 && isInputRange!Range2 && is(ElementType!Range1 == ElementType!Range2) && hasLvalueElements!Range1 && hasLvalueElements!Range2) { import std.container : BinaryHeap; static assert(ss == SwapStrategy.unstable, "Stable topN not yet implemented"); auto heap = BinaryHeap!(Range1, less)(r1); foreach (ref e; r2) { heap.conditionalSwap(e); } return r1; } /// @system unittest { int[] a = [ 5, 7, 2, 6, 7 ]; int[] b = [ 2, 1, 5, 6, 7, 3, 0 ]; topN(a, b); sort(a); assert(a == [0, 1, 2, 2, 3]); } // bug 15421 @system unittest { import std.algorithm.comparison : equal; import std.internal.test.dummyrange; import std.meta : AliasSeq; alias RandomRanges = AliasSeq!( DummyRange!(ReturnBy.Reference, Length.Yes, RangeType.Random) ); alias ReferenceRanges = AliasSeq!( DummyRange!(ReturnBy.Reference, Length.Yes, RangeType.Forward), DummyRange!(ReturnBy.Reference, Length.Yes, RangeType.Bidirectional), DummyRange!(ReturnBy.Reference, Length.Yes, RangeType.Random), DummyRange!(ReturnBy.Reference, Length.No, RangeType.Forward), DummyRange!(ReturnBy.Reference, Length.No, RangeType.Bidirectional)); foreach (T1; RandomRanges) { foreach (T2; ReferenceRanges) { import std.array; T1 A; T2 B; A.reinit(); B.reinit(); topN(A, B); // BUG(?): sort doesn't accept DummyRanges (needs Slicing and Length) auto a = array(A); auto b = array(B); sort(a); sort(b); assert(equal(a, [ 1, 1, 2, 2, 3, 3, 4, 4, 5, 5 ])); assert(equal(b, [ 6, 6, 7, 7, 8, 8, 9, 9, 10, 10 ])); } } } // bug 15421 @system unittest { auto a = [ 9, 8, 0, 3, 5, 25, 43, 4, 2, 0, 7 ]; auto b = [ 9, 8, 0, 3, 5, 25, 43, 4, 2, 0, 7 ]; topN(a, 4); topN(b[0 .. 4], b[4 .. $]); sort(a[0 .. 4]); sort(a[4 .. $]); sort(b[0 .. 4]); sort(b[4 .. $]); assert(a[0 .. 4] == b[0 .. 4]); assert(a[4 .. $] == b[4 .. $]); assert(a == b); } // bug 12987 @system unittest { int[] a = [ 5, 7, 2, 6, 7 ]; int[] b = [ 2, 1, 5, 6, 7, 3, 0 ]; auto t = topN(a, b); sort(t); assert(t == [ 0, 1, 2, 2, 3 ]); } // bug 15420 @system unittest { int[] a = [ 5, 7, 2, 6, 7 ]; int[] b = [ 2, 1, 5, 6, 7, 3, 0 ]; topN!"a > b"(a, b); sort!"a > b"(a); assert(a == [ 7, 7, 7, 6, 6 ]); } /** Copies the top $(D n) elements of the input range $(D source) into the random-access range $(D target), where $(D n = target.length). Elements of $(D source) are not touched. If $(D sorted) is $(D true), the target is sorted. Otherwise, the target respects the $(HTTP en.wikipedia.org/wiki/Binary_heap, heap property). Params: less = The predicate to sort by. source = The source range. target = The target range. sorted = Whether to sort the elements copied into `target`. Returns: The slice of `target` containing the copied elements. */ TRange topNCopy(alias less = "a < b", SRange, TRange) (SRange source, TRange target, SortOutput sorted = No.sortOutput) if (isInputRange!(SRange) && isRandomAccessRange!(TRange) && hasLength!(TRange) && hasSlicing!(TRange)) { import std.container : BinaryHeap; if (target.empty) return target; auto heap = BinaryHeap!(TRange, less)(target, 0); foreach (e; source) heap.conditionalInsert(e); auto result = target[0 .. heap.length]; if (sorted == Yes.sortOutput) { while (!heap.empty) heap.removeFront(); } return result; } /// @system unittest { import std.typecons : Yes; int[] a = [ 10, 16, 2, 3, 1, 5, 0 ]; int[] b = new int[3]; topNCopy(a, b, Yes.sortOutput); assert(b == [ 0, 1, 2 ]); } @system unittest { import std.random : Random, unpredictableSeed, uniform, randomShuffle; import std.typecons : Yes; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); auto r = Random(unpredictableSeed); ptrdiff_t[] a = new ptrdiff_t[uniform(1, 1000, r)]; foreach (i, ref e; a) e = i; randomShuffle(a, r); auto n = uniform(0, a.length, r); ptrdiff_t[] b = new ptrdiff_t[n]; topNCopy!(binaryFun!("a < b"))(a, b, Yes.sortOutput); assert(isSorted!(binaryFun!("a < b"))(b)); } /** Given a range of elements, constructs an index of its top $(I n) elements (i.e., the first $(I n) elements if the range were sorted). Similar to $(LREF topN), except that the range is not modified. Params: less = A binary predicate that defines the ordering of range elements. Defaults to $(D a < b). ss = $(RED (Not implemented yet.)) Specify the swapping strategy. r = A $(REF_ALTTEXT random-access range, isRandomAccessRange, std,range,primitives) of elements to make an index for. index = A $(REF_ALTTEXT random-access range, isRandomAccessRange, std,range,primitives) with assignable elements to build the index in. The length of this range determines how many top elements to index in $(D r). This index range can either have integral elements, in which case the constructed index will consist of zero-based numerical indices into $(D r); or it can have pointers to the element type of $(D r), in which case the constructed index will be pointers to the top elements in $(D r). sorted = Determines whether to sort the index by the elements they refer to. See_also: $(LREF topN), $(LREF topNCopy). BUGS: The swapping strategy parameter is not implemented yet; currently it is ignored. */ void topNIndex(alias less = "a < b", SwapStrategy ss = SwapStrategy.unstable, Range, RangeIndex) (Range r, RangeIndex index, SortOutput sorted = No.sortOutput) if (isRandomAccessRange!Range && isRandomAccessRange!RangeIndex && hasAssignableElements!RangeIndex && isIntegral!(ElementType!(RangeIndex))) { static assert(ss == SwapStrategy.unstable, "Stable swap strategy not implemented yet."); import std.container : BinaryHeap; import std.exception : enforce; if (index.empty) return; enforce(ElementType!(RangeIndex).max >= index.length, "Index type too small"); bool indirectLess(ElementType!(RangeIndex) a, ElementType!(RangeIndex) b) { return binaryFun!(less)(r[a], r[b]); } auto heap = BinaryHeap!(RangeIndex, indirectLess)(index, 0); foreach (i; 0 .. r.length) { heap.conditionalInsert(cast(ElementType!RangeIndex) i); } if (sorted == Yes.sortOutput) { while (!heap.empty) heap.removeFront(); } } /// ditto void topNIndex(alias less = "a < b", SwapStrategy ss = SwapStrategy.unstable, Range, RangeIndex) (Range r, RangeIndex index, SortOutput sorted = No.sortOutput) if (isRandomAccessRange!Range && isRandomAccessRange!RangeIndex && hasAssignableElements!RangeIndex && is(ElementType!(RangeIndex) == ElementType!(Range)*)) { static assert(ss == SwapStrategy.unstable, "Stable swap strategy not implemented yet."); import std.container : BinaryHeap; if (index.empty) return; static bool indirectLess(const ElementType!(RangeIndex) a, const ElementType!(RangeIndex) b) { return binaryFun!less(*a, *b); } auto heap = BinaryHeap!(RangeIndex, indirectLess)(index, 0); foreach (i; 0 .. r.length) { heap.conditionalInsert(&r[i]); } if (sorted == Yes.sortOutput) { while (!heap.empty) heap.removeFront(); } } /// @system unittest { import std.typecons : Yes; // Construct index to top 3 elements using numerical indices: int[] a = [ 10, 2, 7, 5, 8, 1 ]; int[] index = new int[3]; topNIndex(a, index, Yes.sortOutput); assert(index == [5, 1, 3]); // because a[5]==1, a[1]==2, a[3]==5 // Construct index to top 3 elements using pointer indices: int*[] ptrIndex = new int*[3]; topNIndex(a, ptrIndex, Yes.sortOutput); assert(ptrIndex == [ &a[5], &a[1], &a[3] ]); } @system unittest { import std.conv : text; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); { int[] a = [ 10, 8, 9, 2, 4, 6, 7, 1, 3, 5 ]; int*[] b = new int*[5]; topNIndex!("a > b")(a, b, Yes.sortOutput); //foreach (e; b) writeln(*e); assert(b == [ &a[0], &a[2], &a[1], &a[6], &a[5]]); } { int[] a = [ 10, 8, 9, 2, 4, 6, 7, 1, 3, 5 ]; auto b = new ubyte[5]; topNIndex!("a > b")(a, b, Yes.sortOutput); //foreach (e; b) writeln(e, ":", a[e]); assert(b == [ cast(ubyte) 0, cast(ubyte) 2, cast(ubyte) 1, cast(ubyte) 6, cast(ubyte) 5], text(b)); } } // medianOf /* Private for the time being. Computes the median of 2 to 5 arbitrary indexes in random-access range `r` using hand-written specialized algorithms. The indexes must be distinct (if not, behavior is implementation-defined). The function also partitions the elements involved around the median, e.g. $(D medianOf(r, a, b, c)) not only fills `r[b]` with the median of `r[a]`, `r[b]`, and `r[c]`, but also puts the minimum in `r[a]` and the maximum in `r[c]`. Params: less = The comparison predicate used, modeled as a $(LUCKY strict weak ordering) (irreflexive, antisymmetric, transitive, and implying a transitive equivalence). flag = Used only for even values of `T.length`. If `No.leanRight`, the median "leans left", meaning $(D medianOf(r, a, b, c, d)) puts the lower median of the four in `r[b]`, the minimum in `r[a]`, and the two others in `r[c]` and `r[d]`. Conversely, $(D median!("a < b", Yes.leanRight)(r, a, b, c, d)) puts the upper median of the four in `r[c]`, the maximum in `r[d]`, and the two others in `r[a]` and `r[b]`. r = The range containing the indexes. i = Two to five indexes inside `r`. */ private void medianOf( alias less = "a < b", Flag!"leanRight" flag = No.leanRight, Range, Indexes...) (Range r, Indexes i) if (isRandomAccessRange!Range && hasLength!Range && Indexes.length >= 2 && Indexes.length <= 5 && allSatisfy!(isUnsigned, Indexes)) { assert(r.length >= Indexes.length); import std.functional : binaryFun; alias lt = binaryFun!less; enum k = Indexes.length; import std.algorithm.mutation : swapAt; alias a = i[0]; static assert(is(typeof(a) == size_t)); static if (k >= 2) { alias b = i[1]; static assert(is(typeof(b) == size_t)); assert(a != b); } static if (k >= 3) { alias c = i[2]; static assert(is(typeof(c) == size_t)); assert(a != c && b != c); } static if (k >= 4) { alias d = i[3]; static assert(is(typeof(d) == size_t)); assert(a != d && b != d && c != d); } static if (k >= 5) { alias e = i[4]; static assert(is(typeof(e) == size_t)); assert(a != e && b != e && c != e && d != e); } static if (k == 2) { if (lt(r[b], r[a])) r.swapAt(a, b); } else static if (k == 3) { if (lt(r[c], r[a])) // c < a { if (lt(r[a], r[b])) // c < a < b { r.swapAt(a, b); r.swapAt(a, c); } else // c < a, b <= a { r.swapAt(a, c); if (lt(r[b], r[a])) r.swapAt(a, b); } } else // a <= c { if (lt(r[b], r[a])) // b < a <= c { r.swapAt(a, b); } else // a <= c, a <= b { if (lt(r[c], r[b])) r.swapAt(b, c); } } assert(!lt(r[b], r[a])); assert(!lt(r[c], r[b])); } else static if (k == 4) { static if (flag == No.leanRight) { // Eliminate the rightmost from the competition if (lt(r[d], r[c])) r.swapAt(c, d); // c <= d if (lt(r[d], r[b])) r.swapAt(b, d); // b <= d medianOf!lt(r, a, b, c); } else { // Eliminate the leftmost from the competition if (lt(r[b], r[a])) r.swapAt(a, b); // a <= b if (lt(r[c], r[a])) r.swapAt(a, c); // a <= c medianOf!lt(r, b, c, d); } } else static if (k == 5) { // Credit: Teppo Niinimäki version(unittest) scope(success) { assert(!lt(r[c], r[a])); assert(!lt(r[c], r[b])); assert(!lt(r[d], r[c])); assert(!lt(r[e], r[c])); } if (lt(r[c], r[a])) r.swapAt(a, c); if (lt(r[d], r[b])) r.swapAt(b, d); if (lt(r[d], r[c])) { r.swapAt(c, d); r.swapAt(a, b); } if (lt(r[e], r[b])) r.swapAt(b, e); if (lt(r[e], r[c])) { r.swapAt(c, e); if (lt(r[c], r[a])) r.swapAt(a, c); } else { if (lt(r[c], r[b])) r.swapAt(b, c); } } } @safe unittest { // Verify medianOf for all permutations of [1, 2, 2, 3, 4]. int[5] data = [1, 2, 2, 3, 4]; do { int[5] a = data; medianOf(a[], size_t(0), size_t(1)); assert(a[0] <= a[1]); a[] = data[]; medianOf(a[], size_t(0), size_t(1), size_t(2)); assert(ordered(a[0], a[1], a[2])); a[] = data[]; medianOf(a[], size_t(0), size_t(1), size_t(2), size_t(3)); assert(a[0] <= a[1] && a[1] <= a[2] && a[1] <= a[3]); a[] = data[]; medianOf!("a < b", Yes.leanRight)(a[], size_t(0), size_t(1), size_t(2), size_t(3)); assert(a[0] <= a[2] && a[1] <= a[2] && a[2] <= a[3]); a[] = data[]; medianOf(a[], size_t(0), size_t(1), size_t(2), size_t(3), size_t(4)); assert(a[0] <= a[2] && a[1] <= a[2] && a[2] <= a[3] && a[2] <= a[4]); } while (nextPermutation(data[])); } // nextPermutation /** * Permutes $(D range) in-place to the next lexicographically greater * permutation. * * The predicate $(D less) defines the lexicographical ordering to be used on * the range. * * If the range is currently the lexicographically greatest permutation, it is * permuted back to the least permutation and false is returned. Otherwise, * true is returned. One can thus generate all permutations of a range by * sorting it according to $(D less), which produces the lexicographically * least permutation, and then calling nextPermutation until it returns false. * This is guaranteed to generate all distinct permutations of the range * exactly once. If there are $(I N) elements in the range and all of them are * unique, then $(I N)! permutations will be generated. Otherwise, if there are * some duplicated elements, fewer permutations will be produced. ---- // Enumerate all permutations int[] a = [1,2,3,4,5]; do { // use the current permutation and // proceed to the next permutation of the array. } while (nextPermutation(a)); ---- * Params: * less = The ordering to be used to determine lexicographical ordering of the * permutations. * range = The range to permute. * * Returns: false if the range was lexicographically the greatest, in which * case the range is reversed back to the lexicographically smallest * permutation; otherwise returns true. * See_Also: * $(REF permutations, std,algorithm,iteration). */ bool nextPermutation(alias less="a < b", BidirectionalRange) (BidirectionalRange range) if (isBidirectionalRange!BidirectionalRange && hasSwappableElements!BidirectionalRange) { import std.algorithm.mutation : reverse, swap; import std.algorithm.searching : find; import std.range : retro, takeExactly; // Ranges of 0 or 1 element have no distinct permutations. if (range.empty) return false; auto i = retro(range); auto last = i.save; // Find last occurring increasing pair of elements size_t n = 1; for (i.popFront(); !i.empty; i.popFront(), last.popFront(), n++) { if (binaryFun!less(i.front, last.front)) break; } if (i.empty) { // Entire range is decreasing: it's lexicographically the greatest. So // wrap it around. range.reverse(); return false; } // Find last element greater than i.front. auto j = find!((a) => binaryFun!less(i.front, a))( takeExactly(retro(range), n)); assert(!j.empty); // shouldn't happen since i.front < last.front swap(i.front, j.front); reverse(takeExactly(retro(range), n)); return true; } /// @safe unittest { // Step through all permutations of a sorted array in lexicographic order int[] a = [1,2,3]; assert(nextPermutation(a) == true); assert(a == [1,3,2]); assert(nextPermutation(a) == true); assert(a == [2,1,3]); assert(nextPermutation(a) == true); assert(a == [2,3,1]); assert(nextPermutation(a) == true); assert(a == [3,1,2]); assert(nextPermutation(a) == true); assert(a == [3,2,1]); assert(nextPermutation(a) == false); assert(a == [1,2,3]); } /// @safe unittest { // Step through permutations of an array containing duplicate elements: int[] a = [1,1,2]; assert(nextPermutation(a) == true); assert(a == [1,2,1]); assert(nextPermutation(a) == true); assert(a == [2,1,1]); assert(nextPermutation(a) == false); assert(a == [1,1,2]); } @safe unittest { // Boundary cases: arrays of 0 or 1 element. int[] a1 = []; assert(!nextPermutation(a1)); assert(a1 == []); int[] a2 = [1]; assert(!nextPermutation(a2)); assert(a2 == [1]); } @safe unittest { import std.algorithm.comparison : equal; auto a1 = [1, 2, 3, 4]; assert(nextPermutation(a1)); assert(equal(a1, [1, 2, 4, 3])); assert(nextPermutation(a1)); assert(equal(a1, [1, 3, 2, 4])); assert(nextPermutation(a1)); assert(equal(a1, [1, 3, 4, 2])); assert(nextPermutation(a1)); assert(equal(a1, [1, 4, 2, 3])); assert(nextPermutation(a1)); assert(equal(a1, [1, 4, 3, 2])); assert(nextPermutation(a1)); assert(equal(a1, [2, 1, 3, 4])); assert(nextPermutation(a1)); assert(equal(a1, [2, 1, 4, 3])); assert(nextPermutation(a1)); assert(equal(a1, [2, 3, 1, 4])); assert(nextPermutation(a1)); assert(equal(a1, [2, 3, 4, 1])); assert(nextPermutation(a1)); assert(equal(a1, [2, 4, 1, 3])); assert(nextPermutation(a1)); assert(equal(a1, [2, 4, 3, 1])); assert(nextPermutation(a1)); assert(equal(a1, [3, 1, 2, 4])); assert(nextPermutation(a1)); assert(equal(a1, [3, 1, 4, 2])); assert(nextPermutation(a1)); assert(equal(a1, [3, 2, 1, 4])); assert(nextPermutation(a1)); assert(equal(a1, [3, 2, 4, 1])); assert(nextPermutation(a1)); assert(equal(a1, [3, 4, 1, 2])); assert(nextPermutation(a1)); assert(equal(a1, [3, 4, 2, 1])); assert(nextPermutation(a1)); assert(equal(a1, [4, 1, 2, 3])); assert(nextPermutation(a1)); assert(equal(a1, [4, 1, 3, 2])); assert(nextPermutation(a1)); assert(equal(a1, [4, 2, 1, 3])); assert(nextPermutation(a1)); assert(equal(a1, [4, 2, 3, 1])); assert(nextPermutation(a1)); assert(equal(a1, [4, 3, 1, 2])); assert(nextPermutation(a1)); assert(equal(a1, [4, 3, 2, 1])); assert(!nextPermutation(a1)); assert(equal(a1, [1, 2, 3, 4])); } @safe unittest { // Test with non-default sorting order int[] a = [3,2,1]; assert(nextPermutation!"a > b"(a) == true); assert(a == [3,1,2]); assert(nextPermutation!"a > b"(a) == true); assert(a == [2,3,1]); assert(nextPermutation!"a > b"(a) == true); assert(a == [2,1,3]); assert(nextPermutation!"a > b"(a) == true); assert(a == [1,3,2]); assert(nextPermutation!"a > b"(a) == true); assert(a == [1,2,3]); assert(nextPermutation!"a > b"(a) == false); assert(a == [3,2,1]); } // Issue 13594 @safe unittest { int[3] a = [1,2,3]; assert(nextPermutation(a[])); assert(a == [1,3,2]); } // nextEvenPermutation /** * Permutes $(D range) in-place to the next lexicographically greater $(I even) * permutation. * * The predicate $(D less) defines the lexicographical ordering to be used on * the range. * * An even permutation is one which is produced by swapping an even number of * pairs of elements in the original range. The set of $(I even) permutations * is distinct from the set of $(I all) permutations only when there are no * duplicate elements in the range. If the range has $(I N) unique elements, * then there are exactly $(I N)!/2 even permutations. * * If the range is already the lexicographically greatest even permutation, it * is permuted back to the least even permutation and false is returned. * Otherwise, true is returned, and the range is modified in-place to be the * lexicographically next even permutation. * * One can thus generate the even permutations of a range with unique elements * by starting with the lexicographically smallest permutation, and repeatedly * calling nextEvenPermutation until it returns false. ---- // Enumerate even permutations int[] a = [1,2,3,4,5]; do { // use the current permutation and // proceed to the next even permutation of the array. } while (nextEvenPermutation(a)); ---- * One can also generate the $(I odd) permutations of a range by noting that * permutations obey the rule that even + even = even, and odd + even = odd. * Thus, by swapping the last two elements of a lexicographically least range, * it is turned into the first odd permutation. Then calling * nextEvenPermutation on this first odd permutation will generate the next * even permutation relative to this odd permutation, which is actually the * next odd permutation of the original range. Thus, by repeatedly calling * nextEvenPermutation until it returns false, one enumerates the odd * permutations of the original range. ---- // Enumerate odd permutations int[] a = [1,2,3,4,5]; swap(a[$-2], a[$-1]); // a is now the first odd permutation of [1,2,3,4,5] do { // use the current permutation and // proceed to the next odd permutation of the original array // (which is an even permutation of the first odd permutation). } while (nextEvenPermutation(a)); ---- * * Warning: Since even permutations are only distinct from all permutations * when the range elements are unique, this function assumes that there are no * duplicate elements under the specified ordering. If this is not _true, some * permutations may fail to be generated. When the range has non-unique * elements, you should use $(MYREF nextPermutation) instead. * * Params: * less = The ordering to be used to determine lexicographical ordering of the * permutations. * range = The range to permute. * * Returns: false if the range was lexicographically the greatest, in which * case the range is reversed back to the lexicographically smallest * permutation; otherwise returns true. */ bool nextEvenPermutation(alias less="a < b", BidirectionalRange) (BidirectionalRange range) if (isBidirectionalRange!BidirectionalRange && hasSwappableElements!BidirectionalRange) { import std.algorithm.mutation : reverse, swap; import std.algorithm.searching : find; import std.range : retro, takeExactly; // Ranges of 0 or 1 element have no distinct permutations. if (range.empty) return false; bool oddParity = false; bool ret = true; do { auto i = retro(range); auto last = i.save; // Find last occurring increasing pair of elements size_t n = 1; for (i.popFront(); !i.empty; i.popFront(), last.popFront(), n++) { if (binaryFun!less(i.front, last.front)) break; } if (!i.empty) { // Find last element greater than i.front. auto j = find!((a) => binaryFun!less(i.front, a))( takeExactly(retro(range), n)); // shouldn't happen since i.front < last.front assert(!j.empty); swap(i.front, j.front); oddParity = !oddParity; } else { // Entire range is decreasing: it's lexicographically // the greatest. ret = false; } reverse(takeExactly(retro(range), n)); if ((n / 2) % 2 == 1) oddParity = !oddParity; } while (oddParity); return ret; } /// @safe unittest { // Step through even permutations of a sorted array in lexicographic order int[] a = [1,2,3]; assert(nextEvenPermutation(a) == true); assert(a == [2,3,1]); assert(nextEvenPermutation(a) == true); assert(a == [3,1,2]); assert(nextEvenPermutation(a) == false); assert(a == [1,2,3]); } @safe unittest { auto a3 = [ 1, 2, 3, 4 ]; int count = 1; while (nextEvenPermutation(a3)) count++; assert(count == 12); } @safe unittest { // Test with non-default sorting order auto a = [ 3, 2, 1 ]; assert(nextEvenPermutation!"a > b"(a) == true); assert(a == [ 2, 1, 3 ]); assert(nextEvenPermutation!"a > b"(a) == true); assert(a == [ 1, 3, 2 ]); assert(nextEvenPermutation!"a > b"(a) == false); assert(a == [ 3, 2, 1 ]); } @safe unittest { // Test various cases of rollover auto a = [ 3, 1, 2 ]; assert(nextEvenPermutation(a) == false); assert(a == [ 1, 2, 3 ]); auto b = [ 3, 2, 1 ]; assert(nextEvenPermutation(b) == false); assert(b == [ 1, 3, 2 ]); } @safe unittest { // Issue 13594 int[3] a = [1,2,3]; assert(nextEvenPermutation(a[])); assert(a == [2,3,1]); } /** Even permutations are useful for generating coordinates of certain geometric shapes. Here's a non-trivial example: */ @safe unittest { import std.math : sqrt; // Print the 60 vertices of a uniform truncated icosahedron (soccer ball) enum real Phi = (1.0 + sqrt(5.0)) / 2.0; // Golden ratio real[][] seeds = [ [0.0, 1.0, 3.0*Phi], [1.0, 2.0+Phi, 2.0*Phi], [Phi, 2.0, Phi^^3] ]; size_t n; foreach (seed; seeds) { // Loop over even permutations of each seed do { // Loop over all sign changes of each permutation size_t i; do { // Generate all possible sign changes for (i=0; i < seed.length; i++) { if (seed[i] != 0.0) { seed[i] = -seed[i]; if (seed[i] < 0.0) break; } } n++; } while (i < seed.length); } while (nextEvenPermutation(seed)); } assert(n == 60); }