// Written in the D programming language. /** * Elementary mathematical functions * * Contains the elementary mathematical functions (powers, roots, * and trignometric functions), and low-level floating-point operations. * Mathematical special functions are available in std.mathspecial. * * The functionality closely follows the IEEE754-2008 standard for * floating-point arithmetic, including the use of camelCase names rather * than C99-style lower case names. All of these functions behave correctly * when presented with an infinity or NaN. * * Unlike C, there is no global 'errno' variable. Consequently, almost all of * these functions are pure nothrow. * * Status: * The gamma and error functions have been superceded by improved versions in * std.mathspecial. They will be officially deprecated in std.math in DMD2.055. * The semantics and names of feqrel and approxEqual will be revised. * * Source: $(PHOBOSSRC std/_math.d) * Macros: * WIKI = Phobos/StdMath * * TABLE_SV = * * $0
Special Values
* SVH = $(TR $(TH $1) $(TH $2)) * SV = $(TR $(TD $1) $(TD $2)) * * NAN = $(RED NAN) * SUP = $0 * GAMMA = Γ * THETA = θ * INTEGRAL = ∫ * INTEGRATE = $(BIG ∫$(SMALL $1)$2) * POWER = $1$2 * SUB = $1$2 * BIGSUM = $(BIG Σ $2$(SMALL $1)) * CHOOSE = $(BIG () $(SMALL $1)$(SMALL $2) $(BIG )) * PLUSMN = ± * INFIN = ∞ * PLUSMNINF = ±∞ * PI = π * LT = < * GT = > * SQRT = √ * HALF = ½ * * Copyright: Copyright Digital Mars 2000 - 2011. * License: Boost License 1.0. * Authors: $(WEB digitalmars.com, Walter Bright), * Don Clugston * Source: $(PHOBOSSRC std/_math.d) */ module std.math; import core.stdc.math; import std.range, std.traits; version(unittest) { import std.typetuple; } version(LDC) { import ldc.intrinsics; } version(DigitalMars){ version = INLINE_YL2X; // x87 has opcodes for these } version (X86){ version = X86_Any; } version (X86_64){ version = X86_Any; } version(D_InlineAsm_X86){ version = InlineAsm_X86_Any; } else version(D_InlineAsm_X86_64){ version = InlineAsm_X86_Any; } private: /* * The following IEEE 'real' formats are currently supported: * 64 bit Big-endian 'double' (eg PowerPC) * 128 bit Big-endian 'quadruple' (eg SPARC) * 64 bit Little-endian 'double' (eg x86-SSE2) * 80 bit Little-endian, with implied bit 'real80' (eg x87, Itanium). * 128 bit Little-endian 'quadruple' (not implemented on any known processor!) * * Non-IEEE 128 bit Big-endian 'doubledouble' (eg PowerPC) has partial support */ version(LittleEndian) { static assert(real.mant_dig == 53 || real.mant_dig==64 || real.mant_dig == 113, "Only 64-bit, 80-bit, and 128-bit reals" " are supported for LittleEndian CPUs"); } else { static assert(real.mant_dig == 53 || real.mant_dig==106 || real.mant_dig == 113, "Only 64-bit and 128-bit reals are supported for BigEndian CPUs." " double-double reals have partial support"); } // Constants used for extracting the components of the representation. // They supplement the built-in floating point properties. template floatTraits(T) { // EXPMASK is a ushort mask to select the exponent portion (without sign) // EXPPOS_SHORT is the index of the exponent when represented as a ushort array. // SIGNPOS_BYTE is the index of the sign when represented as a ubyte array. // RECIP_EPSILON is the value such that (smallest_denormal) * RECIP_EPSILON == T.min_normal enum T RECIP_EPSILON = (1/T.epsilon); static if (T.mant_dig == 24) { // float enum ushort EXPMASK = 0x7F80; enum ushort EXPBIAS = 0x3F00; enum uint EXPMASK_INT = 0x7F80_0000; enum uint MANTISSAMASK_INT = 0x007F_FFFF; version(LittleEndian) { enum EXPPOS_SHORT = 1; } else { enum EXPPOS_SHORT = 0; } } else static if (T.mant_dig == 53) // double, or real==double { enum ushort EXPMASK = 0x7FF0; enum ushort EXPBIAS = 0x3FE0; enum uint EXPMASK_INT = 0x7FF0_0000; enum uint MANTISSAMASK_INT = 0x000F_FFFF; // for the MSB only version(LittleEndian) { enum EXPPOS_SHORT = 3; enum SIGNPOS_BYTE = 7; } else { enum EXPPOS_SHORT = 0; enum SIGNPOS_BYTE = 0; } } else static if (T.mant_dig == 64) // real80 { enum ushort EXPMASK = 0x7FFF; enum ushort EXPBIAS = 0x3FFE; version(LittleEndian) { enum EXPPOS_SHORT = 4; enum SIGNPOS_BYTE = 9; } else { enum EXPPOS_SHORT = 0; enum SIGNPOS_BYTE = 0; } } else static if (T.mant_dig == 113){ // quadruple enum ushort EXPMASK = 0x7FFF; version(LittleEndian) { enum EXPPOS_SHORT = 7; enum SIGNPOS_BYTE = 15; } else { enum EXPPOS_SHORT = 0; enum SIGNPOS_BYTE = 0; } } else static if (T.mant_dig == 106) { // doubledouble enum ushort EXPMASK = 0x7FF0; // the exponent byte is not unique version(LittleEndian) { enum EXPPOS_SHORT = 7; // [3] is also an exp short enum SIGNPOS_BYTE = 15; } else { enum EXPPOS_SHORT = 0; // [4] is also an exp short enum SIGNPOS_BYTE = 0; } } } // These apply to all floating-point types version(LittleEndian) { enum MANTISSA_LSB = 0; enum MANTISSA_MSB = 1; } else { enum MANTISSA_LSB = 1; enum MANTISSA_MSB = 0; } public: enum real E = 2.7182818284590452354L; /** e */ // 0x1.5BF0A8B1_45769535_5FF5p+1L enum real LOG2T = 0x1.a934f0979a3715fcp+1; /** $(SUB log, 2)10 */ // 3.32193 fldl2t enum real LOG2E = 0x1.71547652b82fe178p+0; /** $(SUB log, 2)e */ // 1.4427 fldl2e enum real LOG2 = 0x1.34413509f79fef32p-2; /** $(SUB log, 10)2 */ // 0.30103 fldlg2 enum real LOG10E = 0.43429448190325182765; /** $(SUB log, 10)e */ enum real LN2 = 0x1.62e42fefa39ef358p-1; /** ln 2 */ // 0.693147 fldln2 enum real LN10 = 2.30258509299404568402; /** ln 10 */ enum real PI = 0x1.921fb54442d1846ap+1; /** $(_PI) */ // 3.14159 fldpi enum real PI_2 = 1.57079632679489661923; /** $(PI) / 2 */ enum real PI_4 = 0.78539816339744830962; /** $(PI) / 4 */ enum real M_1_PI = 0.31830988618379067154; /** 1 / $(PI) */ enum real M_2_PI = 0.63661977236758134308; /** 2 / $(PI) */ enum real M_2_SQRTPI = 1.12837916709551257390; /** 2 / $(SQRT)$(PI) */ enum real SQRT2 = 1.41421356237309504880; /** $(SQRT)2 */ enum real SQRT1_2 = 0.70710678118654752440; /** $(SQRT)$(HALF) */ /* Octal versions: PI/64800 0.00001 45530 36176 77347 02143 15351 61441 26767 PI/180 0.01073 72152 11224 72344 25603 54276 63351 22056 PI/8 0.31103 75524 21026 43021 51423 06305 05600 67016 SQRT(1/PI) 0.44067 27240 41233 33210 65616 51051 77327 77303 2/PI 0.50574 60333 44710 40522 47741 16537 21752 32335 PI/4 0.62207 73250 42055 06043 23046 14612 13401 56034 SQRT(2/PI) 0.63041 05147 52066 24106 41762 63612 00272 56161 PI 3.11037 55242 10264 30215 14230 63050 56006 70163 LOG2 0.23210 11520 47674 77674 61076 11263 26013 37111 */ /*********************************** * Calculates the absolute value * * For complex numbers, abs(z) = sqrt( $(POWER z.re, 2) + $(POWER z.im, 2) ) * = hypot(z.re, z.im). */ Num abs(Num)(Num x) @safe pure nothrow if (is(typeof(Num.init >= 0)) && is(typeof(-Num.init)) && !(is(Num* : const(ifloat*)) || is(Num* : const(idouble*)) || is(Num* : const(ireal*)))) { static if (isFloatingPoint!(Num)) return fabs(x); else return x>=0 ? x : -x; } auto abs(Num)(Num z) @safe pure nothrow if (is(Num* : const(cfloat*)) || is(Num* : const(cdouble*)) || is(Num* : const(creal*))) { return hypot(z.re, z.im); } /** ditto */ real abs(Num)(Num y) @safe pure nothrow if (is(Num* : const(ifloat*)) || is(Num* : const(idouble*)) || is(Num* : const(ireal*))) { return fabs(y.im); } unittest { assert(isIdentical(abs(-0.0L), 0.0L)); assert(isNaN(abs(real.nan))); assert(abs(-real.infinity) == real.infinity); assert(abs(-3.2Li) == 3.2L); assert(abs(71.6Li) == 71.6L); assert(abs(-56) == 56); assert(abs(2321312L) == 2321312L); assert(abs(-1+1i) == sqrt(2.0)); } /*********************************** * Complex conjugate * * conj(x + iy) = x - iy * * Note that z * conj(z) = $(POWER z.re, 2) - $(POWER z.im, 2) * is always a real number */ creal conj(creal z) @safe pure nothrow { return z.re - z.im*1i; } /** ditto */ ireal conj(ireal y) @safe pure nothrow { return -y; } unittest { assert(conj(7 + 3i) == 7-3i); ireal z = -3.2Li; assert(conj(z) == -z); } /*********************************** * Returns cosine of x. x is in radians. * * $(TABLE_SV * $(TR $(TH x) $(TH cos(x)) $(TH invalid?)) * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes) ) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) $(TD yes) ) * ) * Bugs: * Results are undefined if |x| >= $(POWER 2,64). */ real cos(real x) @safe pure nothrow; /* intrinsic */ /*********************************** * Returns sine of x. x is in radians. * * $(TABLE_SV * $(TR $(TH x) $(TH sin(x)) $(TH invalid?)) * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) * $(TR $(TD $(PLUSMNINF)) $(TD $(NAN)) $(TD yes)) * ) * Bugs: * Results are undefined if |x| >= $(POWER 2,64). */ real sin(real x) @safe pure nothrow; /* intrinsic */ /*********************************** * sine, complex and imaginary * * sin(z) = sin(z.re)*cosh(z.im) + cos(z.re)*sinh(z.im)i * * If both sin($(THETA)) and cos($(THETA)) are required, * it is most efficient to use expi($(THETA)). */ creal sin(creal z) @safe pure nothrow { creal cs = expi(z.re); creal csh = coshisinh(z.im); return cs.im * csh.re + cs.re * csh.im * 1i; } /** ditto */ ireal sin(ireal y) @safe pure nothrow { return cosh(y.im)*1i; } unittest { assert(sin(0.0+0.0i) == 0.0); assert(sin(2.0+0.0i) == sin(2.0L) ); } /*********************************** * cosine, complex and imaginary * * cos(z) = cos(z.re)*cosh(z.im) - sin(z.re)*sinh(z.im)i */ creal cos(creal z) @safe pure nothrow { creal cs = expi(z.re); creal csh = coshisinh(z.im); return cs.re * csh.re - cs.im * csh.im * 1i; } /** ditto */ real cos(ireal y) @safe pure nothrow { return cosh(y.im); } unittest{ assert(cos(0.0+0.0i)==1.0); assert(cos(1.3L+0.0i)==cos(1.3L)); assert(cos(5.2Li)== cosh(5.2L)); } /**************************************************************************** * Returns tangent of x. x is in radians. * * $(TABLE_SV * $(TR $(TH x) $(TH tan(x)) $(TH invalid?)) * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) * $(TR $(TD $(PLUSMNINF)) $(TD $(NAN)) $(TD yes)) * ) */ real tan(real x) @trusted pure nothrow { version(D_InlineAsm_X86) { asm { fld x[EBP] ; // load theta fxam ; // test for oddball values fstsw AX ; sahf ; jc trigerr ; // x is NAN, infinity, or empty // 387's can handle denormals SC18: fptan ; fstp ST(0) ; // dump X, which is always 1 fstsw AX ; sahf ; jnp Lret ; // C2 = 1 (x is out of range) // Do argument reduction to bring x into range fldpi ; fxch ; SC17: fprem1 ; fstsw AX ; sahf ; jp SC17 ; fstp ST(1) ; // remove pi from stack jmp SC18 ; trigerr: jnp Lret ; // if theta is NAN, return theta fstp ST(0) ; // dump theta } return real.nan; Lret: ; } else version(D_InlineAsm_X86_64) { asm { fld x[RBP] ; // load theta fxam ; // test for oddball values fstsw AX ; test AH,1 ; jnz trigerr ; // x is NAN, infinity, or empty // 387's can handle denormals SC18: fptan ; fstp ST(0) ; // dump X, which is always 1 fstsw AX ; test AH,4 ; jz Lret ; // C2 = 1 (x is out of range) // Do argument reduction to bring x into range fldpi ; fxch ; SC17: fprem1 ; fstsw AX ; test AH,4 ; jnz SC17 ; fstp ST(1) ; // remove pi from stack jmp SC18 ; trigerr: test AH,4 ; jz Lret ; // if theta is NAN, return theta fstp ST(0) ; // dump theta } return real.nan; Lret: ; } else { return core.stdc.math.tanl(x); } } unittest { static real vals[][2] = // angle,tan [ [ 0, 0], [ .5, .5463024898], [ 1, 1.557407725], [ 1.5, 14.10141995], [ 2, -2.185039863], [ 2.5,-.7470222972], [ 3, -.1425465431], [ 3.5, .3745856402], [ 4, 1.157821282], [ 4.5, 4.637332055], [ 5, -3.380515006], [ 5.5,-.9955840522], [ 6, -.2910061914], [ 6.5, .2202772003], [ 10, .6483608275], // special angles [ PI_4, 1], //[ PI_2, real.infinity], // PI_2 is not _exactly_ pi/2. [ 3*PI_4, -1], [ PI, 0], [ 5*PI_4, 1], //[ 3*PI_2, -real.infinity], [ 7*PI_4, -1], [ 2*PI, 0], ]; int i; for (i = 0; i < vals.length; i++) { real x = vals[i][0]; real r = vals[i][1]; real t = tan(x); //printf("tan(%Lg) = %Lg, should be %Lg\n", x, t, r); if (!isIdentical(r, t)) assert(fabs(r-t) <= .0000001); x = -x; r = -r; t = tan(x); //printf("tan(%Lg) = %Lg, should be %Lg\n", x, t, r); if (!isIdentical(r, t) && !(r!<>=0 && t!<>=0)) assert(fabs(r-t) <= .0000001); } // overflow assert(isNaN(tan(real.infinity))); assert(isNaN(tan(-real.infinity))); // NaN propagation assert(isIdentical( tan(NaN(0x0123L)), NaN(0x0123L) )); } /*************** * Calculates the arc cosine of x, * returning a value ranging from 0 to $(PI). * * $(TABLE_SV * $(TR $(TH x) $(TH acos(x)) $(TH invalid?)) * $(TR $(TD $(GT)1.0) $(TD $(NAN)) $(TD yes)) * $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD yes)) * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes)) * ) */ real acos(real x) @safe pure nothrow { return atan2(sqrt(1-x*x), x); } /// ditto double acos(double x) @safe pure nothrow { return acos(cast(real)x); } /// ditto float acos(float x) @safe pure nothrow { return acos(cast(real)x); } /*************** * Calculates the arc sine of x, * returning a value ranging from -$(PI)/2 to $(PI)/2. * * $(TABLE_SV * $(TR $(TH x) $(TH asin(x)) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) * $(TR $(TD $(GT)1.0) $(TD $(NAN)) $(TD yes)) * $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD yes)) * ) */ real asin(real x) @safe pure nothrow { return atan2(x, sqrt(1-x*x)); } /// ditto double asin(double x) @safe pure nothrow { return asin(cast(real)x); } /// ditto float asin(float x) @safe pure nothrow { return asin(cast(real)x); } /*************** * Calculates the arc tangent of x, * returning a value ranging from -$(PI)/2 to $(PI)/2. * * $(TABLE_SV * $(TR $(TH x) $(TH atan(x)) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) $(TD yes)) * ) */ real atan(real x) @safe pure nothrow { return atan2(x, 1.0L); } /// ditto double atan(double x) @safe pure nothrow { return atan(cast(real)x); } /// ditto float atan(float x) @safe pure nothrow { return atan(cast(real)x); } /*************** * Calculates the arc tangent of y / x, * returning a value ranging from -$(PI) to $(PI). * * $(TABLE_SV * $(TR $(TH y) $(TH x) $(TH atan(y, x))) * $(TR $(TD $(NAN)) $(TD anything) $(TD $(NAN)) ) * $(TR $(TD anything) $(TD $(NAN)) $(TD $(NAN)) ) * $(TR $(TD $(PLUSMN)0.0) $(TD $(GT)0.0) $(TD $(PLUSMN)0.0) ) * $(TR $(TD $(PLUSMN)0.0) $(TD +0.0) $(TD $(PLUSMN)0.0) ) * $(TR $(TD $(PLUSMN)0.0) $(TD $(LT)0.0) $(TD $(PLUSMN)$(PI))) * $(TR $(TD $(PLUSMN)0.0) $(TD -0.0) $(TD $(PLUSMN)$(PI))) * $(TR $(TD $(GT)0.0) $(TD $(PLUSMN)0.0) $(TD $(PI)/2) ) * $(TR $(TD $(LT)0.0) $(TD $(PLUSMN)0.0) $(TD -$(PI)/2) ) * $(TR $(TD $(GT)0.0) $(TD $(INFIN)) $(TD $(PLUSMN)0.0) ) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD anything) $(TD $(PLUSMN)$(PI)/2)) * $(TR $(TD $(GT)0.0) $(TD -$(INFIN)) $(TD $(PLUSMN)$(PI)) ) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(INFIN)) $(TD $(PLUSMN)$(PI)/4)) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD -$(INFIN)) $(TD $(PLUSMN)3$(PI)/4)) * ) */ real atan2(real y, real x) @trusted pure nothrow { version(InlineAsm_X86_Any) { asm { fld y; fld x; fpatan; } } else { return core.stdc.math.atan2l(y,x); } } /// ditto double atan2(double y, double x) @safe pure nothrow { return atan2(cast(real)y, cast(real)x); } /// ditto float atan2(float y, float x) @safe pure nothrow { return atan2(cast(real)y, cast(real)x); } /*********************************** * Calculates the hyperbolic cosine of x. * * $(TABLE_SV * $(TR $(TH x) $(TH cosh(x)) $(TH invalid?)) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)0.0) $(TD no) ) * ) */ real cosh(real x) @safe pure nothrow { // cosh = (exp(x)+exp(-x))/2. // The naive implementation works correctly. real y = exp(x); return (y + 1.0/y) * 0.5; } /// ditto double cosh(double x) @safe pure nothrow { return cosh(cast(real)x); } /// ditto float cosh(float x) @safe pure nothrow { return cosh(cast(real)x); } /*********************************** * Calculates the hyperbolic sine of x. * * $(TABLE_SV * $(TR $(TH x) $(TH sinh(x)) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)$(INFIN)) $(TD no)) * ) */ real sinh(real x) @safe pure nothrow { // sinh(x) = (exp(x)-exp(-x))/2; // Very large arguments could cause an overflow, but // the maximum value of x for which exp(x) + exp(-x)) != exp(x) // is x = 0.5 * (real.mant_dig) * LN2. // = 22.1807 for real80. if (fabs(x) > real.mant_dig * LN2) { return copysign(0.5 * exp(fabs(x)), x); } real y = expm1(x); return 0.5 * y / (y+1) * (y+2); } /// ditto double sinh(double x) @safe pure nothrow { return sinh(cast(real)x); } /// ditto float sinh(float x) @safe pure nothrow { return sinh(cast(real)x); } /*********************************** * Calculates the hyperbolic tangent of x. * * $(TABLE_SV * $(TR $(TH x) $(TH tanh(x)) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) ) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)1.0) $(TD no)) * ) */ real tanh(real x) @safe pure nothrow { // tanh(x) = (exp(x) - exp(-x))/(exp(x)+exp(-x)) if (fabs(x) > real.mant_dig * LN2) { return copysign(1, x); } real y = expm1(2*x); return y / (y + 2); } /// ditto double tanh(double x) @safe pure nothrow { return tanh(cast(real)x); } /// ditto float tanh(float x) @safe pure nothrow { return tanh(cast(real)x); } private: /* Returns cosh(x) + I * sinh(x) * Only one call to exp() is performed. */ creal coshisinh(real x) @safe pure nothrow { // See comments for cosh, sinh. if (fabs(x) > real.mant_dig * LN2) { real y = exp(fabs(x)); return y * 0.5 + 0.5i * copysign(y, x); } else { real y = expm1(x); return (y + 1.0 + 1.0/(y + 1.0)) * 0.5 + 0.5i * y / (y+1) * (y+2); } } unittest { creal c = coshisinh(3.0L); assert(c.re == cosh(3.0L)); assert(c.im == sinh(3.0L)); } public: /*********************************** * Calculates the inverse hyperbolic cosine of x. * * Mathematically, acosh(x) = log(x + sqrt( x*x - 1)) * * $(TABLE_DOMRG * $(DOMAIN 1..$(INFIN)) * $(RANGE 1..log(real.max), $(INFIN)) ) * $(TABLE_SV * $(SVH x, acosh(x) ) * $(SV $(NAN), $(NAN) ) * $(SV $(LT)1, $(NAN) ) * $(SV 1, 0 ) * $(SV +$(INFIN),+$(INFIN)) * ) */ real acosh(real x) @safe pure nothrow { if (x > 1/real.epsilon) return LN2 + log(x); else return log(x + sqrt(x*x - 1)); } /// ditto double acosh(double x) @safe pure nothrow { return acosh(cast(real)x); } /// ditto float acosh(float x) @safe pure nothrow { return acosh(cast(real)x); } unittest { assert(isNaN(acosh(0.9))); assert(isNaN(acosh(real.nan))); assert(acosh(1.0)==0.0); assert(acosh(real.infinity) == real.infinity); } /*********************************** * Calculates the inverse hyperbolic sine of x. * * Mathematically, * --------------- * asinh(x) = log( x + sqrt( x*x + 1 )) // if x >= +0 * asinh(x) = -log(-x + sqrt( x*x + 1 )) // if x <= -0 * ------------- * * $(TABLE_SV * $(SVH x, asinh(x) ) * $(SV $(NAN), $(NAN) ) * $(SV $(PLUSMN)0, $(PLUSMN)0 ) * $(SV $(PLUSMN)$(INFIN),$(PLUSMN)$(INFIN)) * ) */ real asinh(real x) @safe pure nothrow { return (fabs(x) > 1 / real.epsilon) // beyond this point, x*x + 1 == x*x ? copysign(LN2 + log(fabs(x)), x) // sqrt(x*x + 1) == 1 + x * x / ( 1 + sqrt(x*x + 1) ) : copysign(log1p(fabs(x) + x*x / (1 + sqrt(x*x + 1)) ), x); } /// ditto double asinh(double x) @safe pure nothrow { return asinh(cast(real)x); } /// ditto float asinh(float x) @safe pure nothrow { return asinh(cast(real)x); } unittest { assert(isIdentical(asinh(0.0), 0.0)); assert(isIdentical(asinh(-0.0), -0.0)); assert(asinh(real.infinity) == real.infinity); assert(asinh(-real.infinity) == -real.infinity); assert(isNaN(asinh(real.nan))); } /*********************************** * Calculates the inverse hyperbolic tangent of x, * returning a value from ranging from -1 to 1. * * Mathematically, atanh(x) = log( (1+x)/(1-x) ) / 2 * * * $(TABLE_DOMRG * $(DOMAIN -$(INFIN)..$(INFIN)) * $(RANGE -1..1) ) * $(TABLE_SV * $(SVH x, acosh(x) ) * $(SV $(NAN), $(NAN) ) * $(SV $(PLUSMN)0, $(PLUSMN)0) * $(SV -$(INFIN), -0) * ) */ real atanh(real x) @safe pure nothrow { // log( (1+x)/(1-x) ) == log ( 1 + (2*x)/(1-x) ) return 0.5 * log1p( 2 * x / (1 - x) ); } /// ditto double atanh(double x) @safe pure nothrow { return atanh(cast(real)x); } /// ditto float atanh(float x) @safe pure nothrow { return atanh(cast(real)x); } unittest { assert(isIdentical(atanh(0.0), 0.0)); assert(isIdentical(atanh(-0.0),-0.0)); assert(isNaN(atanh(real.nan))); assert(isNaN(atanh(-real.infinity))); } /***************************************** * Returns x rounded to a long value using the current rounding mode. * If the integer value of x is * greater than long.max, the result is * indeterminate. */ long rndtol(real x) @safe pure nothrow; /* intrinsic */ /***************************************** * Returns x rounded to a long value using the FE_TONEAREST rounding mode. * If the integer value of x is * greater than long.max, the result is * indeterminate. */ extern (C) real rndtonl(real x); /*************************************** * Compute square root of x. * * $(TABLE_SV * $(TR $(TH x) $(TH sqrt(x)) $(TH invalid?)) * $(TR $(TD -0.0) $(TD -0.0) $(TD no)) * $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD yes)) * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no)) * ) */ @safe pure nothrow { float sqrt(float x); /* intrinsic */ double sqrt(double x); /* intrinsic */ /// ditto real sqrt(real x); /* intrinsic */ /// ditto } @trusted pure nothrow { // Should be @safe. See bugs 4628, 4630. // Create explicit overloads for integer sqrts. No ddoc for these because // hopefully a more elegant solution will eventually be found, so we don't // want people relying too heavily on the minutiae of this, for example, // by taking the address of sqrt(int) or something. real sqrt(byte x) { return sqrt(cast(real) x); } real sqrt(ubyte x) { return sqrt(cast(real) x); } real sqrt(short x) { return sqrt(cast(real) x); } real sqrt(ushort x) { return sqrt(cast(real) x); } real sqrt(int x) { return sqrt(cast(real) x); } real sqrt(uint x) { return sqrt(cast(real) x); } real sqrt(long x) { return sqrt(cast(real) x); } real sqrt(ulong x) { return sqrt(cast(real) x); } } unittest { alias TypeTuple!(byte, ubyte, short, ushort, int, uint, long, ulong, float, double, real) Numerics; foreach(T; Numerics) { immutable T two = 2; assert(approxEqual(sqrt(two), SQRT2), "sqrt unittest failed on type " ~ T.stringof); } } creal sqrt(creal z) @safe pure nothrow { creal c; real x,y,w,r; if (z == 0) { c = 0 + 0i; } else { real z_re = z.re; real z_im = z.im; x = fabs(z_re); y = fabs(z_im); if (x >= y) { r = y / x; w = sqrt(x) * sqrt(0.5 * (1 + sqrt(1 + r * r))); } else { r = x / y; w = sqrt(y) * sqrt(0.5 * (r + sqrt(1 + r * r))); } if (z_re >= 0) { c = w + (z_im / (w + w)) * 1.0i; } else { if (z_im < 0) w = -w; c = z_im / (w + w) + w * 1.0i; } } return c; } /** * Calculates e$(SUP x). * * $(TABLE_SV * $(TR $(TH x) $(TH e$(SUP x)) ) * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) ) * $(TR $(TD -$(INFIN)) $(TD +0.0) ) * $(TR $(TD $(NAN)) $(TD $(NAN)) ) * ) */ real exp(real x) @safe pure nothrow { version(D_InlineAsm_X86) { // e^^x = 2^^(LOG2E*x) // (This is valid because the overflow & underflow limits for exp // and exp2 are so similar). return exp2(LOG2E*x); } else version(D_InlineAsm_X86_64) { // e^^x = 2^^(LOG2E*x) // (This is valid because the overflow & underflow limits for exp // and exp2 are so similar). return exp2(LOG2E*x); } else { return core.stdc.math.exp(x); } } /// ditto double exp(double x) @safe pure nothrow { return exp(cast(real)x); } /// ditto float exp(float x) @safe pure nothrow { return exp(cast(real)x); } /** * Calculates the value of the natural logarithm base (e) * raised to the power of x, minus 1. * * For very small x, expm1(x) is more accurate * than exp(x)-1. * * $(TABLE_SV * $(TR $(TH x) $(TH e$(SUP x)-1) ) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) ) * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) ) * $(TR $(TD -$(INFIN)) $(TD -1.0) ) * $(TR $(TD $(NAN)) $(TD $(NAN)) ) * ) */ real expm1(real x) @trusted pure nothrow { version(D_InlineAsm_X86) { enum { PARAMSIZE = (real.sizeof+3)&(0xFFFF_FFFC) } // always a multiple of 4 asm { /* expm1() for x87 80-bit reals, IEEE754-2008 conformant. * Author: Don Clugston. * * expm1(x) = 2^^(rndint(y))* 2^^(y-rndint(y)) - 1 where y = LN2*x. * = 2rndy * 2ym1 + 2rndy - 1, where 2rndy = 2^^(rndint(y)) * and 2ym1 = (2^^(y-rndint(y))-1). * If 2rndy < 0.5*real.epsilon, result is -1. * Implementation is otherwise the same as for exp2() */ naked; fld real ptr [ESP+4] ; // x mov AX, [ESP+4+8]; // AX = exponent and sign sub ESP, 12+8; // Create scratch space on the stack // [ESP,ESP+2] = scratchint // [ESP+4..+6, +8..+10, +10] = scratchreal // set scratchreal mantissa = 1.0 mov dword ptr [ESP+8], 0; mov dword ptr [ESP+8+4], 0x80000000; and AX, 0x7FFF; // drop sign bit cmp AX, 0x401D; // avoid InvalidException in fist jae L_extreme; fldl2e; fmulp ST(1), ST; // y = x*log2(e) fist dword ptr [ESP]; // scratchint = rndint(y) fisub dword ptr [ESP]; // y - rndint(y) // and now set scratchreal exponent mov EAX, [ESP]; add EAX, 0x3fff; jle short L_largenegative; cmp EAX,0x8000; jge short L_largepositive; mov [ESP+8+8],AX; f2xm1; // 2ym1 = 2^^(y-rndint(y)) -1 fld real ptr [ESP+8] ; // 2rndy = 2^^rndint(y) fmul ST(1), ST; // ST=2rndy, ST(1)=2rndy*2ym1 fld1; fsubp ST(1), ST; // ST = 2rndy-1, ST(1) = 2rndy * 2ym1 - 1 faddp ST(1), ST; // ST = 2rndy * 2ym1 + 2rndy - 1 add ESP,12+8; ret PARAMSIZE; L_extreme: // Extreme exponent. X is very large positive, very // large negative, infinity, or NaN. fxam; fstsw AX; test AX, 0x0400; // NaN_or_zero, but we already know x!=0 jz L_was_nan; // if x is NaN, returns x test AX, 0x0200; jnz L_largenegative; L_largepositive: // Set scratchreal = real.max. // squaring it will create infinity, and set overflow flag. mov word ptr [ESP+8+8], 0x7FFE; fstp ST(0), ST; fld real ptr [ESP+8]; // load scratchreal fmul ST(0), ST; // square it, to create havoc! L_was_nan: add ESP,12+8; ret PARAMSIZE; L_largenegative: fstp ST(0), ST; fld1; fchs; // return -1. Underflow flag is not set. add ESP,12+8; ret PARAMSIZE; } } else version(D_InlineAsm_X86_64) { asm { /* expm1() for x87 80-bit reals, IEEE754-2008 conformant. * Author: Don Clugston. * * expm1(x) = 2^(rndint(y))* 2^(y-rndint(y)) - 1 where y = LN2*x. * = 2rndy * 2ym1 + 2rndy - 1, where 2rndy = 2^(rndint(y)) * and 2ym1 = (2^(y-rndint(y))-1). * If 2rndy < 0.5*real.epsilon, result is -1. * Implementation is otherwise the same as for exp2() */ naked; fld real ptr [RSP+8] ; // x mov AX, [RSP+8+8]; // AX = exponent and sign sub RSP, 24; // Create scratch space on the stack // [RSP,RSP+2] = scratchint // [RSP+4..+6, +8..+10, +10] = scratchreal // set scratchreal mantissa = 1.0 mov dword ptr [RSP+8], 0; mov dword ptr [RSP+8+4], 0x80000000; and AX, 0x7FFF; // drop sign bit cmp AX, 0x401D; // avoid InvalidException in fist jae L_extreme; fldl2e; fmul ; // y = x*log2(e) fist dword ptr [RSP]; // scratchint = rndint(y) fisub dword ptr [RSP]; // y - rndint(y) // and now set scratchreal exponent mov EAX, [RSP]; add EAX, 0x3fff; jle short L_largenegative; cmp EAX,0x8000; jge short L_largepositive; mov [RSP+8+8],AX; f2xm1; // 2^(y-rndint(y)) -1 fld real ptr [RSP+8] ; // 2^rndint(y) fmul ST(1), ST; fld1; fsubp ST(1), ST; fadd; add RSP,24; ret; L_extreme: // Extreme exponent. X is very large positive, very // large negative, infinity, or NaN. fxam; fstsw AX; test AX, 0x0400; // NaN_or_zero, but we already know x!=0 jz L_was_nan; // if x is NaN, returns x test AX, 0x0200; jnz L_largenegative; L_largepositive: // Set scratchreal = real.max. // squaring it will create infinity, and set overflow flag. mov word ptr [RSP+8+8], 0x7FFE; fstp ST(0), ST; fld real ptr [RSP+8]; // load scratchreal fmul ST(0), ST; // square it, to create havoc! L_was_nan: add RSP,24; ret; L_largenegative: fstp ST(0), ST; fld1; fchs; // return -1. Underflow flag is not set. add RSP,24; ret; } } else { return core.stdc.math.expm1(x); } } /** * Calculates 2$(SUP x). * * $(TABLE_SV * $(TR $(TH x) $(TH exp2(x)) ) * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) ) * $(TR $(TD -$(INFIN)) $(TD +0.0) ) * $(TR $(TD $(NAN)) $(TD $(NAN)) ) * ) */ real exp2(real x) @trusted pure nothrow { version(D_InlineAsm_X86) { enum { PARAMSIZE = (real.sizeof+3)&(0xFFFF_FFFC) } // always a multiple of 4 asm { /* exp2() for x87 80-bit reals, IEEE754-2008 conformant. * Author: Don Clugston. * * exp2(x) = 2^^(rndint(x))* 2^^(y-rndint(x)) * The trick for high performance is to avoid the fscale(28cycles on core2), * frndint(19 cycles), leaving f2xm1(19 cycles) as the only slow instruction. * * We can do frndint by using fist. BUT we can't use it for huge numbers, * because it will set the Invalid Operation flag if overflow or NaN occurs. * Fortunately, whenever this happens the result would be zero or infinity. * * We can perform fscale by directly poking into the exponent. BUT this doesn't * work for the (very rare) cases where the result is subnormal. So we fall back * to the slow method in that case. */ naked; fld real ptr [ESP+4] ; // x mov AX, [ESP+4+8]; // AX = exponent and sign sub ESP, 12+8; // Create scratch space on the stack // [ESP,ESP+2] = scratchint // [ESP+4..+6, +8..+10, +10] = scratchreal // set scratchreal mantissa = 1.0 mov dword ptr [ESP+8], 0; mov dword ptr [ESP+8+4], 0x80000000; and AX, 0x7FFF; // drop sign bit cmp AX, 0x401D; // avoid InvalidException in fist jae L_extreme; fist dword ptr [ESP]; // scratchint = rndint(x) fisub dword ptr [ESP]; // x - rndint(x) // and now set scratchreal exponent mov EAX, [ESP]; add EAX, 0x3fff; jle short L_subnormal; cmp EAX,0x8000; jge short L_overflow; mov [ESP+8+8],AX; L_normal: f2xm1; fld1; faddp ST(1), ST; // 2^^(x-rndint(x)) fld real ptr [ESP+8] ; // 2^^rndint(x) add ESP,12+8; fmulp ST(1), ST; ret PARAMSIZE; L_subnormal: // Result will be subnormal. // In this rare case, the simple poking method doesn't work. // The speed doesn't matter, so use the slow fscale method. fild dword ptr [ESP]; // scratchint fld1; fscale; fstp real ptr [ESP+8]; // scratchreal = 2^^scratchint fstp ST(0),ST; // drop scratchint jmp L_normal; L_extreme: // Extreme exponent. X is very large positive, very // large negative, infinity, or NaN. fxam; fstsw AX; test AX, 0x0400; // NaN_or_zero, but we already know x!=0 jz L_was_nan; // if x is NaN, returns x // set scratchreal = real.min_normal // squaring it will return 0, setting underflow flag mov word ptr [ESP+8+8], 1; test AX, 0x0200; jnz L_waslargenegative; L_overflow: // Set scratchreal = real.max. // squaring it will create infinity, and set overflow flag. mov word ptr [ESP+8+8], 0x7FFE; L_waslargenegative: fstp ST(0), ST; fld real ptr [ESP+8]; // load scratchreal fmul ST(0), ST; // square it, to create havoc! L_was_nan: add ESP,12+8; ret PARAMSIZE; } } else version(D_InlineAsm_X86_64) { asm { /* exp2() for x87 80-bit reals, IEEE754-2008 conformant. * Author: Don Clugston. * * exp2(x) = 2^(rndint(x))* 2^(y-rndint(x)) * The trick for high performance is to avoid the fscale(28cycles on core2), * frndint(19 cycles), leaving f2xm1(19 cycles) as the only slow instruction. * * We can do frndint by using fist. BUT we can't use it for huge numbers, * because it will set the Invalid Operation flag is overflow or NaN occurs. * Fortunately, whenever this happens the result would be zero or infinity. * * We can perform fscale by directly poking into the exponent. BUT this doesn't * work for the (very rare) cases where the result is subnormal. So we fall back * to the slow method in that case. */ naked; fld real ptr [RSP+8] ; // x mov AX, [RSP+8+8]; // AX = exponent and sign sub RSP, 24; // Create scratch space on the stack // [RSP,RSP+2] = scratchint // [RSP+4..+6, +8..+10, +10] = scratchreal // set scratchreal mantissa = 1.0 mov dword ptr [RSP+8], 0; mov dword ptr [RSP+8+4], 0x80000000; and AX, 0x7FFF; // drop sign bit cmp AX, 0x401D; // avoid InvalidException in fist jae L_extreme; fist dword ptr [RSP]; // scratchint = rndint(x) fisub dword ptr [RSP]; // x - rndint(x) // and now set scratchreal exponent mov EAX, [RSP]; add EAX, 0x3fff; jle short L_subnormal; cmp EAX,0x8000; jge short L_overflow; mov [RSP+8+8],AX; L_normal: f2xm1; fld1; fadd; // 2^(x-rndint(x)) fld real ptr [RSP+8] ; // 2^rndint(x) add RSP,24; fmulp ST(1), ST; ret; L_subnormal: // Result will be subnormal. // In this rare case, the simple poking method doesn't work. // The speed doesn't matter, so use the slow fscale method. fild dword ptr [RSP]; // scratchint fld1; fscale; fstp real ptr [RSP+8]; // scratchreal = 2^scratchint fstp ST(0),ST; // drop scratchint jmp L_normal; L_extreme: // Extreme exponent. X is very large positive, very // large negative, infinity, or NaN. fxam; fstsw AX; test AX, 0x0400; // NaN_or_zero, but we already know x!=0 jz L_was_nan; // if x is NaN, returns x // set scratchreal = real.min // squaring it will return 0, setting underflow flag mov word ptr [RSP+8+8], 1; test AX, 0x0200; jnz L_waslargenegative; L_overflow: // Set scratchreal = real.max. // squaring it will create infinity, and set overflow flag. mov word ptr [RSP+8+8], 0x7FFE; L_waslargenegative: fstp ST(0), ST; fld real ptr [RSP+8]; // load scratchreal fmul ST(0), ST; // square it, to create havoc! L_was_nan: add RSP,24; ret; } } else { return core.stdc.math.exp2(x); } } unittest{ assert(exp2(0.5L)== SQRT2); assert(exp2(8.0L) == 256.0); assert(exp2(-9.0L)== 1.0L/512.0); assert(exp(3.0L) == E*E*E); } unittest { FloatingPointControl ctrl; ctrl.disableExceptions(FloatingPointControl.allExceptions); ctrl.rounding = FloatingPointControl.roundToNearest; // @@BUG@@: Non-immutable array literals are ridiculous. // Note that these are only valid for 80-bit reals: overflow will be different for 64-bit reals. static const real [2][] exptestpoints = [ // x, exp(x) [1.0L, E ], [0.5L, 0x1.A612_98E1_E069_BC97p+0L ], [3.0L, E*E*E ], [0x1.1p13L, 0x1.29aeffefc8ec645p+12557L ], // near overflow [-0x1.18p13L, 0x1.5e4bf54b4806db9p-12927L ], // near underflow [-0x1.625p13L, 0x1.a6bd68a39d11f35cp-16358L], [-0x1p30L, 0 ], // underflow - subnormal [-0x1.62DAFp13L, 0x1.96c53d30277021dp-16383L ], [-0x1.643p13L, 0x1p-16444L ], [-0x1.645p13L, 0 ], // underflow to zero [0x1p80L, real.infinity ], // far overflow [real.infinity, real.infinity ], [0x1.7p13L, real.infinity ] // close overflow ]; real x; IeeeFlags f; for (int i=0; i> 4; vu[F.EXPPOS_SHORT] = cast(ushort)((0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FE0); } } else if (!(*vl & 0x7FFF_FFFF_FFFF_FFFF)) { // value is +-0.0 exp = 0; } else { // denormal value *= F.RECIP_EPSILON; ex = vu[F.EXPPOS_SHORT] & F.EXPMASK; exp = ((ex - F.EXPBIAS)>> 4) - real.mant_dig + 1; vu[F.EXPPOS_SHORT] = cast(ushort)((0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FE0); } } else { //static if(real.mant_dig==106) // doubledouble assert (0, "frexp not implemented"); } return value; } unittest { static real vals[][3] = // x,frexp,exp [ [0.0, 0.0, 0], [-0.0, -0.0, 0], [1.0, .5, 1], [-1.0, -.5, 1], [2.0, .5, 2], [double.min_normal/2.0, .5, -1022], [real.infinity,real.infinity,int.max], [-real.infinity,-real.infinity,int.min], [real.nan,real.nan,int.min], [-real.nan,-real.nan,int.min], ]; int i; for (i = 0; i < vals.length; i++) { real x = vals[i][0]; real e = vals[i][1]; int exp = cast(int)vals[i][2]; int eptr; real v = frexp(x, eptr); assert(isIdentical(e, v)); assert(exp == eptr); } static if (real.mant_dig == 64) { static real extendedvals[][3] = [ // x,frexp,exp [0x1.a5f1c2eb3fe4efp+73L, 0x1.A5F1C2EB3FE4EFp-1L, 74], // normal [0x1.fa01712e8f0471ap-1064L, 0x1.fa01712e8f0471ap-1L, -1063], [real.min_normal, .5, -16381], [real.min_normal/2.0L, .5, -16382] // denormal ]; for (i = 0; i < extendedvals.length; i++) { real x = extendedvals[i][0]; real e = extendedvals[i][1]; int exp = cast(int)extendedvals[i][2]; int eptr; real v = frexp(x, eptr); assert(isIdentical(e, v)); assert(exp == eptr); } } } /****************************************** * Extracts the exponent of x as a signed integral value. * * If x is not a special value, the result is the same as * $(D cast(int)logb(x)). * * $(TABLE_SV * $(TR $(TH x) $(TH ilogb(x)) $(TH Range error?)) * $(TR $(TD 0) $(TD FP_ILOGB0) $(TD yes)) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD int.max) $(TD no)) * $(TR $(TD $(NAN)) $(TD FP_ILOGBNAN) $(TD no)) * ) */ int ilogb(real x) @trusted nothrow { return core.stdc.math.ilogbl(x); } alias core.stdc.math.FP_ILOGB0 FP_ILOGB0; alias core.stdc.math.FP_ILOGBNAN FP_ILOGBNAN; /******************************************* * Compute n * 2$(SUP exp) * References: frexp */ real ldexp(real n, int exp) @safe pure nothrow; /* intrinsic */ unittest { assert(ldexp(1, -16384) == 0x1p-16384L); assert(ldexp(1, -16382) == 0x1p-16382L); int x; real n = frexp(0x1p-16384L, x); assert(n==0.5L); assert(x==-16383); assert(ldexp(n, x)==0x1p-16384L); } /************************************** * Calculate the natural logarithm of x. * * $(TABLE_SV * $(TR $(TH x) $(TH log(x)) $(TH divide by 0?) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no)) * $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes)) * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no)) * ) */ real log(real x) @safe pure nothrow { version (INLINE_YL2X) return yl2x(x, LN2); else return core.stdc.math.logl(x); } unittest { assert(log(E) == 1); } /************************************** * Calculate the base-10 logarithm of x. * * $(TABLE_SV * $(TR $(TH x) $(TH log10(x)) $(TH divide by 0?) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no)) * $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes)) * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no)) * ) */ real log10(real x) @safe pure nothrow { version (INLINE_YL2X) return yl2x(x, LOG2); else return core.stdc.math.log10l(x); } unittest { //printf("%Lg\n", log10(1000) - 3); assert(fabs(log10(1000) - 3) < .000001); } /****************************************** * Calculates the natural logarithm of 1 + x. * * For very small x, log1p(x) will be more accurate than * log(1 + x). * * $(TABLE_SV * $(TR $(TH x) $(TH log1p(x)) $(TH divide by 0?) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) $(TD no)) * $(TR $(TD -1.0) $(TD -$(INFIN)) $(TD yes) $(TD no)) * $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD no) $(TD yes)) * $(TR $(TD +$(INFIN)) $(TD -$(INFIN)) $(TD no) $(TD no)) * ) */ real log1p(real x) @safe pure nothrow { version(INLINE_YL2X) { // On x87, yl2xp1 is valid if and only if -0.5 <= lg(x) <= 0.5, // ie if -0.29<=x<=0.414 return (fabs(x) <= 0.25) ? yl2xp1(x, LN2) : yl2x(x+1, LN2); } else { return core.stdc.math.log1pl(x); } } /*************************************** * Calculates the base-2 logarithm of x: * $(SUB log, 2)x * * $(TABLE_SV * $(TR $(TH x) $(TH log2(x)) $(TH divide by 0?) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no) ) * $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes) ) * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no) ) * ) */ real log2(real x) @safe pure nothrow { version (INLINE_YL2X) return yl2x(x, 1); else return core.stdc.math.log2l(x); } /***************************************** * Extracts the exponent of x as a signed integral value. * * If x is subnormal, it is treated as if it were normalized. * For a positive, finite x: * * 1 $(LT)= $(I x) * FLT_RADIX$(SUP -logb(x)) $(LT) FLT_RADIX * * $(TABLE_SV * $(TR $(TH x) $(TH logb(x)) $(TH divide by 0?) ) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD +$(INFIN)) $(TD no)) * $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) ) * ) */ real logb(real x) @trusted nothrow { return core.stdc.math.logbl(x); } /************************************ * Calculates the remainder from the calculation x/y. * Returns: * The value of x - i * y, where i is the number of times that y can * be completely subtracted from x. The result has the same sign as x. * * $(TABLE_SV * $(TR $(TH x) $(TH y) $(TH modf(x, y)) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD not 0.0) $(TD $(PLUSMN)0.0) $(TD no)) * $(TR $(TD $(PLUSMNINF)) $(TD anything) $(TD $(NAN)) $(TD yes)) * $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD $(NAN)) $(TD yes)) * $(TR $(TD !=$(PLUSMNINF)) $(TD $(PLUSMNINF)) $(TD x) $(TD no)) * ) */ real modf(real x, ref real y) @trusted nothrow { return core.stdc.math.modfl(x,&y); } /************************************* * Efficiently calculates x * 2$(SUP n). * * scalbn handles underflow and overflow in * the same fashion as the basic arithmetic operators. * * $(TABLE_SV * $(TR $(TH x) $(TH scalb(x))) * $(TR $(TD $(PLUSMNINF)) $(TD $(PLUSMNINF)) ) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) ) * ) */ real scalbn(real x, int n) @trusted nothrow { version(InlineAsm_X86_Any) { // scalbnl is not supported on DMD-Windows, so use asm. asm { fild n; fld x; fscale; fstp ST(1), ST; } } else { return core.stdc.math.scalbnl(x, n); } } unittest { assert(scalbn(-real.infinity, 5) == -real.infinity); } /*************** * Calculates the cube root of x. * * $(TABLE_SV * $(TR $(TH $(I x)) $(TH cbrt(x)) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) ) * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes) ) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)$(INFIN)) $(TD no) ) * ) */ real cbrt(real x) @trusted nothrow { return core.stdc.math.cbrtl(x); } /******************************* * Returns |x| * * $(TABLE_SV * $(TR $(TH x) $(TH fabs(x))) * $(TR $(TD $(PLUSMN)0.0) $(TD +0.0) ) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD +$(INFIN)) ) * ) */ real fabs(real x) @safe pure nothrow; /* intrinsic */ /*********************************************************************** * Calculates the length of the * hypotenuse of a right-angled triangle with sides of length x and y. * The hypotenuse is the value of the square root of * the sums of the squares of x and y: * * sqrt($(POW x, 2) + $(POW y, 2)) * * Note that hypot(x, y), hypot(y, x) and * hypot(x, -y) are equivalent. * * $(TABLE_SV * $(TR $(TH x) $(TH y) $(TH hypot(x, y)) $(TH invalid?)) * $(TR $(TD x) $(TD $(PLUSMN)0.0) $(TD |x|) $(TD no)) * $(TR $(TD $(PLUSMNINF)) $(TD y) $(TD +$(INFIN)) $(TD no)) * $(TR $(TD $(PLUSMNINF)) $(TD $(NAN)) $(TD +$(INFIN)) $(TD no)) * ) */ real hypot(real x, real y) @safe pure nothrow { // Scale x and y to avoid underflow and overflow. // If one is huge and the other tiny, return the larger. // If both are huge, avoid overflow by scaling by 1/sqrt(real.max/2). // If both are tiny, avoid underflow by scaling by sqrt(real.min_normal*real.epsilon). enum real SQRTMIN = 0.5*sqrt(real.min_normal); // This is a power of 2. enum real SQRTMAX = 1.0L/SQRTMIN; // 2^^((max_exp)/2) = nextUp(sqrt(real.max)) static assert(2*(SQRTMAX/2)*(SQRTMAX/2) <= real.max); static assert(real.min_normal*real.max>2 && real.min_normal*real.max<=4); // Proves that sqrt(real.max) ~~ 0.5/sqrt(real.min_normal) real u = fabs(x); real v = fabs(y); if (!(u >= v)) // check for NaN as well. { v = u; u = fabs(y); if (u == real.infinity) return u; // hypot(inf, nan) == inf if (v == real.infinity) return v; // hypot(nan, inf) == inf } // Now u >= v, or else one is NaN. if (v >= SQRTMAX*0.5) { // hypot(huge, huge) -- avoid overflow u *= SQRTMIN*0.5; v *= SQRTMIN*0.5; return sqrt(u*u + v*v) * SQRTMAX * 2.0; } if (u <= SQRTMIN) { // hypot (tiny, tiny) -- avoid underflow // This is only necessary to avoid setting the underflow // flag. u *= SQRTMAX / real.epsilon; v *= SQRTMAX / real.epsilon; return sqrt(u*u + v*v) * SQRTMIN * real.epsilon; } if (u * real.epsilon > v) { // hypot (huge, tiny) = huge return u; } // both are in the normal range return sqrt(u*u + v*v); } unittest { static real vals[][3] = // x,y,hypot [ [ 0.0, 0.0, 0.0], [ 0.0, -0.0, 0.0], [ -0.0, -0.0, 0.0], [ 3.0, 4.0, 5.0], [ -300, -400, 500], [0.0, 7.0, 7.0], [9.0, 9*real.epsilon, 9.0], [88/(64*sqrt(real.min_normal)), 105/(64*sqrt(real.min_normal)), 137/(64*sqrt(real.min_normal))], [88/(128*sqrt(real.min_normal)), 105/(128*sqrt(real.min_normal)), 137/(128*sqrt(real.min_normal))], [3*real.min_normal*real.epsilon, 4*real.min_normal*real.epsilon, 5*real.min_normal*real.epsilon], [ real.min_normal, real.min_normal, sqrt(2.0L)*real.min_normal], [ real.max/sqrt(2.0L), real.max/sqrt(2.0L), real.max], [ real.infinity, real.nan, real.infinity], [ real.nan, real.infinity, real.infinity], [ real.nan, real.nan, real.nan], [ real.nan, real.max, real.nan], [ real.max, real.nan, real.nan], ]; for (int i = 0; i < vals.length; i++) { real x = vals[i][0]; real y = vals[i][1]; real z = vals[i][2]; real h = hypot(x, y); assert(isIdentical(z, h)); } } /********************************** * Returns the error function of x. * * error function */ real erf(real x) @trusted nothrow { return core.stdc.math.erfl(x); } /********************************** * Returns the complementary error function of x, which is 1 - erf(x). * * complementary error function */ real erfc(real x) @trusted nothrow { return core.stdc.math.erfcl(x); } /*********************************** * Natural logarithm of gamma function. * * Returns the base e (2.718...) logarithm of the absolute * value of the gamma function of the argument. * * For reals, lgamma is equivalent to log(fabs(gamma(x))). * * $(TABLE_SV * $(TR $(TH x) $(TH lgamma(x)) $(TH invalid?)) * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes)) * $(TR $(TD integer $(LT)= 0) $(TD +$(INFIN)) $(TD yes)) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD +$(INFIN)) $(TD no)) * ) */ real lgamma(real x) @trusted nothrow { return core.stdc.math.lgammal(x); // Use etc.gamma.lgamma for those C systems that are missing it } /*********************************** * The Gamma function, $(GAMMA)(x) * * $(GAMMA)(x) is a generalisation of the factorial function * to real and complex numbers. * Like x!, $(GAMMA)(x+1) = x*$(GAMMA)(x). * * Mathematically, if z.re > 0 then * $(GAMMA)(z) = $(INTEGRATE 0, $(INFIN)) $(POWER t, z-1)$(POWER e, -t) dt * * $(TABLE_SV * $(TR $(TH x) $(TH $(GAMMA)(x)) $(TH invalid?)) * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMNINF)) $(TD yes)) * $(TR $(TD integer $(GT)0) $(TD (x-1)!) $(TD no)) * $(TR $(TD integer $(LT)0) $(TD $(NAN)) $(TD yes)) * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no)) * $(TR $(TD -$(INFIN)) $(TD $(NAN)) $(TD yes)) * ) * * References: * $(LINK http://en.wikipedia.org/wiki/Gamma_function), * $(LINK http://www.netlib.org/cephes/ldoubdoc.html#gamma) */ real tgamma(real x) @trusted nothrow { return core.stdc.math.tgammal(x); // Use etc.gamma.tgamma for those C systems that are missing it } /************************************** * Returns the value of x rounded upward to the next integer * (toward positive infinity). */ real ceil(real x) @trusted nothrow { return core.stdc.math.ceill(x); } /************************************** * Returns the value of x rounded downward to the next integer * (toward negative infinity). */ real floor(real x) @trusted nothrow { return core.stdc.math.floorl(x); } /****************************************** * Rounds x to the nearest integer value, using the current rounding * mode. * * Unlike the rint functions, nearbyint does not raise the * FE_INEXACT exception. */ real nearbyint(real x) @trusted nothrow { return core.stdc.math.nearbyintl(x); } /********************************** * Rounds x to the nearest integer value, using the current rounding * mode. * If the return value is not equal to x, the FE_INEXACT * exception is raised. * $(B nearbyint) performs * the same operation, but does not set the FE_INEXACT exception. */ real rint(real x) @safe pure nothrow; /* intrinsic */ /*************************************** * Rounds x to the nearest integer value, using the current rounding * mode. * * This is generally the fastest method to convert a floating-point number * to an integer. Note that the results from this function * depend on the rounding mode, if the fractional part of x is exactly 0.5. * If using the default rounding mode (ties round to even integers) * lrint(4.5) == 4, lrint(5.5)==6. */ long lrint(real x) @trusted pure nothrow { version(InlineAsm_X86_Any) { long n; asm { fld x; fistp n; } return n; } else { return core.stdc.math.llrintl(x); } } /******************************************* * Return the value of x rounded to the nearest integer. * If the fractional part of x is exactly 0.5, the return value is rounded to * the even integer. */ real round(real x) @trusted nothrow { return core.stdc.math.roundl(x); } /********************************************** * Return the value of x rounded to the nearest integer. * * If the fractional part of x is exactly 0.5, the return value is rounded * away from zero. */ long lround(real x) @trusted nothrow { version (Posix) return core.stdc.math.llroundl(x); else assert (0, "lround not implemented"); } version(Posix) { unittest { assert(lround(0.49) == 0); assert(lround(0.5) == 1); assert(lround(1.5) == 2); } } /**************************************************** * Returns the integer portion of x, dropping the fractional portion. * * This is also known as "chop" rounding. */ real trunc(real x) @trusted nothrow { return core.stdc.math.truncl(x); } /**************************************************** * Calculate the remainder x REM y, following IEC 60559. * * REM is the value of x - y * n, where n is the integer nearest the exact * value of x / y. * If |n - x / y| == 0.5, n is even. * If the result is zero, it has the same sign as x. * Otherwise, the sign of the result is the sign of x / y. * Precision mode has no effect on the remainder functions. * * remquo returns n in the parameter n. * * $(TABLE_SV * $(TR $(TH x) $(TH y) $(TH remainder(x, y)) $(TH n) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD not 0.0) $(TD $(PLUSMN)0.0) $(TD 0.0) $(TD no)) * $(TR $(TD $(PLUSMNINF)) $(TD anything) $(TD $(NAN)) $(TD ?) $(TD yes)) * $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD $(NAN)) $(TD ?) $(TD yes)) * $(TR $(TD != $(PLUSMNINF)) $(TD $(PLUSMNINF)) $(TD x) $(TD ?) $(TD no)) * ) * * Note: remquo not supported on windows */ real remainder(real x, real y) @trusted nothrow { return core.stdc.math.remainderl(x, y); } real remquo(real x, real y, out int n) @trusted nothrow /// ditto { version (Posix) return core.stdc.math.remquol(x, y, &n); else assert (0, "remquo not implemented"); } /** IEEE exception status flags ('sticky bits') These flags indicate that an exceptional floating-point condition has occurred. They indicate that a NaN or an infinity has been generated, that a result is inexact, or that a signalling NaN has been encountered. If floating-point exceptions are enabled (unmasked), a hardware exception will be generated instead of setting these flags. Example: ---- real a=3.5; // Set all the flags to zero resetIeeeFlags(); assert(!ieeeFlags.divByZero); // Perform a division by zero. a/=0.0L; assert(a==real.infinity); assert(ieeeFlags.divByZero); // Create a NaN a*=0.0L; assert(ieeeFlags.invalid); assert(isNaN(a)); // Check that calling func() has no effect on the // status flags. IeeeFlags f = ieeeFlags; func(); assert(ieeeFlags == f); ---- */ struct IeeeFlags { private: // The x87 FPU status register is 16 bits. // The Pentium SSE2 status register is 32 bits. uint flags; version (X86_Any) { // Applies to both x87 status word (16 bits) and SSE2 status word(32 bits). enum : int { INEXACT_MASK = 0x20, UNDERFLOW_MASK = 0x10, OVERFLOW_MASK = 0x08, DIVBYZERO_MASK = 0x04, INVALID_MASK = 0x01 } // Don't bother about denormals, they are not supported on most CPUs. // DENORMAL_MASK = 0x02; } else version (PPC) { // PowerPC FPSCR is a 32-bit register. enum : int { INEXACT_MASK = 0x600, UNDERFLOW_MASK = 0x010, OVERFLOW_MASK = 0x008, DIVBYZERO_MASK = 0x020, INVALID_MASK = 0xF80 // PowerPC has five types of invalid exceptions. } } else version(SPARC) { // SPARC FSR is a 32bit register //(64 bits for Sparc 7 & 8, but high 32 bits are uninteresting). enum : int { INEXACT_MASK = 0x020, UNDERFLOW_MASK = 0x080, OVERFLOW_MASK = 0x100, DIVBYZERO_MASK = 0x040, INVALID_MASK = 0x200 } } else static assert(0, "Not implemented"); private: static uint getIeeeFlags() { version(D_InlineAsm_X86) { asm { fstsw AX; // NOTE: If compiler supports SSE2, need to OR the result with // the SSE2 status register. // Clear all irrelevant bits and EAX, 0x03D; } } else version(D_InlineAsm_X86_64) { asm { fstsw AX; // NOTE: If compiler supports SSE2, need to OR the result with // the SSE2 status register. // Clear all irrelevant bits and RAX, 0x03D; } } else version (SPARC) { /* int retval; asm { st %fsr, retval; } return retval; */ assert(0, "Not yet supported"); } else assert(0, "Not yet supported"); } static void resetIeeeFlags() { version(InlineAsm_X86_Any) { asm { fnclex; } } else { /* SPARC: int tmpval; asm { st %fsr, tmpval; } tmpval &=0xFFFF_FC00; asm { ld tmpval, %fsr; } */ assert(0, "Not yet supported"); } } public: /// The result cannot be represented exactly, so rounding occured. /// (example: x = sin(0.1); ) bool inexact() { return (flags & INEXACT_MASK) != 0; } /// A zero was generated by underflow (example: x = real.min*real.epsilon/2;) bool underflow() { return (flags & UNDERFLOW_MASK) != 0; } /// An infinity was generated by overflow (example: x = real.max*2;) bool overflow() { return (flags & OVERFLOW_MASK) != 0; } /// An infinity was generated by division by zero (example: x = 3/0.0; ) bool divByZero() { return (flags & DIVBYZERO_MASK) != 0; } /// A machine NaN was generated. (example: x = real.infinity * 0.0; ) bool invalid() { return (flags & INVALID_MASK) != 0; } } /// Set all of the floating-point status flags to false. void resetIeeeFlags() { IeeeFlags.resetIeeeFlags; } /// Return a snapshot of the current state of the floating-point status flags. IeeeFlags ieeeFlags() { return IeeeFlags(IeeeFlags.getIeeeFlags()); } /** Control the Floating point hardware Change the IEEE754 floating-point rounding mode and the floating-point hardware exceptions. By default, the rounding mode is roundToNearest and all hardware exceptions are disabled. For most applications, debugging is easier if the $(I division by zero), $(I overflow), and $(I invalid operation) exceptions are enabled. These three are combined into a $(I severeExceptions) value for convenience. Note in particular that if $(I invalidException) is enabled, a hardware trap will be generated whenever an uninitialized floating-point variable is used. All changes are temporary. The previous state is restored at the end of the scope. Example: ---- { // Enable hardware exceptions for division by zero, overflow to infinity, // invalid operations, and uninitialized floating-point variables. FloatingPointControl fpctrl; fpctrl.enableExceptions(FloatingPointControl.severeExceptions); double y = x*3.0; // will generate a hardware exception, if x is uninitialized. // fpctrl.rounding = FloatingPointControl.roundUp; // The hardware exceptions will be disabled when leaving this scope. // The original rounding mode will also be restored. } ---- */ struct FloatingPointControl { alias uint RoundingMode; /** IEEE rounding modes. * The default mode is roundToNearest. */ enum : RoundingMode { roundToNearest = 0x0000, roundDown = 0x0400, roundUp = 0x0800, roundToZero = 0x0C00 }; /** IEEE hardware exceptions. * By default, all exceptions are masked (disabled). */ enum : uint { inexactException = 0x20, underflowException = 0x10, overflowException = 0x08, divByZeroException = 0x04, invalidException = 0x01, /// Severe = The overflow, division by zero, and invalid exceptions. severeExceptions = overflowException | divByZeroException | invalidException, allExceptions = severeExceptions | underflowException | inexactException, }; private: enum ushort EXCEPTION_MASK = 0x3F; enum ushort ROUNDING_MASK = 0xC00; public: /// Enable (unmask) specific hardware exceptions. Multiple exceptions may be ORed together. void enableExceptions(uint exceptions) { initialize(); setControlState(getControlState() & ~(exceptions & EXCEPTION_MASK)); } /// Disable (mask) specific hardware exceptions. Multiple exceptions may be ORed together. void disableExceptions(uint exceptions) { initialize(); setControlState(getControlState() | (exceptions & EXCEPTION_MASK)); } //// Change the floating-point hardware rounding mode void rounding(RoundingMode newMode) { ushort old = getControlState(); setControlState((old & ~ROUNDING_MASK) | (newMode & ROUNDING_MASK)); } /// Return the exceptions which are currently enabled (unmasked) static uint enabledExceptions() { return (getControlState() & EXCEPTION_MASK) ^ EXCEPTION_MASK; } /// Return the currently active rounding mode static RoundingMode rounding() { return cast(RoundingMode)(getControlState() & ROUNDING_MASK); } /// Clear all pending exceptions, then restore the original exception state and rounding mode. ~this() { clearExceptions(); setControlState(savedState); } private: ushort savedState; bool initialized=false; void initialize() { // BUG: This works around the absence of this() constructors. if (initialized) return; clearExceptions(); savedState = getControlState(); initialized=true; } // Clear all pending exceptions static void clearExceptions() { version (InlineAsm_X86_Any) { asm { fclex; } } else assert(0, "Not yet supported"); } // Read from the control register static ushort getControlState() { version (D_InlineAsm_X86) { short cont; asm { xor EAX, EAX; fstcw cont; } return cont; } else version (D_InlineAsm_X86_64) { short cont; asm { xor RAX, RAX; fstcw cont; } return cont; } else assert(0, "Not yet supported"); } // Set the control register static void setControlState(ushort newState) { version (InlineAsm_X86_Any) { asm { fclex; fldcw newState; } } else assert(0, "Not yet supported"); } } unittest { { FloatingPointControl ctrl; ctrl.enableExceptions(FloatingPointControl.divByZeroException | FloatingPointControl.overflowException); assert(ctrl.enabledExceptions() == (FloatingPointControl.divByZeroException | FloatingPointControl.overflowException)); ctrl.rounding = FloatingPointControl.roundUp; assert(FloatingPointControl.rounding == FloatingPointControl.roundUp); } assert(FloatingPointControl.rounding == FloatingPointControl.roundToNearest); assert(FloatingPointControl.enabledExceptions() ==0); } /********************************* * Returns !=0 if e is a NaN. */ bool isNaN(real x) @trusted pure nothrow { alias floatTraits!(real) F; static if (real.mant_dig==53) { // double ulong* p = cast(ulong *)&x; return ((*p & 0x7FF0_0000_0000_0000) == 0x7FF0_0000_0000_0000) && *p & 0x000F_FFFF_FFFF_FFFF; } else static if (real.mant_dig==64) { // real80 ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; ulong* ps = cast(ulong *)&x; return e == F.EXPMASK && *ps & 0x7FFF_FFFF_FFFF_FFFF; // not infinity } else static if (real.mant_dig==113) { // quadruple ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; ulong* ps = cast(ulong *)&x; return e == F.EXPMASK && (ps[MANTISSA_LSB] | (ps[MANTISSA_MSB]& 0x0000_FFFF_FFFF_FFFF))!=0; } else { return x!=x; } } unittest { assert(isNaN(float.nan)); assert(isNaN(-double.nan)); assert(isNaN(real.nan)); assert(!isNaN(53.6)); assert(!isNaN(float.infinity)); } /********************************* * Returns !=0 if e is finite (not infinite or $(NAN)). */ int isFinite(real e) @trusted pure nothrow { alias floatTraits!(real) F; ushort* pe = cast(ushort *)&e; return (pe[F.EXPPOS_SHORT] & F.EXPMASK) != F.EXPMASK; } unittest { assert(isFinite(1.23)); assert(!isFinite(double.infinity)); assert(!isFinite(float.nan)); } /********************************* * Returns !=0 if x is normalized (not zero, subnormal, infinite, or $(NAN)). */ /* Need one for each format because subnormal floats might * be converted to normal reals. */ int isNormal(X)(X x) @trusted pure nothrow { alias floatTraits!(X) F; static if(real.mant_dig==106) { // doubledouble // doubledouble is normal if the least significant part is normal. return isNormal((cast(double*)&x)[MANTISSA_LSB]); } else { ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; return (e != F.EXPMASK && e!=0); } } unittest { float f = 3; double d = 500; real e = 10e+48; assert(isNormal(f)); assert(isNormal(d)); assert(isNormal(e)); f = d = e = 0; assert(!isNormal(f)); assert(!isNormal(d)); assert(!isNormal(e)); assert(!isNormal(real.infinity)); assert(isNormal(-real.max)); assert(!isNormal(real.min_normal/4)); } /********************************* * Is number subnormal? (Also called "denormal".) * Subnormals have a 0 exponent and a 0 most significant mantissa bit. */ /* Need one for each format because subnormal floats might * be converted to normal reals. */ int isSubnormal(float f) @trusted pure nothrow { uint *p = cast(uint *)&f; return (*p & 0x7F80_0000) == 0 && *p & 0x007F_FFFF; } unittest { float f = 3.0; for (f = 1.0; !isSubnormal(f); f /= 2) assert(f != 0); } /// ditto int isSubnormal(double d) @trusted pure nothrow { uint *p = cast(uint *)&d; return (p[MANTISSA_MSB] & 0x7FF0_0000) == 0 && (p[MANTISSA_LSB] || p[MANTISSA_MSB] & 0x000F_FFFF); } unittest { double f; for (f = 1; !isSubnormal(f); f /= 2) assert(f != 0); } /// ditto int isSubnormal(real x) @trusted pure nothrow { alias floatTraits!(real) F; static if (real.mant_dig == 53) { // double return isSubnormal(cast(double)x); } else static if (real.mant_dig == 113) { // quadruple ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; long* ps = cast(long *)&x; return (e == 0 && (((ps[MANTISSA_LSB]|(ps[MANTISSA_MSB]& 0x0000_FFFF_FFFF_FFFF))) !=0)); } else static if (real.mant_dig==64) { // real80 ushort* pe = cast(ushort *)&x; long* ps = cast(long *)&x; return (pe[F.EXPPOS_SHORT] & F.EXPMASK) == 0 && *ps > 0; } else { // double double return isSubnormal((cast(double*)&x)[MANTISSA_MSB]); } } unittest { real f; for (f = 1; !isSubnormal(f); f /= 2) assert(f != 0); } /********************************* * Return !=0 if e is $(PLUSMN)$(INFIN). */ bool isInfinity(real x) @trusted pure nothrow { alias floatTraits!(real) F; static if (real.mant_dig == 53) { // double return ((*cast(ulong *)&x) & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FF8_0000_0000_0000; } else static if(real.mant_dig == 106) { //doubledouble return (((cast(ulong *)&x)[MANTISSA_MSB]) & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FF8_0000_0000_0000; } else static if (real.mant_dig == 113) { // quadruple long* ps = cast(long *)&x; return (ps[MANTISSA_LSB] == 0) && (ps[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_0000_0000_0000; } else { // real80 ushort e = cast(ushort)(F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]); ulong* ps = cast(ulong *)&x; // On Motorola 68K, infinity can have hidden bit=1 or 0. On x86, it is always 1. return e == F.EXPMASK && (*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0; } } unittest { assert(isInfinity(float.infinity)); assert(!isInfinity(float.nan)); assert(isInfinity(double.infinity)); assert(isInfinity(-real.infinity)); assert(isInfinity(-1.0 / 0.0)); } /********************************* * Is the binary representation of x identical to y? * * Same as ==, except that positive and negative zero are not identical, * and two $(NAN)s are identical if they have the same 'payload'. */ bool isIdentical(real x, real y) @trusted pure nothrow { // We're doing a bitwise comparison so the endianness is irrelevant. long* pxs = cast(long *)&x; long* pys = cast(long *)&y; static if (real.mant_dig == 53) { //double return pxs[0] == pys[0]; } else static if (real.mant_dig == 113 || real.mant_dig==106) { // quadruple or doubledouble return pxs[0] == pys[0] && pxs[1] == pys[1]; } else { // real80 ushort* pxe = cast(ushort *)&x; ushort* pye = cast(ushort *)&y; return pxe[4] == pye[4] && pxs[0] == pys[0]; } } /********************************* * Return 1 if sign bit of e is set, 0 if not. */ int signbit(real x) @trusted pure nothrow { return ((cast(ubyte *)&x)[floatTraits!(real).SIGNPOS_BYTE] & 0x80) != 0; } unittest { debug (math) printf("math.signbit.unittest\n"); assert(!signbit(float.nan)); assert(signbit(-float.nan)); assert(!signbit(168.1234)); assert(signbit(-168.1234)); assert(!signbit(0.0)); assert(signbit(-0.0)); assert(signbit(-double.max)); assert(!signbit(double.max)); } /********************************* * Return a value composed of to with from's sign bit. */ real copysign(real to, real from) @trusted pure nothrow { ubyte* pto = cast(ubyte *)&to; const ubyte* pfrom = cast(ubyte *)&from; alias floatTraits!(real) F; pto[F.SIGNPOS_BYTE] &= 0x7F; pto[F.SIGNPOS_BYTE] |= pfrom[F.SIGNPOS_BYTE] & 0x80; return to; } unittest { real e; e = copysign(21, 23.8); assert(e == 21); e = copysign(-21, 23.8); assert(e == 21); e = copysign(21, -23.8); assert(e == -21); e = copysign(-21, -23.8); assert(e == -21); e = copysign(real.nan, -23.8); assert(isNaN(e) && signbit(e)); } /********************************* Returns $(D -1) if $(D x < 0), $(D x) if $(D x == 0), $(D 1) if $(D x > 0), and $(NAN) if x==$(NAN). */ F sgn(F)(F x) @safe pure nothrow { // @@@TODO@@@: make this faster return x > 0 ? 1 : x < 0 ? -1 : x; } unittest { debug (math) printf("math.sgn.unittest\n"); assert(sgn(168.1234) == 1); assert(sgn(-168.1234) == -1); assert(sgn(0.0) == 0); assert(sgn(-0.0) == 0); } // Functions for NaN payloads /* * A 'payload' can be stored in the significand of a $(NAN). One bit is required * to distinguish between a quiet and a signalling $(NAN). This leaves 22 bits * of payload for a float; 51 bits for a double; 62 bits for an 80-bit real; * and 111 bits for a 128-bit quad. */ /** * Create a quiet $(NAN), storing an integer inside the payload. * * For floats, the largest possible payload is 0x3F_FFFF. * For doubles, it is 0x3_FFFF_FFFF_FFFF. * For 80-bit or 128-bit reals, it is 0x3FFF_FFFF_FFFF_FFFF. */ real NaN(ulong payload) @trusted pure nothrow { static if (real.mant_dig == 64) { //real80 ulong v = 3; // implied bit = 1, quiet bit = 1 } else { ulong v = 2; // no implied bit. quiet bit = 1 } ulong a = payload; // 22 Float bits ulong w = a & 0x3F_FFFF; a -= w; v <<=22; v |= w; a >>=22; // 29 Double bits v <<=29; w = a & 0xFFF_FFFF; v |= w; a -= w; a >>=29; static if (real.mant_dig == 53) { // double v |=0x7FF0_0000_0000_0000; real x; * cast(ulong *)(&x) = v; return x; } else { v <<=11; a &= 0x7FF; v |= a; real x = real.nan; // Extended real bits static if (real.mant_dig==113) { //quadruple v<<=1; // there's no implicit bit version(LittleEndian) { *cast(ulong*)(6+cast(ubyte*)(&x)) = v; } else { *cast(ulong*)(2+cast(ubyte*)(&x)) = v; } } else { // real80 * cast(ulong *)(&x) = v; } return x; } } /** * Extract an integral payload from a $(NAN). * * Returns: * the integer payload as a ulong. * * For floats, the largest possible payload is 0x3F_FFFF. * For doubles, it is 0x3_FFFF_FFFF_FFFF. * For 80-bit or 128-bit reals, it is 0x3FFF_FFFF_FFFF_FFFF. */ ulong getNaNPayload(real x) @trusted pure nothrow { // assert(isNaN(x)); static if (real.mant_dig == 53) { ulong m = *cast(ulong *)(&x); // Make it look like an 80-bit significand. // Skip exponent, and quiet bit m &= 0x0007_FFFF_FFFF_FFFF; m <<= 10; } else static if (real.mant_dig==113) { // quadruple version(LittleEndian) { ulong m = *cast(ulong*)(6+cast(ubyte*)(&x)); } else { ulong m = *cast(ulong*)(2+cast(ubyte*)(&x)); } m>>=1; // there's no implicit bit } else { ulong m = *cast(ulong *)(&x); } // ignore implicit bit and quiet bit ulong f = m & 0x3FFF_FF00_0000_0000L; ulong w = f >>> 40; w |= (m & 0x00FF_FFFF_F800L) << (22 - 11); w |= (m & 0x7FF) << 51; return w; } debug(UnitTest) { unittest { real nan4 = NaN(0x789_ABCD_EF12_3456); static if (real.mant_dig == 64 || real.mant_dig==113) { assert (getNaNPayload(nan4) == 0x789_ABCD_EF12_3456); } else { assert (getNaNPayload(nan4) == 0x1_ABCD_EF12_3456); } double nan5 = nan4; assert (getNaNPayload(nan5) == 0x1_ABCD_EF12_3456); float nan6 = nan4; assert (getNaNPayload(nan6) == 0x12_3456); nan4 = NaN(0xFABCD); assert (getNaNPayload(nan4) == 0xFABCD); nan6 = nan4; assert (getNaNPayload(nan6) == 0xFABCD); nan5 = NaN(0x100_0000_0000_3456); assert(getNaNPayload(nan5) == 0x0000_0000_3456); } } /** * Calculate the next largest floating point value after x. * * Return the least number greater than x that is representable as a real; * thus, it gives the next point on the IEEE number line. * * $(TABLE_SV * $(SVH x, nextUp(x) ) * $(SV -$(INFIN), -real.max ) * $(SV $(PLUSMN)0.0, real.min_normal*real.epsilon ) * $(SV real.max, $(INFIN) ) * $(SV $(INFIN), $(INFIN) ) * $(SV $(NAN), $(NAN) ) * ) */ real nextUp(real x) @trusted pure nothrow { alias floatTraits!(real) F; static if (real.mant_dig == 53) { // double return nextUp(cast(double)x); } else static if(real.mant_dig==113) { // quadruple ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; if (e == F.EXPMASK) { // NaN or Infinity if (x == -real.infinity) return -real.max; return x; // +Inf and NaN are unchanged. } ulong* ps = cast(ulong *)&e; if (ps[MANTISSA_LSB] & 0x8000_0000_0000_0000) { // Negative number if (ps[MANTISSA_LSB] == 0 && ps[MANTISSA_MSB] == 0x8000_0000_0000_0000) { // it was negative zero, change to smallest subnormal ps[MANTISSA_LSB] = 0x0000_0000_0000_0001; ps[MANTISSA_MSB] = 0; return x; } --*ps; if (ps[MANTISSA_LSB]==0) --ps[MANTISSA_MSB]; } else { // Positive number ++ps[MANTISSA_LSB]; if (ps[MANTISSA_LSB]==0) ++ps[MANTISSA_MSB]; } return x; } else static if(real.mant_dig==64){ // real80 // For 80-bit reals, the "implied bit" is a nuisance... ushort *pe = cast(ushort *)&x; ulong *ps = cast(ulong *)&x; if ((pe[F.EXPPOS_SHORT] & F.EXPMASK) == F.EXPMASK) { // First, deal with NANs and infinity if (x == -real.infinity) return -real.max; return x; // +Inf and NaN are unchanged. } if (pe[F.EXPPOS_SHORT] & 0x8000) { // Negative number -- need to decrease the significand --*ps; // Need to mask with 0x7FFF... so subnormals are treated correctly. if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_FFFF_FFFF_FFFF) { if (pe[F.EXPPOS_SHORT] == 0x8000) { // it was negative zero *ps = 1; pe[F.EXPPOS_SHORT] = 0; // smallest subnormal. return x; } --pe[F.EXPPOS_SHORT]; if (pe[F.EXPPOS_SHORT] == 0x8000) { return x; // it's become a subnormal, implied bit stays low. } *ps = 0xFFFF_FFFF_FFFF_FFFF; // set the implied bit return x; } return x; } else { // Positive number -- need to increase the significand. // Works automatically for positive zero. ++*ps; if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0) { // change in exponent ++pe[F.EXPPOS_SHORT]; *ps = 0x8000_0000_0000_0000; // set the high bit } } return x; } // doubledouble is not supported } /** ditto */ double nextUp(double x) @trusted pure nothrow { ulong *ps = cast(ulong *)&x; if ((*ps & 0x7FF0_0000_0000_0000) == 0x7FF0_0000_0000_0000) { // First, deal with NANs and infinity if (x == -x.infinity) return -x.max; return x; // +INF and NAN are unchanged. } if (*ps & 0x8000_0000_0000_0000) { // Negative number if (*ps == 0x8000_0000_0000_0000) { // it was negative zero *ps = 0x0000_0000_0000_0001; // change to smallest subnormal return x; } --*ps; } else { // Positive number ++*ps; } return x; } /** ditto */ float nextUp(float x) @trusted pure nothrow { uint *ps = cast(uint *)&x; if ((*ps & 0x7F80_0000) == 0x7F80_0000) { // First, deal with NANs and infinity if (x == -x.infinity) return -x.max; return x; // +INF and NAN are unchanged. } if (*ps & 0x8000_0000) { // Negative number if (*ps == 0x8000_0000) { // it was negative zero *ps = 0x0000_0001; // change to smallest subnormal return x; } --*ps; } else { // Positive number ++*ps; } return x; } /** * Calculate the next smallest floating point value before x. * * Return the greatest number less than x that is representable as a real; * thus, it gives the previous point on the IEEE number line. * * $(TABLE_SV * $(SVH x, nextDown(x) ) * $(SV $(INFIN), real.max ) * $(SV $(PLUSMN)0.0, -real.min_normal*real.epsilon ) * $(SV -real.max, -$(INFIN) ) * $(SV -$(INFIN), -$(INFIN) ) * $(SV $(NAN), $(NAN) ) * ) */ real nextDown(real x) @safe pure nothrow { return -nextUp(-x); } /** ditto */ double nextDown(double x) @safe pure nothrow { return -nextUp(-x); } /** ditto */ float nextDown(float x) @safe pure nothrow { return -nextUp(-x); } unittest { assert( nextDown(1.0 + real.epsilon) == 1.0); } unittest { static if (real.mant_dig == 64) { // Tests for 80-bit reals assert(isIdentical(nextUp(NaN(0xABC)), NaN(0xABC))); // negative numbers assert( nextUp(-real.infinity) == -real.max ); assert( nextUp(-1.0L-real.epsilon) == -1.0 ); assert( nextUp(-2.0L) == -2.0 + real.epsilon); // denormals and zero assert( nextUp(-real.min_normal) == -real.min_normal*(1-real.epsilon) ); assert( nextUp(-real.min_normal*(1-real.epsilon)) == -real.min_normal*(1-2*real.epsilon) ); assert( isIdentical(-0.0L, nextUp(-real.min_normal*real.epsilon)) ); assert( nextUp(-0.0L) == real.min_normal*real.epsilon ); assert( nextUp(0.0L) == real.min_normal*real.epsilon ); assert( nextUp(real.min_normal*(1-real.epsilon)) == real.min_normal ); assert( nextUp(real.min_normal) == real.min_normal*(1+real.epsilon) ); // positive numbers assert( nextUp(1.0L) == 1.0 + real.epsilon ); assert( nextUp(2.0L-real.epsilon) == 2.0 ); assert( nextUp(real.max) == real.infinity ); assert( nextUp(real.infinity)==real.infinity ); } double n = NaN(0xABC); assert(isIdentical(nextUp(n), n)); // negative numbers assert( nextUp(-double.infinity) == -double.max ); assert( nextUp(-1-double.epsilon) == -1.0 ); assert( nextUp(-2.0) == -2.0 + double.epsilon); // denormals and zero assert( nextUp(-double.min_normal) == -double.min_normal*(1-double.epsilon) ); assert( nextUp(-double.min_normal*(1-double.epsilon)) == -double.min_normal*(1-2*double.epsilon) ); assert( isIdentical(-0.0, nextUp(-double.min_normal*double.epsilon)) ); assert( nextUp(0.0) == double.min_normal*double.epsilon ); assert( nextUp(-0.0) == double.min_normal*double.epsilon ); assert( nextUp(double.min_normal*(1-double.epsilon)) == double.min_normal ); assert( nextUp(double.min_normal) == double.min_normal*(1+double.epsilon) ); // positive numbers assert( nextUp(1.0) == 1.0 + double.epsilon ); assert( nextUp(2.0-double.epsilon) == 2.0 ); assert( nextUp(double.max) == double.infinity ); float fn = NaN(0xABC); assert(isIdentical(nextUp(fn), fn)); float f = -float.min_normal*(1-float.epsilon); float f1 = -float.min_normal; assert( nextUp(f1) == f); f = 1.0f+float.epsilon; f1 = 1.0f; assert( nextUp(f1) == f ); f1 = -0.0f; assert( nextUp(f1) == float.min_normal*float.epsilon); assert( nextUp(float.infinity)==float.infinity ); assert(nextDown(1.0L+real.epsilon)==1.0); assert(nextDown(1.0+double.epsilon)==1.0); f = 1.0f+float.epsilon; assert(nextDown(f)==1.0); assert(nextafter(1.0+real.epsilon, -real.infinity)==1.0); } /****************************************** * Calculates the next representable value after x in the direction of y. * * If y > x, the result will be the next largest floating-point value; * if y < x, the result will be the next smallest value. * If x == y, the result is y. * * Remarks: * This function is not generally very useful; it's almost always better to use * the faster functions nextUp() or nextDown() instead. * * The FE_INEXACT and FE_OVERFLOW exceptions will be raised if x is finite and * the function result is infinite. The FE_INEXACT and FE_UNDERFLOW * exceptions will be raised if the function value is subnormal, and x is * not equal to y. */ T nextafter(T)(T x, T y) @safe pure nothrow { if (x==y) return y; return ((y>x) ? nextUp(x) : nextDown(x)); } unittest { float a = 1; assert(is(typeof(nextafter(a, a)) == float)); assert(nextafter(a, a.infinity) > a); double b = 2; assert(is(typeof(nextafter(b, b)) == double)); assert(nextafter(b, b.infinity) > b); real c = 3; assert(is(typeof(nextafter(c, c)) == real)); assert(nextafter(c, c.infinity) > c); } //real nexttoward(real x, real y) { return core.stdc.math.nexttowardl(x, y); } /******************************************* * Returns the positive difference between x and y. * Returns: * $(TABLE_SV * $(TR $(TH x, y) $(TH fdim(x, y))) * $(TR $(TD x $(GT) y) $(TD x - y)) * $(TR $(TD x $(LT)= y) $(TD +0.0)) * ) */ real fdim(real x, real y) @safe pure nothrow { return (x > y) ? x - y : +0.0; } /**************************************** * Returns the larger of x and y. */ real fmax(real x, real y) @safe pure nothrow { return x > y ? x : y; } /**************************************** * Returns the smaller of x and y. */ real fmin(real x, real y) @safe pure nothrow { return x < y ? x : y; } /************************************** * Returns (x * y) + z, rounding only once according to the * current rounding mode. * * BUGS: Not currently implemented - rounds twice. */ real fma(real x, real y, real z) @safe pure nothrow { return (x * y) + z; } /******************************************************************* * Compute the value of x $(SUP n), where n is an integer */ Unqual!F pow(F, G)(F x, G n) @trusted pure nothrow if (isFloatingPoint!(F) && isIntegral!(G)) { real p = 1.0, v = void; Unsigned!(Unqual!G) m = n; if (n < 0) { switch (n) { case -1: return 1 / x; case -2: return 1 / (x * x); default: } m = -n; v = p / x; } else { switch (n) { case 0: return 1.0; case 1: return x; case 2: return x * x; default: } v = x; } while (1) { if (m & 1) p *= v; m >>= 1; if (!m) break; v *= v; } return p; } unittest { // Make sure it instantiates and works properly on immutable values and // with various integer and float types. immutable real x = 46; immutable float xf = x; immutable double xd = x; immutable uint one = 1; immutable ushort two = 2; immutable ubyte three = 3; immutable ulong eight = 8; immutable int neg1 = -1; immutable short neg2 = -2; immutable byte neg3 = -3; immutable long neg8 = -8; assert(pow(x,0) == 1.0); assert(pow(xd,one) == x); assert(pow(xf,two) == x * x); assert(pow(x,three) == x * x * x); assert(pow(x,eight) == (x * x) * (x * x) * (x * x) * (x * x)); assert(pow(x, neg1) == 1 / x); assert(pow(xd, neg2) == 1 / (x * x)); assert(pow(x, neg3) == 1 / (x * x * x)); assert(pow(xf, neg8) == 1 / ((x * x) * (x * x) * (x * x) * (x * x))); } /** Compute the value of an integer x, raised to the power of a positive * integer n. * * If both x and n are 0, the result is 1. * If n is negative, an integer divide error will occur at runtime, * regardless of the value of x. */ typeof(Unqual!(F).init * Unqual!(G).init) pow(F, G)(F x, G n) @trusted pure nothrow if (isIntegral!(F) && isIntegral!(G)) { if (n<0) return x/0; // Only support positive powers typeof(return) p, v = void; Unqual!G m = n; switch (m) { case 0: p = 1; break; case 1: p = x; break; case 2: p = x * x; break; default: v = x; p = 1; while (1){ if (m & 1) p *= v; m >>= 1; if (!m) break; v *= v; } break; } return p; } unittest { immutable int one = 1; immutable byte two = 2; immutable ubyte three = 3; immutable short four = 4; immutable long ten = 10; assert(pow(two, three) == 8); assert(pow(two, ten) == 1024); assert(pow(one, ten) == 1); assert(pow(ten, four) == 10_000); assert(pow(four, 10) == 1_048_576); assert(pow(three, four) == 81); } /**Computes integer to floating point powers.*/ real pow(I, F)(I x, F y) @trusted pure nothrow if(isIntegral!I && isFloatingPoint!F) { return pow(cast(real) x, cast(Unqual!F) y); } /********************************************* * Calculates x$(SUP y). * * $(TABLE_SV * $(TR $(TH x) $(TH y) $(TH pow(x, y)) * $(TH div 0) $(TH invalid?)) * $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD 1.0) * $(TD no) $(TD no) ) * $(TR $(TD |x| $(GT) 1) $(TD +$(INFIN)) $(TD +$(INFIN)) * $(TD no) $(TD no) ) * $(TR $(TD |x| $(LT) 1) $(TD +$(INFIN)) $(TD +0.0) * $(TD no) $(TD no) ) * $(TR $(TD |x| $(GT) 1) $(TD -$(INFIN)) $(TD +0.0) * $(TD no) $(TD no) ) * $(TR $(TD |x| $(LT) 1) $(TD -$(INFIN)) $(TD +$(INFIN)) * $(TD no) $(TD no) ) * $(TR $(TD +$(INFIN)) $(TD $(GT) 0.0) $(TD +$(INFIN)) * $(TD no) $(TD no) ) * $(TR $(TD +$(INFIN)) $(TD $(LT) 0.0) $(TD +0.0) * $(TD no) $(TD no) ) * $(TR $(TD -$(INFIN)) $(TD odd integer $(GT) 0.0) $(TD -$(INFIN)) * $(TD no) $(TD no) ) * $(TR $(TD -$(INFIN)) $(TD $(GT) 0.0, not odd integer) $(TD +$(INFIN)) * $(TD no) $(TD no)) * $(TR $(TD -$(INFIN)) $(TD odd integer $(LT) 0.0) $(TD -0.0) * $(TD no) $(TD no) ) * $(TR $(TD -$(INFIN)) $(TD $(LT) 0.0, not odd integer) $(TD +0.0) * $(TD no) $(TD no) ) * $(TR $(TD $(PLUSMN)1.0) $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) * $(TD no) $(TD yes) ) * $(TR $(TD $(LT) 0.0) $(TD finite, nonintegral) $(TD $(NAN)) * $(TD no) $(TD yes)) * $(TR $(TD $(PLUSMN)0.0) $(TD odd integer $(LT) 0.0) $(TD $(PLUSMNINF)) * $(TD yes) $(TD no) ) * $(TR $(TD $(PLUSMN)0.0) $(TD $(LT) 0.0, not odd integer) $(TD +$(INFIN)) * $(TD yes) $(TD no)) * $(TR $(TD $(PLUSMN)0.0) $(TD odd integer $(GT) 0.0) $(TD $(PLUSMN)0.0) * $(TD no) $(TD no) ) * $(TR $(TD $(PLUSMN)0.0) $(TD $(GT) 0.0, not odd integer) $(TD +0.0) * $(TD no) $(TD no) ) * ) */ Unqual!(Largest!(F, G)) pow(F, G)(F x, G y) @trusted pure nothrow if (isFloatingPoint!(F) && isFloatingPoint!(G)) { alias typeof(return) Float; static real impl(real x, real y) pure nothrow { if (isNaN(y)) return y; if (y == 0) return 1; // even if x is $(NAN) if (isNaN(x) && y != 0) return x; if (isInfinity(y)) { if (fabs(x) > 1) { if (signbit(y)) return +0.0; else return F.infinity; } else if (fabs(x) == 1) { return y * 0; // generate NaN. } else // < 1 { if (signbit(y)) return F.infinity; else return +0.0; } } if (isInfinity(x)) { if (signbit(x)) { long i; i = cast(long)y; if (y > 0) { if (i == y && i & 1) return -F.infinity; else return F.infinity; } else if (y < 0) { if (i == y && i & 1) return -0.0; else return +0.0; } } else { if (y > 0) return F.infinity; else if (y < 0) return +0.0; } } if (x == 0.0) { if (signbit(x)) { long i; i = cast(long)y; if (y > 0) { if (i == y && i & 1) return -0.0; else return +0.0; } else if (y < 0) { if (i == y && i & 1) return -F.infinity; else return F.infinity; } } else { if (y > 0) return +0.0; else if (y < 0) return F.infinity; } } double sign = 1.0; if (x < 0) { // Result is real only if y is an integer // Check for a non-zero fractional part if (y > -1.0 / real.epsilon && y < 1.0 / real.epsilon) { long w = cast(long)y; if (w != y) return sqrt(x); // Complex result -- create a NaN if (w & 1) sign = -1.0; } x = -x; } version(INLINE_YL2X) { // If x > 0, x ^^ y == 2 ^^ ( y * log2(x) ) // TODO: This is not accurate in practice. A fast and accurate // (though complicated) method is described in: // "An efficient rounding boundary test for pow(x, y) // in double precision", C.Q. Lauter and V. Lefèvre, INRIA (2007). return sign * exp2( yl2x(x, y) ); } else { return sign * core.stdc.math.powl(x, y); } } return impl(x, y); } unittest { // Test all the special values. These unittests can be run on Windows // by temporarily changing the version(linux) to version(all). immutable float zero = 0; immutable real one = 1; immutable double two = 2; immutable float three = 3; immutable float fnan = float.nan; immutable double dnan = double.nan; immutable real rnan = real.nan; immutable dinf = double.infinity; immutable rninf = -real.infinity; assert(pow(fnan, zero) == 1); assert(pow(dnan, zero) == 1); assert(pow(rnan, zero) == 1); assert(pow(two, dinf) == double.infinity); assert(isIdentical(pow(0.2f, dinf), +0.0)); assert(pow(0.99999999L, rninf) == real.infinity); assert(isIdentical(pow(1.000000001, rninf), +0.0)); assert(pow(dinf, 0.001) == dinf); assert(isIdentical(pow(dinf, -0.001), +0.0)); assert(pow(rninf, 3.0L) == rninf); assert(pow(rninf, 2.0L) == real.infinity); assert(isIdentical(pow(rninf, -3.0), -0.0)); assert(isIdentical(pow(rninf, -2.0), +0.0)); // @@@BUG@@@ somewhere version(OSX) {} else assert(isNaN(pow(one, dinf))); version(OSX) {} else assert(isNaN(pow(-one, dinf))); assert(isNaN(pow(-0.2, PI))); // boundary cases. Note that epsilon == 2^^-n for some n, // so 1/epsilon == 2^^n is always even. assert(pow(-1.0L, 1/real.epsilon - 1.0L) == -1.0L); assert(pow(-1.0L, 1/real.epsilon) == 1.0L); assert(isNaN(pow(-1.0L, 1/real.epsilon-0.5L))); assert(isNaN(pow(-1.0L, -1/real.epsilon+0.5L))); assert(pow(0.0, -3.0) == double.infinity); assert(pow(-0.0, -3.0) == -double.infinity); assert(pow(0.0, -PI) == double.infinity); assert(pow(-0.0, -PI) == double.infinity); assert(isIdentical(pow(0.0, 5.0), 0.0)); assert(isIdentical(pow(-0.0, 5.0), -0.0)); assert(isIdentical(pow(0.0, 6.0), 0.0)); assert(isIdentical(pow(-0.0, 6.0), 0.0)); // Now, actual numbers. assert(approxEqual(pow(two, three), 8.0)); assert(approxEqual(pow(two, -2.5), 0.1767767)); // Test integer to float power. immutable uint twoI = 2; assert(approxEqual(pow(twoI, three), 8.0)); } /************************************** * To what precision is x equal to y? * * Returns: the number of mantissa bits which are equal in x and y. * eg, 0x1.F8p+60 and 0x1.F1p+60 are equal to 5 bits of precision. * * $(TABLE_SV * $(TR $(TH x) $(TH y) $(TH feqrel(x, y))) * $(TR $(TD x) $(TD x) $(TD real.mant_dig)) * $(TR $(TD x) $(TD $(GT)= 2*x) $(TD 0)) * $(TR $(TD x) $(TD $(LT)= x/2) $(TD 0)) * $(TR $(TD $(NAN)) $(TD any) $(TD 0)) * $(TR $(TD any) $(TD $(NAN)) $(TD 0)) * ) */ int feqrel(X)(X x, X y) @trusted pure nothrow if (isFloatingPoint!(X)) { /* Public Domain. Author: Don Clugston, 18 Aug 2005. */ static if (X.mant_dig == 106) { // doubledouble. if (cast(double*)(&x)[MANTISSA_MSB] == cast(double*)(&y)[MANTISSA_MSB]) { return double.mant_dig + feqrel(cast(double*)(&x)[MANTISSA_LSB], cast(double*)(&y)[MANTISSA_LSB]); } else { return feqrel(cast(double*)(&x)[MANTISSA_MSB], cast(double*)(&y)[MANTISSA_MSB]); } } else static if (X.mant_dig==64 || X.mant_dig==113 || X.mant_dig==53) { if (x == y) return X.mant_dig; // ensure diff!=0, cope with INF. X diff = fabs(x - y); ushort *pa = cast(ushort *)(&x); ushort *pb = cast(ushort *)(&y); ushort *pd = cast(ushort *)(&diff); alias floatTraits!(X) F; // The difference in abs(exponent) between x or y and abs(x-y) // is equal to the number of significand bits of x which are // equal to y. If negative, x and y have different exponents. // If positive, x and y are equal to 'bitsdiff' bits. // AND with 0x7FFF to form the absolute value. // To avoid out-by-1 errors, we subtract 1 so it rounds down // if the exponents were different. This means 'bitsdiff' is // always 1 lower than we want, except that if bitsdiff==0, // they could have 0 or 1 bits in common. static if (X.mant_dig==64 || X.mant_dig==113) { // real80 or quadruple int bitsdiff = ( ((pa[F.EXPPOS_SHORT] & F.EXPMASK) + (pb[F.EXPPOS_SHORT] & F.EXPMASK) - 1) >> 1) - pd[F.EXPPOS_SHORT]; } else static if (X.mant_dig==53) { // double int bitsdiff = (( ((pa[F.EXPPOS_SHORT]&0x7FF0) + (pb[F.EXPPOS_SHORT]&0x7FF0)-0x10)>>1) - (pd[F.EXPPOS_SHORT]&0x7FF0))>>4; } if (pd[F.EXPPOS_SHORT] == 0) { // Difference is denormal // For denormals, we need to add the number of zeros that // lie at the start of diff's significand. // We do this by multiplying by 2^^real.mant_dig diff *= F.RECIP_EPSILON; return bitsdiff + X.mant_dig - pd[F.EXPPOS_SHORT]; } if (bitsdiff > 0) return bitsdiff + 1; // add the 1 we subtracted before // Avoid out-by-1 errors when factor is almost 2. static if (X.mant_dig==64 || X.mant_dig==113) { // real80 or quadruple return (bitsdiff == 0) ? (pa[F.EXPPOS_SHORT] == pb[F.EXPPOS_SHORT]) : 0; } else static if (X.mant_dig==53) { // double if (bitsdiff == 0 && !((pa[F.EXPPOS_SHORT] ^ pb[F.EXPPOS_SHORT])& F.EXPMASK)) { return 1; } else return 0; } } } unittest { // Exact equality assert(feqrel(real.max,real.max)==real.mant_dig); assert(feqrel(0.0L,0.0L)==real.mant_dig); assert(feqrel(7.1824L,7.1824L)==real.mant_dig); assert(feqrel(real.infinity,real.infinity)==real.mant_dig); // a few bits away from exact equality real w=1; for (int i=1; i 0), the return value * is the arithmetic mean (x + y) / 2. * If x and y are even powers of 2, the return value is the geometric mean, * ieeeMean(x, y) = sqrt(x * y). * */ T ieeeMean(T)(T x, T y) @trusted pure nothrow in { // both x and y must have the same sign, and must not be NaN. assert(signbit(x) == signbit(y)); assert(x<>=0 && y<>=0); } body { // Runtime behaviour for contract violation: // If signs are opposite, or one is a NaN, return 0. if (!((x>=0 && y>=0) || (x<=0 && y<=0))) return 0.0; // The implementation is simple: cast x and y to integers, // average them (avoiding overflow), and cast the result back to a floating-point number. alias floatTraits!(real) F; T u; static if (T.mant_dig==64) { // real80 // There's slight additional complexity because they are actually // 79-bit reals... ushort *ue = cast(ushort *)&u; ulong *ul = cast(ulong *)&u; ushort *xe = cast(ushort *)&x; ulong *xl = cast(ulong *)&x; ushort *ye = cast(ushort *)&y; ulong *yl = cast(ulong *)&y; // Ignore the useless implicit bit. (Bonus: this prevents overflows) ulong m = ((*xl) & 0x7FFF_FFFF_FFFF_FFFFL) + ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL); // @@@ BUG? @@@ // Cast shouldn't be here ushort e = cast(ushort) ((xe[F.EXPPOS_SHORT] & F.EXPMASK) + (ye[F.EXPPOS_SHORT] & F.EXPMASK)); if (m & 0x8000_0000_0000_0000L) { ++e; m &= 0x7FFF_FFFF_FFFF_FFFFL; } // Now do a multi-byte right shift uint c = e & 1; // carry e >>= 1; m >>>= 1; if (c) m |= 0x4000_0000_0000_0000L; // shift carry into significand if (e) *ul = m | 0x8000_0000_0000_0000L; // set implicit bit... else *ul = m; // ... unless exponent is 0 (denormal or zero). ue[4]= e | (xe[F.EXPPOS_SHORT]& 0x8000); // restore sign bit } else static if(T.mant_dig == 113) { //quadruple // This would be trivial if 'ucent' were implemented... ulong *ul = cast(ulong *)&u; ulong *xl = cast(ulong *)&x; ulong *yl = cast(ulong *)&y; // Multi-byte add, then multi-byte right shift. ulong mh = ((xl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL) + (yl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL)); // Discard the lowest bit (to avoid overflow) ulong ml = (xl[MANTISSA_LSB]>>>1) + (yl[MANTISSA_LSB]>>>1); // add the lowest bit back in, if necessary. if (xl[MANTISSA_LSB] & yl[MANTISSA_LSB] & 1) { ++ml; if (ml==0) ++mh; } mh >>>=1; ul[MANTISSA_MSB] = mh | (xl[MANTISSA_MSB] & 0x8000_0000_0000_0000); ul[MANTISSA_LSB] = ml; } else static if (T.mant_dig == double.mant_dig) { ulong *ul = cast(ulong *)&u; ulong *xl = cast(ulong *)&x; ulong *yl = cast(ulong *)&y; ulong m = (((*xl) & 0x7FFF_FFFF_FFFF_FFFFL) + ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL)) >>> 1; m |= ((*xl) & 0x8000_0000_0000_0000L); *ul = m; } else static if (T.mant_dig == float.mant_dig) { uint *ul = cast(uint *)&u; uint *xl = cast(uint *)&x; uint *yl = cast(uint *)&y; uint m = (((*xl) & 0x7FFF_FFFF) + ((*yl) & 0x7FFF_FFFF)) >>> 1; m |= ((*xl) & 0x8000_0000); *ul = m; } else { assert(0, "Not implemented"); } return u; } unittest { assert(ieeeMean(-0.0,-1e-20)<0); assert(ieeeMean(0.0,1e-20)>0); assert(ieeeMean(1.0L,4.0L)==2L); assert(ieeeMean(2.0*1.013,8.0*1.013)==4*1.013); assert(ieeeMean(-1.0L,-4.0L)==-2L); assert(ieeeMean(-1.0,-4.0)==-2); assert(ieeeMean(-1.0f,-4.0f)==-2f); assert(ieeeMean(-1.0,-2.0)==-1.5); assert(ieeeMean(-1*(1+8*real.epsilon),-2*(1+8*real.epsilon)) ==-1.5*(1+5*real.epsilon)); assert(ieeeMean(0x1p60,0x1p-10)==0x1p25); static if (real.mant_dig==64) { // x87, 80-bit reals assert(ieeeMean(1.0L,real.infinity)==0x1p8192L); assert(ieeeMean(0.0L,real.infinity)==1.5); } assert(ieeeMean(0.5*real.min_normal*(1-4*real.epsilon),0.5*real.min_normal) == 0.5*real.min_normal*(1-2*real.epsilon)); } public: /*********************************** * Evaluate polynomial A(x) = $(SUB a, 0) + $(SUB a, 1)x + $(SUB a, 2)$(POWER x,2) * + $(SUB a,3)$(POWER x,3); ... * * Uses Horner's rule A(x) = $(SUB a, 0) + x($(SUB a, 1) + x($(SUB a, 2) * + x($(SUB a, 3) + ...))) * Params: * A = array of coefficients $(SUB a, 0), $(SUB a, 1), etc. */ real poly(real x, const real[] A) @trusted pure nothrow in { assert(A.length > 0); } body { version (D_InlineAsm_X86) { version (Windows) { // BUG: This code assumes a frame pointer in EBP. asm // assembler by W. Bright { // EDX = (A.length - 1) * real.sizeof mov ECX,A[EBP] ; // ECX = A.length dec ECX ; lea EDX,[ECX][ECX*8] ; add EDX,ECX ; add EDX,A+4[EBP] ; fld real ptr [EDX] ; // ST0 = coeff[ECX] jecxz return_ST ; fld x[EBP] ; // ST0 = x fxch ST(1) ; // ST1 = x, ST0 = r align 4 ; L2: fmul ST,ST(1) ; // r *= x fld real ptr -10[EDX] ; sub EDX,10 ; // deg-- faddp ST(1),ST ; dec ECX ; jne L2 ; fxch ST(1) ; // ST1 = r, ST0 = x fstp ST(0) ; // dump x align 4 ; return_ST: ; ; } } else version (linux) { asm // assembler by W. Bright { // EDX = (A.length - 1) * real.sizeof mov ECX,A[EBP] ; // ECX = A.length dec ECX ; lea EDX,[ECX*8] ; lea EDX,[EDX][ECX*4] ; add EDX,A+4[EBP] ; fld real ptr [EDX] ; // ST0 = coeff[ECX] jecxz return_ST ; fld x[EBP] ; // ST0 = x fxch ST(1) ; // ST1 = x, ST0 = r align 4 ; L2: fmul ST,ST(1) ; // r *= x fld real ptr -12[EDX] ; sub EDX,12 ; // deg-- faddp ST(1),ST ; dec ECX ; jne L2 ; fxch ST(1) ; // ST1 = r, ST0 = x fstp ST(0) ; // dump x align 4 ; return_ST: ; ; } } else version (OSX) { asm // assembler by W. Bright { // EDX = (A.length - 1) * real.sizeof mov ECX,A[EBP] ; // ECX = A.length dec ECX ; lea EDX,[ECX*8] ; add EDX,EDX ; add EDX,A+4[EBP] ; fld real ptr [EDX] ; // ST0 = coeff[ECX] jecxz return_ST ; fld x[EBP] ; // ST0 = x fxch ST(1) ; // ST1 = x, ST0 = r align 4 ; L2: fmul ST,ST(1) ; // r *= x fld real ptr -16[EDX] ; sub EDX,16 ; // deg-- faddp ST(1),ST ; dec ECX ; jne L2 ; fxch ST(1) ; // ST1 = r, ST0 = x fstp ST(0) ; // dump x align 4 ; return_ST: ; ; } } else version (FreeBSD) { asm // assembler by W. Bright { // EDX = (A.length - 1) * real.sizeof mov ECX,A[EBP] ; // ECX = A.length dec ECX ; lea EDX,[ECX*8] ; lea EDX,[EDX][ECX*4] ; add EDX,A+4[EBP] ; fld real ptr [EDX] ; // ST0 = coeff[ECX] jecxz return_ST ; fld x[EBP] ; // ST0 = x fxch ST(1) ; // ST1 = x, ST0 = r align 4 ; L2: fmul ST,ST(1) ; // r *= x fld real ptr -12[EDX] ; sub EDX,12 ; // deg-- faddp ST(1),ST ; dec ECX ; jne L2 ; fxch ST(1) ; // ST1 = r, ST0 = x fstp ST(0) ; // dump x align 4 ; return_ST: ; ; } } else { static assert(0); } } else { sizediff_t i = A.length - 1; real r = A[i]; while (--i >= 0) { r *= x; r += A[i]; } return r; } } unittest { debug (math) printf("math.poly.unittest\n"); real x = 3.1; static real pp[] = [56.1, 32.7, 6]; assert( poly(x, pp) == (56.1L + (32.7L + 6L * x) * x) ); } /** Computes whether $(D lhs) is approximately equal to $(D rhs) admitting a maximum relative difference $(D maxRelDiff) and a maximum absolute difference $(D maxAbsDiff). If the two inputs are ranges, $(D approxEqual) returns true if and only if the ranges have the same number of elements and if $(D approxEqual) evaluates to $(D true) for each pair of elements. */ bool approxEqual(T, U, V)(T lhs, U rhs, V maxRelDiff, V maxAbsDiff = 1e-5) { static if (isInputRange!T) { static if (isInputRange!U) { // Two ranges for (;; lhs.popFront, rhs.popFront) { if (lhs.empty) return rhs.empty; if (rhs.empty) return lhs.empty; if (!approxEqual(lhs.front, rhs.front, maxRelDiff, maxAbsDiff)) return false; } } else { // lhs is range, rhs is number for (; !lhs.empty; lhs.popFront) { if (!approxEqual(lhs.front, rhs, maxRelDiff, maxAbsDiff)) return false; } return true; } } else { static if (isInputRange!U) { // lhs is number, rhs is array return approxEqual(rhs, lhs, maxRelDiff, maxAbsDiff); } else { // two numbers //static assert(is(T : real) && is(U : real)); if (rhs == 0) { return fabs(lhs) <= maxAbsDiff; } static if (is(typeof(lhs.infinity)) && is(typeof(rhs.infinity))) { if (lhs == lhs.infinity && rhs == rhs.infinity || lhs == -lhs.infinity && rhs == -rhs.infinity) return true; } return fabs((lhs - rhs) / rhs) <= maxRelDiff || maxAbsDiff != 0 && fabs(lhs - rhs) <= maxAbsDiff; } } } /** Returns $(D approxEqual(lhs, rhs, 1e-2, 1e-5)). */ bool approxEqual(T, U)(T lhs, U rhs) { return approxEqual(lhs, rhs, 1e-2, 1e-5); } unittest { assert(approxEqual(1.0, 1.0099)); assert(!approxEqual(1.0, 1.011)); float[] arr1 = [ 1.0, 2.0, 3.0 ]; double[] arr2 = [ 1.001, 1.999, 3 ]; assert(approxEqual(arr1, arr2)); real num = real.infinity; assert(num == real.infinity); // Passes. assert(approxEqual(num, real.infinity)); // Fails. num = -real.infinity; assert(num == -real.infinity); // Passes. assert(approxEqual(num, -real.infinity)); // Fails. } // Included for backwards compatibility with Phobos1 alias isNaN isnan; alias isFinite isfinite; alias isNormal isnormal; alias isSubnormal issubnormal; alias isInfinity isinf; /* ********************************** * Building block functions, they * translate to a single x87 instruction. */ real yl2x(real x, real y) @safe pure nothrow; // y * log2(x) real yl2xp1(real x, real y) @safe pure nothrow; // y * log2(x + 1) unittest { version (INLINE_YL2X) { assert(yl2x(1024, 1) == 10); assert(yl2xp1(1023, 1) == 10); } } unittest { real num = real.infinity; assert(num == real.infinity); // Passes. assert(approxEqual(num, real.infinity)); // Fails. }