// Written in the D programming language. /** $(BOOKTABLE , $(TR $(TH Category) $(TH Functions) ) $(TR $(TDNW Searching) $(TD $(MYREF all) $(MYREF any) $(MYREF balancedParens) $(MYREF boyerMooreFinder) $(MYREF canFind) $(MYREF commonPrefix) $(MYREF count) $(MYREF countUntil) $(MYREF endsWith) $(MYREF find) $(MYREF findAdjacent) $(MYREF findAmong) $(MYREF findSkip) $(MYREF findSplit) $(MYREF findSplitAfter) $(MYREF findSplitBefore) $(MYREF minCount) $(MYREF minPos) $(MYREF mismatch) $(MYREF skipOver) $(MYREF startsWith) $(MYREF until) ) ) $(TR $(TDNW Comparison) $(TD $(MYREF among) $(MYREF cmp) $(MYREF equal) $(MYREF levenshteinDistance) $(MYREF levenshteinDistanceAndPath) $(MYREF max) $(MYREF min) $(MYREF mismatch) ) ) $(TR $(TDNW Iteration) $(TD $(MYREF filter) $(MYREF filterBidirectional) $(MYREF group) $(MYREF joiner) $(MYREF map) $(MYREF reduce) $(MYREF splitter) $(MYREF sum) $(MYREF uniq) ) ) $(TR $(TDNW Sorting) $(TD $(MYREF completeSort) $(MYREF isPartitioned) $(MYREF isSorted) $(MYREF makeIndex) $(MYREF nextPermutation) $(MYREF nextEvenPermutation) $(MYREF partialSort) $(MYREF partition) $(MYREF partition3) $(MYREF schwartzSort) $(MYREF sort) $(MYREF topN) $(MYREF topNCopy) ) ) $(TR $(TDNW Set operations) $(TD $(MYREF cartesianProduct) $(MYREF largestPartialIntersection) $(MYREF largestPartialIntersectionWeighted) $(MYREF nWayUnion) $(MYREF setDifference) $(MYREF setIntersection) $(MYREF setSymmetricDifference) $(MYREF setUnion) ) ) $(TR $(TDNW Mutation) $(TD $(MYREF bringToFront) $(MYREF copy) $(MYREF fill) $(MYREF initializeAll) $(MYREF move) $(MYREF moveAll) $(MYREF moveSome) $(MYREF remove) $(MYREF reverse) $(MYREF strip) $(MYREF stripLeft) $(MYREF stripRight) $(MYREF swap) $(MYREF swapRanges) $(MYREF uninitializedFill) )) ) Implements algorithms oriented mainly towards processing of sequences. Some functions are semantic equivalents or supersets of those found in the $(D $(LESS)_algorithm$(GREATER)) header in $(WEB sgi.com/tech/stl/, Alexander Stepanov's Standard Template Library) for C++. Sequences processed by these functions define range-based interfaces. $(LINK2 std_range.html, Reference on ranges)$(BR) $(LINK2 http://ddili.org/ders/d.en/ranges.html, Tutorial on ranges) Many functions in this module are parameterized with a function or a $(GLOSSARY predicate). The predicate may be passed either as a function name, a delegate name, a $(GLOSSARY functor) name, or a compile-time string. The string may consist of $(B any) legal D expression that uses the symbol $(D a) (for unary functions) or the symbols $(D a) and $(D b) (for binary functions). These names will NOT interfere with other homonym symbols in user code because they are evaluated in a different context. The default for all binary comparison predicates is $(D "a == b") for unordered operations and $(D "a < b") for ordered operations. Example: ---- int[] a = ...; static bool greater(int a, int b) { return a > b; } sort!(greater)(a); // predicate as alias sort!("a > b")(a); // predicate as string // (no ambiguity with array name) sort(a); // no predicate, "a < b" is implicit ---- $(BOOKTABLE Cheat Sheet, $(TR $(TH Function Name) $(TH Description) ) $(LEADINGROW Searching ) $(TR $(TDNW $(LREF all)) $(TD $(D all!"a > 0"([1, 2, 3, 4])) returns $(D true) because all elements are positive) ) $(TR $(TDNW $(LREF any)) $(TD $(D any!"a > 0"([1, 2, -3, -4])) returns $(D true) because at least one element is positive) ) $(TR $(TDNW $(LREF balancedParens)) $(TD $(D balancedParens("((1 + 1) / 2)")) returns $(D true) because the string has balanced parentheses.) ) $(TR $(TDNW $(LREF boyerMooreFinder)) $(TD $(D find("hello world", boyerMooreFinder("or"))) returns $(D "orld") using the $(LUCKY Boyer-Moore _algorithm).) ) $(TR $(TDNW $(LREF canFind)) $(TD $(D canFind("hello world", "or")) returns $(D true).) ) $(TR $(TDNW $(LREF count)) $(TD Counts elements that are equal to a specified value or satisfy a predicate. $(D count([1, 2, 1], 1)) returns $(D 2) and $(D count!"a < 0"([1, -3, 0])) returns $(D 1).) ) $(TR $(TDNW $(LREF countUntil)) $(TD $(D countUntil(a, b)) returns the number of steps taken in $(D a) to reach $(D b); for example, $(D countUntil("hello!", "o")) returns $(D 4).) ) $(TR $(TDNW $(LREF commonPrefix)) $(TD $(D commonPrefix("parakeet", "parachute")) returns $(D "para").) ) $(TR $(TDNW $(LREF endsWith)) $(TD $(D endsWith("rocks", "ks")) returns $(D true).) ) $(TR $(TD $(LREF find)) $(TD $(D find("hello world", "or")) returns $(D "orld") using linear search. (For binary search refer to $(XREF range,sortedRange).)) ) $(TR $(TDNW $(LREF findAdjacent)) $(TD $(D findAdjacent([1, 2, 3, 3, 4])) returns the subrange starting with two equal adjacent elements, i.e. $(D [3, 3, 4]).) ) $(TR $(TDNW $(LREF findAmong)) $(TD $(D findAmong("abcd", "qcx")) returns $(D "cd") because $(D 'c') is among $(D "qcx").) ) $(TR $(TDNW $(LREF findSkip)) $(TD If $(D a = "abcde"), then $(D findSkip(a, "x")) returns $(D false) and leaves $(D a) unchanged, whereas $(D findSkip(a, 'c')) advances $(D a) to $(D "cde") and returns $(D true).) ) $(TR $(TDNW $(LREF findSplit)) $(TD $(D findSplit("abcdefg", "de")) returns the three ranges $(D "abc"), $(D "de"), and $(D "fg").) ) $(TR $(TDNW $(LREF findSplitAfter)) $(TD $(D findSplitAfter("abcdefg", "de")) returns the two ranges $(D "abcde") and $(D "fg").) ) $(TR $(TDNW $(LREF findSplitBefore)) $(TD $(D findSplitBefore("abcdefg", "de")) returns the two ranges $(D "abc") and $(D "defg").) ) $(TR $(TDNW $(LREF minCount)) $(TD $(D minCount([2, 1, 1, 4, 1])) returns $(D tuple(1, 3)).) ) $(TR $(TDNW $(LREF minPos)) $(TD $(D minPos([2, 3, 1, 3, 4, 1])) returns the subrange $(D [1, 3, 4, 1]), i.e., positions the range at the first occurrence of its minimal element.) ) $(TR $(TDNW $(LREF mismatch)) $(TD $(D mismatch("parakeet", "parachute")) returns the two ranges $(D "keet") and $(D "chute").) ) $(TR $(TDNW $(LREF skipOver)) $(TD Assume $(D a = "blah"). Then $(D skipOver(a, "bi")) leaves $(D a) unchanged and returns $(D false), whereas $(D skipOver(a, "bl")) advances $(D a) to refer to $(D "ah") and returns $(D true).) ) $(TR $(TDNW $(LREF startsWith)) $(TD $(D startsWith("hello, world", "hello")) returns $(D true).) ) $(TR $(TDNW $(LREF until)) $(TD Lazily iterates a range until a specific value is found.) ) $(LEADINGROW Comparison ) $(TR $(TDNW $(LREF among)) $(TD Checks if a value is among a set of values, e.g. $(D if (v.among(1, 2, 3)) // `v` is 1, 2 or 3)) ) $(TR $(TDNW $(LREF cmp)) $(TD $(D cmp("abc", "abcd")) is $(D -1), $(D cmp("abc", "aba")) is $(D 1), and $(D cmp("abc", "abc")) is $(D 0).) ) $(TR $(TDNW $(LREF equal)) $(TD Compares ranges for element-by-element equality, e.g. $(D equal([1, 2, 3], [1.0, 2.0, 3.0])) returns $(D true).) ) $(TR $(TDNW $(LREF levenshteinDistance)) $(TD $(D levenshteinDistance("kitten", "sitting")) returns $(D 3) by using the $(LUCKY Levenshtein distance _algorithm).) ) $(TR $(TDNW $(LREF levenshteinDistanceAndPath)) $(TD $(D levenshteinDistanceAndPath("kitten", "sitting")) returns $(D tuple(3, "snnnsni")) by using the $(LUCKY Levenshtein distance _algorithm).) ) $(TR $(TDNW $(LREF max)) $(TD $(D max(3, 4, 2)) returns $(D 4).) ) $(TR $(TDNW $(LREF min)) $(TD $(D min(3, 4, 2)) returns $(D 2).) ) $(TR $(TDNW $(LREF mismatch)) $(TD $(D mismatch("oh hi", "ohayo")) returns $(D tuple(" hi", "ayo")).) ) $(LEADINGROW Iteration ) $(TR $(TDNW $(LREF filter)) $(TD $(D filter!"a > 0"([1, -1, 2, 0, -3])) iterates over elements $(D 1) and $(D 2).) ) $(TR $(TDNW $(LREF filterBidirectional)) $(TD Similar to $(D filter), but also provides $(D back) and $(D popBack) at a small increase in cost.) ) $(TR $(TDNW $(LREF group)) $(TD $(D group([5, 2, 2, 3, 3])) returns a range containing the tuples $(D tuple(5, 1)), $(D tuple(2, 2)), and $(D tuple(3, 2)).) ) $(TR $(TDNW $(LREF joiner)) $(TD $(D joiner(["hello", "world!"], "; ")) returns a range that iterates over the characters $(D "hello; world!"). No new string is created - the existing inputs are iterated.) ) $(TR $(TDNW $(LREF map)) $(TD $(D map!"2 * a"([1, 2, 3])) lazily returns a range with the numbers $(D 2), $(D 4), $(D 6).) ) $(TR $(TDNW $(LREF reduce)) $(TD $(D reduce!"a + b"([1, 2, 3, 4])) returns $(D 10).) ) $(TR $(TDNW $(LREF splitter)) $(TD Lazily splits a range by a separator.) ) $(TR $(TDNW $(LREF sum)) $(TD Same as $(D reduce), but specialized for accurate summation.) ) $(TR $(TDNW $(LREF uniq)) $(TD Iterates over the unique elements in a range, which is assumed sorted.) ) $(LEADINGROW Sorting ) $(TR $(TDNW $(LREF completeSort)) $(TD If $(D a = [10, 20, 30]) and $(D b = [40, 6, 15]), then $(D completeSort(a, b)) leaves $(D a = [6, 10, 15]) and $(D b = [20, 30, 40]). The range $(D a) must be sorted prior to the call, and as a result the combination $(D $(XREF range,chain)(a, b)) is sorted.) ) $(TR $(TDNW $(LREF isPartitioned)) $(TD $(D isPartitioned!"a < 0"([-1, -2, 1, 0, 2])) returns $(D true) because the predicate is $(D true) for a portion of the range and $(D false) afterwards.) ) $(TR $(TDNW $(LREF isSorted)) $(TD $(D isSorted([1, 1, 2, 3])) returns $(D true).) ) $(TR $(TDNW $(LREF makeIndex)) $(TD Creates a separate index for a range.) ) $(TR $(TDNW $(LREF nextPermutation)) $(TD Computes the next lexicographically greater permutation of a range in-place.) ) $(TR $(TDNW $(LREF nextEvenPermutation)) $(TD Computes the next lexicographically greater even permutation of a range in-place.) ) $(TR $(TDNW $(LREF partialSort)) $(TD If $(D a = [5, 4, 3, 2, 1]), then $(D partialSort(a, 3)) leaves $(D a[0 .. 3] = [1, 2, 3]). The other elements of $(D a) are left in an unspecified order.) ) $(TR $(TDNW $(LREF partition)) $(TD Partitions a range according to a predicate.) ) $(TR $(TDNW $(LREF partition3)) $(TD Partitions a range in three parts (less than, equal, greater than the given pivot).) ) $(TR $(TDNW $(LREF schwartzSort)) $(TD Sorts with the help of the $(LUCKY Schwartzian transform).) ) $(TR $(TDNW $(LREF sort)) $(TD Sorts.) ) $(TR $(TDNW $(LREF topN)) $(TD Separates the top elements in a range.) ) $(TR $(TDNW $(LREF topNCopy)) $(TD Copies out the top elements of a range.) ) $(LEADINGROW Set operations ) $(TR $(TDNW $(LREF cartesianProduct)) $(TD Computes Cartesian product of two ranges.) ) $(TR $(TDNW $(LREF largestPartialIntersection)) $(TD Copies out the values that occur most frequently in a range of ranges.) ) $(TR $(TDNW $(LREF largestPartialIntersectionWeighted)) $(TD Copies out the values that occur most frequently (multiplied by per-value weights) in a range of ranges.) ) $(TR $(TDNW $(LREF nWayUnion)) $(TD Computes the union of a set of sets implemented as a range of sorted ranges.) ) $(TR $(TDNW $(LREF setDifference)) $(TD Lazily computes the set difference of two or more sorted ranges.) ) $(TR $(TDNW $(LREF setIntersection)) $(TD Lazily computes the intersection of two or more sorted ranges.) ) $(TR $(TDNW $(LREF setSymmetricDifference)) $(TD Lazily computes the symmetric set difference of two or more sorted ranges.) ) $(TR $(TDNW $(LREF setUnion)) $(TD Lazily computes the set union of two or more sorted ranges.) ) $(LEADINGROW Mutation ) $(TR $(TDNW $(LREF bringToFront)) $(TD If $(D a = [1, 2, 3]) and $(D b = [4, 5, 6, 7]), $(D bringToFront(a, b)) leaves $(D a = [4, 5, 6]) and $(D b = [7, 1, 2, 3]).) ) $(TR $(TDNW $(LREF copy)) $(TD Copies a range to another. If $(D a = [1, 2, 3]) and $(D b = new int[5]), then $(D copy(a, b)) leaves $(D b = [1, 2, 3, 0, 0]) and returns $(D b[3 .. $]).) ) $(TR $(TDNW $(LREF fill)) $(TD Fills a range with a pattern, e.g., if $(D a = new int[3]), then $(D fill(a, 4)) leaves $(D a = [4, 4, 4]) and $(D fill(a, [3, 4])) leaves $(D a = [3, 4, 3]).) ) $(TR $(TDNW $(LREF initializeAll)) $(TD If $(D a = [1.2, 3.4]), then $(D initializeAll(a)) leaves $(D a = [double.init, double.init]).) ) $(TR $(TDNW $(LREF move)) $(TD $(D move(a, b)) moves $(D a) into $(D b). $(D move(a)) reads $(D a) destructively.) ) $(TR $(TDNW $(LREF moveAll)) $(TD Moves all elements from one range to another.) ) $(TR $(TDNW $(LREF moveSome)) $(TD Moves as many elements as possible from one range to another.) ) $(TR $(TDNW $(LREF remove)) $(TD Removes elements from a range in-place, and returns the shortened range.) ) $(TR $(TDNW $(LREF reverse)) $(TD If $(D a = [1, 2, 3]), $(D reverse(a)) changes it to $(D [3, 2, 1]).) ) $(TR $(TDNW $(LREF strip)) $(TD Strips all leading and trailing elements equal to a value, or that satisfy a predicate. If $(D a = [1, 1, 0, 1, 1]), then $(D strip(a, 1)) and $(D strip!(e => e == 1)(a)) returns $(D [0]).) ) $(TR $(TDNW $(LREF stripLeft)) $(TD Strips all leading elements equal to a value, or that satisfy a predicate. If $(D a = [1, 1, 0, 1, 1]), then $(D stripLeft(a, 1)) and $(D stripLeft!(e => e == 1)(a)) returns $(D [0, 1, 1]).) ) $(TR $(TDNW $(LREF stripRight)) $(TD Strips all trailing elements equal to a value, or that satisfy a predicate. If $(D a = [1, 1, 0, 1, 1]), then $(D stripRight(a, 1)) and $(D stripRight!(e => e == 1)(a)) returns $(D [1, 1, 0]).) ) $(TR $(TDNW $(LREF swap)) $(TD Swaps two values.) ) $(TR $(TDNW $(LREF swapRanges)) $(TD Swaps all elements of two ranges.) ) $(TR $(TDNW $(LREF uninitializedFill)) $(TD Fills a range (assumed uninitialized) with a value.) ) ) Macros: WIKI = Phobos/StdAlgorithm MYREF = $1  Copyright: Andrei Alexandrescu 2008-. License: $(WEB boost.org/LICENSE_1_0.txt, Boost License 1.0). Authors: $(WEB erdani.com, Andrei Alexandrescu) Source: $(PHOBOSSRC std/_algorithm.d) */ module std.algorithm; //debug = std_algorithm; import std.functional : unaryFun, binaryFun; import std.range; import std.traits; import std.typecons : tuple, Tuple; import std.typetuple : TypeTuple, staticMap, allSatisfy; version(unittest) { debug(std_algorithm) import std.stdio; mixin(dummyRanges); } private T* addressOf(T)(ref T val) { return &val; } /** $(D auto map(Range)(Range r) if (isInputRange!(Unqual!Range));) Implements the homonym function (also known as $(D transform)) present in many languages of functional flavor. The call $(D map!(fun)(range)) returns a range of which elements are obtained by applying $(D fun(x)) left to right for all $(D x) in $(D range). The original ranges are not changed. Evaluation is done lazily. */ template map(fun...) if (fun.length >= 1) { auto map(Range)(Range r) if (isInputRange!(Unqual!Range)) { alias AppliedReturnType(alias f) = typeof(f(r.front)); static if (fun.length > 1) { import std.functional : adjoin; import std.typetuple : staticIndexOf; alias _funs = staticMap!(unaryFun, fun); alias _fun = adjoin!_funs; alias ReturnTypes = staticMap!(AppliedReturnType, _funs); static assert(staticIndexOf!(void, ReturnTypes) == -1, "All mapping functions must not return void."); } else { alias _fun = unaryFun!fun; static assert(!is(AppliedReturnType!_fun == void), "Mapping function must not return void."); } return MapResult!(_fun, Range)(r); } } /// unittest { int[] arr1 = [ 1, 2, 3, 4 ]; int[] arr2 = [ 5, 6 ]; auto squares = map!(a => a * a)(chain(arr1, arr2)); assert(equal(squares, [ 1, 4, 9, 16, 25, 36 ])); } /** Multiple functions can be passed to $(D map). In that case, the element type of $(D map) is a tuple containing one element for each function. */ unittest { auto sums = [2, 4, 6, 8]; auto products = [1, 4, 9, 16]; size_t i = 0; foreach (result; [ 1, 2, 3, 4 ].map!("a + a", "a * a")) { assert(result[0] == sums[i]); assert(result[1] == products[i]); ++i; } } /** You may alias $(D map) with some function(s) to a symbol and use it separately: */ unittest { import std.conv : to; alias stringize = map!(to!string); assert(equal(stringize([ 1, 2, 3, 4 ]), [ "1", "2", "3", "4" ])); } private struct MapResult(alias fun, Range) { alias R = Unqual!Range; R _input; static if (isBidirectionalRange!R) { @property auto ref back() { return fun(_input.back); } void popBack() { _input.popBack(); } } this(R input) { _input = input; } static if (isInfinite!R) { // Propagate infinite-ness. enum bool empty = false; } else { @property bool empty() { return _input.empty; } } void popFront() { _input.popFront(); } @property auto ref front() { return fun(_input.front); } static if (isRandomAccessRange!R) { static if (is(typeof(_input[ulong.max]))) private alias opIndex_t = ulong; else private alias opIndex_t = uint; auto ref opIndex(opIndex_t index) { return fun(_input[index]); } } static if (hasLength!R) { @property auto length() { return _input.length; } alias opDollar = length; } static if (hasSlicing!R) { static if (is(typeof(_input[ulong.max .. ulong.max]))) private alias opSlice_t = ulong; else private alias opSlice_t = uint; static if (hasLength!R) { auto opSlice(opSlice_t low, opSlice_t high) { return typeof(this)(_input[low .. high]); } } else static if (is(typeof(_input[opSlice_t.max .. $]))) { struct DollarToken{} enum opDollar = DollarToken.init; auto opSlice(opSlice_t low, DollarToken) { return typeof(this)(_input[low .. $]); } auto opSlice(opSlice_t low, opSlice_t high) { return this[low .. $].take(high - low); } } } static if (isForwardRange!R) { @property auto save() { auto result = this; result._input = result._input.save; return result; } } } unittest { import std.conv : to; import std.functional : adjoin; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); alias stringize = map!(to!string); assert(equal(stringize([ 1, 2, 3, 4 ]), [ "1", "2", "3", "4" ])); uint counter; alias count = map!((a) { return counter++; }); assert(equal(count([ 10, 2, 30, 4 ]), [ 0, 1, 2, 3 ])); counter = 0; adjoin!((a) { return counter++; }, (a) { return counter++; })(1); alias countAndSquare = map!((a) { return counter++; }, (a) { return counter++; }); //assert(equal(countAndSquare([ 10, 2 ]), [ tuple(0u, 100), tuple(1u, 4) ])); } unittest { import std.ascii : toUpper; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int[] arr1 = [ 1, 2, 3, 4 ]; const int[] arr1Const = arr1; int[] arr2 = [ 5, 6 ]; auto squares = map!("a * a")(arr1Const); assert(squares[$ - 1] == 16); assert(equal(squares, [ 1, 4, 9, 16 ][])); assert(equal(map!("a * a")(chain(arr1, arr2)), [ 1, 4, 9, 16, 25, 36 ][])); // Test the caching stuff. assert(squares.back == 16); auto squares2 = squares.save; assert(squares2.back == 16); assert(squares2.front == 1); squares2.popFront(); assert(squares2.front == 4); squares2.popBack(); assert(squares2.front == 4); assert(squares2.back == 9); assert(equal(map!("a * a")(chain(arr1, arr2)), [ 1, 4, 9, 16, 25, 36 ][])); uint i; foreach (e; map!("a", "a * a")(arr1)) { assert(e[0] == ++i); assert(e[1] == i * i); } // Test length. assert(squares.length == 4); assert(map!"a * a"(chain(arr1, arr2)).length == 6); // Test indexing. assert(squares[0] == 1); assert(squares[1] == 4); assert(squares[2] == 9); assert(squares[3] == 16); // Test slicing. auto squareSlice = squares[1..squares.length - 1]; assert(equal(squareSlice, [4, 9][])); assert(squareSlice.back == 9); assert(squareSlice[1] == 9); // Test on a forward range to make sure it compiles when all the fancy // stuff is disabled. auto fibsSquares = map!"a * a"(recurrence!("a[n-1] + a[n-2]")(1, 1)); assert(fibsSquares.front == 1); fibsSquares.popFront(); fibsSquares.popFront(); assert(fibsSquares.front == 4); fibsSquares.popFront(); assert(fibsSquares.front == 9); auto repeatMap = map!"a"(repeat(1)); static assert(isInfinite!(typeof(repeatMap))); auto intRange = map!"a"([1,2,3]); static assert(isRandomAccessRange!(typeof(intRange))); foreach (DummyType; AllDummyRanges) { DummyType d; auto m = map!"a * a"(d); static assert(propagatesRangeType!(typeof(m), DummyType)); assert(equal(m, [1,4,9,16,25,36,49,64,81,100])); } //Test string access string s1 = "hello world!"; dstring s2 = "日本語"; dstring s3 = "hello world!"d; auto ms1 = map!(std.ascii.toUpper)(s1); auto ms2 = map!(std.ascii.toUpper)(s2); auto ms3 = map!(std.ascii.toUpper)(s3); static assert(!is(ms1[0])); //narrow strings can't be indexed assert(ms2[0] == '日'); assert(ms3[0] == 'H'); static assert(!is(ms1[0..1])); //narrow strings can't be sliced assert(equal(ms2[0..2], "日本"w)); assert(equal(ms3[0..2], "HE")); // Issue 5753 static void voidFun(int) {} static int nonvoidFun(int) { return 0; } static assert(!__traits(compiles, map!voidFun([1]))); static assert(!__traits(compiles, map!(voidFun, voidFun)([1]))); static assert(!__traits(compiles, map!(nonvoidFun, voidFun)([1]))); static assert(!__traits(compiles, map!(voidFun, nonvoidFun)([1]))); } unittest { auto LL = iota(1L, 4L); auto m = map!"a*a"(LL); assert(equal(m, [1L, 4L, 9L])); } unittest { // Issue #10130 - map of iota with const step. const step = 2; static assert(__traits(compiles, map!(i => i)(iota(0, 10, step)))); // Need these to all by const to repro the float case, due to the // CommonType template used in the float specialization of iota. const floatBegin = 0.0; const floatEnd = 1.0; const floatStep = 0.02; static assert(__traits(compiles, map!(i => i)(iota(floatBegin, floatEnd, floatStep)))); } unittest { //slicing infinites auto rr = iota(0, 5).cycle().map!"a * a"(); alias RR = typeof(rr); static assert(hasSlicing!RR); rr = rr[6 .. $]; //Advances 1 cycle and 1 unit assert(equal(rr[0 .. 5], [1, 4, 9, 16, 0])); } /** $(D auto reduce(Args...)(Args args) if (Args.length > 0 && Args.length <= 2 && isIterable!(Args[$ - 1]));) Implements the homonym function (also known as $(D accumulate), $(D compress), $(D inject), or $(D foldl)) present in various programming languages of functional flavor. The call $(D reduce!(fun)(seed, range)) first assigns $(D seed) to an internal variable $(D result), also called the accumulator. Then, for each element $(D x) in $(D range), $(D result = fun(result, x)) gets evaluated. Finally, $(D result) is returned. The one-argument version $(D reduce!(fun)(range)) works similarly, but it uses the first element of the range as the seed (the range must be non-empty). See also: $(LREF sum) is similar to $(D reduce!((a, b) => a + b)) that offers precise summing of floating point numbers. */ template reduce(fun...) if (fun.length >= 1) { import std.exception : enforce; auto reduce(Args...)(Args args) if (Args.length > 0 && Args.length <= 2 && isIterable!(Args[$ - 1])) { static if (isInputRange!(Args[$ - 1])) { static if (Args.length == 2) { alias seed = args[0]; alias r = args[1]; Unqual!(Args[0]) result = seed; for (; !r.empty; r.popFront()) { static if (fun.length == 1) { result = binaryFun!(fun[0])(result, r.front); } else { foreach (i, Unused; Args[0].Types) { result[i] = binaryFun!(fun[i])(result[i], r.front); } } } return result; } else { enforce(!args[$ - 1].empty, "Cannot reduce an empty range w/o an explicit seed value."); alias r = args[0]; static if (fun.length == 1) { auto seed = r.front; r.popFront(); return reduce(seed, r); } else { import std.functional : adjoin; import std.conv : emplaceRef; static assert(fun.length > 1); Unqual!(typeof(r.front)) seed = r.front; typeof(adjoin!(staticMap!(binaryFun, fun))(seed, seed)) result = void; foreach (i, T; result.Types) { emplaceRef(result[i], seed); } r.popFront(); return reduce(result, r); } } } else { // opApply case. Coded as a separate case because efficiently // handling all of the small details like avoiding unnecessary // copying, iterating by dchar over strings, and dealing with the // no explicit start value case would become an unreadable mess // if these were merged. alias r = args[$ - 1]; alias R = Args[$ - 1]; alias E = ForeachType!R; static if (args.length == 2) { static if (fun.length == 1) { auto result = Tuple!(Unqual!(Args[0]))(args[0]); } else { Unqual!(Args[0]) result = args[0]; } enum bool initialized = true; } else static if (fun.length == 1) { Tuple!(typeof(binaryFun!fun(E.init, E.init))) result = void; bool initialized = false; } else { import std.functional : adjoin; typeof(adjoin!(staticMap!(binaryFun, fun))(E.init, E.init)) result = void; bool initialized = false; } // For now, just iterate using ref to avoid unnecessary copying. // When Bug 2443 is fixed, this may need to change. foreach (ref elem; r) { if (initialized) { foreach (i, T; result.Types) { result[i] = binaryFun!(fun[i])(result[i], elem); } } else { import std.conv : emplaceRef; static if (is(typeof(&initialized))) { initialized = true; } foreach (i, T; result.Types) { emplaceRef(result[i], elem); } } } enforce(initialized, "Cannot reduce an empty iterable w/o an explicit seed value."); static if (fun.length == 1) { return result[0]; } else { return result; } } } } /** Many aggregate range operations turn out to be solved with $(D reduce) quickly and easily. The example below illustrates $(D reduce)'s remarkable power and flexibility. */ unittest { import std.math : approxEqual; int[] arr = [ 1, 2, 3, 4, 5 ]; // Sum all elements auto sum = reduce!((a,b) => a + b)(0, arr); assert(sum == 15); // Sum again, using a string predicate with "a" and "b" sum = reduce!"a + b"(0, arr); assert(sum == 15); // Compute the maximum of all elements auto largest = reduce!(max)(arr); assert(largest == 5); // Max again, but with Uniform Function Call Syntax (UFCS) largest = arr.reduce!(max); assert(largest == 5); // Compute the number of odd elements auto odds = reduce!((a,b) => a + (b & 1))(0, arr); assert(odds == 3); // Compute the sum of squares auto ssquares = reduce!((a,b) => a + b * b)(0, arr); assert(ssquares == 55); // Chain multiple ranges into seed int[] a = [ 3, 4 ]; int[] b = [ 100 ]; auto r = reduce!("a + b")(chain(a, b)); assert(r == 107); // Mixing convertible types is fair game, too double[] c = [ 2.5, 3.0 ]; auto r1 = reduce!("a + b")(chain(a, b, c)); assert(approxEqual(r1, 112.5)); // To minimize nesting of parentheses, Uniform Function Call Syntax can be used auto r2 = chain(a, b, c).reduce!("a + b"); assert(approxEqual(r2, 112.5)); } /** Sometimes it is very useful to compute multiple aggregates in one pass. One advantage is that the computation is faster because the looping overhead is shared. That's why $(D reduce) accepts multiple functions. If two or more functions are passed, $(D reduce) returns a $(XREF typecons, Tuple) object with one member per passed-in function. The number of seeds must be correspondingly increased. */ unittest { import std.math : approxEqual, sqrt; double[] a = [ 3.0, 4, 7, 11, 3, 2, 5 ]; // Compute minimum and maximum in one pass auto r = reduce!(min, max)(a); // The type of r is Tuple!(int, int) assert(approxEqual(r[0], 2)); // minimum assert(approxEqual(r[1], 11)); // maximum // Compute sum and sum of squares in one pass r = reduce!("a + b", "a + b * b")(tuple(0.0, 0.0), a); assert(approxEqual(r[0], 35)); // sum assert(approxEqual(r[1], 233)); // sum of squares // Compute average and standard deviation from the above auto avg = r[0] / a.length; auto stdev = sqrt(r[1] / a.length - avg * avg); } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); double[] a = [ 3, 4 ]; auto r = reduce!("a + b")(0.0, a); assert(r == 7); r = reduce!("a + b")(a); assert(r == 7); r = reduce!(min)(a); assert(r == 3); double[] b = [ 100 ]; auto r1 = reduce!("a + b")(chain(a, b)); assert(r1 == 107); // two funs auto r2 = reduce!("a + b", "a - b")(tuple(0.0, 0.0), a); assert(r2[0] == 7 && r2[1] == -7); auto r3 = reduce!("a + b", "a - b")(a); assert(r3[0] == 7 && r3[1] == -1); a = [ 1, 2, 3, 4, 5 ]; // Stringize with commas string rep = reduce!("a ~ `, ` ~ to!(string)(b)")("", a); assert(rep[2 .. $] == "1, 2, 3, 4, 5", "["~rep[2 .. $]~"]"); // Test the opApply case. static struct OpApply { bool actEmpty; int opApply(int delegate(ref int) dg) { int res; if (actEmpty) return res; foreach (i; 0..100) { res = dg(i); if (res) break; } return res; } } OpApply oa; auto hundredSum = reduce!"a + b"(iota(100)); assert(reduce!"a + b"(5, oa) == hundredSum + 5); assert(reduce!"a + b"(oa) == hundredSum); assert(reduce!("a + b", max)(oa) == tuple(hundredSum, 99)); assert(reduce!("a + b", max)(tuple(5, 0), oa) == tuple(hundredSum + 5, 99)); // Test for throwing on empty range plus no seed. try { reduce!"a + b"([1, 2][0..0]); assert(0); } catch(Exception) {} oa.actEmpty = true; try { reduce!"a + b"(oa); assert(0); } catch(Exception) {} } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); const float a = 0.0; const float[] b = [ 1.2, 3, 3.3 ]; float[] c = [ 1.2, 3, 3.3 ]; auto r = reduce!"a + b"(a, b); r = reduce!"a + b"(a, c); } unittest { // Issue #10408 - Two-function reduce of a const array. const numbers = [10, 30, 20]; immutable m = reduce!(min)(numbers); assert(m == 10); immutable minmax = reduce!(min, max)(numbers); assert(minmax == tuple(10, 30)); } // sum /** Sums elements of $(D r), which must be a finite input range. Although conceptually $(D sum(r)) is equivalent to $(D reduce!((a, b) => a + b)(0, r)), $(D sum) uses specialized algorithms to maximize accuracy, as follows. $(UL $(LI If $(D ElementType!R) is a floating-point type and $(D R) is a random-access range with length and slicing, then $(D sum) uses the $(WEB en.wikipedia.org/wiki/Pairwise_summation, pairwise summation) algorithm.) $(LI If $(D ElementType!R) is a floating-point type and $(D R) is a finite input range (but not a random-access range with slicing), then $(D sum) uses the $(WEB en.wikipedia.org/wiki/Kahan_summation, Kahan summation) algorithm.) $(LI In al other cases, a simple element by element addition is done.) ) For floating point inputs, calculations are made in $(D real) precision for $(D real) inputs and in $(D double) precision otherwise. For all other types, the calculations are done in the same type obtained from from adding two elements of the range, which may be a different type from the elements themselves (for example, in case of integral promotion). Note that these specialized summing algorithms execute more primitive operations than vanilla summation. Therefore, if in certain cases maximum speed is required at expense of precision, one can use $(D reduce!((a, b) => a + b)(0, r)), which is not specialized for summation. */ auto sum(R)(R r) if (isInputRange!R && !isFloatingPoint!(ElementType!R) && !isInfinite!R) { typeof(r.front + r.front) seed = 0; return reduce!"a + b"(seed, r); } /// Ditto unittest { assert(sum([ 1, 2, 3, 4]) == 10); assert(sum([1.0, 2, 3, 4]) == 10); assert(sum([false, true, true, false, true]) == 3); assert(sum(ubyte.max.repeat(100)) == 25500); } unittest { static assert(is(typeof(sum([cast( byte)1])) == int)); static assert(is(typeof(sum([cast(ubyte)1])) == int)); static assert(is(typeof(sum([ 1, 2, 3, 4])) == int)); static assert(is(typeof(sum([ 1U, 2U, 3U, 4U])) == uint)); static assert(is(typeof(sum([ 1L, 2L, 3L, 4L])) == long)); static assert(is(typeof(sum([1UL, 2UL, 3UL, 4UL])) == ulong)); int[] empty; assert(sum(empty) == 0); assert(sum([42]) == 42); assert(sum([42, 43]) == 42 + 43); assert(sum([42, 43, 44]) == 42 + 43 + 44); assert(sum([42, 43, 44, 45]) == 42 + 43 + 44 + 45); } // Pairwise summation http://en.wikipedia.org/wiki/Pairwise_summation auto sum(R)(R r) if (hasSlicing!R && hasLength!R && isFloatingPoint!(ElementType!R)) { switch (r.length) { case 0: return 0.0; case 1: return r.front; case 2: return r.front + r[1]; default: return sum(r[0 .. $ / 2]) + sum(r[$ / 2 .. $]); } } unittest { static assert(is(typeof(sum([1.0, 2.0, 3.0, 4.0])) == double)); static assert(is(typeof(sum([ 1F, 2F, 3F, 4F])) == double)); const(float[]) a = [1F, 2F, 3F, 4F]; static assert(is(typeof(sum(a)) == double)); const(float)[] b = [1F, 2F, 3F, 4F]; static assert(is(typeof(sum(a)) == double)); double[] empty; assert(sum(empty) == 0); assert(sum([42.]) == 42); assert(sum([42., 43.]) == 42 + 43); assert(sum([42., 43., 44.]) == 42 + 43 + 44); assert(sum([42., 43., 44., 45.5]) == 42 + 43 + 44 + 45.5); } // Kahan algo http://en.wikipedia.org/wiki/Kahan_summation_algorithm auto sum(R)(R r) if (isInputRange!R && !(hasSlicing!R && hasLength!R) && isFloatingPoint!(ElementType!R) && !isInfinite!R) { static if (is(Unqual!(ElementType!R) == real)) alias Result = real; else alias Result = double; Result result = 0, c = 0; for (; !r.empty; r.popFront()) { auto y = r.front - c; auto t = result + y; c = (t - result) - y; result = t; } return result; } unittest { import std.container; static assert(is(typeof(sum(SList!float()[])) == double)); static assert(is(typeof(sum(SList!double()[])) == double)); static assert(is(typeof(sum(SList!real()[])) == real)); assert(sum(SList!double()[]) == 0); assert(sum(SList!double(1)[]) == 1); assert(sum(SList!double(1, 2)[]) == 1 + 2); assert(sum(SList!double(1, 2, 3)[]) == 1 + 2 + 3); assert(sum(SList!double(1, 2, 3, 4)[]) == 10); } /** Fills $(D range) with a $(D filler). */ void fill(Range, Value)(Range range, Value filler) if (isInputRange!Range && is(typeof(range.front = filler))) { alias T = ElementType!Range; static if (is(typeof(range[] = filler))) { range[] = filler; } else static if (is(typeof(range[] = T(filler)))) { range[] = T(filler); } else { for ( ; !range.empty; range.popFront() ) { range.front = filler; } } } /// unittest { int[] a = [ 1, 2, 3, 4 ]; fill(a, 5); assert(a == [ 5, 5, 5, 5 ]); } unittest { import std.conv : text; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int[] a = [ 1, 2, 3 ]; fill(a, 6); assert(a == [ 6, 6, 6 ], text(a)); void fun0() { foreach (i; 0 .. 1000) { foreach (ref e; a) e = 6; } } void fun1() { foreach (i; 0 .. 1000) fill(a, 6); } //void fun2() { foreach (i; 0 .. 1000) fill2(a, 6); } //writeln(benchmark!(fun0, fun1, fun2)(10000)); // fill should accept InputRange alias InputRange = DummyRange!(ReturnBy.Reference, Length.No, RangeType.Input); enum filler = uint.max; InputRange range; fill(range, filler); foreach (value; range.arr) assert(value == filler); } unittest { //ER8638_1 IS_NOT self assignable static struct ER8638_1 { void opAssign(int){} } //ER8638_1 IS self assignable static struct ER8638_2 { void opAssign(ER8638_2){} void opAssign(int){} } auto er8638_1 = new ER8638_1[](10); auto er8638_2 = new ER8638_2[](10); er8638_1.fill(5); //generic case er8638_2.fill(5); //opSlice(T.init) case } unittest { { int[] a = [1, 2, 3]; immutable(int) b = 0; static assert(__traits(compiles, a.fill(b))); } { double[] a = [1, 2, 3]; immutable(int) b = 0; static assert(__traits(compiles, a.fill(b))); } } /** Fills $(D range) with a pattern copied from $(D filler). The length of $(D range) does not have to be a multiple of the length of $(D filler). If $(D filler) is empty, an exception is thrown. */ void fill(Range1, Range2)(Range1 range, Range2 filler) if (isInputRange!Range1 && (isForwardRange!Range2 || (isInputRange!Range2 && isInfinite!Range2)) && is(typeof(Range1.init.front = Range2.init.front))) { static if (isInfinite!Range2) { //Range2 is infinite, no need for bounds checking or saving static if (hasSlicing!Range2 && hasLength!Range1 && is(typeof(filler[0 .. range.length]))) { copy(filler[0 .. range.length], range); } else { //manual feed for ( ; !range.empty; range.popFront(), filler.popFront()) { range.front = filler.front; } } } else { import std.exception : enforce; enforce(!filler.empty, "Cannot fill range with an empty filler"); static if (hasLength!Range1 && hasLength!Range2 && is(typeof(range.length > filler.length))) { //Case we have access to length auto len = filler.length; //Start by bulk copies while (range.length > len) { range = copy(filler.save, range); } //and finally fill the partial range. No need to save here. static if (hasSlicing!Range2 && is(typeof(filler[0 .. range.length]))) { //use a quick copy auto len2 = range.length; range = copy(filler[0 .. len2], range); } else { //iterate. No need to check filler, it's length is longer than range's for (; !range.empty; range.popFront(), filler.popFront()) { range.front = filler.front; } } } else { //Most basic case. auto bck = filler.save; for (; !range.empty; range.popFront(), filler.popFront()) { if (filler.empty) filler = bck.save; range.front = filler.front; } } } } /// unittest { int[] a = [ 1, 2, 3, 4, 5 ]; int[] b = [ 8, 9 ]; fill(a, b); assert(a == [ 8, 9, 8, 9, 8 ]); } unittest { import std.exception : assertThrown; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int[] a = [ 1, 2, 3, 4, 5 ]; int[] b = [1, 2]; fill(a, b); assert(a == [ 1, 2, 1, 2, 1 ]); // fill should accept InputRange alias InputRange = DummyRange!(ReturnBy.Reference, Length.No, RangeType.Input); InputRange range; fill(range,[1,2]); foreach (i,value;range.arr) assert(value == (i%2==0?1:2)); //test with a input being a "reference forward" range fill(a, new ReferenceForwardRange!int([8, 9])); assert(a == [8, 9, 8, 9, 8]); //test with a input being an "infinite input" range fill(a, new ReferenceInfiniteInputRange!int()); assert(a == [0, 1, 2, 3, 4]); //empty filler test assertThrown(fill(a, a[$..$])); } /** Fills a range with a value. Assumes that the range does not currently contain meaningful content. This is of interest for structs that define copy constructors (for all other types, fill and uninitializedFill are equivalent). uninitializedFill will only operate on ranges that expose references to its members and have assignable elements. Example: ---- struct S { ... } S[] s = (cast(S*) malloc(5 * S.sizeof))[0 .. 5]; uninitializedFill(s, 42); assert(s == [ 42, 42, 42, 42, 42 ]); ---- */ void uninitializedFill(Range, Value)(Range range, Value filler) if (isInputRange!Range && hasLvalueElements!Range && is(typeof(range.front = filler))) { alias T = ElementType!Range; static if (hasElaborateAssign!T) { import std.conv : emplaceRef; // Must construct stuff by the book for (; !range.empty; range.popFront()) emplaceRef(range.front, filler); } else // Doesn't matter whether fill is initialized or not return fill(range, filler); } /** Initializes all elements of a range with their $(D .init) value. Assumes that the range does not currently contain meaningful content. initializeAll will operate on ranges that expose references to its members and have assignable elements, as well as on (mutable) strings. Example: ---- struct S { ... } S[] s = (cast(S*) malloc(5 * S.sizeof))[0 .. 5]; initializeAll(s); assert(s == [ 0, 0, 0, 0, 0 ]); ---- */ void initializeAll(Range)(Range range) if (isInputRange!Range && hasLvalueElements!Range && hasAssignableElements!Range) { import core.stdc.string : memset, memcpy; alias T = ElementType!Range; static if (hasElaborateAssign!T) { //Elaborate opAssign. Must go the memcpy road. //We avoid calling emplace here, because our goal is to initialize to //the static state of T.init, //So we want to avoid any un-necassarilly CC'ing of T.init auto p = typeid(T).init().ptr; if (p) for ( ; !range.empty ; range.popFront() ) memcpy(addressOf(range.front), p, T.sizeof); else static if (isDynamicArray!Range) memset(range.ptr, 0, range.length * T.sizeof); else for ( ; !range.empty ; range.popFront() ) memset(addressOf(range.front), 0, T.sizeof); } else fill(range, T.init); } // ditto void initializeAll(Range)(Range range) if (is(Range == char[]) || is(Range == wchar[])) { alias T = ElementEncodingType!Range; range[] = T.init; } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); //Test strings: //Must work on narrow strings. //Must reject const char[3] a = void; a[].initializeAll(); assert(a[] == [char.init, char.init, char.init]); string s; assert(!__traits(compiles, s.initializeAll())); //Note: Cannot call uninitializedFill on narrow strings enum e {e1, e2} e[3] b1 = void; b1[].initializeAll(); assert(b1[] == [e.e1, e.e1, e.e1]); e[3] b2 = void; b2[].uninitializedFill(e.e2); assert(b2[] == [e.e2, e.e2, e.e2]); static struct S1 { int i; } static struct S2 { int i = 1; } static struct S3 { int i; this(this){} } static struct S4 { int i = 1; this(this){} } static assert (!hasElaborateAssign!S1); static assert (!hasElaborateAssign!S2); static assert ( hasElaborateAssign!S3); static assert ( hasElaborateAssign!S4); assert (!typeid(S1).init().ptr); assert ( typeid(S2).init().ptr); assert (!typeid(S3).init().ptr); assert ( typeid(S4).init().ptr); foreach(S; TypeTuple!(S1, S2, S3, S4)) { //initializeAll { //Array S[3] ss1 = void; ss1[].initializeAll(); assert(ss1[] == [S.init, S.init, S.init]); //Not array S[3] ss2 = void; auto sf = ss2[].filter!"true"(); sf.initializeAll(); assert(ss2[] == [S.init, S.init, S.init]); } //uninitializedFill { //Array S[3] ss1 = void; ss1[].uninitializedFill(S(2)); assert(ss1[] == [S(2), S(2), S(2)]); //Not array S[3] ss2 = void; auto sf = ss2[].filter!"true"(); sf.uninitializedFill(S(2)); assert(ss2[] == [S(2), S(2), S(2)]); } } } /** $(D auto filter(Range)(Range rs) if (isInputRange!(Unqual!Range));) Implements the homonym function present in various programming languages of functional flavor. The call $(D filter!(predicate)(range)) returns a new range only containing elements $(D x) in $(D range) for which $(D predicate(x)) is $(D true). */ template filter(alias pred) if (is(typeof(unaryFun!pred))) { auto filter(Range)(Range rs) if (isInputRange!(Unqual!Range)) { return FilterResult!(unaryFun!pred, Range)(rs); } } /// unittest { import std.math : approxEqual; int[] arr = [ 1, 2, 3, 4, 5 ]; // Sum all elements auto small = filter!(a => a < 3)(arr); assert(equal(small, [ 1, 2 ])); // Sum again, but with Uniform Function Call Syntax (UFCS) auto sum = arr.filter!(a => a < 3); assert(equal(sum, [ 1, 2 ])); // In combination with chain() to span multiple ranges int[] a = [ 3, -2, 400 ]; int[] b = [ 100, -101, 102 ]; auto r = chain(a, b).filter!(a => a > 0); assert(equal(r, [ 3, 400, 100, 102 ])); // Mixing convertible types is fair game, too double[] c = [ 2.5, 3.0 ]; auto r1 = chain(c, a, b).filter!(a => cast(int) a != a); assert(approxEqual(r1, [ 2.5 ])); } private struct FilterResult(alias pred, Range) { alias R = Unqual!Range; R _input; this(R r) { _input = r; while (!_input.empty && !pred(_input.front)) { _input.popFront(); } } auto opSlice() { return this; } static if (isInfinite!Range) { enum bool empty = false; } else { @property bool empty() { return _input.empty; } } void popFront() { do { _input.popFront(); } while (!_input.empty && !pred(_input.front)); } @property auto ref front() { return _input.front; } static if (isForwardRange!R) { @property auto save() { return typeof(this)(_input.save); } } } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int[] a = [ 3, 4, 2 ]; auto r = filter!("a > 3")(a); static assert(isForwardRange!(typeof(r))); assert(equal(r, [ 4 ][])); a = [ 1, 22, 3, 42, 5 ]; auto under10 = filter!("a < 10")(a); assert(equal(under10, [1, 3, 5][])); static assert(isForwardRange!(typeof(under10))); under10.front = 4; assert(equal(under10, [4, 3, 5][])); under10.front = 40; assert(equal(under10, [40, 3, 5][])); under10.front = 1; auto infinite = filter!"a > 2"(repeat(3)); static assert(isInfinite!(typeof(infinite))); static assert(isForwardRange!(typeof(infinite))); foreach (DummyType; AllDummyRanges) { DummyType d; auto f = filter!"a & 1"(d); assert(equal(f, [1,3,5,7,9])); static if (isForwardRange!DummyType) { static assert(isForwardRange!(typeof(f))); } } // With delegates int x = 10; int overX(int a) { return a > x; } typeof(filter!overX(a)) getFilter() { return filter!overX(a); } auto r1 = getFilter(); assert(equal(r1, [22, 42])); // With chain auto nums = [0,1,2,3,4]; assert(equal(filter!overX(chain(a, nums)), [22, 42])); // With copying of inner struct Filter to Map auto arr = [1,2,3,4,5]; auto m = map!"a + 1"(filter!"a < 4"(arr)); } unittest { int[] a = [ 3, 4 ]; const aConst = a; auto r = filter!("a > 3")(aConst); assert(equal(r, [ 4 ][])); a = [ 1, 22, 3, 42, 5 ]; auto under10 = filter!("a < 10")(a); assert(equal(under10, [1, 3, 5][])); assert(equal(under10.save, [1, 3, 5][])); assert(equal(under10.save, under10)); // With copying of inner struct Filter to Map auto arr = [1,2,3,4,5]; auto m = map!"a + 1"(filter!"a < 4"(arr)); } unittest { import std.functional : compose, pipe; assert(equal(compose!(map!"2 * a", filter!"a & 1")([1,2,3,4,5]), [2,6,10])); assert(equal(pipe!(filter!"a & 1", map!"2 * a")([1,2,3,4,5]), [2,6,10])); } unittest { int x = 10; int underX(int a) { return a < x; } const(int)[] list = [ 1, 2, 10, 11, 3, 4 ]; assert(equal(filter!underX(list), [ 1, 2, 3, 4 ])); } /** * $(D auto filterBidirectional(Range)(Range r) if (isBidirectionalRange!(Unqual!Range));) * * Similar to $(D filter), except it defines a bidirectional * range. There is a speed disadvantage - the constructor spends time * finding the last element in the range that satisfies the filtering * condition (in addition to finding the first one). The advantage is * that the filtered range can be spanned from both directions. Also, * $(XREF range, retro) can be applied against the filtered range. * */ template filterBidirectional(alias pred) { auto filterBidirectional(Range)(Range r) if (isBidirectionalRange!(Unqual!Range)) { return FilterBidiResult!(unaryFun!pred, Range)(r); } } /// unittest { int[] arr = [ 1, 2, 3, 4, 5 ]; auto small = filterBidirectional!("a < 3")(arr); static assert(isBidirectionalRange!(typeof(small))); assert(small.back == 2); assert(equal(small, [ 1, 2 ])); assert(equal(retro(small), [ 2, 1 ])); // In combination with chain() to span multiple ranges int[] a = [ 3, -2, 400 ]; int[] b = [ 100, -101, 102 ]; auto r = filterBidirectional!("a > 0")(chain(a, b)); assert(r.back == 102); } private struct FilterBidiResult(alias pred, Range) { alias R = Unqual!Range; R _input; this(R r) { _input = r; while (!_input.empty && !pred(_input.front)) _input.popFront(); while (!_input.empty && !pred(_input.back)) _input.popBack(); } @property bool empty() { return _input.empty; } void popFront() { do { _input.popFront(); } while (!_input.empty && !pred(_input.front)); } @property auto ref front() { return _input.front; } void popBack() { do { _input.popBack(); } while (!_input.empty && !pred(_input.back)); } @property auto ref back() { return _input.back; } @property auto save() { return typeof(this)(_input.save); } } // move /** Moves $(D source) into $(D target) via a destructive copy. Specifically: $(UL $(LI If $(D hasAliasing!T) is true (see $(XREF traits, hasAliasing)), then the representation of $(D source) is bitwise copied into $(D target) and then $(D source = T.init) is evaluated.) $(LI Otherwise, $(D target = source) is evaluated.)) See also $(XREF exception, pointsTo). Preconditions: $(D &source == &target || !pointsTo(source, source)) */ void move(T)(ref T source, ref T target) { import core.stdc.string : memcpy; import std.exception : pointsTo; assert(!pointsTo(source, source)); static if (is(T == struct)) { if (&source == &target) return; // Most complicated case. Destroy whatever target had in it // and bitblast source over it static if (hasElaborateDestructor!T) typeid(T).destroy(&target); memcpy(&target, &source, T.sizeof); // If the source defines a destructor or a postblit hook, we must obliterate the // object in order to avoid double freeing and undue aliasing static if (hasElaborateDestructor!T || hasElaborateCopyConstructor!T) { static T empty; static if (T.tupleof.length > 0 && T.tupleof[$-1].stringof.endsWith("this")) { // If T is nested struct, keep original context pointer memcpy(&source, &empty, T.sizeof - (void*).sizeof); } else { memcpy(&source, &empty, T.sizeof); } } } else { // Primitive data (including pointers and arrays) or class - // assignment works great target = source; // static if (is(typeof(source = null))) // { // // Nullify the source to help the garbage collector // source = null; // } } } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); Object obj1 = new Object; Object obj2 = obj1; Object obj3; move(obj2, obj3); assert(obj3 is obj1); static struct S1 { int a = 1, b = 2; } S1 s11 = { 10, 11 }; S1 s12; move(s11, s12); assert(s11.a == 10 && s11.b == 11 && s12.a == 10 && s12.b == 11); static struct S2 { int a = 1; int * b; } S2 s21 = { 10, null }; s21.b = new int; S2 s22; move(s21, s22); assert(s21 == s22); // Issue 5661 test(1) static struct S3 { static struct X { int n = 0; ~this(){n = 0;} } X x; } static assert(hasElaborateDestructor!S3); S3 s31, s32; s31.x.n = 1; move(s31, s32); assert(s31.x.n == 0); assert(s32.x.n == 1); // Issue 5661 test(2) static struct S4 { static struct X { int n = 0; this(this){n = 0;} } X x; } static assert(hasElaborateCopyConstructor!S4); S4 s41, s42; s41.x.n = 1; move(s41, s42); assert(s41.x.n == 0); assert(s42.x.n == 1); } /// Ditto T move(T)(ref T source) { import core.stdc.string : memcpy; // Can avoid to check aliasing. T result = void; static if (is(T == struct)) { // Can avoid destructing result. memcpy(&result, &source, T.sizeof); // If the source defines a destructor or a postblit hook, we must obliterate the // object in order to avoid double freeing and undue aliasing static if (hasElaborateDestructor!T || hasElaborateCopyConstructor!T) { static T empty; static if (T.tupleof.length > 0 && T.tupleof[$-1].stringof.endsWith("this")) { // If T is nested struct, keep original context pointer memcpy(&source, &empty, T.sizeof - (void*).sizeof); } else { memcpy(&source, &empty, T.sizeof); } } } else { // Primitive data (including pointers and arrays) or class - // assignment works great result = source; } return result; } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); Object obj1 = new Object; Object obj2 = obj1; Object obj3 = move(obj2); assert(obj3 is obj1); static struct S1 { int a = 1, b = 2; } S1 s11 = { 10, 11 }; S1 s12 = move(s11); assert(s11.a == 10 && s11.b == 11 && s12.a == 10 && s12.b == 11); static struct S2 { int a = 1; int * b; } S2 s21 = { 10, null }; s21.b = new int; S2 s22 = move(s21); assert(s21 == s22); // Issue 5661 test(1) static struct S3 { static struct X { int n = 0; ~this(){n = 0;} } X x; } static assert(hasElaborateDestructor!S3); S3 s31; s31.x.n = 1; S3 s32 = move(s31); assert(s31.x.n == 0); assert(s32.x.n == 1); // Issue 5661 test(2) static struct S4 { static struct X { int n = 0; this(this){n = 0;} } X x; } static assert(hasElaborateCopyConstructor!S4); S4 s41; s41.x.n = 1; S4 s42 = move(s41); assert(s41.x.n == 0); assert(s42.x.n == 1); } unittest//Issue 6217 { auto x = map!"a"([1,2,3]); x = move(x); } unittest// Issue 8055 { static struct S { int x; ~this() { assert(x == 0); } } S foo(S s) { return move(s); } S a; a.x = 0; auto b = foo(a); assert(b.x == 0); } unittest// Issue 8057 { int n = 10; struct S { int x; ~this() { // Access to enclosing scope assert(n == 10); } } S foo(S s) { // Move nested struct return move(s); } S a; a.x = 1; auto b = foo(a); assert(b.x == 1); // Regression 8171 static struct Array(T) { // nested struct has no member struct Payload { ~this() {} } } Array!int.Payload x = void; static assert(__traits(compiles, move(x) )); static assert(__traits(compiles, move(x, x) )); } // moveAll /** For each element $(D a) in $(D src) and each element $(D b) in $(D tgt) in lockstep in increasing order, calls $(D move(a, b)). Returns the leftover portion of $(D tgt). Throws an exeption if there is not enough room in $(D tgt) to acommodate all of $(D src). Preconditions: $(D walkLength(src) <= walkLength(tgt)) */ Range2 moveAll(Range1, Range2)(Range1 src, Range2 tgt) if (isInputRange!Range1 && isInputRange!Range2 && is(typeof(move(src.front, tgt.front)))) { import std.exception : enforce; static if (isRandomAccessRange!Range1 && hasLength!Range1 && hasLength!Range2 && hasSlicing!Range2 && isRandomAccessRange!Range2) { auto toMove = src.length; enforce(toMove <= tgt.length); // shouldn't this be an assert? foreach (idx; 0 .. toMove) move(src[idx], tgt[idx]); return tgt[toMove .. tgt.length]; } else { for (; !src.empty; src.popFront(), tgt.popFront()) { enforce(!tgt.empty); //ditto? move(src.front, tgt.front); } return tgt; } } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int[] a = [ 1, 2, 3 ]; int[] b = new int[5]; assert(moveAll(a, b) is b[3 .. $]); assert(a == b[0 .. 3]); assert(a == [ 1, 2, 3 ]); } // moveSome /** For each element $(D a) in $(D src) and each element $(D b) in $(D tgt) in lockstep in increasing order, calls $(D move(a, b)). Stops when either $(D src) or $(D tgt) have been exhausted. Returns the leftover portions of the two ranges. */ Tuple!(Range1, Range2) moveSome(Range1, Range2)(Range1 src, Range2 tgt) if (isInputRange!Range1 && isInputRange!Range2 && is(typeof(move(src.front, tgt.front)))) { import std.exception : enforce; for (; !src.empty && !tgt.empty; src.popFront(), tgt.popFront()) { enforce(!tgt.empty); move(src.front, tgt.front); } return tuple(src, tgt); } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int[] a = [ 1, 2, 3, 4, 5 ]; int[] b = new int[3]; assert(moveSome(a, b)[0] is a[3 .. $]); assert(a[0 .. 3] == b); assert(a == [ 1, 2, 3, 4, 5 ]); } // swap /** Swaps $(D lhs) and $(D rhs). The instances $(D lhs) and $(D rhs) are moved in memory, without ever calling $(D opAssign), nor any other function. $(D T) need not be assignable at all to be swapped. If $(D lhs) and $(D rhs) reference the same instance, then nothing is done. $(D lhs) and $(D rhs) must be mutable. If $(D T) is a struct or union, then its fields must also all be (recursivelly) mutable. Preconditions: $(D !pointsTo(lhs, lhs) && !pointsTo(lhs, rhs) && !pointsTo(rhs, lhs) && !pointsTo(rhs, rhs)) See_Also: $(XREF exception, pointsTo) */ void swap(T)(ref T lhs, ref T rhs) @trusted pure nothrow if (isBlitAssignable!T && !is(typeof(lhs.proxySwap(rhs)))) { static if (hasElaborateAssign!T || !isAssignable!T) { import std.exception : pointsTo; if (&lhs != &rhs) { // For structs with non-trivial assignment, move memory directly // First check for undue aliasing static if (hasIndirections!T) assert(!pointsTo(lhs, rhs) && !pointsTo(rhs, lhs) && !pointsTo(lhs, lhs) && !pointsTo(rhs, rhs)); // Swap bits ubyte[T.sizeof] t = void; auto a = (cast(ubyte*) &lhs)[0 .. T.sizeof]; auto b = (cast(ubyte*) &rhs)[0 .. T.sizeof]; t[] = a[]; a[] = b[]; b[] = t[]; } } else { //Avoid assigning overlapping arrays. Dynamic arrays are fine, because //it's their ptr and length properties which get assigned rather //than their elements when assigning them, but static arrays are value //types and therefore all of their elements get copied as part of //assigning them, which would be assigning overlapping arrays if lhs //and rhs were the same array. static if (isStaticArray!T) { if (lhs.ptr == rhs.ptr) return; } // For non-struct types, suffice to do the classic swap auto tmp = lhs; lhs = rhs; rhs = tmp; } } // Not yet documented void swap(T)(ref T lhs, ref T rhs) if (is(typeof(lhs.proxySwap(rhs)))) { lhs.proxySwap(rhs); } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int a = 42, b = 34; swap(a, b); assert(a == 34 && b == 42); static struct S { int x; char c; int[] y; } S s1 = { 0, 'z', [ 1, 2 ] }; S s2 = { 42, 'a', [ 4, 6 ] }; //writeln(s2.tupleof.stringof); swap(s1, s2); assert(s1.x == 42); assert(s1.c == 'a'); assert(s1.y == [ 4, 6 ]); assert(s2.x == 0); assert(s2.c == 'z'); assert(s2.y == [ 1, 2 ]); immutable int imm1, imm2; static assert(!__traits(compiles, swap(imm1, imm2))); } unittest { static struct NoCopy { this(this) { assert(0); } int n; string s; } NoCopy nc1, nc2; nc1.n = 127; nc1.s = "abc"; nc2.n = 513; nc2.s = "uvwxyz"; swap(nc1, nc2); assert(nc1.n == 513 && nc1.s == "uvwxyz"); assert(nc2.n == 127 && nc2.s == "abc"); swap(nc1, nc1); swap(nc2, nc2); assert(nc1.n == 513 && nc1.s == "uvwxyz"); assert(nc2.n == 127 && nc2.s == "abc"); static struct NoCopyHolder { NoCopy noCopy; } NoCopyHolder h1, h2; h1.noCopy.n = 31; h1.noCopy.s = "abc"; h2.noCopy.n = 65; h2.noCopy.s = null; swap(h1, h2); assert(h1.noCopy.n == 65 && h1.noCopy.s == null); assert(h2.noCopy.n == 31 && h2.noCopy.s == "abc"); swap(h1, h1); swap(h2, h2); assert(h1.noCopy.n == 65 && h1.noCopy.s == null); assert(h2.noCopy.n == 31 && h2.noCopy.s == "abc"); const NoCopy const1, const2; static assert(!__traits(compiles, swap(const1, const2))); } unittest { //Bug# 4789 int[1] s = [1]; swap(s, s); } unittest { static struct NoAssign { int i; void opAssign(NoAssign) @disable; } auto s1 = NoAssign(1); auto s2 = NoAssign(2); swap(s1, s2); assert(s1.i == 2); assert(s2.i == 1); } unittest { struct S { const int i; } S s; static assert(!__traits(compiles, swap(s, s))); } unittest { //11853 alias T = Tuple!(int, double); static assert(isAssignable!T); } unittest { // 12024 import std.datetime; SysTime a, b; swap(a, b); } void swapFront(R1, R2)(R1 r1, R2 r2) if (isInputRange!R1 && isInputRange!R2) { static if (is(typeof(swap(r1.front, r2.front)))) { swap(r1.front, r2.front); } else { auto t1 = moveFront(r1), t2 = moveFront(r2); r1.front = move(t2); r2.front = move(t1); } } /** Forwards function arguments with saving ref-ness. */ template forward(args...) { import std.typetuple; static if (args.length) { alias arg = args[0]; static if (__traits(isRef, arg)) alias fwd = arg; else @property fwd()(){ return move(arg); } alias forward = TypeTuple!(fwd, forward!(args[1..$])); } else alias forward = TypeTuple!(); } /// unittest { class C { static int foo(int n) { return 1; } static int foo(ref int n) { return 2; } } int bar()(auto ref int x) { return C.foo(forward!x); } assert(bar(1) == 1); int i; assert(bar(i) == 2); } /// unittest { void foo(int n, ref string s) { s = null; foreach (i; 0..n) s ~= "Hello"; } // forwards all arguments which are bound to parameter tuple void bar(Args...)(auto ref Args args) { return foo(forward!args); } // forwards all arguments with swapping order void baz(Args...)(auto ref Args args) { return foo(forward!args[$/2..$], forward!args[0..$/2]); } string s; bar(1, s); assert(s == "Hello"); baz(s, 2); assert(s == "HelloHello"); } unittest { auto foo(TL...)(auto ref TL args) { string result = ""; foreach (i, _; args) { //pragma(msg, "[",i,"] ", __traits(isRef, args[i]) ? "L" : "R"); result ~= __traits(isRef, args[i]) ? "L" : "R"; } return result; } string bar(TL...)(auto ref TL args) { return foo(forward!args); } string baz(TL...)(auto ref TL args) { int x; return foo(forward!args[3], forward!args[2], 1, forward!args[1], forward!args[0], x); } struct S {} S makeS(){ return S(); } int n; string s; assert(bar(S(), makeS(), n, s) == "RRLL"); assert(baz(S(), makeS(), n, s) == "LLRRRL"); } unittest { ref int foo(ref int a) { return a; } ref int bar(Args)(auto ref Args args) { return foo(forward!args); } static assert(!__traits(compiles, { auto x1 = bar(3); })); // case of NG int value = 3; auto x2 = bar(value); // case of OK } // splitter /** Splits a range using an element as a separator. This can be used with any narrow string type or sliceable range type, but is most popular with string types. Two adjacent separators are considered to surround an empty element in the split range. Use $(D filter!(a => !a.empty)) on the result to compress empty elements. If the empty range is given, the result is a range with one empty element. If a range with one separator is given, the result is a range with two empty elements. If splitting a string on whitespace and token compression is desired, consider using $(D splitter) without specifying a separator (see overload below). See also $(XREF regex, splitter) for a version that splits using a regular expression defined separator. */ auto splitter(Range, Separator)(Range r, Separator s) if (is(typeof(ElementType!Range.init == Separator.init)) && ((hasSlicing!Range && hasLength!Range) || isNarrowString!Range)) { import std.conv : unsigned; static struct Result { private: Range _input; Separator _separator; // Do we need hasLength!Range? popFront uses _input.length... alias IndexType = typeof(unsigned(_input.length)); enum IndexType _unComputed = IndexType.max - 1, _atEnd = IndexType.max; IndexType _frontLength = _unComputed; IndexType _backLength = _unComputed; static if (isNarrowString!Range) { size_t _separatorLength; } else { enum _separatorLength = 1; } static if (isBidirectionalRange!Range) { static IndexType lastIndexOf(Range haystack, Separator needle) { auto r = haystack.retro().find(needle); return r.retro().length - 1; } } public: this(Range input, Separator separator) { _input = input; _separator = separator; static if (isNarrowString!Range) { import std.utf : codeLength; _separatorLength = codeLength!(ElementEncodingType!Range)(separator); } if (_input.empty) _frontLength = _atEnd; } static if (isInfinite!Range) { enum bool empty = false; } else { @property bool empty() { return _frontLength == _atEnd; } } @property Range front() { assert(!empty); if (_frontLength == _unComputed) { auto r = _input.find(_separator); _frontLength = _input.length - r.length; } return _input[0 .. _frontLength]; } void popFront() { assert(!empty); if (_frontLength == _unComputed) { front; } assert(_frontLength <= _input.length); if (_frontLength == _input.length) { // no more input and need to fetch => done _frontLength = _atEnd; // Probably don't need this, but just for consistency: _backLength = _atEnd; } else { _input = _input[_frontLength + _separatorLength .. _input.length]; _frontLength = _unComputed; } } static if (isForwardRange!Range) { @property typeof(this) save() { auto ret = this; ret._input = _input.save; return ret; } } static if (isBidirectionalRange!Range) { @property Range back() { assert(!empty); if (_backLength == _unComputed) { immutable lastIndex = lastIndexOf(_input, _separator); if (lastIndex == -1) { _backLength = _input.length; } else { _backLength = _input.length - lastIndex - 1; } } return _input[_input.length - _backLength .. _input.length]; } void popBack() { assert(!empty); if (_backLength == _unComputed) { // evaluate back to make sure it's computed back; } assert(_backLength <= _input.length); if (_backLength == _input.length) { // no more input and need to fetch => done _frontLength = _atEnd; _backLength = _atEnd; } else { _input = _input[0 .. _input.length - _backLength - _separatorLength]; _backLength = _unComputed; } } } } return Result(r, s); } /// unittest { assert(equal(splitter("hello world", ' '), [ "hello", "", "world" ])); int[] a = [ 1, 2, 0, 0, 3, 0, 4, 5, 0 ]; int[][] w = [ [1, 2], [], [3], [4, 5], [] ]; assert(equal(splitter(a, 0), w)); a = [ 0 ]; assert(equal(splitter(a, 0), [ (int[]).init, (int[]).init ])); a = [ 0, 1 ]; assert(equal(splitter(a, 0), [ [], [1] ])); } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); assert(equal(splitter("hello world", ' '), [ "hello", "", "world" ])); assert(equal(splitter("žlutoučkýřkůň", 'ř'), [ "žlutoučký", "kůň" ])); int[] a = [ 1, 2, 0, 0, 3, 0, 4, 5, 0 ]; int[][] w = [ [1, 2], [], [3], [4, 5], [] ]; static assert(isForwardRange!(typeof(splitter(a, 0)))); // foreach (x; splitter(a, 0)) { // writeln("[", x, "]"); // } assert(equal(splitter(a, 0), w)); a = null; assert(equal(splitter(a, 0), (int[][]).init)); a = [ 0 ]; assert(equal(splitter(a, 0), [ (int[]).init, (int[]).init ][])); a = [ 0, 1 ]; assert(equal(splitter(a, 0), [ [], [1] ][])); // Thoroughly exercise the bidirectional stuff. auto str = "abc abcd abcde ab abcdefg abcdefghij ab ac ar an at ada"; assert(equal( retro(splitter(str, 'a')), retro(array(splitter(str, 'a'))) )); // Test interleaving front and back. auto split = splitter(str, 'a'); assert(split.front == ""); assert(split.back == ""); split.popBack(); assert(split.back == "d"); split.popFront(); assert(split.front == "bc "); assert(split.back == "d"); split.popFront(); split.popBack(); assert(split.back == "t "); split.popBack(); split.popBack(); split.popFront(); split.popFront(); assert(split.front == "b "); assert(split.back == "r "); foreach (DummyType; AllDummyRanges) { // Bug 4408 static if (isRandomAccessRange!DummyType) { static assert(isBidirectionalRange!DummyType); DummyType d; auto s = splitter(d, 5); assert(equal(s.front, [1,2,3,4])); assert(equal(s.back, [6,7,8,9,10])); auto s2 = splitter(d, [4, 5]); assert(equal(s2.front, [1,2,3])); assert(equal(s2.back, [6,7,8,9,10])); } } } unittest { auto L = retro(iota(1L, 10L)); auto s = splitter(L, 5L); assert(equal(s.front, [9L, 8L, 7L, 6L])); s.popFront(); assert(equal(s.front, [4L, 3L, 2L, 1L])); s.popFront(); assert(s.empty); } /** Splits a range using another range as a separator. This can be used with any narrow string type or sliceable range type, but is most popular with string types. Two adjacent separators are considered to surround an empty element in the split range. Use $(D filter!(a => !a.empty)) on the result to compress empty elements. See also $(XREF regex, splitter) for a version that splits using a regular expression defined separator. */ auto splitter(Range, Separator)(Range r, Separator s) if (is(typeof(Range.init.front == Separator.init.front) : bool) && (hasSlicing!Range || isNarrowString!Range) && isForwardRange!Separator && (hasLength!Separator || isNarrowString!Separator)) { import std.conv : unsigned; static struct Result { private: Range _input; Separator _separator; alias RIndexType = typeof(unsigned(_input.length)); // _frontLength == size_t.max means empty RIndexType _frontLength = RIndexType.max; static if (isBidirectionalRange!Range) RIndexType _backLength = RIndexType.max; @property auto separatorLength() { return _separator.length; } void ensureFrontLength() { if (_frontLength != _frontLength.max) return; assert(!_input.empty); // compute front length _frontLength = (_separator.empty) ? 1 : _input.length - find(_input, _separator).length; static if (isBidirectionalRange!Range) if (_frontLength == _input.length) _backLength = _frontLength; } void ensureBackLength() { static if (isBidirectionalRange!Range) if (_backLength != _backLength.max) return; assert(!_input.empty); // compute back length static if (isBidirectionalRange!Range && isBidirectionalRange!Separator) { _backLength = _input.length - find(retro(_input), retro(_separator)).source.length; } } public: this(Range input, Separator separator) { _input = input; _separator = separator; } @property Range front() { assert(!empty); ensureFrontLength(); return _input[0 .. _frontLength]; } static if (isInfinite!Range) { enum bool empty = false; // Propagate infiniteness } else { @property bool empty() { return _frontLength == RIndexType.max && _input.empty; } } void popFront() { assert(!empty); ensureFrontLength(); if (_frontLength == _input.length) { // done, there's no separator in sight _input = _input[_frontLength .. _frontLength]; _frontLength = _frontLength.max; static if (isBidirectionalRange!Range) _backLength = _backLength.max; return; } if (_frontLength + separatorLength == _input.length) { // Special case: popping the first-to-last item; there is // an empty item right after this. _input = _input[_input.length .. _input.length]; _frontLength = 0; static if (isBidirectionalRange!Range) _backLength = 0; return; } // Normal case, pop one item and the separator, get ready for // reading the next item _input = _input[_frontLength + separatorLength .. _input.length]; // mark _frontLength as uninitialized _frontLength = _frontLength.max; } static if (isForwardRange!Range) { @property typeof(this) save() { auto ret = this; ret._input = _input.save; return ret; } } // Bidirectional functionality as suggested by Brad Roberts. static if (isBidirectionalRange!Range && isBidirectionalRange!Separator) { @property Range back() { ensureBackLength(); return _input[_input.length - _backLength .. _input.length]; } void popBack() { ensureBackLength(); if (_backLength == _input.length) { // done _input = _input[0 .. 0]; _frontLength = _frontLength.max; _backLength = _backLength.max; return; } if (_backLength + separatorLength == _input.length) { // Special case: popping the first-to-first item; there is // an empty item right before this. Leave the separator in. _input = _input[0 .. 0]; _frontLength = 0; _backLength = 0; return; } // Normal case _input = _input[0 .. _input.length - _backLength - separatorLength]; _backLength = _backLength.max; } } } return Result(r, s); } unittest { import std.conv : text; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); auto s = ",abc, de, fg,hi,"; auto sp0 = splitter(s, ','); // //foreach (e; sp0) writeln("[", e, "]"); assert(equal(sp0, ["", "abc", " de", " fg", "hi", ""][])); auto s1 = ", abc, de, fg, hi, "; auto sp1 = splitter(s1, ", "); //foreach (e; sp1) writeln("[", e, "]"); assert(equal(sp1, ["", "abc", "de", " fg", "hi", ""][])); static assert(isForwardRange!(typeof(sp1))); int[] a = [ 1, 2, 0, 3, 0, 4, 5, 0 ]; int[][] w = [ [1, 2], [3], [4, 5], [] ]; uint i; foreach (e; splitter(a, 0)) { assert(i < w.length); assert(e == w[i++]); } assert(i == w.length); // // Now go back // auto s2 = splitter(a, 0); // foreach (e; retro(s2)) // { // assert(i > 0); // assert(equal(e, w[--i]), text(e)); // } // assert(i == 0); wstring names = ",peter,paul,jerry,"; auto words = split(names, ","); assert(walkLength(words) == 5, text(walkLength(words))); } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); auto s6 = ","; auto sp6 = splitter(s6, ','); foreach (e; sp6) { //writeln("{", e, "}"); } assert(equal(sp6, ["", ""][])); } unittest { // Issue 10773 auto s = splitter("abc", ""); assert(s.equal(["a", "b", "c"])); } unittest { // Test by-reference separator class RefSep { string _impl; this(string s) { _impl = s; } @property empty() { return _impl.empty; } @property auto front() { return _impl.front; } void popFront() { _impl = _impl[1..$]; } @property RefSep save() { return new RefSep(_impl); } @property auto length() { return _impl.length; } } auto sep = new RefSep("->"); auto data = "i->am->pointing"; auto words = splitter(data, sep); assert(words.equal([ "i", "am", "pointing" ])); } ///ditto auto splitter(alias isTerminator, Range)(Range input) if (isForwardRange!Range && is(typeof(unaryFun!isTerminator(input.front)))) { return SplitterResult!(unaryFun!isTerminator, Range)(input); } private struct SplitterResult(alias isTerminator, Range) { enum fullSlicing = (hasLength!Range && hasSlicing!Range) || isSomeString!Range; private Range _input; private size_t _end = 0; static if(!fullSlicing) private Range _next; private void findTerminator() { static if (fullSlicing) { auto r = find!isTerminator(_input.save); _end = _input.length - r.length; } else for ( _end = 0; !_next.empty ; _next.popFront) { if (isTerminator(_next.front)) break; ++_end; } } this(Range input) { _input = input; static if(!fullSlicing) _next = _input.save; if (!_input.empty) findTerminator(); else _end = size_t.max; } static if (isInfinite!Range) { enum bool empty = false; // Propagate infiniteness. } else { @property bool empty() { return _end == size_t.max; } } @property auto front() { version(assert) { import core.exception : RangeError; if (empty) throw new RangeError(); } static if (fullSlicing) return _input[0 .. _end]; else return _input.save.takeExactly(_end); } void popFront() { version(assert) { import core.exception : RangeError; if (empty) throw new RangeError(); } static if (fullSlicing) { _input = _input[_end .. _input.length]; if (_input.empty) { _end = size_t.max; return; } _input.popFront(); } else { if (_next.empty) { _input = _next; _end = size_t.max; return; } _next.popFront(); _input = _next.save; } findTerminator(); } @property typeof(this) save() { auto ret = this; ret._input = _input.save; static if (!fullSlicing) ret._next = _next.save; return ret; } } unittest { auto L = iota(1L, 10L); auto s = splitter(L, [5L, 6L]); assert(equal(s.front, [1L, 2L, 3L, 4L])); s.popFront(); assert(equal(s.front, [7L, 8L, 9L])); s.popFront(); assert(s.empty); } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); void compare(string sentence, string[] witness) { import std.string : format; auto r = splitter!"a == ' '"(sentence); assert(equal(r.save, witness), format("got: %(%s, %) expected: %(%s, %)", r, witness)); } compare(" Mary has a little lamb. ", ["", "Mary", "", "has", "a", "little", "lamb.", "", "", ""]); compare("Mary has a little lamb. ", ["Mary", "", "has", "a", "little", "lamb.", "", "", ""]); compare("Mary has a little lamb.", ["Mary", "", "has", "a", "little", "lamb."]); compare("", (string[]).init); compare(" ", ["", ""]); static assert(isForwardRange!(typeof(splitter!"a == ' '"("ABC")))); foreach (DummyType; AllDummyRanges) { static if (isRandomAccessRange!DummyType) { auto rangeSplit = splitter!"a == 5"(DummyType.init); assert(equal(rangeSplit.front, [1,2,3,4])); rangeSplit.popFront(); assert(equal(rangeSplit.front, [6,7,8,9,10])); } } } unittest { struct Entry { int low; int high; int[][] result; } Entry[] entries = [ Entry(0, 0, []), Entry(0, 1, [[0]]), Entry(1, 2, [[], []]), Entry(2, 7, [[2], [4], [6]]), Entry(1, 8, [[], [2], [4], [6], []]), ]; foreach ( entry ; entries ) { import std.string : format; auto a = iota(entry.low, entry.high).filter!"true"(); auto b = splitter!"a%2"(a); assert(equal!equal(b.save, entry.result), format("got: %(%s, %) expected: %(%s, %)", b, entry.result)); } } unittest { import std.uni : isWhite; //@@@6791@@@ assert(equal(std.array.splitter("là dove terminava quella valle"), ["là", "dove", "terminava", "quella", "valle"])); assert(equal(splitter!(std.uni.isWhite)("là dove terminava quella valle"), ["là", "dove", "terminava", "quella", "valle"])); assert(equal(splitter!"a=='本'"("日本語"), ["日", "語"])); } /++ Lazily splits the string $(D s) into words, using whitespace as the delimiter. This function is string specific and, contrary to $(D splitter!(std.uni.isWhite)), runs of whitespace will be merged together (no empty tokens will be produced). +/ auto splitter(C)(C[] s) if (isSomeChar!C) { static struct Result { private: import core.exception; C[] _s; size_t _frontLength; void getFirst() pure @safe { auto r = find!(std.uni.isWhite)(_s); _frontLength = _s.length - r.length; } public: this(C[] s) pure @safe { import std.string; _s = s.strip(); getFirst(); } @property C[] front() pure @safe { version(assert) if (empty) throw new RangeError(); return _s[0 .. _frontLength]; } void popFront() pure @safe { import std.string : stripLeft; version(assert) if (empty) throw new RangeError(); _s = _s[_frontLength .. $].stripLeft(); getFirst(); } @property bool empty() const pure nothrow @safe { return _s.empty; } @property inout(Result) save() inout pure nothrow @safe { return this; } } return Result(s); } /// @safe pure unittest { auto a = " a bcd ef gh "; assert(equal(splitter(a), ["a", "bcd", "ef", "gh"][])); } @safe pure unittest { foreach(S; TypeTuple!(string, wstring, dstring)) { import std.conv : to; S a = " a bcd ef gh "; assert(equal(splitter(a), [to!S("a"), to!S("bcd"), to!S("ef"), to!S("gh")])); a = ""; assert(splitter(a).empty); } immutable string s = " a bcd ef gh "; assert(equal(splitter(s), ["a", "bcd", "ef", "gh"][])); } unittest { import std.conv : to; import std.string : strip; // TDPL example, page 8 uint[string] dictionary; char[][3] lines; lines[0] = "line one".dup; lines[1] = "line \ttwo".dup; lines[2] = "yah last line\ryah".dup; foreach (line; lines) { foreach (word; std.array.splitter(std.string.strip(line))) { if (word in dictionary) continue; // Nothing to do auto newID = dictionary.length; dictionary[to!string(word)] = cast(uint)newID; } } assert(dictionary.length == 5); assert(dictionary["line"]== 0); assert(dictionary["one"]== 1); assert(dictionary["two"]== 2); assert(dictionary["yah"]== 3); assert(dictionary["last"]== 4); } unittest { import std.conv : text; import std.string : split, format; // Check consistency: // All flavors of split should produce the same results foreach (input; [(int[]).init, [0], [0, 1, 0], [1, 1, 0, 0, 1, 1], ]) { foreach (s; [0, 1]) { auto result = split(input, s); assert(equal(result, split(input, [s])), format(`"[%(%s,%)]"`, split(input, [s]))); //assert(equal(result, split(input, [s].filter!"true"()))); //Not yet implemented assert(equal(result, split!((a) => a == s)(input)), text(split!((a) => a == s)(input))); //assert(equal!equal(result, split(input.filter!"true"(), s))); //Not yet implemented //assert(equal!equal(result, split(input.filter!"true"(), [s]))); //Not yet implemented //assert(equal!equal(result, split(input.filter!"true"(), [s].filter!"true"()))); //Not yet implemented assert(equal!equal(result, split!((a) => a == s)(input.filter!"true"()))); assert(equal(result, splitter(input, s))); assert(equal(result, splitter(input, [s]))); //assert(equal(result, splitter(input, [s].filter!"true"()))); //Not yet implemented assert(equal(result, splitter!((a) => a == s)(input))); //assert(equal!equal(result, splitter(input.filter!"true"(), s))); //Not yet implemented //assert(equal!equal(result, splitter(input.filter!"true"(), [s]))); //Not yet implemented //assert(equal!equal(result, splitter(input.filter!"true"(), [s].filter!"true"()))); //Not yet implemented assert(equal!equal(result, splitter!((a) => a == s)(input.filter!"true"()))); } } foreach (input; [string.init, " ", " hello ", "hello hello", " hello what heck this ? " ]) { foreach (s; [' ', 'h']) { auto result = split(input, s); assert(equal(result, split(input, [s]))); //assert(equal(result, split(input, [s].filter!"true"()))); //Not yet implemented assert(equal(result, split!((a) => a == s)(input))); //assert(equal!equal(result, split(input.filter!"true"(), s))); //Not yet implemented //assert(equal!equal(result, split(input.filter!"true"(), [s]))); //Not yet implemented //assert(equal!equal(result, split(input.filter!"true"(), [s].filter!"true"()))); //Not yet implemented assert(equal!equal(result, split!((a) => a == s)(input.filter!"true"()))); assert(equal(result, splitter(input, s))); assert(equal(result, splitter(input, [s]))); //assert(equal(result, splitter(input, [s].filter!"true"()))); //Not yet implemented assert(equal(result, splitter!((a) => a == s)(input))); //assert(equal!equal(result, splitter(input.filter!"true"(), s))); //Not yet implemented //assert(equal!equal(result, splitter(input.filter!"true"(), [s]))); //Not yet implemented //assert(equal!equal(result, splitter(input.filter!"true"(), [s].filter!"true"()))); //Not yet implemented assert(equal!equal(result, splitter!((a) => a == s)(input.filter!"true"()))); } } } // joiner /** Lazily joins a range of ranges with a separator. The separator itself is a range. If you do not provide a separator, then the ranges are joined directly without anything in between them. */ auto joiner(RoR, Separator)(RoR r, Separator sep) if (isInputRange!RoR && isInputRange!(ElementType!RoR) && isForwardRange!Separator && is(ElementType!Separator : ElementType!(ElementType!RoR))) { static struct Result { private RoR _items; private ElementType!RoR _current; private Separator _sep, _currentSep; // This is a mixin instead of a function for the following reason (as // explained by Kenji Hara): "This is necessary from 2.061. If a // struct has a nested struct member, it must be directly initialized // in its constructor to avoid leaving undefined state. If you change // setItem to a function, the initialization of _current field is // wrapped into private member function, then compiler could not detect // that is correctly initialized while constructing. To avoid the // compiler error check, string mixin is used." private enum setItem = q{ if (!_items.empty) { // If we're exporting .save, we must not consume any of the // subranges, since RoR.save does not guarantee that the states // of the subranges are also saved. static if (isForwardRange!RoR && isForwardRange!(ElementType!RoR)) _current = _items.front.save; else _current = _items.front; } }; private void useSeparator() { // Separator must always come after an item. assert(_currentSep.empty && !_items.empty, "joiner: internal error"); _items.popFront(); // If there are no more items, we're done, since separators are not // terminators. if (_items.empty) return; if (_sep.empty) { // Advance to the next range in the // input while (_items.front.empty) { _items.popFront(); if (_items.empty) return; } mixin(setItem); } else { _currentSep = _sep.save; assert(!_currentSep.empty); } } private enum useItem = q{ // FIXME: this will crash if either _currentSep or _current are // class objects, because .init is null when the ctor invokes this // mixin. //assert(_currentSep.empty && _current.empty, // "joiner: internal error"); // Use the input if (_items.empty) return; mixin(setItem); if (_current.empty) { // No data in the current item - toggle to use the separator useSeparator(); } }; this(RoR items, Separator sep) { _items = items; _sep = sep; //mixin(useItem); // _current should be initialized in place if (_items.empty) _current = _current.init; // set invalid state else { // If we're exporting .save, we must not consume any of the // subranges, since RoR.save does not guarantee that the states // of the subranges are also saved. static if (isForwardRange!RoR && isForwardRange!(ElementType!RoR)) _current = _items.front.save; else _current = _items.front; if (_current.empty) { // No data in the current item - toggle to use the separator useSeparator(); } } } @property auto empty() { return _items.empty; } @property ElementType!(ElementType!RoR) front() { if (!_currentSep.empty) return _currentSep.front; assert(!_current.empty); return _current.front; } void popFront() { assert(!_items.empty); // Using separator? if (!_currentSep.empty) { _currentSep.popFront(); if (!_currentSep.empty) return; mixin(useItem); } else { // we're using the range _current.popFront(); if (!_current.empty) return; useSeparator(); } } static if (isForwardRange!RoR && isForwardRange!(ElementType!RoR)) { @property auto save() { Result copy = this; copy._items = _items.save; copy._current = _current.save; copy._sep = _sep.save; copy._currentSep = _currentSep.save; return copy; } } } return Result(r, sep); } /// unittest { import std.conv : text; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); static assert(isInputRange!(typeof(joiner([""], "")))); static assert(isForwardRange!(typeof(joiner([""], "")))); assert(equal(joiner([""], "xyz"), ""), text(joiner([""], "xyz"))); assert(equal(joiner(["", ""], "xyz"), "xyz"), text(joiner(["", ""], "xyz"))); assert(equal(joiner(["", "abc"], "xyz"), "xyzabc")); assert(equal(joiner(["abc", ""], "xyz"), "abcxyz")); assert(equal(joiner(["abc", "def"], "xyz"), "abcxyzdef")); assert(equal(joiner(["Mary", "has", "a", "little", "lamb"], "..."), "Mary...has...a...little...lamb")); assert(equal(joiner(["abc", "def"]), "abcdef")); } unittest { // joiner() should work for non-forward ranges too. InputRange!string r = inputRangeObject(["abc", "def"]); assert (equal(joiner(r, "xyz"), "abcxyzdef")); } unittest { // Related to issue 8061 auto r = joiner([ inputRangeObject("abc"), inputRangeObject("def"), ], "-*-"); assert(equal(r, "abc-*-def")); // Test case where separator is specified but is empty. auto s = joiner([ inputRangeObject("abc"), inputRangeObject("def"), ], ""); assert(equal(s, "abcdef")); // Test empty separator with some empty elements auto t = joiner([ inputRangeObject("abc"), inputRangeObject(""), inputRangeObject("def"), inputRangeObject(""), ], ""); assert(equal(t, "abcdef")); // Test empty elements with non-empty separator auto u = joiner([ inputRangeObject(""), inputRangeObject("abc"), inputRangeObject(""), inputRangeObject("def"), inputRangeObject(""), ], "+-"); assert(equal(u, "+-abc+-+-def+-")); } unittest { // Transience correctness test struct TransientRange { int[][] src; int[] buf; this(int[][] _src) { src = _src; buf.length = 100; } @property bool empty() { return src.empty; } @property int[] front() { assert(src.front.length <= buf.length); buf[0 .. src.front.length] = src.front[0..$]; return buf[0 .. src.front.length]; } void popFront() { src.popFront(); } } // Test embedded empty elements auto tr1 = TransientRange([[], [1,2,3], [], [4]]); assert(equal(joiner(tr1, [0]), [0,1,2,3,0,0,4])); // Test trailing empty elements auto tr2 = TransientRange([[], [1,2,3], []]); assert(equal(joiner(tr2, [0]), [0,1,2,3,0])); // Test no empty elements auto tr3 = TransientRange([[1,2], [3,4]]); assert(equal(joiner(tr3, [0,1]), [1,2,0,1,3,4])); // Test consecutive empty elements auto tr4 = TransientRange([[1,2], [], [], [], [3,4]]); assert(equal(joiner(tr4, [0,1]), [1,2,0,1,0,1,0,1,0,1,3,4])); // Test consecutive trailing empty elements auto tr5 = TransientRange([[1,2], [3,4], [], []]); assert(equal(joiner(tr5, [0,1]), [1,2,0,1,3,4,0,1,0,1])); } /// Ditto auto joiner(RoR)(RoR r) if (isInputRange!RoR && isInputRange!(ElementType!RoR)) { static struct Result { private: RoR _items; ElementType!RoR _current; enum prepare = q{ // Skip over empty subranges. if (_items.empty) return; while (_items.front.empty) { _items.popFront(); if (_items.empty) return; } // We cannot export .save method unless we ensure subranges are not // consumed when a .save'd copy of ourselves is iterated over. So // we need to .save each subrange we traverse. static if (isForwardRange!RoR && isForwardRange!(ElementType!RoR)) _current = _items.front.save; else _current = _items.front; }; public: this(RoR r) { _items = r; //mixin(prepare); // _current should be initialized in place // Skip over empty subranges. while (!_items.empty && _items.front.empty) _items.popFront(); if (_items.empty) _current = _current.init; // set invalid state else { // We cannot export .save method unless we ensure subranges are not // consumed when a .save'd copy of ourselves is iterated over. So // we need to .save each subrange we traverse. static if (isForwardRange!RoR && isForwardRange!(ElementType!RoR)) _current = _items.front.save; else _current = _items.front; } } static if (isInfinite!RoR) { enum bool empty = false; } else { @property auto empty() { return _items.empty; } } @property auto ref front() { assert(!empty); return _current.front; } void popFront() { assert(!_current.empty); _current.popFront(); if (_current.empty) { assert(!_items.empty); _items.popFront(); mixin(prepare); } } static if (isForwardRange!RoR && isForwardRange!(ElementType!RoR)) { @property auto save() { Result copy = this; copy._items = _items.save; copy._current = _current.save; return copy; } } } return Result(r); } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); static assert(isInputRange!(typeof(joiner([""])))); static assert(isForwardRange!(typeof(joiner([""])))); assert(equal(joiner([""]), "")); assert(equal(joiner(["", ""]), "")); assert(equal(joiner(["", "abc"]), "abc")); assert(equal(joiner(["abc", ""]), "abc")); assert(equal(joiner(["abc", "def"]), "abcdef")); assert(equal(joiner(["Mary", "has", "a", "little", "lamb"]), "Maryhasalittlelamb")); assert(equal(joiner(std.range.repeat("abc", 3)), "abcabcabc")); // joiner allows in-place mutation! auto a = [ [1, 2, 3], [42, 43] ]; auto j = joiner(a); j.front = 44; assert(a == [ [44, 2, 3], [42, 43] ]); // bugzilla 8240 assert(equal(joiner([inputRangeObject("")]), "")); // issue 8792 auto b = [[1], [2], [3]]; auto jb = joiner(b); auto js = jb.save; assert(equal(jb, js)); auto js2 = jb.save; jb.popFront(); assert(!equal(jb, js)); assert(equal(js2, js)); js.popFront(); assert(equal(jb, js)); assert(!equal(js2, js)); } unittest { struct TransientRange { int[] _buf; int[][] _values; this(int[][] values) { _values = values; _buf = new int[128]; } @property bool empty() { return _values.length == 0; } @property auto front() { foreach (i; 0 .. _values.front.length) { _buf[i] = _values[0][i]; } return _buf[0 .. _values.front.length]; } void popFront() { _values = _values[1 .. $]; } } auto rr = TransientRange([[1,2], [3,4,5], [], [6,7]]); // Can't use array() or equal() directly because they fail with transient // .front. int[] result; foreach (c; rr.joiner()) { result ~= c; } assert(equal(result, [1,2,3,4,5,6,7])); } // Temporarily disable this unittest due to issue 9131 on OSX/64. version = Issue9131; version(Issue9131) {} else unittest { struct TransientRange { dchar[128] _buf; dstring[] _values; this(dstring[] values) { _values = values; } @property bool empty() { return _values.length == 0; } @property auto front() { foreach (i; 0 .. _values.front.length) { _buf[i] = _values[0][i]; } return _buf[0 .. _values.front.length]; } void popFront() { _values = _values[1 .. $]; } } auto rr = TransientRange(["abc"d, "12"d, "def"d, "34"d]); // Can't use array() or equal() directly because they fail with transient // .front. dchar[] result; foreach (c; rr.joiner()) { result ~= c; } assert(equal(result, "abc12def34"d), "Unexpected result: '%s'"d.format(result)); } // Issue 8061 unittest { import std.conv : to; auto r = joiner([inputRangeObject("ab"), inputRangeObject("cd")]); assert(isForwardRange!(typeof(r))); auto str = to!string(r); assert(str == "abcd"); } // uniq /** Iterates unique consecutive elements of the given range (functionality akin to the $(WEB wikipedia.org/wiki/_Uniq, _uniq) system utility). Equivalence of elements is assessed by using the predicate $(D pred), by default $(D "a == b"). If the given range is bidirectional, $(D uniq) also yields a bidirectional range. */ auto uniq(alias pred = "a == b", Range)(Range r) if (isInputRange!Range && is(typeof(binaryFun!pred(r.front, r.front)) == bool)) { return UniqResult!(binaryFun!pred, Range)(r); } /// unittest { int[] arr = [ 1, 2, 2, 2, 2, 3, 4, 4, 4, 5 ]; assert(equal(uniq(arr), [ 1, 2, 3, 4, 5 ][])); } private struct UniqResult(alias pred, Range) { Range _input; this(Range input) { _input = input; } auto opSlice() { return this; } void popFront() { auto last = _input.front; do { _input.popFront(); } while (!_input.empty && pred(last, _input.front)); } @property ElementType!Range front() { return _input.front; } static if (isBidirectionalRange!Range) { void popBack() { auto last = _input.back; do { _input.popBack(); } while (!_input.empty && pred(last, _input.back)); } @property ElementType!Range back() { return _input.back; } } static if (isInfinite!Range) { enum bool empty = false; // Propagate infiniteness. } else { @property bool empty() { return _input.empty; } } static if (isForwardRange!Range) { @property typeof(this) save() { return typeof(this)(_input.save); } } } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int[] arr = [ 1, 2, 2, 2, 2, 3, 4, 4, 4, 5 ]; auto r = uniq(arr); static assert(isForwardRange!(typeof(r))); assert(equal(r, [ 1, 2, 3, 4, 5 ][])); assert(equal(retro(r), retro([ 1, 2, 3, 4, 5 ][]))); foreach (DummyType; AllDummyRanges) { DummyType d; auto u = uniq(d); assert(equal(u, [1,2,3,4,5,6,7,8,9,10])); static assert(d.rt == RangeType.Input || isForwardRange!(typeof(u))); static if (d.rt >= RangeType.Bidirectional) { assert(equal(retro(u), [10,9,8,7,6,5,4,3,2,1])); } } } // group /** Similarly to $(D uniq), $(D group) iterates unique consecutive elements of the given range. The element type is $(D Tuple!(ElementType!R, uint)) because it includes the count of equivalent elements seen. Equivalence of elements is assessed by using the predicate $(D pred), by default $(D "a == b"). $(D Group) is an input range if $(D R) is an input range, and a forward range in all other cases. */ struct Group(alias pred, R) if (isInputRange!R) { private R _input; private Tuple!(ElementType!R, uint) _current; private alias comp = binaryFun!pred; this(R input) { _input = input; if (!_input.empty) popFront(); } void popFront() { if (_input.empty) { _current[1] = 0; } else { _current = tuple(_input.front, 1u); _input.popFront(); while (!_input.empty && comp(_current[0], _input.front)) { ++_current[1]; _input.popFront(); } } } static if (isInfinite!R) { enum bool empty = false; // Propagate infiniteness. } else { @property bool empty() { return _current[1] == 0; } } @property ref Tuple!(ElementType!R, uint) front() { assert(!empty); return _current; } static if (isForwardRange!R) { @property typeof(this) save() { typeof(this) ret = this; ret._input = this._input.save; ret._current = this._current; return ret; } } } /// Ditto Group!(pred, Range) group(alias pred = "a == b", Range)(Range r) { return typeof(return)(r); } /// unittest { int[] arr = [ 1, 2, 2, 2, 2, 3, 4, 4, 4, 5 ]; assert(equal(group(arr), [ tuple(1, 1u), tuple(2, 4u), tuple(3, 1u), tuple(4, 3u), tuple(5, 1u) ][])); } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int[] arr = [ 1, 2, 2, 2, 2, 3, 4, 4, 4, 5 ]; assert(equal(group(arr), [ tuple(1, 1u), tuple(2, 4u), tuple(3, 1u), tuple(4, 3u), tuple(5, 1u) ][])); static assert(isForwardRange!(typeof(group(arr)))); foreach (DummyType; AllDummyRanges) { DummyType d; auto g = group(d); static assert(d.rt == RangeType.Input || isForwardRange!(typeof(g))); assert(equal(g, [tuple(1, 1u), tuple(2, 1u), tuple(3, 1u), tuple(4, 1u), tuple(5, 1u), tuple(6, 1u), tuple(7, 1u), tuple(8, 1u), tuple(9, 1u), tuple(10, 1u)])); } } // overwriteAdjacent /* Reduces $(D r) by shifting it to the left until no adjacent elements $(D a), $(D b) remain in $(D r) such that $(D pred(a, b)). Shifting is performed by evaluating $(D move(source, target)) as a primitive. The algorithm is stable and runs in $(BIGOH r.length) time. Returns the reduced range. The default $(XREF _algorithm, move) performs a potentially destructive assignment of $(D source) to $(D target), so the objects beyond the returned range should be considered "empty". By default $(D pred) compares for equality, in which case $(D overwriteAdjacent) collapses adjacent duplicate elements to one (functionality akin to the $(WEB wikipedia.org/wiki/Uniq, uniq) system utility). Example: ---- int[] arr = [ 1, 2, 2, 2, 2, 3, 4, 4, 4, 5 ]; auto r = overwriteAdjacent(arr); assert(r == [ 1, 2, 3, 4, 5 ]); ---- */ // Range overwriteAdjacent(alias pred, alias move, Range)(Range r) // { // if (r.empty) return r; // //auto target = begin(r), e = end(r); // auto target = r; // auto source = r; // source.popFront(); // while (!source.empty) // { // if (!pred(target.front, source.front)) // { // target.popFront(); // continue; // } // // found an equal *source and *target // for (;;) // { // //@@@ // //move(source.front, target.front); // target[0] = source[0]; // source.popFront(); // if (source.empty) break; // if (!pred(target.front, source.front)) target.popFront(); // } // break; // } // return range(begin(r), target + 1); // } // /// Ditto // Range overwriteAdjacent( // string fun = "a == b", // alias move = .move, // Range)(Range r) // { // return .overwriteAdjacent!(binaryFun!(fun), move, Range)(r); // } // unittest // { // int[] arr = [ 1, 2, 2, 2, 2, 3, 4, 4, 4, 5 ]; // auto r = overwriteAdjacent(arr); // assert(r == [ 1, 2, 3, 4, 5 ]); // assert(arr == [ 1, 2, 3, 4, 5, 3, 4, 4, 4, 5 ]); // } // find /** Finds an individual element in an input range. Elements of $(D haystack) are compared with $(D needle) by using predicate $(D pred). Performs $(BIGOH walkLength(haystack)) evaluations of $(D pred). To _find the last occurence of $(D needle) in $(D haystack), call $(D find(retro(haystack), needle)). See $(XREF range, retro). Params: haystack = The range searched in. needle = The element searched for. Constraints: $(D isInputRange!InputRange && is(typeof(binaryFun!pred(haystack.front, needle) : bool))) Returns: $(D haystack) advanced such that $(D binaryFun!pred(haystack.front, needle)) is $(D true) (if no such position exists, returns $(D haystack) after exhaustion). See_Also: $(WEB sgi.com/tech/stl/_find.html, STL's _find) */ InputRange find(alias pred = "a == b", InputRange, Element)(InputRange haystack, Element needle) if (isInputRange!InputRange && is (typeof(binaryFun!pred(haystack.front, needle)) : bool)) { alias R = InputRange; alias E = Element; alias predFun = binaryFun!pred; static if (is(typeof(pred == "a == b"))) enum isDefaultPred = pred == "a == b"; else enum isDefaultPred = false; enum isIntegralNeedle = isSomeChar!E || isIntegral!E || isBoolean!E; alias EType = ElementType!R; static if (isNarrowString!R) { alias EEType = ElementEncodingType!R; alias UEEType = Unqual!EEType; //These are two special cases which can search without decoding the UTF stream. static if (isDefaultPred && isIntegralNeedle) { import std.utf : canSearchInCodeUnits; //This special case deals with UTF8 search, when the needle //is represented by a single code point. //Note: "needle <= 0x7F" properly handles sign via unsigned promotion static if (is(UEEType == char)) { if (!__ctfe && canSearchInCodeUnits!char(needle)) { static R trustedMemchr(ref R haystack, ref E needle) @trusted nothrow pure { import core.stdc.string : memchr; auto ptr = memchr(haystack.ptr, needle, haystack.length); return ptr ? haystack[ptr - haystack.ptr .. $] : haystack[$ .. $]; } return trustedMemchr(haystack, needle); } } //Ditto, but for UTF16 static if (is(UEEType == wchar)) { if (canSearchInCodeUnits!wchar(needle)) { foreach (i, ref EEType e; haystack) { if (e == needle) return haystack[i .. $]; } return haystack[$ .. $]; } } } //Previous conditonal optimizations did not succeed. Fallback to //unconditional implementations static if (isDefaultPred) { import std.utf : encode; //In case of default pred, it is faster to do string/string search. UEEType[is(UEEType == char) ? 4 : 2] buf; size_t len = encode(buf, needle); //TODO: Make find!(R, R) @safe R trustedFindRR(ref R haystack, UEEType[] needle) @trusted pure { return cast(R) std.algorithm.find(haystack, needle); } return trustedFindRR(haystack, buf[0 .. len]); } else { import std.utf : decode; //Explicit pred: we must test each character by the book. //We choose a manual decoding approach, because it is faster than //the built-in foreach, or doing a front/popFront for-loop. immutable len = haystack.length; size_t i = 0, next = 0; while (next < len) { if (predFun(decode(haystack, next), needle)) return haystack[i .. $]; i = next; } return haystack[$ .. $]; } } else static if (isArray!R) { //10403 optimization static if (isDefaultPred && isIntegral!EType && EType.sizeof == 1 && isIntegralNeedle) { R findHelper(ref R haystack, ref E needle) @trusted nothrow pure { import core.stdc.string : memchr; EType* ptr = null; //Note: we use "min/max" to handle sign mismatch. if (min(EType.min, needle) == EType.min && max(EType.max, needle) == EType.max) { ptr = cast(EType*) memchr(haystack.ptr, needle, haystack.length); } return ptr ? haystack[ptr - haystack.ptr .. $] : haystack[$ .. $]; } if (!__ctfe) return findHelper(haystack, needle); } //Default implementation. foreach (i, ref e; haystack) if (predFun(e, needle)) return haystack[i .. $]; return haystack[$ .. $]; } else { //Everything else. Walk. for ( ; !haystack.empty; haystack.popFront() ) { if (predFun(haystack.front, needle)) break; } return haystack; } } /// unittest { import std.container : SList; assert(find("hello, world", ',') == ", world"); assert(find([1, 2, 3, 5], 4) == []); assert(equal(find(SList!int(1, 2, 3, 4, 5)[], 4), SList!int(4, 5)[])); assert(find!"a > b"([1, 2, 3, 5], 2) == [3, 5]); auto a = [ 1, 2, 3 ]; assert(find(a, 5).empty); // not found assert(!find(a, 2).empty); // found // Case-insensitive find of a string string[] s = [ "Hello", "world", "!" ]; assert(!find!("toLower(a) == b")(s, "hello").empty); } unittest { import std.container : SList; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); auto lst = SList!int(1, 2, 5, 7, 3); assert(lst.front == 1); auto r = find(lst[], 5); assert(equal(r, SList!int(5, 7, 3)[])); assert(find([1, 2, 3, 5], 4).empty); assert(equal(find!"a>b"("hello", 'k'), "llo")); } @safe pure nothrow unittest { int[] a1 = [1, 2, 3]; assert(!find ([1, 2, 3], 2).empty); assert(!find!((a,b)=>a==b)([1, 2, 3], 2).empty); ubyte[] a2 = [1, 2, 3]; ubyte b2 = 2; assert(!find ([1, 2, 3], 2).empty); assert(!find!((a,b)=>a==b)([1, 2, 3], 2).empty); } @safe pure unittest { foreach(R; TypeTuple!(string, wstring, dstring)) { foreach(E; TypeTuple!(char, wchar, dchar)) { R r1 = "hello world"; E e1 = 'w'; assert(find ("hello world", 'w') == "world"); assert(find!((a,b)=>a==b)("hello world", 'w') == "world"); R r2 = "日c語"; E e2 = 'c'; assert(find ("日c語", 'c') == "c語"); assert(find!((a,b)=>a==b)("日c語", 'c') == "c語"); static if (E.sizeof >= 2) { R r3 = "hello world"; E e3 = 'w'; assert(find ("日本語", '本') == "本語"); assert(find!((a,b)=>a==b)("日本語", '本') == "本語"); } } } } unittest { //CTFE static assert (find("abc", 'b') == "bc"); static assert (find("日b語", 'b') == "b語"); static assert (find("日本語", '本') == "本語"); static assert (find([1, 2, 3], 2) == [2, 3]); int[] a1 = [1, 2, 3]; static assert(find ([1, 2, 3], 2)); static assert(find!((a,b)=>a==b)([1, 2, 3], 2)); ubyte[] a2 = [1, 2, 3]; ubyte b2 = 2; static assert(find ([1, 2, 3], 2)); static assert(find!((a,b)=>a==b)([1, 2, 3], 2)); } unittest { import std.exception : assertCTFEable; void dg() pure @safe nothrow { byte[] sarr = [1, 2, 3, 4]; ubyte[] uarr = [1, 2, 3, 4]; foreach(arr; TypeTuple!(sarr, uarr)) { foreach(T; TypeTuple!(byte, ubyte, int, uint)) { assert(find(arr, cast(T) 3) == arr[2 .. $]); assert(find(arr, cast(T) 9) == arr[$ .. $]); } assert(find(arr, 256) == arr[$ .. $]); } } dg(); assertCTFEable!dg; } unittest { // Bugzilla 11603 enum Foo : ubyte { A } assert([Foo.A].find(Foo.A).empty == false); ubyte x = 0; assert([x].find(x).empty == false); } /** Finds a forward range in another. Elements are compared for equality. Performs $(BIGOH walkLength(haystack) * walkLength(needle)) comparisons in the worst case. Specializations taking advantage of bidirectional or random access (where present) may accelerate search depending on the statistics of the two ranges' content. Params: haystack = The range searched in. needle = The range searched for. Constraints: $(D isForwardRange!R1 && isForwardRange!R2 && is(typeof(binaryFun!pred(haystack.front, needle.front) : bool))) Returns: $(D haystack) advanced such that $(D needle) is a prefix of it (if no such position exists, returns $(D haystack) advanced to termination). */ R1 find(alias pred = "a == b", R1, R2)(R1 haystack, R2 needle) if (isForwardRange!R1 && isForwardRange!R2 && is(typeof(binaryFun!pred(haystack.front, needle.front)) : bool) && !isRandomAccessRange!R1) { static if (is(typeof(pred == "a == b")) && pred == "a == b" && isSomeString!R1 && isSomeString!R2 && haystack[0].sizeof == needle[0].sizeof) { //return cast(R1) find(representation(haystack), representation(needle)); // Specialization for simple string search alias Representation = Select!(haystack[0].sizeof == 1, ubyte[], Select!(haystack[0].sizeof == 2, ushort[], uint[])); // Will use the array specialization return cast(R1) .find!(pred, Representation, Representation) (cast(Representation) haystack, cast(Representation) needle); } else { return simpleMindedFind!pred(haystack, needle); } } /// unittest { import std.container : SList; assert(find("hello, world", "World").empty); assert(find("hello, world", "wo") == "world"); assert([1, 2, 3, 4].find(SList!int(2, 3)[]) == [2, 3, 4]); } unittest { import std.container : SList; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); auto lst = SList!int(1, 2, 5, 7, 3); static assert(isForwardRange!(int[])); static assert(isForwardRange!(typeof(lst[]))); auto r = find(lst[], [2, 5]); assert(equal(r, SList!int(2, 5, 7, 3)[])); } // Specialization for searching a random-access range for a // bidirectional range R1 find(alias pred = "a == b", R1, R2)(R1 haystack, R2 needle) if (isRandomAccessRange!R1 && isBidirectionalRange!R2 && is(typeof(binaryFun!pred(haystack.front, needle.front)) : bool)) { if (needle.empty) return haystack; const needleLength = walkLength(needle.save); if (needleLength > haystack.length) { // @@@BUG@@@ //return haystack[$ .. $]; return haystack[haystack.length .. haystack.length]; } // @@@BUG@@@ // auto needleBack = moveBack(needle); // Stage 1: find the step size_t step = 1; auto needleBack = needle.back; needle.popBack(); for (auto i = needle.save; !i.empty && !binaryFun!pred(i.back, needleBack); i.popBack(), ++step) { } // Stage 2: linear find size_t scout = needleLength - 1; for (;;) { if (scout >= haystack.length) { return haystack[haystack.length .. haystack.length]; } if (!binaryFun!pred(haystack[scout], needleBack)) { ++scout; continue; } // Found a match with the last element in the needle auto cand = haystack[scout + 1 - needleLength .. haystack.length]; if (startsWith!pred(cand, needle)) { // found return cand; } // Continue with the stride scout += step; } } unittest { //scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); // @@@BUG@@@ removing static below makes unittest fail static struct BiRange { int[] payload; @property bool empty() { return payload.empty; } @property BiRange save() { return this; } @property ref int front() { return payload[0]; } @property ref int back() { return payload[$ - 1]; } void popFront() { return payload.popFront(); } void popBack() { return payload.popBack(); } } //static assert(isBidirectionalRange!BiRange); auto r = BiRange([1, 2, 3, 10, 11, 4]); //assert(equal(find(r, [3, 10]), BiRange([3, 10, 11, 4]))); //assert(find("abc", "bc").length == 2); debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); //assert(find!"a == b"("abc", "bc").length == 2); } // Leftover specialization: searching a random-access range for a // non-bidirectional forward range R1 find(alias pred = "a == b", R1, R2)(R1 haystack, R2 needle) if (isRandomAccessRange!R1 && isForwardRange!R2 && !isBidirectionalRange!R2 && is(typeof(binaryFun!pred(haystack.front, needle.front)) : bool)) { static if (!is(ElementType!R1 == ElementType!R2)) { return simpleMindedFind!pred(haystack, needle); } else { // Prepare the search with needle's first element if (needle.empty) return haystack; haystack = .find!pred(haystack, needle.front); static if (hasLength!R1 && hasLength!R2 && is(typeof(takeNone(haystack)) == R1)) { if (needle.length > haystack.length) return takeNone(haystack); } else { if (haystack.empty) return haystack; } needle.popFront(); size_t matchLen = 1; // Loop invariant: haystack[0 .. matchLen] matches everything in // the initial needle that was popped out of needle. for (;;) { // Extend matchLength as much as possible for (;;) { if (needle.empty || haystack.empty) return haystack; static if (hasLength!R1 && is(typeof(takeNone(haystack)) == R1)) { if (matchLen == haystack.length) return takeNone(haystack); } if (!binaryFun!pred(haystack[matchLen], needle.front)) break; ++matchLen; needle.popFront(); } auto bestMatch = haystack[0 .. matchLen]; haystack.popFront(); haystack = .find!pred(haystack, bestMatch); } } } unittest { import std.container : SList; assert(find([ 1, 2, 3 ], SList!int(2, 3)[]) == [ 2, 3 ]); assert(find([ 1, 2, 1, 2, 3, 3 ], SList!int(2, 3)[]) == [ 2, 3, 3 ]); } //Bug# 8334 unittest { auto haystack = [1, 2, 3, 4, 1, 9, 12, 42]; auto needle = [12, 42, 27]; //different overload of find, but it's the base case. assert(find(haystack, needle).empty); assert(find(haystack, takeExactly(filter!"true"(needle), 3)).empty); assert(find(haystack, filter!"true"(needle)).empty); } // Internally used by some find() overloads above. Can't make it // private due to bugs in the compiler. /*private*/ R1 simpleMindedFind(alias pred, R1, R2)(R1 haystack, R2 needle) { enum estimateNeedleLength = hasLength!R1 && !hasLength!R2; static if (hasLength!R1) { static if (hasLength!R2) size_t estimatedNeedleLength = 0; else immutable size_t estimatedNeedleLength = needle.length; } bool haystackTooShort() { static if (estimateNeedleLength) { return haystack.length < estimatedNeedleLength; } else { return haystack.empty; } } searching: for (;; haystack.popFront()) { if (haystackTooShort()) { // Failed search static if (hasLength!R1) { static if (is(typeof(haystack[haystack.length .. haystack.length]) : R1)) return haystack[haystack.length .. haystack.length]; else return R1.init; } else { assert(haystack.empty); return haystack; } } static if (estimateNeedleLength) size_t matchLength = 0; for (auto h = haystack.save, n = needle.save; !n.empty; h.popFront(), n.popFront()) { if (h.empty || !binaryFun!pred(h.front, n.front)) { // Failed searching n in h static if (estimateNeedleLength) { if (estimatedNeedleLength < matchLength) estimatedNeedleLength = matchLength; } continue searching; } static if (estimateNeedleLength) ++matchLength; } break; } return haystack; } unittest { // Test simpleMindedFind for the case where both haystack and needle have // length. debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); struct CustomString { string _impl; // This is what triggers issue 7992. @property size_t length() const { return _impl.length; } @property void length(size_t len) { _impl.length = len; } // This is for conformance to the forward range API (we deliberately // make it non-random access so that we will end up in // simpleMindedFind). @property bool empty() const { return _impl.empty; } @property dchar front() const { return _impl.front; } void popFront() { _impl.popFront(); } @property CustomString save() { return this; } } // If issue 7992 occurs, this will throw an exception from calling // popFront() on an empty range. auto r = find(CustomString("a"), CustomString("b")); } /** Finds two or more $(D needles) into a $(D haystack). The predicate $(D pred) is used throughout to compare elements. By default, elements are compared for equality. Params: haystack = The target of the search. Must be an $(GLOSSARY input range). If any of $(D needles) is a range with elements comparable to elements in $(D haystack), then $(D haystack) must be a $(GLOSSARY forward range) such that the search can backtrack. needles = One or more items to search for. Each of $(D needles) must be either comparable to one element in $(D haystack), or be itself a $(GLOSSARY forward range) with elements comparable with elements in $(D haystack). Returns: A tuple containing $(D haystack) positioned to match one of the needles and also the 1-based index of the matching element in $(D needles) (0 if none of $(D needles) matched, 1 if $(D needles[0]) matched, 2 if $(D needles[1]) matched...). The first needle to be found will be the one that matches. If multiple needles are found at the same spot in the range, then the shortest one is the one which matches (if multiple needles of the same length are found at the same spot (e.g $(D "a") and $(D 'a')), then the left-most of them in the argument list matches). The relationship between $(D haystack) and $(D needles) simply means that one can e.g. search for individual $(D int)s or arrays of $(D int)s in an array of $(D int)s. In addition, if elements are individually comparable, searches of heterogeneous types are allowed as well: a $(D double[]) can be searched for an $(D int) or a $(D short[]), and conversely a $(D long) can be searched for a $(D float) or a $(D double[]). This makes for efficient searches without the need to coerce one side of the comparison into the other's side type. The complexity of the search is $(BIGOH haystack.length * max(needles.length)). (For needles that are individual items, length is considered to be 1.) The strategy used in searching several subranges at once maximizes cache usage by moving in $(D haystack) as few times as possible. */ Tuple!(Range, size_t) find(alias pred = "a == b", Range, Ranges...) (Range haystack, Ranges needles) if (Ranges.length > 1 && is(typeof(startsWith!pred(haystack, needles)))) { for (;; haystack.popFront()) { size_t r = startsWith!pred(haystack, needles); if (r || haystack.empty) { return tuple(haystack, r); } } } /// unittest { int[] a = [ 1, 4, 2, 3 ]; assert(find(a, 4) == [ 4, 2, 3 ]); assert(find(a, [ 1, 4 ]) == [ 1, 4, 2, 3 ]); assert(find(a, [ 1, 3 ], 4) == tuple([ 4, 2, 3 ], 2)); // Mixed types allowed if comparable assert(find(a, 5, [ 1.2, 3.5 ], 2.0) == tuple([ 2, 3 ], 3)); } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); auto s1 = "Mary has a little lamb"; //writeln(find(s1, "has a", "has an")); assert(find(s1, "has a", "has an") == tuple("has a little lamb", 1)); assert(find(s1, 't', "has a", "has an") == tuple("has a little lamb", 2)); assert(find(s1, 't', "has a", 'y', "has an") == tuple("y has a little lamb", 3)); assert(find("abc", "bc").length == 2); } unittest { import std.string : toUpper; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int[] a = [ 1, 2, 3 ]; assert(find(a, 5).empty); assert(find(a, 2) == [2, 3]); foreach (T; TypeTuple!(int, double)) { auto b = rndstuff!(T)(); if (!b.length) continue; b[$ / 2] = 200; b[$ / 4] = 200; assert(find(b, 200).length == b.length - b.length / 4); } // Case-insensitive find of a string string[] s = [ "Hello", "world", "!" ]; //writeln(find!("toUpper(a) == toUpper(b)")(s, "hello")); assert(find!("toUpper(a) == toUpper(b)")(s, "hello").length == 3); static bool f(string a, string b) { return toUpper(a) == toUpper(b); } assert(find!(f)(s, "hello").length == 3); } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int[] a = [ 1, 2, 3, 2, 6 ]; assert(find(std.range.retro(a), 5).empty); assert(equal(find(std.range.retro(a), 2), [ 2, 3, 2, 1 ][])); foreach (T; TypeTuple!(int, double)) { auto b = rndstuff!(T)(); if (!b.length) continue; b[$ / 2] = 200; b[$ / 4] = 200; assert(find(std.range.retro(b), 200).length == b.length - (b.length - 1) / 2); } } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int[] a = [ -1, 0, 1, 2, 3, 4, 5 ]; int[] b = [ 1, 2, 3 ]; assert(find(a, b) == [ 1, 2, 3, 4, 5 ]); assert(find(b, a).empty); foreach (DummyType; AllDummyRanges) { DummyType d; auto findRes = find(d, 5); assert(equal(findRes, [5,6,7,8,9,10])); } } /// Ditto struct BoyerMooreFinder(alias pred, Range) { private: size_t[] skip; ptrdiff_t[ElementType!(Range)] occ; Range needle; ptrdiff_t occurrence(ElementType!(Range) c) { auto p = c in occ; return p ? *p : -1; } /* This helper function checks whether the last "portion" bytes of "needle" (which is "nlen" bytes long) exist within the "needle" at offset "offset" (counted from the end of the string), and whether the character preceding "offset" is not a match. Notice that the range being checked may reach beyond the beginning of the string. Such range is ignored. */ static bool needlematch(R)(R needle, size_t portion, size_t offset) { ptrdiff_t virtual_begin = needle.length - offset - portion; ptrdiff_t ignore = 0; if (virtual_begin < 0) { ignore = -virtual_begin; virtual_begin = 0; } if (virtual_begin > 0 && needle[virtual_begin - 1] == needle[$ - portion - 1]) return 0; immutable delta = portion - ignore; return equal(needle[needle.length - delta .. needle.length], needle[virtual_begin .. virtual_begin + delta]); } public: this(Range needle) { if (!needle.length) return; this.needle = needle; /* Populate table with the analysis of the needle */ /* But ignoring the last letter */ foreach (i, n ; needle[0 .. $ - 1]) { this.occ[n] = i; } /* Preprocess #2: init skip[] */ /* Note: This step could be made a lot faster. * A simple implementation is shown here. */ this.skip = new size_t[needle.length]; foreach (a; 0 .. needle.length) { size_t value = 0; while (value < needle.length && !needlematch(needle, a, value)) { ++value; } this.skip[needle.length - a - 1] = value; } } Range beFound(Range haystack) { if (!needle.length) return haystack; if (needle.length > haystack.length) return haystack[$ .. $]; /* Search: */ auto limit = haystack.length - needle.length; for (size_t hpos = 0; hpos <= limit; ) { size_t npos = needle.length - 1; while (pred(needle[npos], haystack[npos+hpos])) { if (npos == 0) return haystack[hpos .. $]; --npos; } hpos += max(skip[npos], cast(sizediff_t) npos - occurrence(haystack[npos+hpos])); } return haystack[$ .. $]; } @property size_t length() { return needle.length; } alias opDollar = length; } /// Ditto BoyerMooreFinder!(binaryFun!(pred), Range) boyerMooreFinder (alias pred = "a == b", Range) (Range needle) if (isRandomAccessRange!(Range) || isSomeString!Range) { return typeof(return)(needle); } // Oddly this is not disabled by bug 4759 Range1 find(Range1, alias pred, Range2)( Range1 haystack, BoyerMooreFinder!(pred, Range2) needle) { return needle.beFound(haystack); } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); string h = "/homes/aalexand/d/dmd/bin/../lib/libphobos.a(dmain2.o)"~ "(.gnu.linkonce.tmain+0x74): In function `main' undefined reference"~ " to `_Dmain':"; string[] ns = ["libphobos", "function", " undefined", "`", ":"]; foreach (n ; ns) { auto p = find(h, boyerMooreFinder(n)); assert(!p.empty); } int[] a = [ -1, 0, 1, 2, 3, 4, 5 ]; int[] b = [ 1, 2, 3 ]; //writeln(find(a, boyerMooreFinder(b))); assert(find(a, boyerMooreFinder(b)) == [ 1, 2, 3, 4, 5 ]); assert(find(b, boyerMooreFinder(a)).empty); } unittest { auto bm = boyerMooreFinder("for"); auto match = find("Moor", bm); assert(match.empty); } /** Advances the input range $(D haystack) by calling $(D haystack.popFront) until either $(D pred(haystack.front)), or $(D haystack.empty). Performs $(BIGOH haystack.length) evaluations of $(D pred). To find the last element of a bidirectional $(D haystack) satisfying $(D pred), call $(D find!(pred)(retro(haystack))). See $(XREF range, retro). See_Also: $(WEB sgi.com/tech/stl/find_if.html, STL's find_if) */ InputRange find(alias pred, InputRange)(InputRange haystack) if (isInputRange!InputRange) { alias R = InputRange; alias predFun = unaryFun!pred; static if (isNarrowString!R) { import std.utf : decode; immutable len = haystack.length; size_t i = 0, next = 0; while (next < len) { if (predFun(decode(haystack, next))) return haystack[i .. $]; i = next; } return haystack[$ .. $]; } else static if (!isInfinite!R && hasSlicing!R && is(typeof(haystack[cast(size_t)0 .. $]))) { size_t i = 0; foreach (ref e; haystack) { if (predFun(e)) return haystack[i .. $]; ++i; } return haystack[$ .. $]; } else { //standard range for ( ; !haystack.empty; haystack.popFront() ) { if (predFun(haystack.front)) break; } return haystack; } } /// unittest { auto arr = [ 1, 2, 3, 4, 1 ]; assert(find!("a > 2")(arr) == [ 3, 4, 1 ]); // with predicate alias bool pred(int x) { return x + 1 > 1.5; } assert(find!(pred)(arr) == arr); } @safe pure unittest { //scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int[] r = [ 1, 2, 3 ]; assert(find!(a=>a > 2)(r) == [3]); bool pred(int x) { return x + 1 > 1.5; } assert(find!(pred)(r) == r); assert(find!(a=>a > 'v')("hello world") == "world"); assert(find!(a=>a%4 == 0)("日本語") == "本語"); } // findSkip /** * If $(D needle) occurs in $(D haystack), positions $(D haystack) * right after the first occurrence of $(D needle) and returns $(D * true). Otherwise, leaves $(D haystack) as is and returns $(D * false). */ bool findSkip(alias pred = "a == b", R1, R2)(ref R1 haystack, R2 needle) if (isForwardRange!R1 && isForwardRange!R2 && is(typeof(binaryFun!pred(haystack.front, needle.front)))) { auto parts = findSplit!pred(haystack, needle); if (parts[1].empty) return false; // found haystack = parts[2]; return true; } /// unittest { string s = "abcdef"; assert(findSkip(s, "cd") && s == "ef"); s = "abcdef"; assert(!findSkip(s, "cxd") && s == "abcdef"); s = "abcdef"; assert(findSkip(s, "def") && s.empty); } /** These functions find the first occurrence of $(D needle) in $(D haystack) and then split $(D haystack) as follows. $(D findSplit) returns a tuple $(D result) containing $(I three) ranges. $(D result[0]) is the portion of $(D haystack) before $(D needle), $(D result[1]) is the portion of $(D haystack) that matches $(D needle), and $(D result[2]) is the portion of $(D haystack) after the match. If $(D needle) was not found, $(D result[0]) comprehends $(D haystack) entirely and $(D result[1]) and $(D result[2]) are empty. $(D findSplitBefore) returns a tuple $(D result) containing two ranges. $(D result[0]) is the portion of $(D haystack) before $(D needle), and $(D result[1]) is the balance of $(D haystack) starting with the match. If $(D needle) was not found, $(D result[0]) comprehends $(D haystack) entirely and $(D result[1]) is empty. $(D findSplitAfter) returns a tuple $(D result) containing two ranges. $(D result[0]) is the portion of $(D haystack) up to and including the match, and $(D result[1]) is the balance of $(D haystack) starting after the match. If $(D needle) was not found, $(D result[0]) is empty and $(D result[1]) is $(D haystack). In all cases, the concatenation of the returned ranges spans the entire $(D haystack). If $(D haystack) is a random-access range, all three components of the tuple have the same type as $(D haystack). Otherwise, $(D haystack) must be a forward range and the type of $(D result[0]) and $(D result[1]) is the same as $(XREF range,takeExactly). */ auto findSplit(alias pred = "a == b", R1, R2)(R1 haystack, R2 needle) if (isForwardRange!R1 && isForwardRange!R2) { static if (isSomeString!R1 && isSomeString!R2 || isRandomAccessRange!R1 && hasLength!R2) { auto balance = find!pred(haystack, needle); immutable pos1 = haystack.length - balance.length; immutable pos2 = balance.empty ? pos1 : pos1 + needle.length; return tuple(haystack[0 .. pos1], haystack[pos1 .. pos2], haystack[pos2 .. haystack.length]); } else { auto original = haystack.save; auto h = haystack.save; auto n = needle.save; size_t pos1, pos2; while (!n.empty && !h.empty) { if (binaryFun!pred(h.front, n.front)) { h.popFront(); n.popFront(); ++pos2; } else { haystack.popFront(); n = needle.save; h = haystack.save; pos2 = ++pos1; } } return tuple(takeExactly(original, pos1), takeExactly(haystack, pos2 - pos1), h); } } /// Ditto auto findSplitBefore(alias pred = "a == b", R1, R2)(R1 haystack, R2 needle) if (isForwardRange!R1 && isForwardRange!R2) { static if (isSomeString!R1 && isSomeString!R2 || isRandomAccessRange!R1 && hasLength!R2) { auto balance = find!pred(haystack, needle); immutable pos = haystack.length - balance.length; return tuple(haystack[0 .. pos], haystack[pos .. haystack.length]); } else { auto original = haystack.save; auto h = haystack.save; auto n = needle.save; size_t pos; while (!n.empty && !h.empty) { if (binaryFun!pred(h.front, n.front)) { h.popFront(); n.popFront(); } else { haystack.popFront(); n = needle.save; h = haystack.save; ++pos; } } return tuple(takeExactly(original, pos), haystack); } } /// Ditto auto findSplitAfter(alias pred = "a == b", R1, R2)(R1 haystack, R2 needle) if (isForwardRange!R1 && isForwardRange!R2) { static if (isSomeString!R1 && isSomeString!R2 || isRandomAccessRange!R1 && hasLength!R2) { auto balance = find!pred(haystack, needle); immutable pos = balance.empty ? 0 : haystack.length - balance.length + needle.length; return tuple(haystack[0 .. pos], haystack[pos .. haystack.length]); } else { auto original = haystack.save; auto h = haystack.save; auto n = needle.save; size_t pos1, pos2; while (!n.empty) { if (h.empty) { // Failed search return tuple(takeExactly(original, 0), original); } if (binaryFun!pred(h.front, n.front)) { h.popFront(); n.popFront(); ++pos2; } else { haystack.popFront(); n = needle.save; h = haystack.save; pos2 = ++pos1; } } return tuple(takeExactly(original, pos2), h); } } /// unittest { auto a = "Carl Sagan Memorial Station"; auto r = findSplit(a, "Velikovsky"); assert(r[0] == a); assert(r[1].empty); assert(r[2].empty); r = findSplit(a, " "); assert(r[0] == "Carl"); assert(r[1] == " "); assert(r[2] == "Sagan Memorial Station"); auto r1 = findSplitBefore(a, "Sagan"); assert(r1[0] == "Carl ", r1[0]); assert(r1[1] == "Sagan Memorial Station"); auto r2 = findSplitAfter(a, "Sagan"); assert(r2[0] == "Carl Sagan"); assert(r2[1] == " Memorial Station"); } unittest { auto a = [ 1, 2, 3, 4, 5, 6, 7, 8 ]; auto r = findSplit(a, [9, 1]); assert(r[0] == a); assert(r[1].empty); assert(r[2].empty); r = findSplit(a, [3]); assert(r[0] == a[0 .. 2]); assert(r[1] == a[2 .. 3]); assert(r[2] == a[3 .. $]); auto r1 = findSplitBefore(a, [9, 1]); assert(r1[0] == a); assert(r1[1].empty); r1 = findSplitBefore(a, [3, 4]); assert(r1[0] == a[0 .. 2]); assert(r1[1] == a[2 .. $]); r1 = findSplitAfter(a, [9, 1]); assert(r1[0].empty); assert(r1[1] == a); r1 = findSplitAfter(a, [3, 4]); assert(r1[0] == a[0 .. 4]); assert(r1[1] == a[4 .. $]); } unittest { auto a = [ 1, 2, 3, 4, 5, 6, 7, 8 ]; auto fwd = filter!"a > 0"(a); auto r = findSplit(fwd, [9, 1]); assert(equal(r[0], a)); assert(r[1].empty); assert(r[2].empty); r = findSplit(fwd, [3]); assert(equal(r[0], a[0 .. 2])); assert(equal(r[1], a[2 .. 3])); assert(equal(r[2], a[3 .. $])); auto r1 = findSplitBefore(fwd, [9, 1]); assert(equal(r1[0], a)); assert(r1[1].empty); r1 = findSplitBefore(fwd, [3, 4]); assert(equal(r1[0], a[0 .. 2])); assert(equal(r1[1], a[2 .. $])); r1 = findSplitAfter(fwd, [9, 1]); assert(r1[0].empty); assert(equal(r1[1], a)); r1 = findSplitAfter(fwd, [3, 4]); assert(equal(r1[0], a[0 .. 4])); assert(equal(r1[1], a[4 .. $])); } /++ Returns the number of elements which must be popped from the front of $(D haystack) before reaching an element for which $(D startsWith!pred(haystack, needles)) is $(D true). If $(D startsWith!pred(haystack, needles)) is not $(D true) for any element in $(D haystack), then $(D -1) is returned. $(D needles) may be either an element or a range. +/ ptrdiff_t countUntil(alias pred = "a == b", R, Rs...)(R haystack, Rs needles) if (isForwardRange!R && Rs.length > 0 && isForwardRange!(Rs[0]) == isInputRange!(Rs[0]) && is(typeof(startsWith!pred(haystack, needles[0]))) && (Rs.length == 1 || is(typeof(countUntil!pred(haystack, needles[1 .. $]))))) { typeof(return) result; static if (needles.length == 1) { static if (hasLength!R) //Note: Narrow strings don't have length. { //We delegate to find because find is very efficient. //We store the length of the haystack so we don't have to save it. auto len = haystack.length; auto r2 = find!pred(haystack, needles[0]); if (!r2.empty) return cast(typeof(return)) (len - r2.length); } else { if (needles[0].empty) return 0; //Default case, slower route doing startsWith iteration for ( ; !haystack.empty ; ++result ) { //We compare the first elements of the ranges here before //forwarding to startsWith. This avoids making useless saves to //haystack/needle if they aren't even going to be mutated anyways. //It also cuts down on the amount of pops on haystack. if (binaryFun!pred(haystack.front, needles[0].front)) { //Here, we need to save the needle before popping it. //haystack we pop in all paths, so we do that, and then save. haystack.popFront(); if (startsWith!pred(haystack.save, needles[0].save.dropOne())) return result; } else haystack.popFront(); } } } else { foreach (i, Ri; Rs) { static if (isForwardRange!Ri) { if (needles[i].empty) return 0; } } Tuple!Rs t; foreach (i, Ri; Rs) { static if (!isForwardRange!Ri) { t[i] = needles[i]; } } for (; !haystack.empty ; ++result, haystack.popFront()) { foreach (i, Ri; Rs) { static if (isForwardRange!Ri) { t[i] = needles[i].save; } } if (startsWith!pred(haystack.save, t.expand)) { return result; } } } //Because of @@@8804@@@: Avoids both "unreachable code" or "no return statement" static if (isInfinite!R) assert(0); else return -1; } /// ditto ptrdiff_t countUntil(alias pred = "a == b", R, N)(R haystack, N needle) if (isInputRange!R && is(typeof(binaryFun!pred(haystack.front, needle)) : bool)) { bool pred2(ElementType!R a) { return binaryFun!pred(a, needle); } return countUntil!pred2(haystack); } /// unittest { assert(countUntil("hello world", "world") == 6); assert(countUntil("hello world", 'r') == 8); assert(countUntil("hello world", "programming") == -1); assert(countUntil("日本語", "本語") == 1); assert(countUntil("日本語", '語') == 2); assert(countUntil("日本語", "五") == -1); assert(countUntil("日本語", '五') == -1); assert(countUntil([0, 7, 12, 22, 9], [12, 22]) == 2); assert(countUntil([0, 7, 12, 22, 9], 9) == 4); assert(countUntil!"a > b"([0, 7, 12, 22, 9], 20) == 3); } unittest { assert(countUntil("日本語", "") == 0); assert(countUntil("日本語"d, "") == 0); assert(countUntil("", "") == 0); assert(countUntil("".filter!"true"(), "") == 0); auto rf = [0, 20, 12, 22, 9].filter!"true"(); assert(rf.countUntil!"a > b"((int[]).init) == 0); assert(rf.countUntil!"a > b"(20) == 3); assert(rf.countUntil!"a > b"([20, 8]) == 3); assert(rf.countUntil!"a > b"([20, 10]) == -1); assert(rf.countUntil!"a > b"([20, 8, 0]) == -1); auto r = new ReferenceForwardRange!int([0, 1, 2, 3, 4, 5, 6]); auto r2 = new ReferenceForwardRange!int([3, 4]); auto r3 = new ReferenceForwardRange!int([3, 5]); assert(r.save.countUntil(3) == 3); assert(r.save.countUntil(r2) == 3); assert(r.save.countUntil(7) == -1); assert(r.save.countUntil(r3) == -1); } unittest { assert(countUntil("hello world", "world", "asd") == 6); assert(countUntil("hello world", "world", "ello") == 1); assert(countUntil("hello world", "world", "") == 0); assert(countUntil("hello world", "world", 'l') == 2); } /++ Returns the number of elements which must be popped from $(D haystack) before $(D pred(haystack.front)) is $(D true). +/ ptrdiff_t countUntil(alias pred, R)(R haystack) if (isInputRange!R && is(typeof(unaryFun!pred(haystack.front)) : bool)) { typeof(return) i; static if (isRandomAccessRange!R) { //Optimized RA implementation. Since we want to count *and* iterate at //the same time, it is more efficient this way. static if (hasLength!R) { immutable len = cast(typeof(return)) haystack.length; for ( ; i < len ; ++i ) if (unaryFun!pred(haystack[i])) return i; } else //if (isInfinite!R) { for ( ; ; ++i ) if (unaryFun!pred(haystack[i])) return i; } } else static if (hasLength!R) { //For those odd ranges that have a length, but aren't RA. //It is faster to quick find, and then compare the lengths auto r2 = find!pred(haystack.save); if (!r2.empty) return cast(typeof(return)) (haystack.length - r2.length); } else //Everything else { alias T = ElementType!R; //For narrow strings forces dchar iteration foreach (T elem; haystack) { if (unaryFun!pred(elem)) return i; ++i; } } //Because of @@@8804@@@: Avoids both "unreachable code" or "no return statement" static if (isInfinite!R) assert(0); else return -1; } /// unittest { import std.ascii : isDigit; import std.uni : isWhite; assert(countUntil!(std.uni.isWhite)("hello world") == 5); assert(countUntil!(std.ascii.isDigit)("hello world") == -1); assert(countUntil!"a > 20"([0, 7, 12, 22, 9]) == 3); } unittest { // References { // input ReferenceInputRange!int r; r = new ReferenceInputRange!int([0, 1, 2, 3, 4, 5, 6]); assert(r.countUntil(3) == 3); r = new ReferenceInputRange!int([0, 1, 2, 3, 4, 5, 6]); assert(r.countUntil(7) == -1); } { // forward auto r = new ReferenceForwardRange!int([0, 1, 2, 3, 4, 5, 6]); assert(r.save.countUntil([3, 4]) == 3); assert(r.save.countUntil(3) == 3); assert(r.save.countUntil([3, 7]) == -1); assert(r.save.countUntil(7) == -1); } { // infinite forward auto r = new ReferenceInfiniteForwardRange!int(0); assert(r.save.countUntil([3, 4]) == 3); assert(r.save.countUntil(3) == 3); } } /** Interval option specifier for $(D until) (below) and others. */ enum OpenRight { no, /// Interval is closed to the right (last element included) yes /// Interval is open to the right (last element is not included) } /** Lazily iterates $(D range) until value $(D sentinel) is found, at which point it stops. */ struct Until(alias pred, Range, Sentinel) if (isInputRange!Range) { private Range _input; static if (!is(Sentinel == void)) private Sentinel _sentinel; // mixin(bitfields!( // OpenRight, "_openRight", 1, // bool, "_done", 1, // uint, "", 6)); // OpenRight, "_openRight", 1, // bool, "_done", 1, OpenRight _openRight; bool _done; static if (!is(Sentinel == void)) this(Range input, Sentinel sentinel, OpenRight openRight = OpenRight.yes) { _input = input; _sentinel = sentinel; _openRight = openRight; _done = _input.empty || openRight && predSatisfied(); } else this(Range input, OpenRight openRight = OpenRight.yes) { _input = input; _openRight = openRight; _done = _input.empty || openRight && predSatisfied(); } @property bool empty() { return _done; } @property ElementType!Range front() { assert(!empty); return _input.front; } private bool predSatisfied() { static if (is(Sentinel == void)) return unaryFun!pred(_input.front); else return startsWith!pred(_input, _sentinel); } void popFront() { assert(!empty); if (!_openRight) { if (predSatisfied()) { _done = true; return; } _input.popFront(); _done = _input.empty; } else { _input.popFront(); _done = _input.empty || predSatisfied(); } } static if (isForwardRange!Range) { static if (!is(Sentinel == void)) @property Until save() { Until result = this; result._input = _input.save; result._sentinel = _sentinel; result._openRight = _openRight; result._done = _done; return result; } else @property Until save() { Until result = this; result._input = _input.save; result._openRight = _openRight; result._done = _done; return result; } } } /// Ditto Until!(pred, Range, Sentinel) until(alias pred = "a == b", Range, Sentinel) (Range range, Sentinel sentinel, OpenRight openRight = OpenRight.yes) if (!is(Sentinel == OpenRight)) { return typeof(return)(range, sentinel, openRight); } /// Ditto Until!(pred, Range, void) until(alias pred, Range) (Range range, OpenRight openRight = OpenRight.yes) { return typeof(return)(range, openRight); } /// unittest { int[] a = [ 1, 2, 4, 7, 7, 2, 4, 7, 3, 5]; assert(equal(a.until(7), [1, 2, 4][])); assert(equal(a.until(7, OpenRight.no), [1, 2, 4, 7][])); } unittest { //scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int[] a = [ 1, 2, 4, 7, 7, 2, 4, 7, 3, 5]; static assert(isForwardRange!(typeof(a.until(7)))); static assert(isForwardRange!(typeof(until!"a == 2"(a, OpenRight.no)))); assert(equal(a.until(7), [1, 2, 4][])); assert(equal(a.until([7, 2]), [1, 2, 4, 7][])); assert(equal(a.until(7, OpenRight.no), [1, 2, 4, 7][])); assert(equal(until!"a == 2"(a, OpenRight.no), [1, 2][])); } /** If the range $(D doesThisStart) starts with $(I any) of the $(D withOneOfThese) ranges or elements, returns 1 if it starts with $(D withOneOfThese[0]), 2 if it starts with $(D withOneOfThese[1]), and so on. If none match, returns 0. In the case where $(D doesThisStart) starts with multiple of the ranges or elements in $(D withOneOfThese), then the shortest one matches (if there are two which match which are of the same length (e.g. $(D "a") and $(D 'a')), then the left-most of them in the argument list matches). */ uint startsWith(alias pred = "a == b", Range, Needles...)(Range doesThisStart, Needles withOneOfThese) if (isInputRange!Range && Needles.length > 1 && is(typeof(.startsWith!pred(doesThisStart, withOneOfThese[0])) : bool ) && is(typeof(.startsWith!pred(doesThisStart, withOneOfThese[1 .. $])) : uint)) { alias haystack = doesThisStart; alias needles = withOneOfThese; // Make one pass looking for empty ranges in needles foreach (i, Unused; Needles) { // Empty range matches everything static if (!is(typeof(binaryFun!pred(haystack.front, needles[i])) : bool)) { if (needles[i].empty) return i + 1; } } for (; !haystack.empty; haystack.popFront()) { foreach (i, Unused; Needles) { static if (is(typeof(binaryFun!pred(haystack.front, needles[i])) : bool)) { // Single-element if (binaryFun!pred(haystack.front, needles[i])) { // found, but instead of returning, we just stop searching. // This is to account for one-element // range matches (consider startsWith("ab", "a", // 'a') should return 1, not 2). break; } } else { if (binaryFun!pred(haystack.front, needles[i].front)) { continue; } } // This code executed on failure to match // Out with this guy, check for the others uint result = startsWith!pred(haystack, needles[0 .. i], needles[i + 1 .. $]); if (result > i) ++result; return result; } // If execution reaches this point, then the front matches for all // needle ranges, or a needle element has been matched. // What we need to do now is iterate, lopping off the front of // the range and checking if the result is empty, or finding an // element needle and returning. // If neither happens, we drop to the end and loop. foreach (i, Unused; Needles) { static if (is(typeof(binaryFun!pred(haystack.front, needles[i])) : bool)) { // Test has passed in the previous loop return i + 1; } else { needles[i].popFront(); if (needles[i].empty) return i + 1; } } } return 0; } /// Ditto bool startsWith(alias pred = "a == b", R1, R2)(R1 doesThisStart, R2 withThis) if (isInputRange!R1 && isInputRange!R2 && is(typeof(binaryFun!pred(doesThisStart.front, withThis.front)) : bool)) { alias haystack = doesThisStart; alias needle = withThis; static if (is(typeof(pred) : string)) enum isDefaultPred = pred == "a == b"; else enum isDefaultPred = false; //Note: While narrow strings don't have a "true" length, for a narrow string to start with another //narrow string *of the same type*, it must have *at least* as many code units. static if ((hasLength!R1 && hasLength!R2) || (isNarrowString!R1 && isNarrowString!R2 && ElementEncodingType!R1.sizeof == ElementEncodingType!R2.sizeof)) { if (haystack.length < needle.length) return false; } static if (isDefaultPred && isArray!R1 && isArray!R2 && is(Unqual!(ElementEncodingType!R1) == Unqual!(ElementEncodingType!R2))) { //Array slice comparison mode return haystack[0 .. needle.length] == needle; } else static if (isRandomAccessRange!R1 && isRandomAccessRange!R2 && hasLength!R2) { //RA dual indexing mode foreach (j; 0 .. needle.length) { if (!binaryFun!pred(needle[j], haystack[j])) // not found return false; } // found! return true; } else { //Standard input range mode if (needle.empty) return true; static if (hasLength!R1 && hasLength!R2) { //We have previously checked that haystack.length > needle.length, //So no need to check haystack.empty during iteration for ( ; ; haystack.popFront() ) { if (!binaryFun!pred(haystack.front, needle.front)) break; needle.popFront(); if (needle.empty) return true; } } else { for ( ; !haystack.empty ; haystack.popFront() ) { if (!binaryFun!pred(haystack.front, needle.front)) break; needle.popFront(); if (needle.empty) return true; } } return false; } } /// Ditto bool startsWith(alias pred = "a == b", R, E)(R doesThisStart, E withThis) if (isInputRange!R && is(typeof(binaryFun!pred(doesThisStart.front, withThis)) : bool)) { return doesThisStart.empty ? false : binaryFun!pred(doesThisStart.front, withThis); } /// unittest { assert(startsWith("abc", "")); assert(startsWith("abc", "a")); assert(!startsWith("abc", "b")); assert(startsWith("abc", 'a', "b") == 1); assert(startsWith("abc", "b", "a") == 2); assert(startsWith("abc", "a", "a") == 1); assert(startsWith("abc", "ab", "a") == 2); assert(startsWith("abc", "x", "a", "b") == 2); assert(startsWith("abc", "x", "aa", "ab") == 3); assert(startsWith("abc", "x", "aaa", "sab") == 0); assert(startsWith("abc", "x", "aaa", "a", "sab") == 3); } unittest { import std.conv : to; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); foreach (S; TypeTuple!(char[], wchar[], dchar[], string, wstring, dstring)) { assert(!startsWith(to!S("abc"), 'c')); assert(startsWith(to!S("abc"), 'a', 'c') == 1); assert(!startsWith(to!S("abc"), 'x', 'n', 'b')); assert(startsWith(to!S("abc"), 'x', 'n', 'a') == 3); assert(startsWith(to!S("\uFF28abc"), 'a', '\uFF28', 'c') == 2); foreach (T; TypeTuple!(char[], wchar[], dchar[], string, wstring, dstring)) { //Lots of strings assert(startsWith(to!S("abc"), to!T(""))); assert(startsWith(to!S("ab"), to!T("a"))); assert(startsWith(to!S("abc"), to!T("a"))); assert(!startsWith(to!S("abc"), to!T("b"))); assert(!startsWith(to!S("abc"), to!T("b"), "bc", "abcd", "xyz")); assert(startsWith(to!S("abc"), to!T("ab"), 'a') == 2); assert(startsWith(to!S("abc"), to!T("a"), "b") == 1); assert(startsWith(to!S("abc"), to!T("b"), "a") == 2); assert(startsWith(to!S("abc"), to!T("a"), 'a') == 1); assert(startsWith(to!S("abc"), 'a', to!T("a")) == 1); assert(startsWith(to!S("abc"), to!T("x"), "a", "b") == 2); assert(startsWith(to!S("abc"), to!T("x"), "aa", "ab") == 3); assert(startsWith(to!S("abc"), to!T("x"), "aaa", "sab") == 0); assert(startsWith(to!S("abc"), 'a')); assert(!startsWith(to!S("abc"), to!T("sab"))); assert(startsWith(to!S("abc"), 'x', to!T("aaa"), 'a', "sab") == 3); //Unicode assert(startsWith(to!S("\uFF28el\uFF4co"), to!T("\uFF28el"))); assert(startsWith(to!S("\uFF28el\uFF4co"), to!T("Hel"), to!T("\uFF28el")) == 2); assert(startsWith(to!S("日本語"), to!T("日本"))); assert(startsWith(to!S("日本語"), to!T("日本語"))); assert(!startsWith(to!S("日本"), to!T("日本語"))); //Empty assert(startsWith(to!S(""), T.init)); assert(!startsWith(to!S(""), 'a')); assert(startsWith(to!S("a"), T.init)); assert(startsWith(to!S("a"), T.init, "") == 1); assert(startsWith(to!S("a"), T.init, 'a') == 1); assert(startsWith(to!S("a"), 'a', T.init) == 2); } } //Length but no RA assert(!startsWith("abc".takeExactly(3), "abcd".takeExactly(4))); assert(startsWith("abc".takeExactly(3), "abcd".takeExactly(3))); assert(startsWith("abc".takeExactly(3), "abcd".takeExactly(1))); foreach (T; TypeTuple!(int, short)) { immutable arr = cast(T[])[0, 1, 2, 3, 4, 5]; //RA range assert(startsWith(arr, cast(int[])null)); assert(!startsWith(arr, 5)); assert(!startsWith(arr, 1)); assert(startsWith(arr, 0)); assert(startsWith(arr, 5, 0, 1) == 2); assert(startsWith(arr, [0])); assert(startsWith(arr, [0, 1])); assert(startsWith(arr, [0, 1], 7) == 1); assert(!startsWith(arr, [0, 1, 7])); assert(startsWith(arr, [0, 1, 7], [0, 1, 2]) == 2); //Normal input range assert(!startsWith(filter!"true"(arr), 1)); assert(startsWith(filter!"true"(arr), 0)); assert(startsWith(filter!"true"(arr), [0])); assert(startsWith(filter!"true"(arr), [0, 1])); assert(startsWith(filter!"true"(arr), [0, 1], 7) == 1); assert(!startsWith(filter!"true"(arr), [0, 1, 7])); assert(startsWith(filter!"true"(arr), [0, 1, 7], [0, 1, 2]) == 2); assert(startsWith(arr, filter!"true"([0, 1]))); assert(startsWith(arr, filter!"true"([0, 1]), 7) == 1); assert(!startsWith(arr, filter!"true"([0, 1, 7]))); assert(startsWith(arr, [0, 1, 7], filter!"true"([0, 1, 2])) == 2); //Non-default pred assert(startsWith!("a%10 == b%10")(arr, [10, 11])); assert(!startsWith!("a%10 == b%10")(arr, [10, 12])); } } /** If $(D startsWith(r1, r2)), consume the corresponding elements off $(D r1) and return $(D true). Otherwise, leave $(D r1) unchanged and return $(D false). */ bool skipOver(alias pred = "a == b", R1, R2)(ref R1 r1, R2 r2) if (is(typeof(binaryFun!pred(r1.front, r2.front)))) { auto r = r1.save; while (!r2.empty && !r.empty && binaryFun!pred(r.front, r2.front)) { r.popFront(); r2.popFront(); } if (r2.empty) r1 = r; return r2.empty; } /// unittest { auto s1 = "Hello world"; assert(!skipOver(s1, "Ha")); assert(s1 == "Hello world"); assert(skipOver(s1, "Hell") && s1 == "o world"); string[] r1 = ["abc", "def", "hij"]; dstring[] r2 = ["abc"d]; assert(!skipOver!((a, b) => a.equal(b))(r1, ["def"d])); assert(r1 == ["abc", "def", "hij"]); assert(skipOver!((a, b) => a.equal(b))(r1, r2)); assert(r1 == ["def", "hij"]); } /** Checks whether a range starts with an element, and if so, consume that element off $(D r) and return $(D true). Otherwise, leave $(D r) unchanged and return $(D false). */ bool skipOver(alias pred = "a == b", R, E)(ref R r, E e) if (is(typeof(binaryFun!pred(r.front, e)))) { if (!binaryFun!pred(r.front, e)) return false; r.popFront(); return true; } /// unittest { auto s1 = "Hello world"; assert(!skipOver(s1, 'a')); assert(s1 == "Hello world"); assert(skipOver(s1, 'H') && s1 == "ello world"); string[] r = ["abc", "def", "hij"]; dstring e = "abc"d; assert(!skipOver!((a, b) => a.equal(b))(r, "def"d)); assert(r == ["abc", "def", "hij"]); assert(skipOver!((a, b) => a.equal(b))(r, e)); assert(r == ["def", "hij"]); } /* (Not yet documented.) Consume all elements from $(D r) that are equal to one of the elements $(D es). */ void skipAll(alias pred = "a == b", R, Es...)(ref R r, Es es) //if (is(typeof(binaryFun!pred(r1.front, es[0])))) { loop: for (; !r.empty; r.popFront()) { foreach (i, E; Es) { if (binaryFun!pred(r.front, es[i])) { continue loop; } } break; } } unittest { //scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); auto s1 = "Hello world"; skipAll(s1, 'H', 'e'); assert(s1 == "llo world"); } /** The reciprocal of $(D startsWith). */ uint endsWith(alias pred = "a == b", Range, Needles...)(Range doesThisEnd, Needles withOneOfThese) if (isBidirectionalRange!Range && Needles.length > 1 && is(typeof(.endsWith!pred(doesThisEnd, withOneOfThese[0])) : bool) && is(typeof(.endsWith!pred(doesThisEnd, withOneOfThese[1 .. $])) : uint)) { alias haystack = doesThisEnd; alias needles = withOneOfThese; // Make one pass looking for empty ranges in needles foreach (i, Unused; Needles) { // Empty range matches everything static if (!is(typeof(binaryFun!pred(haystack.back, needles[i])) : bool)) { if (needles[i].empty) return i + 1; } } for (; !haystack.empty; haystack.popBack()) { foreach (i, Unused; Needles) { static if (is(typeof(binaryFun!pred(haystack.back, needles[i])) : bool)) { // Single-element if (binaryFun!pred(haystack.back, needles[i])) { // found, but continue to account for one-element // range matches (consider endsWith("ab", "b", // 'b') should return 1, not 2). continue; } } else { if (binaryFun!pred(haystack.back, needles[i].back)) continue; } // This code executed on failure to match // Out with this guy, check for the others uint result = endsWith!pred(haystack, needles[0 .. i], needles[i + 1 .. $]); if (result > i) ++result; return result; } // If execution reaches this point, then the back matches for all // needles ranges. What we need to do now is to lop off the back of // all ranges involved and recurse. foreach (i, Unused; Needles) { static if (is(typeof(binaryFun!pred(haystack.back, needles[i])) : bool)) { // Test has passed in the previous loop return i + 1; } else { needles[i].popBack(); if (needles[i].empty) return i + 1; } } } return 0; } /// Ditto bool endsWith(alias pred = "a == b", R1, R2)(R1 doesThisEnd, R2 withThis) if (isBidirectionalRange!R1 && isBidirectionalRange!R2 && is(typeof(binaryFun!pred(doesThisEnd.back, withThis.back)) : bool)) { alias haystack = doesThisEnd; alias needle = withThis; static if (is(typeof(pred) : string)) enum isDefaultPred = pred == "a == b"; else enum isDefaultPred = false; static if (isDefaultPred && isArray!R1 && isArray!R2 && is(Unqual!(ElementEncodingType!R1) == Unqual!(ElementEncodingType!R2))) { if (haystack.length < needle.length) return false; return haystack[$ - needle.length .. $] == needle; } else { return startsWith!pred(retro(doesThisEnd), retro(withThis)); } } /// Ditto bool endsWith(alias pred = "a == b", R, E)(R doesThisEnd, E withThis) if (isBidirectionalRange!R && is(typeof(binaryFun!pred(doesThisEnd.back, withThis)) : bool)) { return doesThisEnd.empty ? false : binaryFun!pred(doesThisEnd.back, withThis); } /// unittest { assert(endsWith("abc", "")); assert(!endsWith("abc", "b")); assert(endsWith("abc", "a", 'c') == 2); assert(endsWith("abc", "c", "a") == 1); assert(endsWith("abc", "c", "c") == 1); assert(endsWith("abc", "bc", "c") == 2); assert(endsWith("abc", "x", "c", "b") == 2); assert(endsWith("abc", "x", "aa", "bc") == 3); assert(endsWith("abc", "x", "aaa", "sab") == 0); assert(endsWith("abc", "x", "aaa", 'c', "sab") == 3); } unittest { import std.conv : to; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); foreach (S; TypeTuple!(char[], wchar[], dchar[], string, wstring, dstring)) { assert(!endsWith(to!S("abc"), 'a')); assert(endsWith(to!S("abc"), 'a', 'c') == 2); assert(!endsWith(to!S("abc"), 'x', 'n', 'b')); assert(endsWith(to!S("abc"), 'x', 'n', 'c') == 3); assert(endsWith(to!S("abc\uFF28"), 'a', '\uFF28', 'c') == 2); foreach (T; TypeTuple!(char[], wchar[], dchar[], string, wstring, dstring)) { //Lots of strings assert(endsWith(to!S("abc"), to!T(""))); assert(!endsWith(to!S("abc"), to!T("a"))); assert(!endsWith(to!S("abc"), to!T("b"))); assert(endsWith(to!S("abc"), to!T("bc"), 'c') == 2); assert(endsWith(to!S("abc"), to!T("a"), "c") == 2); assert(endsWith(to!S("abc"), to!T("c"), "a") == 1); assert(endsWith(to!S("abc"), to!T("c"), "c") == 1); assert(endsWith(to!S("abc"), to!T("x"), 'c', "b") == 2); assert(endsWith(to!S("abc"), 'x', to!T("aa"), "bc") == 3); assert(endsWith(to!S("abc"), to!T("x"), "aaa", "sab") == 0); assert(endsWith(to!S("abc"), to!T("x"), "aaa", "c", "sab") == 3); assert(endsWith(to!S("\uFF28el\uFF4co"), to!T("l\uFF4co"))); assert(endsWith(to!S("\uFF28el\uFF4co"), to!T("lo"), to!T("l\uFF4co")) == 2); //Unicode assert(endsWith(to!S("\uFF28el\uFF4co"), to!T("l\uFF4co"))); assert(endsWith(to!S("\uFF28el\uFF4co"), to!T("lo"), to!T("l\uFF4co")) == 2); assert(endsWith(to!S("日本語"), to!T("本語"))); assert(endsWith(to!S("日本語"), to!T("日本語"))); assert(!endsWith(to!S("本語"), to!T("日本語"))); //Empty assert(endsWith(to!S(""), T.init)); assert(!endsWith(to!S(""), 'a')); assert(endsWith(to!S("a"), T.init)); assert(endsWith(to!S("a"), T.init, "") == 1); assert(endsWith(to!S("a"), T.init, 'a') == 1); assert(endsWith(to!S("a"), 'a', T.init) == 2); } } foreach (T; TypeTuple!(int, short)) { immutable arr = cast(T[])[0, 1, 2, 3, 4, 5]; //RA range assert(endsWith(arr, cast(int[])null)); assert(!endsWith(arr, 0)); assert(!endsWith(arr, 4)); assert(endsWith(arr, 5)); assert(endsWith(arr, 0, 4, 5) == 3); assert(endsWith(arr, [5])); assert(endsWith(arr, [4, 5])); assert(endsWith(arr, [4, 5], 7) == 1); assert(!endsWith(arr, [2, 4, 5])); assert(endsWith(arr, [2, 4, 5], [3, 4, 5]) == 2); //Normal input range assert(!endsWith(filterBidirectional!"true"(arr), 4)); assert(endsWith(filterBidirectional!"true"(arr), 5)); assert(endsWith(filterBidirectional!"true"(arr), [5])); assert(endsWith(filterBidirectional!"true"(arr), [4, 5])); assert(endsWith(filterBidirectional!"true"(arr), [4, 5], 7) == 1); assert(!endsWith(filterBidirectional!"true"(arr), [2, 4, 5])); assert(endsWith(filterBidirectional!"true"(arr), [2, 4, 5], [3, 4, 5]) == 2); assert(endsWith(arr, filterBidirectional!"true"([4, 5]))); assert(endsWith(arr, filterBidirectional!"true"([4, 5]), 7) == 1); assert(!endsWith(arr, filterBidirectional!"true"([2, 4, 5]))); assert(endsWith(arr, [2, 4, 5], filterBidirectional!"true"([3, 4, 5])) == 2); //Non-default pred assert(endsWith!("a%10 == b%10")(arr, [14, 15])); assert(!endsWith!("a%10 == b%10")(arr, [15, 14])); } } /** Returns the common prefix of two ranges. If the first argument is a string, then the result is a slice of $(D r1) which contains the characters that both ranges start with. For all other types, the type of the result is the same as the result of $(D takeExactly(r1, n)), where $(D n) is the number of elements that both ranges start with. See_Also: $(XREF range, takeExactly) */ auto commonPrefix(alias pred = "a == b", R1, R2)(R1 r1, R2 r2) if (isForwardRange!R1 && isInputRange!R2 && !isNarrowString!R1 && is(typeof(binaryFun!pred(r1.front, r2.front)))) { static if (isRandomAccessRange!R1 && isRandomAccessRange!R2 && hasLength!R1 && hasLength!R2 && hasSlicing!R1) { immutable limit = min(r1.length, r2.length); foreach (i; 0 .. limit) { if (!binaryFun!pred(r1[i], r2[i])) { return r1[0 .. i]; } } return r1[0 .. limit]; } else { auto result = r1.save; size_t i = 0; for (; !r1.empty && !r2.empty && binaryFun!pred(r1.front, r2.front); ++i, r1.popFront(), r2.popFront()) {} return takeExactly(result, i); } } /// unittest { assert(commonPrefix("hello, world", "hello, there") == "hello, "); } auto commonPrefix(alias pred, R1, R2)(R1 r1, R2 r2) if (isNarrowString!R1 && isInputRange!R2 && is(typeof(binaryFun!pred(r1.front, r2.front)))) { import std.utf : decode; auto result = r1.save; immutable len = r1.length; size_t i = 0; for (size_t j = 0; i < len && !r2.empty; r2.popFront(), i = j) { immutable f = decode(r1, j); if (!binaryFun!pred(f, r2.front)) break; } return result[0 .. i]; } auto commonPrefix(R1, R2)(R1 r1, R2 r2) if (isNarrowString!R1 && isInputRange!R2 && !isNarrowString!R2 && is(typeof(r1.front == r2.front))) { return commonPrefix!"a == b"(r1, r2); } auto commonPrefix(R1, R2)(R1 r1, R2 r2) if (isNarrowString!R1 && isNarrowString!R2) { static if (ElementEncodingType!R1.sizeof == ElementEncodingType!R2.sizeof) { import std.utf : stride, UTFException; immutable limit = min(r1.length, r2.length); for (size_t i = 0; i < limit;) { immutable codeLen = std.utf.stride(r1, i); size_t j = 0; for (; j < codeLen && i < limit; ++i, ++j) { if (r1[i] != r2[i]) return r1[0 .. i - j]; } if (i == limit && j < codeLen) throw new UTFException("Invalid UTF-8 sequence", i); } return r1[0 .. limit]; } else return commonPrefix!"a == b"(r1, r2); } unittest { import std.conv : to; import std.exception : assertThrown; import std.utf : UTFException; assert(commonPrefix([1, 2, 3], [1, 2, 3, 4, 5]) == [1, 2, 3]); assert(commonPrefix([1, 2, 3, 4, 5], [1, 2, 3]) == [1, 2, 3]); assert(commonPrefix([1, 2, 3, 4], [1, 2, 3, 4]) == [1, 2, 3, 4]); assert(commonPrefix([1, 2, 3], [7, 2, 3, 4, 5]).empty); assert(commonPrefix([7, 2, 3, 4, 5], [1, 2, 3]).empty); assert(commonPrefix([1, 2, 3], cast(int[])null).empty); assert(commonPrefix(cast(int[])null, [1, 2, 3]).empty); assert(commonPrefix(cast(int[])null, cast(int[])null).empty); foreach (S; TypeTuple!(char[], const(char)[], string, wchar[], const(wchar)[], wstring, dchar[], const(dchar)[], dstring)) { foreach(T; TypeTuple!(string, wstring, dstring)) { assert(commonPrefix(to!S(""), to!T("")).empty); assert(commonPrefix(to!S(""), to!T("hello")).empty); assert(commonPrefix(to!S("hello"), to!T("")).empty); assert(commonPrefix(to!S("hello, world"), to!T("hello, there")) == to!S("hello, ")); assert(commonPrefix(to!S("hello, there"), to!T("hello, world")) == to!S("hello, ")); assert(commonPrefix(to!S("hello, "), to!T("hello, world")) == to!S("hello, ")); assert(commonPrefix(to!S("hello, world"), to!T("hello, ")) == to!S("hello, ")); assert(commonPrefix(to!S("hello, world"), to!T("hello, world")) == to!S("hello, world")); //Bug# 8890 assert(commonPrefix(to!S("Пиво"), to!T("Пони"))== to!S("П")); assert(commonPrefix(to!S("Пони"), to!T("Пиво"))== to!S("П")); assert(commonPrefix(to!S("Пиво"), to!T("Пиво"))== to!S("Пиво")); assert(commonPrefix(to!S("\U0010FFFF\U0010FFFB\U0010FFFE"), to!T("\U0010FFFF\U0010FFFB\U0010FFFC")) == to!S("\U0010FFFF\U0010FFFB")); assert(commonPrefix(to!S("\U0010FFFF\U0010FFFB\U0010FFFC"), to!T("\U0010FFFF\U0010FFFB\U0010FFFE")) == to!S("\U0010FFFF\U0010FFFB")); assert(commonPrefix!"a != b"(to!S("Пиво"), to!T("онво")) == to!S("Пи")); assert(commonPrefix!"a != b"(to!S("онво"), to!T("Пиво")) == to!S("он")); } static assert(is(typeof(commonPrefix(to!S("Пиво"), filter!"true"("Пони"))) == S)); assert(equal(commonPrefix(to!S("Пиво"), filter!"true"("Пони")), to!S("П"))); static assert(is(typeof(commonPrefix(filter!"true"("Пиво"), to!S("Пони"))) == typeof(takeExactly(filter!"true"("П"), 1)))); assert(equal(commonPrefix(filter!"true"("Пиво"), to!S("Пони")), takeExactly(filter!"true"("П"), 1))); } assertThrown!UTFException(commonPrefix("\U0010FFFF\U0010FFFB", "\U0010FFFF\U0010FFFB"[0 .. $ - 1])); assert(commonPrefix("12345"d, [49, 50, 51, 60, 60]) == "123"d); assert(commonPrefix([49, 50, 51, 60, 60], "12345" ) == [49, 50, 51]); assert(commonPrefix([49, 50, 51, 60, 60], "12345"d) == [49, 50, 51]); assert(commonPrefix!"a == ('0' + b)"("12345" , [1, 2, 3, 9, 9]) == "123"); assert(commonPrefix!"a == ('0' + b)"("12345"d, [1, 2, 3, 9, 9]) == "123"d); assert(commonPrefix!"('0' + a) == b"([1, 2, 3, 9, 9], "12345" ) == [1, 2, 3]); assert(commonPrefix!"('0' + a) == b"([1, 2, 3, 9, 9], "12345"d) == [1, 2, 3]); } // findAdjacent /** Advances $(D r) until it finds the first two adjacent elements $(D a), $(D b) that satisfy $(D pred(a, b)). Performs $(BIGOH r.length) evaluations of $(D pred). See_Also: $(WEB sgi.com/tech/stl/adjacent_find.html, STL's adjacent_find) */ Range findAdjacent(alias pred = "a == b", Range)(Range r) if (isForwardRange!(Range)) { auto ahead = r.save; if (!ahead.empty) { for (ahead.popFront(); !ahead.empty; r.popFront(), ahead.popFront()) { if (binaryFun!(pred)(r.front, ahead.front)) return r; } } static if (!isInfinite!Range) return ahead; } /// unittest { int[] a = [ 11, 10, 10, 9, 8, 8, 7, 8, 9 ]; auto r = findAdjacent(a); assert(r == [ 10, 10, 9, 8, 8, 7, 8, 9 ]); auto p = findAdjacent!("a < b")(a); assert(p == [ 7, 8, 9 ]); } unittest { //scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int[] a = [ 11, 10, 10, 9, 8, 8, 7, 8, 9 ]; auto p = findAdjacent(a); assert(p == [10, 10, 9, 8, 8, 7, 8, 9 ]); p = findAdjacent!("a < b")(a); assert(p == [7, 8, 9]); // empty a = []; p = findAdjacent(a); assert(p.empty); // not found a = [ 1, 2, 3, 4, 5 ]; p = findAdjacent(a); assert(p.empty); p = findAdjacent!"a > b"(a); assert(p.empty); ReferenceForwardRange!int rfr = new ReferenceForwardRange!int([1, 2, 3, 2, 2, 3]); assert(equal(findAdjacent(rfr), [2, 2, 3])); // Issue 9350 assert(!repeat(1).findAdjacent().empty); } // findAmong /** Advances $(D seq) by calling $(D seq.popFront) until either $(D find!(pred)(choices, seq.front)) is $(D true), or $(D seq) becomes empty. Performs $(BIGOH seq.length * choices.length) evaluations of $(D pred). See_Also: $(WEB sgi.com/tech/stl/find_first_of.html, STL's find_first_of) */ Range1 findAmong(alias pred = "a == b", Range1, Range2)( Range1 seq, Range2 choices) if (isInputRange!Range1 && isForwardRange!Range2) { for (; !seq.empty && find!pred(choices, seq.front).empty; seq.popFront()) { } return seq; } /// unittest { int[] a = [ -1, 0, 1, 2, 3, 4, 5 ]; int[] b = [ 3, 1, 2 ]; assert(findAmong(a, b) == a[2 .. $]); } unittest { //scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int[] a = [ -1, 0, 2, 1, 2, 3, 4, 5 ]; int[] b = [ 1, 2, 3 ]; assert(findAmong(a, b) == [2, 1, 2, 3, 4, 5 ]); assert(findAmong(b, [ 4, 6, 7 ][]).empty); assert(findAmong!("a==b")(a, b).length == a.length - 2); assert(findAmong!("a==b")(b, [ 4, 6, 7 ][]).empty); } // count /** The first version counts the number of elements $(D x) in $(D r) for which $(D pred(x, value)) is $(D true). $(D pred) defaults to equality. Performs $(BIGOH r.length) evaluations of $(D pred). The second version returns the number of times $(D needle) occurs in $(D haystack). Throws an exception if $(D needle.empty), as the _count of the empty range in any range would be infinite. Overlapped counts are not considered, for example $(D count("aaa", "aa")) is $(D 1), not $(D 2). The third version counts the elements for which $(D pred(x)) is $(D true). Performs $(BIGOH r.length) evaluations of $(D pred). Note: Regardless of the overload, $(D count) will not accept infinite ranges for $(D haystack). */ size_t count(alias pred = "a == b", Range, E)(Range haystack, E needle) if (isInputRange!Range && !isInfinite!Range && is(typeof(binaryFun!pred(haystack.front, needle)) : bool)) { bool pred2(ElementType!Range a) { return binaryFun!pred(a, needle); } return count!pred2(haystack); } /// unittest { import std.uni : toLower; // count elements in range int[] a = [ 1, 2, 4, 3, 2, 5, 3, 2, 4 ]; assert(count(a, 2) == 3); assert(count!("a > b")(a, 2) == 5); // count range in range assert(count("abcadfabf", "ab") == 2); assert(count("ababab", "abab") == 1); assert(count("ababab", "abx") == 0); // fuzzy count range in range assert(count!((a, b) => std.uni.toLower(a) == std.uni.toLower(b))("AbcAdFaBf", "ab") == 2); // count predicate in range assert(count!("a > 1")(a) == 8); } unittest { import std.conv : text; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int[] a = [ 1, 2, 4, 3, 2, 5, 3, 2, 4 ]; assert(count(a, 2) == 3, text(count(a, 2))); assert(count!("a > b")(a, 2) == 5, text(count!("a > b")(a, 2))); // check strings assert(count("日本語") == 3); assert(count("日本語"w) == 3); assert(count("日本語"d) == 3); assert(count!("a == '日'")("日本語") == 1); assert(count!("a == '本'")("日本語"w) == 1); assert(count!("a == '語'")("日本語"d) == 1); } unittest { debug(std_algorithm) printf("algorithm.count.unittest\n"); string s = "This is a fofofof list"; string sub = "fof"; assert(count(s, sub) == 2); } /// Ditto size_t count(alias pred = "a == b", R1, R2)(R1 haystack, R2 needle) if (isForwardRange!R1 && !isInfinite!R1 && isForwardRange!R2 && is(typeof(binaryFun!pred(haystack.front, needle.front)) : bool)) { import std.exception : enforce; enforce(!needle.empty, "Cannot count occurrences of an empty range"); static if (isInfinite!R2) { //Note: This is the special case of looking for an infinite inside a finite... //"How many instances of the Fibonacci sequence can you count in [1, 2, 3]?" - "None." return 0; } else { size_t result; //Note: haystack is not saved, because findskip is designed to modify it for ( ; findSkip!pred(haystack, needle.save) ; ++result) {} return result; } } /// Ditto size_t count(alias pred = "true", R)(R haystack) if (isInputRange!R && !isInfinite!R && is(typeof(unaryFun!pred(haystack.front)) : bool)) { size_t result; alias T = ElementType!R; //For narrow strings forces dchar iteration foreach (T elem; haystack) if (unaryFun!pred(elem)) ++result; return result; } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int[] a = [ 1, 2, 4, 3, 2, 5, 3, 2, 4 ]; assert(count!("a == 3")(a) == 2); assert(count("日本語") == 3); } // balancedParens /** Checks whether $(D r) has "balanced parentheses", i.e. all instances of $(D lPar) are closed by corresponding instances of $(D rPar). The parameter $(D maxNestingLevel) controls the nesting level allowed. The most common uses are the default or $(D 0). In the latter case, no nesting is allowed. */ bool balancedParens(Range, E)(Range r, E lPar, E rPar, size_t maxNestingLevel = size_t.max) if (isInputRange!(Range) && is(typeof(r.front == lPar))) { size_t count; for (; !r.empty; r.popFront()) { if (r.front == lPar) { if (count > maxNestingLevel) return false; ++count; } else if (r.front == rPar) { if (!count) return false; --count; } } return count == 0; } /// unittest { auto s = "1 + (2 * (3 + 1 / 2)"; assert(!balancedParens(s, '(', ')')); s = "1 + (2 * (3 + 1) / 2)"; assert(balancedParens(s, '(', ')')); s = "1 + (2 * (3 + 1) / 2)"; assert(!balancedParens(s, '(', ')', 0)); s = "1 + (2 * 3 + 1) / (2 - 5)"; assert(balancedParens(s, '(', ')', 0)); } // equal /** Compares two ranges for equality, as defined by predicate $(D pred) (which is $(D ==) by default). */ template equal(alias pred = "a == b") { /++ Returns $(D true) if and only if the two ranges compare equal element for element, according to binary predicate $(D pred). The ranges may have different element types, as long as $(D pred(a, b)) evaluates to $(D bool) for $(D a) in $(D r1) and $(D b) in $(D r2). Performs $(BIGOH min(r1.length, r2.length)) evaluations of $(D pred). See_Also: $(WEB sgi.com/tech/stl/_equal.html, STL's _equal) +/ bool equal(Range1, Range2)(Range1 r1, Range2 r2) if (isInputRange!Range1 && isInputRange!Range2 && is(typeof(binaryFun!pred(r1.front, r2.front)))) { //Start by detecting default pred and compatible dynamicarray. static if (is(typeof(pred) == string) && pred == "a == b" && isArray!Range1 && isArray!Range2 && is(typeof(r1 == r2))) { return r1 == r2; } //Try a fast implementation when the ranges have comparable lengths else static if (hasLength!Range1 && hasLength!Range2 && is(typeof(r1.length == r2.length))) { auto len1 = r1.length; auto len2 = r2.length; if (len1 != len2) return false; //Short circuit return //Lengths are the same, so we need to do an actual comparison //Good news is we can sqeeze out a bit of performance by not checking if r2 is empty for (; !r1.empty; r1.popFront(), r2.popFront()) { if (!binaryFun!(pred)(r1.front, r2.front)) return false; } return true; } else { //Generic case, we have to walk both ranges making sure neither is empty for (; !r1.empty; r1.popFront(), r2.popFront()) { if (r2.empty) return false; if (!binaryFun!(pred)(r1.front, r2.front)) return false; } return r2.empty; } } } /// unittest { import std.math : approxEqual; import std.algorithm : equal; int[] a = [ 1, 2, 4, 3 ]; assert(!equal(a, a[1..$])); assert(equal(a, a)); // different types double[] b = [ 1.0, 2, 4, 3]; assert(!equal(a, b[1..$])); assert(equal(a, b)); // predicated: ensure that two vectors are approximately equal double[] c = [ 1.005, 2, 4, 3]; assert(equal!approxEqual(b, c)); } /++ Tip: $(D equal) can itself be used as a predicate to other functions. This can be very useful when the element type of a range is itself a range. In particular, $(D equal) can be its own predicate, allowing range of range (of range...) comparisons. +/ unittest { import std.algorithm : equal; import std.range : iota, chunks; assert(equal!(equal!equal)( [[[0, 1], [2, 3]], [[4, 5], [6, 7]]], iota(0, 8).chunks(2).chunks(2) )); } unittest { import std.math : approxEqual; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); // various strings assert(equal("æøå", "æøå")); //UTF8 vs UTF8 assert(!equal("???", "æøå")); //UTF8 vs UTF8 assert(equal("æøå"w, "æøå"d)); //UTF16 vs UTF32 assert(!equal("???"w, "æøå"d));//UTF16 vs UTF32 assert(equal("æøå"d, "æøå"d)); //UTF32 vs UTF32 assert(!equal("???"d, "æøå"d));//UTF32 vs UTF32 assert(!equal("hello", "world")); // same strings, but "explicit non default" comparison (to test the non optimized array comparison) assert( equal!("a==b")("æøå", "æøå")); //UTF8 vs UTF8 assert(!equal!("a==b")("???", "æøå")); //UTF8 vs UTF8 assert( equal!("a==b")("æøå"w, "æøå"d)); //UTF16 vs UTF32 assert(!equal!("a==b")("???"w, "æøå"d));//UTF16 vs UTF32 assert( equal!("a==b")("æøå"d, "æøå"d)); //UTF32 vs UTF32 assert(!equal!("a==b")("???"d, "æøå"d));//UTF32 vs UTF32 assert(!equal!("a==b")("hello", "world")); //Array of string assert(equal(["hello", "world"], ["hello", "world"])); assert(!equal(["hello", "world"], ["hello"])); assert(!equal(["hello", "world"], ["hello", "Bob!"])); //Should not compile, because "string == dstring" is illegal static assert(!is(typeof(equal(["hello", "world"], ["hello"d, "world"d])))); //However, arrays of non-matching string can be compared using equal!equal. Neat-o! equal!equal(["hello", "world"], ["hello"d, "world"d]); //Tests, with more fancy map ranges int[] a = [ 1, 2, 4, 3 ]; assert(equal([2, 4, 8, 6], map!"a*2"(a))); double[] b = [ 1.0, 2, 4, 3]; double[] c = [ 1.005, 2, 4, 3]; assert(equal!approxEqual(map!"a*2"(b), map!"a*2"(c))); assert(!equal([2, 4, 1, 3], map!"a*2"(a))); assert(!equal([2, 4, 1], map!"a*2"(a))); assert(!equal!approxEqual(map!"a*3"(b), map!"a*2"(c))); //Tests with some fancy reference ranges. ReferenceInputRange!int cir = new ReferenceInputRange!int([1, 2, 4, 3]); ReferenceForwardRange!int cfr = new ReferenceForwardRange!int([1, 2, 4, 3]); assert(equal(cir, a)); cir = new ReferenceInputRange!int([1, 2, 4, 3]); assert(equal(cir, cfr.save)); assert(equal(cfr.save, cfr.save)); cir = new ReferenceInputRange!int([1, 2, 8, 1]); assert(!equal(cir, cfr)); //Test with an infinte range ReferenceInfiniteForwardRange!int ifr = new ReferenceInfiniteForwardRange!int; assert(!equal(a, ifr)); } // cmp /********************************** Performs three-way lexicographical comparison on two input ranges according to predicate $(D pred). Iterating $(D r1) and $(D r2) in lockstep, $(D cmp) compares each element $(D e1) of $(D r1) with the corresponding element $(D e2) in $(D r2). If $(D binaryFun!pred(e1, e2)), $(D cmp) returns a negative value. If $(D binaryFun!pred(e2, e1)), $(D cmp) returns a positive value. If one of the ranges has been finished, $(D cmp) returns a negative value if $(D r1) has fewer elements than $(D r2), a positive value if $(D r1) has more elements than $(D r2), and $(D 0) if the ranges have the same number of elements. If the ranges are strings, $(D cmp) performs UTF decoding appropriately and compares the ranges one code point at a time. */ int cmp(alias pred = "a < b", R1, R2)(R1 r1, R2 r2) if (isInputRange!R1 && isInputRange!R2 && !(isSomeString!R1 && isSomeString!R2)) { for (;; r1.popFront(), r2.popFront()) { if (r1.empty) return -cast(int)!r2.empty; if (r2.empty) return !r1.empty; auto a = r1.front, b = r2.front; if (binaryFun!pred(a, b)) return -1; if (binaryFun!pred(b, a)) return 1; } } // Specialization for strings (for speed purposes) int cmp(alias pred = "a < b", R1, R2)(R1 r1, R2 r2) if (isSomeString!R1 && isSomeString!R2) { import core.stdc.string : memcmp; import std.utf : decode; static if (is(typeof(pred) : string)) enum isLessThan = pred == "a < b"; else enum isLessThan = false; // For speed only static int threeWay(size_t a, size_t b) { static if (size_t.sizeof == int.sizeof && isLessThan) return a - b; else return binaryFun!pred(b, a) ? 1 : binaryFun!pred(a, b) ? -1 : 0; } // For speed only // @@@BUG@@@ overloading should be allowed for nested functions static int threeWayInt(int a, int b) { static if (isLessThan) return a - b; else return binaryFun!pred(b, a) ? 1 : binaryFun!pred(a, b) ? -1 : 0; } static if (typeof(r1[0]).sizeof == typeof(r2[0]).sizeof && isLessThan) { static if (typeof(r1[0]).sizeof == 1) { immutable len = min(r1.length, r2.length); immutable result = __ctfe ? { foreach (i; 0 .. len) { if (r1[i] != r2[i]) return threeWayInt(r1[i], r2[i]); } return 0; }() : core.stdc.string.memcmp(r1.ptr, r2.ptr, len); if (result) return result; } else { auto p1 = r1.ptr, p2 = r2.ptr, pEnd = p1 + min(r1.length, r2.length); for (; p1 != pEnd; ++p1, ++p2) { if (*p1 != *p2) return threeWayInt(cast(int) *p1, cast(int) *p2); } } return threeWay(r1.length, r2.length); } else { for (size_t i1, i2;;) { if (i1 == r1.length) return threeWay(i2, r2.length); if (i2 == r2.length) return threeWay(r1.length, i1); immutable c1 = std.utf.decode(r1, i1), c2 = std.utf.decode(r2, i2); if (c1 != c2) return threeWayInt(cast(int) c1, cast(int) c2); } } } /// unittest { int result; debug(string) printf("string.cmp.unittest\n"); result = cmp("abc", "abc"); assert(result == 0); // result = cmp(null, null); // assert(result == 0); result = cmp("", ""); assert(result == 0); result = cmp("abc", "abcd"); assert(result < 0); result = cmp("abcd", "abc"); assert(result > 0); result = cmp("abc"d, "abd"); assert(result < 0); result = cmp("bbc", "abc"w); assert(result > 0); result = cmp("aaa", "aaaa"d); assert(result < 0); result = cmp("aaaa", "aaa"d); assert(result > 0); result = cmp("aaa", "aaa"d); assert(result == 0); result = cmp(cast(int[])[], cast(int[])[]); assert(result == 0); result = cmp([1, 2, 3], [1, 2, 3]); assert(result == 0); result = cmp([1, 3, 2], [1, 2, 3]); assert(result > 0); result = cmp([1, 2, 3], [1L, 2, 3, 4]); assert(result < 0); result = cmp([1L, 2, 3], [1, 2]); assert(result > 0); } // MinType private template MinType(T...) if (T.length >= 2) { static if (T.length == 2) { static if (!is(typeof(T[0].min))) alias MinType = CommonType!T; else { enum hasMostNegative = is(typeof(mostNegative!(T[0]))) && is(typeof(mostNegative!(T[1]))); static if (hasMostNegative && mostNegative!(T[1]) < mostNegative!(T[0])) alias MinType = T[1]; else static if (hasMostNegative && mostNegative!(T[1]) > mostNegative!(T[0])) alias MinType = T[0]; else static if (T[1].max < T[0].max) alias MinType = T[1]; else alias MinType = T[0]; } } else { alias MinType = MinType!(T[0 .. $/2], MinType!(T[$/2 .. $])); } } // min /** Returns the minimum of the passed-in values. The type of the result is computed by using $(XREF traits, CommonType). */ MinType!T min(T...)(T args) if (T.length >= 2) { static if (T.length == 2) { alias T0 = T[0]; alias T1 = T[1]; alias a = args[0]; alias b = args[1]; static assert (is(typeof(a < b)), format("Invalid arguments: Cannot compare types %s and %s.", T0.stringof, T1.stringof)); static if (isIntegral!T0 && isIntegral!T1 && (mostNegative!T0 < 0) != (mostNegative!T1 < 0)) { static if (mostNegative!T0 < 0) immutable chooseB = b < a && a > 0; else immutable chooseB = b < a || b < 0; } else immutable chooseB = b < a; return cast(typeof(return)) (chooseB ? b : a); } else { return min(args[0 .. $/2], min(args[$/2 .. $])); } } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int a = 5; short b = 6; double c = 2; auto d = min(a, b); static assert(is(typeof(d) == int)); assert(d == 5); auto e = min(a, b, c); static assert(is(typeof(e) == double)); assert(e == 2); // mixed signedness test a = -10; uint f = 10; static assert(is(typeof(min(a, f)) == int)); assert(min(a, f) == -10); //Test user-defined types import std.datetime; assert(min(Date(2012, 12, 21), Date(1982, 1, 4)) == Date(1982, 1, 4)); assert(min(Date(1982, 1, 4), Date(2012, 12, 21)) == Date(1982, 1, 4)); assert(min(Date(1982, 1, 4), Date.min) == Date.min); assert(min(Date.min, Date(1982, 1, 4)) == Date.min); assert(min(Date(1982, 1, 4), Date.max) == Date(1982, 1, 4)); assert(min(Date.max, Date(1982, 1, 4)) == Date(1982, 1, 4)); assert(min(Date.min, Date.max) == Date.min); assert(min(Date.max, Date.min) == Date.min); } // MaxType private template MaxType(T...) if (T.length >= 2) { static if (T.length == 2) { static if (!is(typeof(T[0].min))) alias MaxType = CommonType!T; else static if (T[1].max > T[0].max) alias MaxType = T[1]; else alias MaxType = T[0]; } else { alias MaxType = MaxType!(T[0 .. $/2], MaxType!(T[$/2 .. $])); } } // max /** Returns the maximum of the passed-in values. The type of the result is computed by using $(XREF traits, CommonType). */ MaxType!T max(T...)(T args) if (T.length >= 2) { static if (T.length == 2) { alias T0 = T[0]; alias T1 = T[1]; alias a = args[0]; alias b = args[1]; static assert (is(typeof(a < b)), format("Invalid arguments: Cannot compare types %s and %s.", T0.stringof, T1.stringof)); static if (isIntegral!T0 && isIntegral!T1 && (mostNegative!T0 < 0) != (mostNegative!T1 < 0)) { static if (mostNegative!T0 < 0) immutable chooseB = b > a || a < 0; else immutable chooseB = b > a && b > 0; } else immutable chooseB = b > a; return cast(typeof(return)) (chooseB ? b : a); } else { return max(args[0 .. $/2], max(args[$/2 .. $])); } } /// unittest { int a = 5; short b = 6; double c = 2; auto d = max(a, b); assert(is(typeof(d) == int)); assert(d == 6); auto e = min(a, b, c); assert(is(typeof(e) == double)); assert(e == 2); } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int a = 5; short b = 6; double c = 2; auto d = max(a, b); static assert(is(typeof(d) == int)); assert(d == 6); auto e = max(a, b, c); static assert(is(typeof(e) == double)); assert(e == 6); // mixed sign a = -5; uint f = 5; static assert(is(typeof(max(a, f)) == uint)); assert(max(a, f) == 5); //Test user-defined types import std.datetime; assert(max(Date(2012, 12, 21), Date(1982, 1, 4)) == Date(2012, 12, 21)); assert(max(Date(1982, 1, 4), Date(2012, 12, 21)) == Date(2012, 12, 21)); assert(max(Date(1982, 1, 4), Date.min) == Date(1982, 1, 4)); assert(max(Date.min, Date(1982, 1, 4)) == Date(1982, 1, 4)); assert(max(Date(1982, 1, 4), Date.max) == Date.max); assert(max(Date.max, Date(1982, 1, 4)) == Date.max); assert(max(Date.min, Date.max) == Date.max); assert(max(Date.max, Date.min) == Date.max); } /** Returns the minimum element of a range together with the number of occurrences. The function can actually be used for counting the maximum or any other ordering predicate (that's why $(D maxCount) is not provided). */ Tuple!(ElementType!Range, size_t) minCount(alias pred = "a < b", Range)(Range range) if (isInputRange!Range && !isInfinite!Range && is(typeof(binaryFun!pred(range.front, range.front)))) { import std.exception : enforce; alias T = ElementType!Range; alias UT = Unqual!T; alias RetType = Tuple!(T, size_t); static assert (is(typeof(RetType(range.front, 1))), format("Error: Cannot call minCount on a %s, because it is not possible "~ "to copy the result value (a %s) into a Tuple.", Range.stringof, T.stringof)); enforce(!range.empty, "Can't count elements from an empty range"); size_t occurrences = 1; static if (isForwardRange!Range) { Range least = range.save; for (range.popFront(); !range.empty; range.popFront()) { if (binaryFun!pred(least.front, range.front)) continue; if (binaryFun!pred(range.front, least.front)) { // change the min least = range.save; occurrences = 1; } else ++occurrences; } return RetType(least.front, occurrences); } else static if (isAssignable!(UT, T) || (!hasElaborateAssign!UT && isAssignable!UT)) { UT v = UT.init; static if (isAssignable!(UT, T)) v = range.front; else v = cast(UT)range.front; for (range.popFront(); !range.empty; range.popFront()) { if (binaryFun!pred(*cast(T*)&v, range.front)) continue; if (binaryFun!pred(range.front, *cast(T*)&v)) { // change the min static if (isAssignable!(UT, T)) v = range.front; else v = cast(UT)range.front; //Safe because !hasElaborateAssign!UT occurrences = 1; } else ++occurrences; } return RetType(*cast(T*)&v, occurrences); } else static if (hasLvalueElements!Range) { T* p = addressOf(range.front); for (range.popFront(); !range.empty; range.popFront()) { if (binaryFun!pred(*p, range.front)) continue; if (binaryFun!pred(range.front, *p)) { // change the min p = addressOf(range.front); occurrences = 1; } else ++occurrences; } return RetType(*p, occurrences); } else static assert(false, format("Sorry, can't find the minCount of a %s: Don't know how "~ "to keep track of the smallest %s element.", Range.stringof, T.stringof)); } /// unittest { import std.conv : text; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int[] a = [ 2, 3, 4, 1, 2, 4, 1, 1, 2 ]; // Minimum is 1 and occurs 3 times assert(minCount(a) == tuple(1, 3)); // Maximum is 4 and occurs 2 times assert(minCount!("a > b")(a) == tuple(4, 2)); } unittest { import std.conv : text; import std.exception : assertThrown; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int[][] b = [ [4], [2, 4], [4], [4] ]; auto c = minCount!("a[0] < b[0]")(b); assert(c == tuple([2, 4], 1), text(c[0])); //Test empty range assertThrown(minCount(b[$..$])); //test with reference ranges. Test both input and forward. assert(minCount(new ReferenceInputRange!int([1, 2, 1, 0, 2, 0])) == tuple(0, 2)); assert(minCount(new ReferenceForwardRange!int([1, 2, 1, 0, 2, 0])) == tuple(0, 2)); } unittest { import std.conv : text; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); static struct R(T) //input range { T[] arr; alias arr this; } immutable a = [ 2, 3, 4, 1, 2, 4, 1, 1, 2 ]; R!(immutable int) b = R!(immutable int)(a); assert(minCount(a) == tuple(1, 3)); assert(minCount(b) == tuple(1, 3)); assert(minCount!((ref immutable int a, ref immutable int b) => (a > b))(a) == tuple(4, 2)); assert(minCount!((ref immutable int a, ref immutable int b) => (a > b))(b) == tuple(4, 2)); immutable(int[])[] c = [ [4], [2, 4], [4], [4] ]; assert(minCount!("a[0] < b[0]")(c) == tuple([2, 4], 1), text(c[0])); static struct S1 { int i; } alias IS1 = immutable(S1); static assert( isAssignable!S1); static assert( isAssignable!(S1, IS1)); static struct S2 { int* p; this(ref immutable int i) immutable {p = &i;} this(ref int i) {p = &i;} @property ref inout(int) i() inout {return *p;} bool opEquals(const S2 other) const {return i == other.i;} } alias IS2 = immutable(S2); static assert( isAssignable!S2); static assert(!isAssignable!(S2, IS2)); static assert(!hasElaborateAssign!S2); static struct S3 { int i; void opAssign(ref S3 other) @disable; } static assert(!isAssignable!S3); foreach (Type; TypeTuple!(S1, IS1, S2, IS2, S3)) { static if (is(Type == immutable)) alias V = immutable int; else alias V = int; V one = 1, two = 2; auto r1 = [Type(two), Type(one), Type(one)]; auto r2 = R!Type(r1); assert(minCount!"a.i < b.i"(r1) == tuple(Type(one), 2)); assert(minCount!"a.i < b.i"(r2) == tuple(Type(one), 2)); assert(one == 1 && two == 2); } } // minPos /** Returns the position of the minimum element of forward range $(D range), i.e. a subrange of $(D range) starting at the position of its smallest element and with the same ending as $(D range). The function can actually be used for counting the maximum or any other ordering predicate (that's why $(D maxPos) is not provided). */ Range minPos(alias pred = "a < b", Range)(Range range) if (isForwardRange!Range && !isInfinite!Range && is(typeof(binaryFun!pred(range.front, range.front)))) { if (range.empty) return range; auto result = range.save; for (range.popFront(); !range.empty; range.popFront()) { //Note: Unlike minCount, we do not care to find equivalence, so a single pred call is enough if (binaryFun!pred(range.front, result.front)) { // change the min result = range.save; } } return result; } /// unittest { int[] a = [ 2, 3, 4, 1, 2, 4, 1, 1, 2 ]; // Minimum is 1 and first occurs in position 3 assert(minPos(a) == [ 1, 2, 4, 1, 1, 2 ]); // Maximum is 4 and first occurs in position 2 assert(minPos!("a > b")(a) == [ 4, 1, 2, 4, 1, 1, 2 ]); } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int[] a = [ 2, 3, 4, 1, 2, 4, 1, 1, 2 ]; //Test that an empty range works int[] b = a[$..$]; assert(equal(minPos(b), b)); //test with reference range. assert( equal( minPos(new ReferenceForwardRange!int([1, 2, 1, 0, 2, 0])), [0, 2, 0] ) ); } unittest { //Rvalue range import std.container : Array; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); assert(Array!int(2, 3, 4, 1, 2, 4, 1, 1, 2) [] .minPos() .equal([ 1, 2, 4, 1, 1, 2 ])); } unittest { //BUG 9299 debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); immutable a = [ 2, 3, 4, 1, 2, 4, 1, 1, 2 ]; // Minimum is 1 and first occurs in position 3 assert(minPos(a) == [ 1, 2, 4, 1, 1, 2 ]); // Maximum is 4 and first occurs in position 5 assert(minPos!("a > b")(a) == [ 4, 1, 2, 4, 1, 1, 2 ]); immutable(int[])[] b = [ [4], [2, 4], [4], [4] ]; assert(minPos!("a[0] < b[0]")(b) == [ [2, 4], [4], [4] ]); } // mismatch /** Sequentially compares elements in $(D r1) and $(D r2) in lockstep, and stops at the first mismatch (according to $(D pred), by default equality). Returns a tuple with the reduced ranges that start with the two mismatched values. Performs $(BIGOH min(r1.length, r2.length)) evaluations of $(D pred). See_Also: $(WEB sgi.com/tech/stl/_mismatch.html, STL's _mismatch) */ Tuple!(Range1, Range2) mismatch(alias pred = "a == b", Range1, Range2)(Range1 r1, Range2 r2) if (isInputRange!(Range1) && isInputRange!(Range2)) { for (; !r1.empty && !r2.empty; r1.popFront(), r2.popFront()) { if (!binaryFun!(pred)(r1.front, r2.front)) break; } return tuple(r1, r2); } /// unittest { int[] x = [ 1, 5, 2, 7, 4, 3 ]; double[] y = [ 1.0, 5, 2, 7.3, 4, 8 ]; auto m = mismatch(x, y); assert(m[0] == x[3 .. $]); assert(m[1] == y[3 .. $]); } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int[] a = [ 1, 2, 3 ]; int[] b = [ 1, 2, 4, 5 ]; auto mm = mismatch(a, b); assert(mm[0] == [3]); assert(mm[1] == [4, 5]); } // levenshteinDistance /** Encodes $(WEB realityinteractive.com/rgrzywinski/archives/000249.html, edit operations) necessary to transform one sequence into another. Given sequences $(D s) (source) and $(D t) (target), a sequence of $(D EditOp) encodes the steps that need to be taken to convert $(D s) into $(D t). For example, if $(D s = "cat") and $(D "cars"), the minimal sequence that transforms $(D s) into $(D t) is: skip two characters, replace 't' with 'r', and insert an 's'. Working with edit operations is useful in applications such as spell-checkers (to find the closest word to a given misspelled word), approximate searches, diff-style programs that compute the difference between files, efficient encoding of patches, DNA sequence analysis, and plagiarism detection. */ enum EditOp : char { /** Current items are equal; no editing is necessary. */ none = 'n', /** Substitute current item in target with current item in source. */ substitute = 's', /** Insert current item from the source into the target. */ insert = 'i', /** Remove current item from the target. */ remove = 'r' } struct Levenshtein(Range, alias equals, CostType = size_t) { void deletionIncrement(CostType n) { _deletionIncrement = n; InitMatrix(); } void insertionIncrement(CostType n) { _insertionIncrement = n; InitMatrix(); } CostType distance(Range s, Range t) { auto slen = walkLength(s.save), tlen = walkLength(t.save); AllocMatrix(slen + 1, tlen + 1); foreach (i; 1 .. rows) { auto sfront = s.front; s.popFront(); auto tt = t; foreach (j; 1 .. cols) { auto cSub = _matrix[i - 1][j - 1] + (equals(sfront, tt.front) ? 0 : _substitutionIncrement); tt.popFront(); auto cIns = _matrix[i][j - 1] + _insertionIncrement; auto cDel = _matrix[i - 1][j] + _deletionIncrement; switch (min_index(cSub, cIns, cDel)) { case 0: _matrix[i][j] = cSub; break; case 1: _matrix[i][j] = cIns; break; default: _matrix[i][j] = cDel; break; } } } return _matrix[slen][tlen]; } EditOp[] path(Range s, Range t) { distance(s, t); return path(); } EditOp[] path() { EditOp[] result; size_t i = rows - 1, j = cols - 1; // restore the path while (i || j) { auto cIns = j == 0 ? CostType.max : _matrix[i][j - 1]; auto cDel = i == 0 ? CostType.max : _matrix[i - 1][j]; auto cSub = i == 0 || j == 0 ? CostType.max : _matrix[i - 1][j - 1]; switch (min_index(cSub, cIns, cDel)) { case 0: result ~= _matrix[i - 1][j - 1] == _matrix[i][j] ? EditOp.none : EditOp.substitute; --i; --j; break; case 1: result ~= EditOp.insert; --j; break; default: result ~= EditOp.remove; --i; break; } } reverse(result); return result; } private: CostType _deletionIncrement = 1, _insertionIncrement = 1, _substitutionIncrement = 1; CostType[][] _matrix; size_t rows, cols; void AllocMatrix(size_t r, size_t c) { rows = r; cols = c; if (_matrix.length < r || _matrix[0].length < c) { delete _matrix; _matrix = new CostType[][](r, c); InitMatrix(); } } void InitMatrix() { foreach (i, row; _matrix) { row[0] = i * _deletionIncrement; } if (!_matrix.length) return; for (auto i = 0u; i != _matrix[0].length; ++i) { _matrix[0][i] = i * _insertionIncrement; } } static uint min_index(CostType i0, CostType i1, CostType i2) { if (i0 <= i1) { return i0 <= i2 ? 0 : 2; } else { return i1 <= i2 ? 1 : 2; } } } /** Returns the $(WEB wikipedia.org/wiki/Levenshtein_distance, Levenshtein distance) between $(D s) and $(D t). The Levenshtein distance computes the minimal amount of edit operations necessary to transform $(D s) into $(D t). Performs $(BIGOH s.length * t.length) evaluations of $(D equals) and occupies $(BIGOH s.length * t.length) storage. */ size_t levenshteinDistance(alias equals = "a == b", Range1, Range2) (Range1 s, Range2 t) if (isForwardRange!(Range1) && isForwardRange!(Range2)) { Levenshtein!(Range1, binaryFun!(equals), size_t) lev; return lev.distance(s, t); } /// unittest { import std.uni : toUpper; assert(levenshteinDistance("cat", "rat") == 1); assert(levenshteinDistance("parks", "spark") == 2); assert(levenshteinDistance("kitten", "sitting") == 3); assert(levenshteinDistance!((a, b) => std.uni.toUpper(a) == std.uni.toUpper(b)) ("parks", "SPARK") == 2); } /** Returns the Levenshtein distance and the edit path between $(D s) and $(D t). */ Tuple!(size_t, EditOp[]) levenshteinDistanceAndPath(alias equals = "a == b", Range1, Range2) (Range1 s, Range2 t) if (isForwardRange!(Range1) && isForwardRange!(Range2)) { Levenshtein!(Range1, binaryFun!(equals)) lev; auto d = lev.distance(s, t); return tuple(d, lev.path()); } /// unittest { string a = "Saturday", b = "Sunday"; auto p = levenshteinDistanceAndPath(a, b); assert(p[0] == 3); assert(equal(p[1], "nrrnsnnn")); } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); assert(levenshteinDistance("a", "a") == 0); assert(levenshteinDistance("a", "b") == 1); assert(levenshteinDistance("aa", "ab") == 1); assert(levenshteinDistance("aa", "abc") == 2); assert(levenshteinDistance("Saturday", "Sunday") == 3); assert(levenshteinDistance("kitten", "sitting") == 3); } // copy /** Copies the content of $(D source) into $(D target) and returns the remaining (unfilled) part of $(D target). See_Also: $(WEB sgi.com/tech/stl/_copy.html, STL's _copy) */ Range2 copy(Range1, Range2)(Range1 source, Range2 target) if (isInputRange!Range1 && isOutputRange!(Range2, ElementType!Range1)) { static Range2 genericImpl(Range1 source, Range2 target) { // Specialize for 2 random access ranges. // Typically 2 random access ranges are faster iterated by common // index then by x.popFront(), y.popFront() pair static if (isRandomAccessRange!Range1 && hasLength!Range1 && hasSlicing!Range2 && isRandomAccessRange!Range2 && hasLength!Range2) { auto len = source.length; foreach (idx; 0 .. len) target[idx] = source[idx]; return target[len .. target.length]; } else { put(target, source); return target; } } static if (isArray!Range1 && isArray!Range2 && is(Unqual!(typeof(source[0])) == Unqual!(typeof(target[0])))) { import std.exception : enforce; immutable overlaps = source.ptr < target.ptr + target.length && target.ptr < source.ptr + source.length; if (overlaps) { return genericImpl(source, target); } else { // Array specialization. This uses optimized memory copying // routines under the hood and is about 10-20x faster than the // generic implementation. enforce(target.length >= source.length, "Cannot copy a source array into a smaller target array."); target[0..source.length] = source[]; return target[source.length..$]; } } else { return genericImpl(source, target); } } /// unittest { int[] a = [ 1, 5 ]; int[] b = [ 9, 8 ]; int[] c = new int[a.length + b.length + 10]; auto d = copy(b, copy(a, c)); assert(c[0 .. a.length + b.length] == a ~ b); assert(d.length == 10); } /** As long as the target range elements support assignment from source range elements, different types of ranges are accepted. */ unittest { float[] a = [ 1.0f, 5 ]; double[] b = new double[a.length]; auto d = copy(a, b); } /** To copy at most $(D n) elements from range $(D a) to range $(D b), you may want to use $(D copy(take(a, n), b)). To copy those elements from range $(D a) that satisfy predicate $(D pred) to range $(D b), you may want to use $(D copy(a.filter!(pred), b)). */ unittest { int[] a = [ 1, 5, 8, 9, 10, 1, 2, 0 ]; auto b = new int[a.length]; auto c = copy(a.filter!(a => (a & 1) == 1), b); assert(b[0 .. $ - c.length] == [ 1, 5, 9, 1 ]); } /** $(XREF range, retro) can be used to achieve behavior similar to $(WEB sgi.com/tech/stl/copy_backward.html, STL's copy_backward'). */ unittest { import std.algorithm, std.range; int[] src = [1, 2, 4]; int[] dst = [0, 0, 0, 0, 0]; copy(src.retro, dst.retro); assert(dst == [0, 0, 1, 2, 4]); } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); { int[] a = [ 1, 5 ]; int[] b = [ 9, 8 ]; auto e = copy(filter!("a > 1")(a), b); assert(b[0] == 5 && e.length == 1); } { int[] a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; copy(a[5..10], a[4..9]); assert(a[4..9] == [6, 7, 8, 9, 10]); } { // Test for bug 7898 enum v = { import std.algorithm; int[] arr1 = [10, 20, 30, 40, 50]; int[] arr2 = arr1.dup; copy(arr1, arr2); return 35; }(); } } // swapRanges /** Swaps all elements of $(D r1) with successive elements in $(D r2). Returns a tuple containing the remainder portions of $(D r1) and $(D r2) that were not swapped (one of them will be empty). The ranges may be of different types but must have the same element type and support swapping. */ Tuple!(Range1, Range2) swapRanges(Range1, Range2)(Range1 r1, Range2 r2) if (isInputRange!(Range1) && isInputRange!(Range2) && hasSwappableElements!(Range1) && hasSwappableElements!(Range2) && is(ElementType!(Range1) == ElementType!(Range2))) { for (; !r1.empty && !r2.empty; r1.popFront(), r2.popFront()) { swap(r1.front, r2.front); } return tuple(r1, r2); } /// unittest { int[] a = [ 100, 101, 102, 103 ]; int[] b = [ 0, 1, 2, 3 ]; auto c = swapRanges(a[1 .. 3], b[2 .. 4]); assert(c[0].empty && c[1].empty); assert(a == [ 100, 2, 3, 103 ]); assert(b == [ 0, 1, 101, 102 ]); } // reverse /** Reverses $(D r) in-place. Performs $(D r.length / 2) evaluations of $(D swap). See_Also: $(WEB sgi.com/tech/stl/_reverse.html, STL's _reverse) */ void reverse(Range)(Range r) if (isBidirectionalRange!Range && !isRandomAccessRange!Range && hasSwappableElements!Range) { while (!r.empty) { swap(r.front, r.back); r.popFront(); if (r.empty) break; r.popBack(); } } /// unittest { int[] arr = [ 1, 2, 3 ]; reverse(arr); assert(arr == [ 3, 2, 1 ]); } ///ditto void reverse(Range)(Range r) if (isRandomAccessRange!Range && hasLength!Range) { //swapAt is in fact the only way to swap non lvalue ranges immutable last = r.length-1; immutable steps = r.length/2; for (size_t i = 0; i < steps; i++) { swapAt(r, i, last-i); } } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int[] range = null; reverse(range); range = [ 1 ]; reverse(range); assert(range == [1]); range = [1, 2]; reverse(range); assert(range == [2, 1]); range = [1, 2, 3]; reverse(range); assert(range == [3, 2, 1]); } /** Reverses $(D r) in-place, where $(D r) is a narrow string (having elements of type $(D char) or $(D wchar)). UTF sequences consisting of multiple code units are preserved properly. */ void reverse(Char)(Char[] s) if (isNarrowString!(Char[]) && !is(Char == const) && !is(Char == immutable)) { import std.string : representation; import std.utf : stride; auto r = representation(s); for (size_t i = 0; i < s.length; ) { immutable step = std.utf.stride(s, i); if (step > 1) { .reverse(r[i .. i + step]); i += step; } else { ++i; } } reverse(r); } /// unittest { char[] arr = "hello\U00010143\u0100\U00010143".dup; reverse(arr); assert(arr == "\U00010143\u0100\U00010143olleh"); } unittest { void test(string a, string b) { auto c = a.dup; reverse(c); assert(c == b, c ~ " != " ~ b); } test("a", "a"); test(" ", " "); test("\u2029", "\u2029"); test("\u0100", "\u0100"); test("\u0430", "\u0430"); test("\U00010143", "\U00010143"); test("abcdefcdef", "fedcfedcba"); test("hello\U00010143\u0100\U00010143", "\U00010143\u0100\U00010143olleh"); } /** The strip group of functions allow stripping of either leading, trailing, or both leading and trailing elements. The $(D stripLeft) function will strip the $(D front) of the range, the $(D stripRight) function will strip the $(D back) of the range, while the $(D strip) function will strip both the $(D front) and $(D back) of the range. Note that the $(D strip) and $(D stripRight) functions require the range to be a $(LREF BidirectionalRange) range. All of these functions come in two varieties: one takes a target element, where the range will be stripped as long as this element can be found. The other takes a lambda predicate, where the range will be stripped as long as the predicate returns true. */ Range strip(Range, E)(Range range, E element) if (isBidirectionalRange!Range && is(typeof(range.front == element) : bool)) { return range.stripLeft(element).stripRight(element); } /// ditto Range strip(alias pred, Range)(Range range) if (isBidirectionalRange!Range && is(typeof(pred(range.back)) : bool)) { return range.stripLeft!pred().stripRight!pred(); } /// ditto Range stripLeft(Range, E)(Range range, E element) if (isInputRange!Range && is(typeof(range.front == element) : bool)) { return find!((auto ref a) => a != element)(range); } /// ditto Range stripLeft(alias pred, Range)(Range range) if (isInputRange!Range && is(typeof(pred(range.front)) : bool)) { import std.functional : not; return find!(not!pred)(range); } /// ditto Range stripRight(Range, E)(Range range, E element) if (isBidirectionalRange!Range && is(typeof(range.back == element) : bool)) { for (; !range.empty; range.popBack()) { if (range.back != element) break; } return range; } /// ditto Range stripRight(alias pred, Range)(Range range) if (isBidirectionalRange!Range && is(typeof(pred(range.back)) : bool)) { for (; !range.empty; range.popBack()) { if (!pred(range.back)) break; } return range; } /// Strip leading and trailing elements equal to the target element. @safe pure unittest { assert(" foobar ".strip(' ') == "foobar"); assert("00223.444500".strip('0') == "223.4445"); assert("ëëêéüŗōpéêëë".strip('ë') == "êéüŗōpéê"); assert([1, 1, 0, 1, 1].strip(1) == [0]); assert([0.0, 0.01, 0.01, 0.0].strip(0).length == 2); } /// Strip leading and trailing elements while the predicate returns true. @safe pure unittest { assert(" foobar ".strip!(a => a == ' ')() == "foobar"); assert("00223.444500".strip!(a => a == '0')() == "223.4445"); assert("ëëêéüŗōpéêëë".strip!(a => a == 'ë')() == "êéüŗōpéê"); assert([1, 1, 0, 1, 1].strip!(a => a == 1)() == [0]); assert([0.0, 0.01, 0.5, 0.6, 0.01, 0.0].strip!(a => a < 0.4)().length == 2); } /// Strip leading elements equal to the target element. @safe pure unittest { assert(" foobar ".stripLeft(' ') == "foobar "); assert("00223.444500".stripLeft('0') == "223.444500"); assert("ůůűniçodêéé".stripLeft('ů') == "űniçodêéé"); assert([1, 1, 0, 1, 1].stripLeft(1) == [0, 1, 1]); assert([0.0, 0.01, 0.01, 0.0].stripLeft(0).length == 3); } /// Strip leading elements while the predicate returns true. @safe pure unittest { assert(" foobar ".stripLeft!(a => a == ' ')() == "foobar "); assert("00223.444500".stripLeft!(a => a == '0')() == "223.444500"); assert("ůůűniçodêéé".stripLeft!(a => a == 'ů')() == "űniçodêéé"); assert([1, 1, 0, 1, 1].stripLeft!(a => a == 1)() == [0, 1, 1]); assert([0.0, 0.01, 0.10, 0.5, 0.6].stripLeft!(a => a < 0.4)().length == 2); } /// Strip trailing elements equal to the target element. @safe pure unittest { assert(" foobar ".stripRight(' ') == " foobar"); assert("00223.444500".stripRight('0') == "00223.4445"); assert("ùniçodêéé".stripRight('é') == "ùniçodê"); assert([1, 1, 0, 1, 1].stripRight(1) == [1, 1, 0]); assert([0.0, 0.01, 0.01, 0.0].stripRight(0).length == 3); } /// Strip trailing elements while the predicate returns true. @safe pure unittest { assert(" foobar ".stripRight!(a => a == ' ')() == " foobar"); assert("00223.444500".stripRight!(a => a == '0')() == "00223.4445"); assert("ùniçodêéé".stripRight!(a => a == 'é')() == "ùniçodê"); assert([1, 1, 0, 1, 1].stripRight!(a => a == 1)() == [1, 1, 0]); assert([0.0, 0.01, 0.10, 0.5, 0.6].stripRight!(a => a > 0.4)().length == 3); } // bringToFront /** The $(D bringToFront) function has considerable flexibility and usefulness. It can rotate elements in one buffer left or right, swap buffers of equal length, and even move elements across disjoint buffers of different types and different lengths. $(D bringToFront) takes two ranges $(D front) and $(D back), which may be of different types. Considering the concatenation of $(D front) and $(D back) one unified range, $(D bringToFront) rotates that unified range such that all elements in $(D back) are brought to the beginning of the unified range. The relative ordering of elements in $(D front) and $(D back), respectively, remains unchanged. Performs $(BIGOH max(front.length, back.length)) evaluations of $(D swap). Preconditions: Either $(D front) and $(D back) are disjoint, or $(D back) is reachable from $(D front) and $(D front) is not reachable from $(D back). Returns: The number of elements brought to the front, i.e., the length of $(D back). See_Also: $(WEB sgi.com/tech/stl/_rotate.html, STL's rotate) */ size_t bringToFront(Range1, Range2)(Range1 front, Range2 back) if (isInputRange!Range1 && isForwardRange!Range2) { enum bool sameHeadExists = is(typeof(front.sameHead(back))); size_t result; for (bool semidone; !front.empty && !back.empty; ) { static if (sameHeadExists) { if (front.sameHead(back)) break; // shortcut } // Swap elements until front and/or back ends. auto back0 = back.save; size_t nswaps; do { static if (sameHeadExists) { // Detect the stepping-over condition. if (front.sameHead(back0)) back0 = back.save; } swapFront(front, back); ++nswaps; front.popFront(); back.popFront(); } while (!front.empty && !back.empty); if (!semidone) result += nswaps; // Now deal with the remaining elements. if (back.empty) { if (front.empty) break; // Right side was shorter, which means that we've brought // all the back elements to the front. semidone = true; // Next pass: bringToFront(front, back0) to adjust the rest. back = back0; } else { assert(front.empty); // Left side was shorter. Let's step into the back. static if (is(Range1 == Take!Range2)) { front = take(back0, nswaps); } else { immutable subresult = bringToFront(take(back0, nswaps), back); if (!semidone) result += subresult; break; // done } } } return result; } /** The simplest use of $(D bringToFront) is for rotating elements in a buffer. For example: */ unittest { auto arr = [4, 5, 6, 7, 1, 2, 3]; auto p = bringToFront(arr[0 .. 4], arr[4 .. $]); assert(p == arr.length - 4); assert(arr == [ 1, 2, 3, 4, 5, 6, 7 ]); } /** The $(D front) range may actually "step over" the $(D back) range. This is very useful with forward ranges that cannot compute comfortably right-bounded subranges like $(D arr[0 .. 4]) above. In the example below, $(D r2) is a right subrange of $(D r1). */ unittest { import std.container : SList; auto list = SList!(int)(4, 5, 6, 7, 1, 2, 3); auto r1 = list[]; auto r2 = list[]; popFrontN(r2, 4); assert(equal(r2, [ 1, 2, 3 ])); bringToFront(r1, r2); assert(equal(list[], [ 1, 2, 3, 4, 5, 6, 7 ])); } /** Elements can be swapped across ranges of different types: */ unittest { import std.container : SList; auto list = SList!(int)(4, 5, 6, 7); auto vec = [ 1, 2, 3 ]; bringToFront(list[], vec); assert(equal(list[], [ 1, 2, 3, 4 ])); assert(equal(vec, [ 5, 6, 7 ])); } unittest { import std.conv : text; import std.random : Random, unpredictableSeed, uniform; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); // a more elaborate test { auto rnd = Random(unpredictableSeed); int[] a = new int[uniform(100, 200, rnd)]; int[] b = new int[uniform(100, 200, rnd)]; foreach (ref e; a) e = uniform(-100, 100, rnd); foreach (ref e; b) e = uniform(-100, 100, rnd); int[] c = a ~ b; // writeln("a= ", a); // writeln("b= ", b); auto n = bringToFront(c[0 .. a.length], c[a.length .. $]); //writeln("c= ", c); assert(n == b.length); assert(c == b ~ a, text(c, "\n", a, "\n", b)); } // different types, moveFront, no sameHead { static struct R(T) { T[] data; size_t i; @property { R save() { return this; } bool empty() { return i >= data.length; } T front() { return data[i]; } T front(real e) { return data[i] = cast(T) e; } } void popFront() { ++i; } } auto a = R!int([1, 2, 3, 4, 5]); auto b = R!real([6, 7, 8, 9]); auto n = bringToFront(a, b); assert(n == 4); assert(a.data == [6, 7, 8, 9, 1]); assert(b.data == [2, 3, 4, 5]); } // front steps over back { int[] arr, r1, r2; // back is shorter arr = [4, 5, 6, 7, 1, 2, 3]; r1 = arr; r2 = arr[4 .. $]; bringToFront(r1, r2) == 3 || assert(0); assert(equal(arr, [1, 2, 3, 4, 5, 6, 7])); // front is shorter arr = [5, 6, 7, 1, 2, 3, 4]; r1 = arr; r2 = arr[3 .. $]; bringToFront(r1, r2) == 4 || assert(0); assert(equal(arr, [1, 2, 3, 4, 5, 6, 7])); } } // SwapStrategy /** Defines the swapping strategy for algorithms that need to swap elements in a range (such as partition and sort). The strategy concerns the swapping of elements that are not the core concern of the algorithm. For example, consider an algorithm that sorts $(D [ "abc", "b", "aBc" ]) according to $(D toUpper(a) < toUpper(b)). That algorithm might choose to swap the two equivalent strings $(D "abc") and $(D "aBc"). That does not affect the sorting since both $(D [ "abc", "aBc", "b" ]) and $(D [ "aBc", "abc", "b" ]) are valid outcomes. Some situations require that the algorithm must NOT ever change the relative ordering of equivalent elements (in the example above, only $(D [ "abc", "aBc", "b" ]) would be the correct result). Such algorithms are called $(B stable). If the ordering algorithm may swap equivalent elements discretionarily, the ordering is called $(B unstable). Yet another class of algorithms may choose an intermediate tradeoff by being stable only on a well-defined subrange of the range. There is no established terminology for such behavior; this library calls it $(B semistable). Generally, the $(D stable) ordering strategy may be more costly in time and/or space than the other two because it imposes additional constraints. Similarly, $(D semistable) may be costlier than $(D unstable). As (semi-)stability is not needed very often, the ordering algorithms in this module parameterized by $(D SwapStrategy) all choose $(D SwapStrategy.unstable) as the default. */ enum SwapStrategy { /** Allows freely swapping of elements as long as the output satisfies the algorithm's requirements. */ unstable, /** In algorithms partitioning ranges in two, preserve relative ordering of elements only to the left of the partition point. */ semistable, /** Preserve the relative ordering of elements to the largest extent allowed by the algorithm's requirements. */ stable, } /** Eliminates elements at given offsets from $(D range) and returns the shortened range. In the simplest call, one element is removed. ---- int[] a = [ 3, 5, 7, 8 ]; assert(remove(a, 1) == [ 3, 7, 8 ]); assert(a == [ 3, 7, 8, 8 ]); ---- In the case above the element at offset $(D 1) is removed and $(D remove) returns the range smaller by one element. The original array has remained of the same length because all functions in $(D std.algorithm) only change $(I content), not $(I topology). The value $(D 8) is repeated because $(XREF algorithm, move) was invoked to move elements around and on integers $(D move) simply copies the source to the destination. To replace $(D a) with the effect of the removal, simply assign $(D a = remove(a, 1)). The slice will be rebound to the shorter array and the operation completes with maximal efficiency. Multiple indices can be passed into $(D remove). In that case, elements at the respective indices are all removed. The indices must be passed in increasing order, otherwise an exception occurs. ---- int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]; assert(remove(a, 1, 3, 5) == [ 0, 2, 4, 6, 7, 8, 9, 10 ]); ---- (Note how all indices refer to slots in the $(I original) array, not in the array as it is being progressively shortened.) Finally, any combination of integral offsets and tuples composed of two integral offsets can be passed in. ---- int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]; assert(remove(a, 1, tuple(3, 5), 9) == [ 0, 2, 6, 7, 8, 10 ]); ---- In this case, the slots at positions 1, 3, 4, and 9 are removed from the array. The tuple passes in a range closed to the left and open to the right (consistent with built-in slices), e.g. $(D tuple(3, 5)) means indices $(D 3) and $(D 4) but not $(D 5). If the need is to remove some elements in the range but the order of the remaining elements does not have to be preserved, you may want to pass $(D SwapStrategy.unstable) to $(D remove). ---- int[] a = [ 0, 1, 2, 3 ]; assert(remove!(SwapStrategy.unstable)(a, 1) == [ 0, 3, 2 ]); ---- In the case above, the element at slot $(D 1) is removed, but replaced with the last element of the range. Taking advantage of the relaxation of the stability requirement, $(D remove) moved elements from the end of the array over the slots to be removed. This way there is less data movement to be done which improves the execution time of the function. The function $(D remove) works on any forward range. The moving strategy is (listed from fastest to slowest): $(UL $(LI If $(D s == SwapStrategy.unstable && isRandomAccessRange!Range && hasLength!Range), then elements are moved from the end of the range into the slots to be filled. In this case, the absolute minimum of moves is performed.) $(LI Otherwise, if $(D s == SwapStrategy.unstable && isBidirectionalRange!Range && hasLength!Range), then elements are still moved from the end of the range, but time is spent on advancing between slots by repeated calls to $(D range.popFront).) $(LI Otherwise, elements are moved incrementally towards the front of $(D range); a given element is never moved several times, but more elements are moved than in the previous cases.)) */ Range remove (SwapStrategy s = SwapStrategy.stable, Range, Offset...) (Range range, Offset offset) if (s != SwapStrategy.stable && isBidirectionalRange!Range && hasLength!Range && Offset.length >= 1) { Tuple!(size_t, "pos", size_t, "len")[offset.length] blackouts; foreach (i, v; offset) { static if (is(typeof(v[0]) : size_t) && is(typeof(v[1]) : size_t)) { blackouts[i].pos = v[0]; blackouts[i].len = v[1] - v[0]; } else { static assert(is(typeof(v) : size_t), typeof(v).stringof); blackouts[i].pos = v; blackouts[i].len = 1; } static if (i > 0) { import std.exception : enforce; enforce(blackouts[i - 1].pos + blackouts[i - 1].len <= blackouts[i].pos, "remove(): incorrect ordering of elements to remove"); } } size_t left = 0, right = offset.length - 1; auto tgt = range.save; size_t steps = 0; while (left <= right) { // Look for a blackout on the right if (blackouts[right].pos + blackouts[right].len >= range.length) { range.popBackN(blackouts[right].len); // Since right is unsigned, we must check for this case, otherwise // we might turn it into size_t.max and the loop condition will not // fail when it should. if (right > 0) { --right; continue; } else break; } // Advance to next blackout on the left assert(blackouts[left].pos >= steps); tgt.popFrontN(blackouts[left].pos - steps); steps = blackouts[left].pos; auto toMove = min( blackouts[left].len, range.length - (blackouts[right].pos + blackouts[right].len)); foreach (i; 0 .. toMove) { move(range.back, tgt.front); range.popBack(); tgt.popFront(); } steps += toMove; if (toMove == blackouts[left].len) { // Filled the entire left hole ++left; continue; } } return range; } // Ditto Range remove (SwapStrategy s = SwapStrategy.stable, Range, Offset...) (Range range, Offset offset) if (s == SwapStrategy.stable && isForwardRange!Range && Offset.length >= 1) { import std.exception : enforce; auto result = range; auto src = range, tgt = range; size_t pos; foreach (pass, i; offset) { static if (is(typeof(i[0])) && is(typeof(i[1]))) { auto from = i[0], delta = i[1] - i[0]; } else { auto from = i; enum delta = 1; } enforce(pos <= from, "remove(): incorrect ordering of elements to remove"); if (pass > 0) { for (; pos < from; ++pos, src.popFront(), tgt.popFront()) { move(src.front, tgt.front); } } else { src.popFrontN(from); tgt.popFrontN(from); pos = from; } // now skip source to the "to" position src.popFrontN(delta); pos += delta; foreach (j; 0 .. delta) result.popBack(); } // leftover move moveAll(src, tgt); return result; } unittest { import std.exception : assertThrown; // http://d.puremagic.com/issues/show_bug.cgi?id=10173 int[] test = iota(0, 10).array(); assertThrown(remove!(SwapStrategy.stable)(test, tuple(2, 4), tuple(1, 3))); assertThrown(remove!(SwapStrategy.unstable)(test, tuple(2, 4), tuple(1, 3))); assertThrown(remove!(SwapStrategy.stable)(test, 2, 4, 1, 3)); assertThrown(remove!(SwapStrategy.unstable)(test, 2, 4, 1, 3)); } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]; //writeln(remove!(SwapStrategy.stable)(a, 1)); a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]; assert(remove!(SwapStrategy.stable)(a, 1) == [ 0, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]); a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]; assert(remove!(SwapStrategy.unstable)(a, 0, 10) == [ 9, 1, 2, 3, 4, 5, 6, 7, 8 ]); a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]; assert(remove!(SwapStrategy.unstable)(a, 0, tuple(9, 11)) == [ 8, 1, 2, 3, 4, 5, 6, 7 ]); // http://d.puremagic.com/issues/show_bug.cgi?id=5224 a = [ 1, 2, 3, 4 ]; assert(remove!(SwapStrategy.unstable)(a, 2) == [ 1, 2, 4 ]); a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]; //writeln(remove!(SwapStrategy.stable)(a, 1, 5)); a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]; assert(remove!(SwapStrategy.stable)(a, 1, 5) == [ 0, 2, 3, 4, 6, 7, 8, 9, 10 ]); a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]; //writeln(remove!(SwapStrategy.stable)(a, 1, 3, 5)); a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]; assert(remove!(SwapStrategy.stable)(a, 1, 3, 5) == [ 0, 2, 4, 6, 7, 8, 9, 10]); a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]; //writeln(remove!(SwapStrategy.stable)(a, 1, tuple(3, 5))); a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]; assert(remove!(SwapStrategy.stable)(a, 1, tuple(3, 5)) == [ 0, 2, 5, 6, 7, 8, 9, 10]); a = iota(0, 10).array(); assert(remove!(SwapStrategy.unstable)(a, tuple(1, 4), tuple(6, 7)) == [0, 9, 8, 7, 4, 5]); } unittest { // Issue 11576 auto arr = [1,2,3]; arr = arr.remove!(SwapStrategy.unstable)(2); assert(arr == [1,2]); } /** Reduces the length of the bidirectional range $(D range) by removing elements that satisfy $(D pred). If $(D s = SwapStrategy.unstable), elements are moved from the right end of the range over the elements to eliminate. If $(D s = SwapStrategy.stable) (the default), elements are moved progressively to front such that their relative order is preserved. Returns the filtered range. */ Range remove(alias pred, SwapStrategy s = SwapStrategy.stable, Range) (Range range) if (isBidirectionalRange!Range) { auto result = range; static if (s != SwapStrategy.stable) { for (;!range.empty;) { if (!unaryFun!pred(range.front)) { range.popFront(); continue; } move(range.back, range.front); range.popBack(); result.popBack(); } } else { auto tgt = range; for (; !range.empty; range.popFront()) { if (unaryFun!(pred)(range.front)) { // yank this guy result.popBack(); continue; } // keep this guy move(range.front, tgt.front); tgt.popFront(); } } return result; } /// unittest { int[] a = [ 1, 2, 3, 2, 3, 4, 5, 2, 5, 6 ]; assert(remove!("a == 2")(a) == [ 1, 3, 3, 4, 5, 5, 6 ]); } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int[] a = [ 1, 2, 3, 2, 3, 4, 5, 2, 5, 6 ]; assert(remove!("a == 2", SwapStrategy.unstable)(a) == [ 1, 6, 3, 5, 3, 4, 5 ]); a = [ 1, 2, 3, 2, 3, 4, 5, 2, 5, 6 ]; //writeln(remove!("a != 2", SwapStrategy.stable)(a)); assert(remove!("a == 2", SwapStrategy.stable)(a) == [ 1, 3, 3, 4, 5, 5, 6 ]); } // eliminate /* * Reduces $(D r) by overwriting all elements $(D x) that satisfy $(D pred(x)). Returns the reduced range. Example: ---- int[] arr = [ 1, 2, 3, 4, 5 ]; // eliminate even elements auto r = eliminate!("(a & 1) == 0")(arr); assert(r == [ 1, 3, 5 ]); assert(arr == [ 1, 3, 5, 4, 5 ]); ---- */ // Range eliminate(alias pred, // SwapStrategy ss = SwapStrategy.unstable, // alias move = .move, // Range)(Range r) // { // alias It = Iterator!(Range); // static void assignIter(It a, It b) { move(*b, *a); } // return range(begin(r), partitionold!(not!(pred), ss, assignIter, Range)(r)); // } // unittest // { // int[] arr = [ 1, 2, 3, 4, 5 ]; // // eliminate even elements // auto r = eliminate!("(a & 1) == 0")(arr); // assert(find!("(a & 1) == 0")(r).empty); // } /* * Reduces $(D r) by overwriting all elements $(D x) that satisfy $(D pred(x, v)). Returns the reduced range. Example: ---- int[] arr = [ 1, 2, 3, 2, 4, 5, 2 ]; // keep elements different from 2 auto r = eliminate(arr, 2); assert(r == [ 1, 3, 4, 5 ]); assert(arr == [ 1, 3, 4, 5, 4, 5, 2 ]); ---- */ // Range eliminate(alias pred = "a == b", // SwapStrategy ss = SwapStrategy.semistable, // Range, Value)(Range r, Value v) // { // alias It = Iterator!(Range); // bool comp(typeof(*It) a) { return !binaryFun!(pred)(a, v); } // static void assignIterB(It a, It b) { *a = *b; } // return range(begin(r), // partitionold!(comp, // ss, assignIterB, Range)(r)); // } // unittest // { // int[] arr = [ 1, 2, 3, 2, 4, 5, 2 ]; // // keep elements different from 2 // auto r = eliminate(arr, 2); // assert(r == [ 1, 3, 4, 5 ]); // assert(arr == [ 1, 3, 4, 5, 4, 5, 2 ]); // } // partition /** Partitions a range in two using $(D pred) as a predicate. Specifically, reorders the range $(D r = [left, right$(RPAREN)) using $(D swap) such that all elements $(D i) for which $(D pred(i)) is $(D true) come before all elements $(D j) for which $(D pred(j)) returns $(D false). Performs $(BIGOH r.length) (if unstable or semistable) or $(BIGOH r.length * log(r.length)) (if stable) evaluations of $(D less) and $(D swap). The unstable version computes the minimum possible evaluations of $(D swap) (roughly half of those performed by the semistable version). Returns: The right part of $(D r) after partitioning. If $(D ss == SwapStrategy.stable), $(D partition) preserves the relative ordering of all elements $(D a), $(D b) in $(D r) for which $(D pred(a) == pred(b)). If $(D ss == SwapStrategy.semistable), $(D partition) preserves the relative ordering of all elements $(D a), $(D b) in the left part of $(D r) for which $(D pred(a) == pred(b)). See_Also: STL's $(WEB sgi.com/tech/stl/_partition.html, _partition)$(BR) STL's $(WEB sgi.com/tech/stl/stable_partition.html, stable_partition) */ Range partition(alias predicate, SwapStrategy ss = SwapStrategy.unstable, Range)(Range r) if ((ss == SwapStrategy.stable && isRandomAccessRange!(Range)) || (ss != SwapStrategy.stable && isForwardRange!(Range))) { alias pred = unaryFun!(predicate); if (r.empty) return r; static if (ss == SwapStrategy.stable) { if (r.length == 1) { if (pred(r.front)) r.popFront(); return r; } const middle = r.length / 2; alias recurse = .partition!(pred, ss, Range); auto lower = recurse(r[0 .. middle]); auto upper = recurse(r[middle .. $]); bringToFront(lower, r[middle .. r.length - upper.length]); return r[r.length - lower.length - upper.length .. r.length]; } else static if (ss == SwapStrategy.semistable) { for (; !r.empty; r.popFront()) { // skip the initial portion of "correct" elements if (pred(r.front)) continue; // hit the first "bad" element auto result = r; for (r.popFront(); !r.empty; r.popFront()) { if (!pred(r.front)) continue; swap(result.front, r.front); result.popFront(); } return result; } return r; } else // ss == SwapStrategy.unstable { // Inspired from www.stepanovpapers.com/PAM3-partition_notes.pdf, // section "Bidirectional Partition Algorithm (Hoare)" auto result = r; for (;;) { for (;;) { if (r.empty) return result; if (!pred(r.front)) break; r.popFront(); result.popFront(); } // found the left bound assert(!r.empty); for (;;) { if (pred(r.back)) break; r.popBack(); if (r.empty) return result; } // found the right bound, swap & make progress static if (is(typeof(swap(r.front, r.back)))) { swap(r.front, r.back); } else { auto t1 = moveFront(r), t2 = moveBack(r); r.front = t2; r.back = t1; } r.popFront(); result.popFront(); r.popBack(); } } } /// unittest { import std.conv : text; auto Arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; auto arr = Arr.dup; static bool even(int a) { return (a & 1) == 0; } // Partition arr such that even numbers come first auto r = partition!(even)(arr); // Now arr is separated in evens and odds. // Numbers may have become shuffled due to instability assert(r == arr[5 .. $]); assert(count!(even)(arr[0 .. 5]) == 5); assert(find!(even)(r).empty); // Can also specify the predicate as a string. // Use 'a' as the predicate argument name arr[] = Arr[]; r = partition!(q{(a & 1) == 0})(arr); assert(r == arr[5 .. $]); // Now for a stable partition: arr[] = Arr[]; r = partition!(q{(a & 1) == 0}, SwapStrategy.stable)(arr); // Now arr is [2 4 6 8 10 1 3 5 7 9], and r points to 1 assert(arr == [2, 4, 6, 8, 10, 1, 3, 5, 7, 9] && r == arr[5 .. $]); // In case the predicate needs to hold its own state, use a delegate: arr[] = Arr[]; int x = 3; // Put stuff greater than 3 on the left bool fun(int a) { return a > x; } r = partition!(fun, SwapStrategy.semistable)(arr); // Now arr is [4 5 6 7 8 9 10 2 3 1] and r points to 2 assert(arr == [4, 5, 6, 7, 8, 9, 10, 2, 3, 1] && r == arr[7 .. $]); } unittest { static bool even(int a) { return (a & 1) == 0; } // test with random data auto a = rndstuff!int(); partition!even(a); assert(isPartitioned!even(a)); auto b = rndstuff!string(); partition!`a.length < 5`(b); assert(isPartitioned!`a.length < 5`(b)); } /** Returns $(D true) if $(D r) is partitioned according to predicate $(D pred). */ bool isPartitioned(alias pred, Range)(Range r) if (isForwardRange!(Range)) { for (; !r.empty; r.popFront()) { if (unaryFun!(pred)(r.front)) continue; for (r.popFront(); !r.empty; r.popFront()) { if (unaryFun!(pred)(r.front)) return false; } break; } return true; } /// unittest { int[] r = [ 1, 3, 5, 7, 8, 2, 4, ]; assert(isPartitioned!"a & 1"(r)); } // partition3 /** Rearranges elements in $(D r) in three adjacent ranges and returns them. The first and leftmost range only contains elements in $(D r) less than $(D pivot). The second and middle range only contains elements in $(D r) that are equal to $(D pivot). Finally, the third and rightmost range only contains elements in $(D r) that are greater than $(D pivot). The less-than test is defined by the binary function $(D less). BUGS: stable $(D partition3) has not been implemented yet. */ auto partition3(alias less = "a < b", SwapStrategy ss = SwapStrategy.unstable, Range, E) (Range r, E pivot) if (ss == SwapStrategy.unstable && isRandomAccessRange!Range && hasSwappableElements!Range && hasLength!Range && is(typeof(binaryFun!less(r.front, pivot)) == bool) && is(typeof(binaryFun!less(pivot, r.front)) == bool) && is(typeof(binaryFun!less(r.front, r.front)) == bool)) { // The algorithm is described in "Engineering a sort function" by // Jon Bentley et al, pp 1257. alias lessFun = binaryFun!less; size_t i, j, k = r.length, l = k; bigloop: for (;;) { for (;; ++j) { if (j == k) break bigloop; assert(j < r.length); if (lessFun(r[j], pivot)) continue; if (lessFun(pivot, r[j])) break; swap(r[i++], r[j]); } assert(j < k); for (;;) { assert(k > 0); if (!lessFun(pivot, r[--k])) { if (lessFun(r[k], pivot)) break; swap(r[k], r[--l]); } if (j == k) break bigloop; } // Here we know r[j] > pivot && r[k] < pivot swap(r[j++], r[k]); } // Swap the equal ranges from the extremes into the middle auto strictlyLess = j - i, strictlyGreater = l - k; auto swapLen = min(i, strictlyLess); swapRanges(r[0 .. swapLen], r[j - swapLen .. j]); swapLen = min(r.length - l, strictlyGreater); swapRanges(r[k .. k + swapLen], r[r.length - swapLen .. r.length]); return tuple(r[0 .. strictlyLess], r[strictlyLess .. r.length - strictlyGreater], r[r.length - strictlyGreater .. r.length]); } /// unittest { auto a = [ 8, 3, 4, 1, 4, 7, 4 ]; auto pieces = partition3(a, 4); assert(pieces[0] == [ 1, 3 ]); assert(pieces[1] == [ 4, 4, 4 ]); assert(pieces[2] == [ 8, 7 ]); } unittest { import std.random : uniform; auto a = new int[](uniform(0, 100)); foreach (ref e; a) { e = uniform(0, 50); } auto pieces = partition3(a, 25); assert(pieces[0].length + pieces[1].length + pieces[2].length == a.length); foreach (e; pieces[0]) { assert(e < 25); } foreach (e; pieces[1]) { assert(e == 25); } foreach (e; pieces[2]) { assert(e > 25); } } // topN /** Reorders the range $(D r) using $(D swap) such that $(D r[nth]) refers to the element that would fall there if the range were fully sorted. In addition, it also partitions $(D r) such that all elements $(D e1) from $(D r[0]) to $(D r[nth]) satisfy $(D !less(r[nth], e1)), and all elements $(D e2) from $(D r[nth]) to $(D r[r.length]) satisfy $(D !less(e2, r[nth])). Effectively, it finds the nth smallest (according to $(D less)) elements in $(D r). Performs an expected $(BIGOH r.length) (if unstable) or $(BIGOH r.length * log(r.length)) (if stable) evaluations of $(D less) and $(D swap). If $(D n >= r.length), the algorithm has no effect. See_Also: $(WEB sgi.com/tech/stl/nth_element.html, STL's nth_element) BUGS: Stable topN has not been implemented yet. */ void topN(alias less = "a < b", SwapStrategy ss = SwapStrategy.unstable, Range)(Range r, size_t nth) if (isRandomAccessRange!(Range) && hasLength!Range) { import std.random : uniform; static assert(ss == SwapStrategy.unstable, "Stable topN not yet implemented"); while (r.length > nth) { auto pivot = uniform(0, r.length); swap(r[pivot], r.back); assert(!binaryFun!(less)(r.back, r.back)); auto right = partition!((a) => binaryFun!less(a, r.back), ss)(r); assert(right.length >= 1); swap(right.front, r.back); pivot = r.length - right.length; if (pivot == nth) { return; } if (pivot < nth) { ++pivot; r = r[pivot .. $]; nth -= pivot; } else { assert(pivot < r.length); r = r[0 .. pivot]; } } } /// unittest { int[] v = [ 25, 7, 9, 2, 0, 5, 21 ]; auto n = 4; topN!"a < b"(v, n); assert(v[n] == 9); } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); //scope(failure) writeln(stderr, "Failure testing algorithm"); //auto v = ([ 25, 7, 9, 2, 0, 5, 21 ]).dup; int[] v = [ 7, 6, 5, 4, 3, 2, 1, 0 ]; ptrdiff_t n = 3; topN!("a < b")(v, n); assert(reduce!max(v[0 .. n]) <= v[n]); assert(reduce!min(v[n + 1 .. $]) >= v[n]); // v = ([3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5]).dup; n = 3; topN(v, n); assert(reduce!max(v[0 .. n]) <= v[n]); assert(reduce!min(v[n + 1 .. $]) >= v[n]); // v = ([3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5]).dup; n = 1; topN(v, n); assert(reduce!max(v[0 .. n]) <= v[n]); assert(reduce!min(v[n + 1 .. $]) >= v[n]); // v = ([3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5]).dup; n = v.length - 1; topN(v, n); assert(v[n] == 7); // v = ([3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5]).dup; n = 0; topN(v, n); assert(v[n] == 1); double[][] v1 = [[-10, -5], [-10, -3], [-10, -5], [-10, -4], [-10, -5], [-9, -5], [-9, -3], [-9, -5],]; // double[][] v1 = [ [-10, -5], [-10, -4], [-9, -5], [-9, -5], // [-10, -5], [-10, -3], [-10, -5], [-9, -3],]; double[]*[] idx = [ &v1[0], &v1[1], &v1[2], &v1[3], &v1[4], &v1[5], &v1[6], &v1[7], ]; auto mid = v1.length / 2; topN!((a, b){ return (*a)[1] < (*b)[1]; })(idx, mid); foreach (e; idx[0 .. mid]) assert((*e)[1] <= (*idx[mid])[1]); foreach (e; idx[mid .. $]) assert((*e)[1] >= (*idx[mid])[1]); } unittest { import std.random : uniform; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); int[] a = new int[uniform(1, 10000)]; foreach (ref e; a) e = uniform(-1000, 1000); auto k = uniform(0, a.length); topN(a, k); if (k > 0) { auto left = reduce!max(a[0 .. k]); assert(left <= a[k]); } if (k + 1 < a.length) { auto right = reduce!min(a[k + 1 .. $]); assert(right >= a[k]); } } /** Stores the smallest elements of the two ranges in the left-hand range. */ void topN(alias less = "a < b", SwapStrategy ss = SwapStrategy.unstable, Range1, Range2)(Range1 r1, Range2 r2) if (isRandomAccessRange!(Range1) && hasLength!Range1 && isInputRange!Range2 && is(ElementType!Range1 == ElementType!Range2)) { import std.container : BinaryHeap; static assert(ss == SwapStrategy.unstable, "Stable topN not yet implemented"); auto heap = BinaryHeap!Range1(r1); for (; !r2.empty; r2.popFront()) { heap.conditionalInsert(r2.front); } } /// unittest { int[] a = [ 5, 7, 2, 6, 7 ]; int[] b = [ 2, 1, 5, 6, 7, 3, 0 ]; topN(a, b); sort(a); assert(a == [0, 1, 2, 2, 3]); } // sort /** Sorts a random-access range according to the predicate $(D less). Performs $(BIGOH r.length * log(r.length)) evaluations of $(D less). Stable sorting requires $(D hasAssignableElements!Range) to be true. $(D sort) returns a $(XREF range, SortedRange) over the original range, which functions that can take advantage of sorted data can then use to know that the range is sorted and adjust accordingly. The $(XREF range, SortedRange) is a wrapper around the original range, so both it and the original range are sorted, but other functions won't know that the original range has been sorted, whereas they $(I can) know that $(XREF range, SortedRange) has been sorted. The predicate is expected to satisfy certain rules in order for $(D sort) to behave as expected - otherwise, the program may fail on certain inputs (but not others) when not compiled in release mode, due to the cursory $(D assumeSorted) check. Specifically, $(D sort) expects $(D less(a,b) && less(b,c)) to imply $(D less(a,c)) (transitivity), and, conversely, $(D !less(a,b) && !less(b,c)) to imply $(D !less(a,c)). Note that the default predicate ($(D "a < b")) does not always satisfy these conditions for floating point types, because the expression will always be $(D false) when either $(D a) or $(D b) is NaN. Returns: The initial range wrapped as a $(D SortedRange) with the predicate $(D binaryFun!less). Algorithms: $(WEB en.wikipedia.org/wiki/Introsort) is used for unstable sorting and $(WEB en.wikipedia.org/wiki/Timsort, Timsort) is used for stable sorting. Each algorithm has benefits beyond stability. Introsort is generally faster but Timsort may achieve greater speeds on data with low entropy or if predicate calls are expensive. Introsort performs no allocations whereas Timsort will perform one or more allocations per call. Both algorithms have $(BIGOH n log n) worst-case time complexity. See_Also: $(XREF range, assumeSorted)$(BR) $(XREF range, SortedRange)$(BR) $(XREF algorithm, SwapStrategy)$(BR) $(XREF functional, binaryFun) */ SortedRange!(Range, less) sort(alias less = "a < b", SwapStrategy ss = SwapStrategy.unstable, Range)(Range r) if (((ss == SwapStrategy.unstable && (hasSwappableElements!Range || hasAssignableElements!Range)) || (ss != SwapStrategy.unstable && hasAssignableElements!Range)) && isRandomAccessRange!Range && hasSlicing!Range && hasLength!Range) /+ Unstable sorting uses the quicksort algorithm, which uses swapAt, which either uses swap(...), requiring swappable elements, or just swaps using assignment. Stable sorting uses TimSort, which needs to copy elements into a buffer, requiring assignable elements. +/ { alias lessFun = binaryFun!(less); alias LessRet = typeof(lessFun(r.front, r.front)); // instantiate lessFun static if (is(LessRet == bool)) { import std.conv : text; static if (ss == SwapStrategy.unstable) quickSortImpl!(lessFun)(r, cast(real)r.length); else //use Tim Sort for semistable & stable TimSortImpl!(lessFun, Range).sort(r, null); enum maxLen = 8; assert(isSorted!lessFun(r), text("Failed to sort range of type ", Range.stringof, ". Actual result is: ", r[0 .. r.length > maxLen ? maxLen : r.length ], r.length > maxLen ? "..." : "")); } else { static assert(false, "Invalid predicate passed to sort: "~less); } return assumeSorted!less(r); } /// unittest { int[] array = [ 1, 2, 3, 4 ]; // sort in descending order sort!("a > b")(array); assert(array == [ 4, 3, 2, 1 ]); // sort in ascending order sort(array); assert(array == [ 1, 2, 3, 4 ]); // sort with a delegate bool myComp(int x, int y) { return x > y; } sort!(myComp)(array); assert(array == [ 4, 3, 2, 1 ]); // Showcase stable sorting string[] words = [ "aBc", "a", "abc", "b", "ABC", "c" ]; sort!("toUpper(a) < toUpper(b)", SwapStrategy.stable)(words); assert(words == [ "a", "aBc", "abc", "ABC", "b", "c" ]); } unittest { import std.random : Random, unpredictableSeed, uniform; import std.string : toUpper; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); // sort using delegate int a[] = new int[100]; auto rnd = Random(unpredictableSeed); foreach (ref e; a) { e = uniform(-100, 100, rnd); } int i = 0; bool greater2(int a, int b) { return a + i > b + i; } bool delegate(int, int) greater = &greater2; sort!(greater)(a); assert(isSorted!(greater)(a)); // sort using string sort!("a < b")(a); assert(isSorted!("a < b")(a)); // sort using function; all elements equal foreach (ref e; a) { e = 5; } static bool less(int a, int b) { return a < b; } sort!(less)(a); assert(isSorted!(less)(a)); string[] words = [ "aBc", "a", "abc", "b", "ABC", "c" ]; bool lessi(string a, string b) { return toUpper(a) < toUpper(b); } sort!(lessi, SwapStrategy.stable)(words); assert(words == [ "a", "aBc", "abc", "ABC", "b", "c" ]); // sort using ternary predicate //sort!("b - a")(a); //assert(isSorted!(less)(a)); a = rndstuff!(int)(); sort(a); assert(isSorted(a)); auto b = rndstuff!(string)(); sort!("toLower(a) < toLower(b)")(b); assert(isSorted!("toUpper(a) < toUpper(b)")(b)); { // Issue 10317 enum E_10317 { a, b } auto a_10317 = new E_10317[10]; sort(a_10317); } { // Issue 7767 // Unstable sort should complete without an excessive number of predicate calls // This would suggest it's running in quadratic time // Compilation error if predicate is not static, i.e. a nested function static uint comp; static bool pred(size_t a, size_t b) { ++comp; return a < b; } size_t[] arr; arr.length = 1024; foreach(k; 0..arr.length) arr[k] = k; swapRanges(arr[0..$/2], arr[$/2..$]); sort!(pred, SwapStrategy.unstable)(arr); assert(comp < 25_000); } { bool proxySwapCalled; struct S { int i; alias i this; void proxySwap(ref S other) { swap(i, other.i); proxySwapCalled = true; } @disable void opAssign(S value); } alias R = S[]; R r = [S(3), S(2), S(1)]; static assert(hasSwappableElements!R); static assert(!hasAssignableElements!R); r.sort(); assert(proxySwapCalled); } } private template validPredicates(E, less...) { static if (less.length == 0) enum validPredicates = true; else static if (less.length == 1 && is(typeof(less[0]) == SwapStrategy)) enum validPredicates = true; else enum validPredicates = is(typeof((E a, E b){ bool r = binaryFun!(less[0])(a, b); })) && validPredicates!(E, less[1 .. $]); } /** $(D void multiSort(Range)(Range r) if (validPredicates!(ElementType!Range, less));) Sorts a range by multiple keys. The call $(D multiSort!("a.id < b.id", "a.date > b.date")(r)) sorts the range $(D r) by $(D id) ascending, and sorts elements that have the same $(D id) by $(D date) descending. Such a call is equivalent to $(D sort!"a.id != b.id ? a.id < b.id : a.date > b.date"(r)), but $(D multiSort) is faster because it does fewer comparisons (in addition to being more convenient). */ template multiSort(less...) //if (less.length > 1) { void multiSort(Range)(Range r) if (validPredicates!(ElementType!Range, less)) { static if (is(typeof(less[$ - 1]) == SwapStrategy)) { enum ss = less[$ - 1]; alias funs = less[0 .. $ - 1]; } else { alias ss = SwapStrategy.unstable; alias funs = less; } alias lessFun = binaryFun!(funs[0]); static if (funs.length > 1) { while (r.length > 1) { auto p = getPivot!lessFun(r); auto t = partition3!(less[0], ss)(r, r[p]); if (t[0].length <= t[2].length) { .multiSort!less(t[0]); .multiSort!(less[1 .. $])(t[1]); r = t[2]; } else { .multiSort!(less[1 .. $])(t[1]); .multiSort!less(t[2]); r = t[0]; } } } else { sort!(lessFun, ss)(r); } } } /// unittest { static struct Point { int x, y; } auto pts1 = [ Point(0, 0), Point(5, 5), Point(0, 1), Point(0, 2) ]; auto pts2 = [ Point(0, 0), Point(0, 1), Point(0, 2), Point(5, 5) ]; multiSort!("a.x < b.x", "a.y < b.y", SwapStrategy.unstable)(pts1); assert(pts1 == pts2); } unittest { static struct Point { int x, y; } auto pts1 = [ Point(5, 6), Point(1, 0), Point(5, 7), Point(1, 1), Point(1, 2), Point(0, 1) ]; auto pts2 = [ Point(0, 1), Point(1, 0), Point(1, 1), Point(1, 2), Point(5, 6), Point(5, 7) ]; static assert(validPredicates!(Point, "a.x < b.x", "a.y < b.y")); multiSort!("a.x < b.x", "a.y < b.y", SwapStrategy.unstable)(pts1); assert(pts1 == pts2); auto pts3 = indexed(pts1, iota(pts1.length)); multiSort!("a.x < b.x", "a.y < b.y", SwapStrategy.unstable)(pts3); assert(equal(pts3, pts2)); } unittest //issue 9160 (L-value only comparators) { static struct A { int x; int y; } static bool byX(const ref A lhs, const ref A rhs) { return lhs.x < rhs.x; } static bool byY(const ref A lhs, const ref A rhs) { return lhs.y < rhs.y; } auto points = [ A(4, 1), A(2, 4)]; multiSort!(byX, byY)(points); assert(points[0] == A(2, 4)); assert(points[1] == A(4, 1)); } private size_t getPivot(alias less, Range)(Range r) { // This algorithm sorts the first, middle and last elements of r, // then returns the index of the middle element. In effect, it uses the // median-of-three heuristic. alias pred = binaryFun!(less); immutable len = r.length; immutable size_t mid = len / 2; immutable uint result = ((cast(uint) (pred(r[0], r[mid]))) << 2) | ((cast(uint) (pred(r[0], r[len - 1]))) << 1) | (cast(uint) (pred(r[mid], r[len - 1]))); switch(result) { case 0b001: swapAt(r, 0, len - 1); swapAt(r, 0, mid); break; case 0b110: swapAt(r, mid, len - 1); break; case 0b011: swapAt(r, 0, mid); break; case 0b100: swapAt(r, mid, len - 1); swapAt(r, 0, mid); break; case 0b000: swapAt(r, 0, len - 1); break; case 0b111: break; default: assert(0); } return mid; } private void optimisticInsertionSort(alias less, Range)(Range r) { alias pred = binaryFun!(less); if (r.length < 2) { return; } immutable maxJ = r.length - 1; for (size_t i = r.length - 2; i != size_t.max; --i) { size_t j = i; static if (hasAssignableElements!Range) { auto temp = r[i]; for (; j < maxJ && pred(r[j + 1], temp); ++j) { r[j] = r[j + 1]; } r[j] = temp; } else { for (; j < maxJ && pred(r[j + 1], r[j]); ++j) { swapAt(r, j, j + 1); } } } } unittest { import std.random : Random, uniform; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); auto rnd = Random(1); int a[] = new int[uniform(100, 200, rnd)]; foreach (ref e; a) { e = uniform(-100, 100, rnd); } optimisticInsertionSort!(binaryFun!("a < b"), int[])(a); assert(isSorted(a)); } //private void swapAt(R)(R r, size_t i1, size_t i2) { static if (is(typeof(&r[i1]))) { swap(r[i1], r[i2]); } else { if (i1 == i2) return; auto t1 = moveAt(r, i1); auto t2 = moveAt(r, i2); r[i2] = t1; r[i1] = t2; } } private void quickSortImpl(alias less, Range)(Range r, real depth) { alias Elem = ElementType!(Range); enum size_t optimisticInsertionSortGetsBetter = 25; static assert(optimisticInsertionSortGetsBetter >= 1); // partition while (r.length > optimisticInsertionSortGetsBetter) { if(depth < 1.0) { HeapSortImpl!(less, Range).heapSort(r); return; } depth *= (2.0/3.0); const pivotIdx = getPivot!(less)(r); auto pivot = r[pivotIdx]; alias pred = binaryFun!(less); // partition swapAt(r, pivotIdx, r.length - 1); size_t lessI = size_t.max, greaterI = r.length - 1; while (true) { while (pred(r[++lessI], pivot)) {} while (greaterI > 0 && pred(pivot, r[--greaterI])) {} if (lessI >= greaterI) { break; } swapAt(r, lessI, greaterI); } swapAt(r, r.length - 1, lessI); auto right = r[lessI + 1 .. r.length]; auto left = r[0 .. min(lessI, greaterI + 1)]; if (right.length > left.length) { swap(left, right); } .quickSortImpl!(less, Range)(right, depth); r = left; } // residual sort static if (optimisticInsertionSortGetsBetter > 1) { optimisticInsertionSort!(less, Range)(r); } } // Bottom-Up Heap-Sort Implementation private template HeapSortImpl(alias less, Range) { static assert(isRandomAccessRange!Range); static assert(hasLength!Range); static assert(hasSwappableElements!Range || hasAssignableElements!Range); alias lessFun = binaryFun!less; void heapSort(Range r) { // If true, there is nothing to do if(r.length < 2) return; // Build Heap size_t i = r.length / 2; while(i > 0) sift(r, --i, r.length); // Sort i = r.length - 1; while(i > 0) { swapAt(r, 0, i); sift(r, 0, i); --i; } } void sift(Range r, size_t parent, immutable size_t end) { immutable root = parent; size_t child = void; // Sift down while(true) { child = parent * 2 + 1; if(child >= end) break; if(child + 1 < end && lessFun(r[child], r[child + 1])) child += 1; swapAt(r, parent, child); parent = child; } child = parent; // Sift up while(child > root) { parent = (child - 1) / 2; if(lessFun(r[parent], r[child])) { swapAt(r, parent, child); child = parent; } else break; } } } // Tim Sort implementation private template TimSortImpl(alias pred, R) { import core.bitop : bsr; static assert(isRandomAccessRange!R); static assert(hasLength!R); static assert(hasSlicing!R); static assert(hasAssignableElements!R); alias T = ElementType!R; alias less = binaryFun!pred; bool greater(T a, T b){ return less(b, a); } bool greaterEqual(T a, T b){ return !less(a, b); } bool lessEqual(T a, T b){ return !less(b, a); } enum minimalMerge = 128; enum minimalGallop = 7; enum minimalStorage = 256; enum stackSize = 40; struct Slice{ size_t base, length; } // Entry point for tim sort void sort(R range, T[] temp) { // Do insertion sort on small range if (range.length <= minimalMerge) { binaryInsertionSort(range); return; } immutable minRun = minRunLength(range.length); immutable minTemp = min(range.length / 2, minimalStorage); size_t minGallop = minimalGallop; Slice[stackSize] stack = void; size_t stackLen = 0; // Allocate temporary memory if not provided by user if (temp.length < minTemp) { if (__ctfe) temp.length = minTemp; else temp = uninitializedArray!(T[])(minTemp); } for (size_t i = 0; i < range.length; ) { // Find length of first run in list size_t runLen = firstRun(range[i .. range.length]); // If run has less than minRun elements, extend using insertion sort if (runLen < minRun) { // Do not run farther than the length of the range immutable force = range.length - i > minRun ? minRun : range.length - i; binaryInsertionSort(range[i .. i + force], runLen); runLen = force; } // Push run onto stack stack[stackLen++] = Slice(i, runLen); i += runLen; // Collapse stack so that (e1 >= e2 + e3 && e2 >= e3) // STACK is | ... e1 e2 e3 > while (stackLen > 1) { immutable run3 = stackLen - 1; immutable run2 = stackLen - 2; immutable run1 = stackLen - 3; if (stackLen >= 3 && stack[run1].length <= stack[run2].length + stack[run3].length) { immutable at = stack[run1].length <= stack[run3].length ? run1 : run2; mergeAt(range, stack[0 .. stackLen], at, minGallop, temp); --stackLen; } else if (stack[run2].length <= stack[run3].length) { mergeAt(range, stack[0 .. stackLen], run2, minGallop, temp); --stackLen; } else break; } } // Force collapse stack until there is only one run left while (stackLen > 1) { immutable run3 = stackLen - 1; immutable run2 = stackLen - 2; immutable run1 = stackLen - 3; immutable at = stackLen >= 3 && stack[run1].length <= stack[run3].length ? run1 : run2; mergeAt(range, stack[0 .. stackLen], at, minGallop, temp); --stackLen; } } // Calculates optimal value for minRun: // take first 6 bits of n and add 1 if any lower bits are set pure size_t minRunLength(size_t n) { immutable shift = bsr(n)-5; auto result = (n>>shift) + !!(n & ~((1<lower; upper--) range[upper] = moveAt(range, upper-1); range[lower] = move(item); } } // Merge two runs in stack (at, at + 1) void mergeAt(R range, Slice[] stack, immutable size_t at, ref size_t minGallop, ref T[] temp) in { assert(stack.length >= 2); assert(at == stack.length - 2 || at == stack.length - 3); } body { immutable base = stack[at].base; immutable mid = stack[at].length; immutable len = stack[at + 1].length + mid; // Pop run from stack stack[at] = Slice(base, len); if (at == stack.length - 3) stack[$ - 2] = stack[$ - 1]; // Merge runs (at, at + 1) return merge(range[base .. base + len], mid, minGallop, temp); } // Merge two runs in a range. Mid is the starting index of the second run. // minGallop and temp are references; The calling function must receive the updated values. void merge(R range, size_t mid, ref size_t minGallop, ref T[] temp) in { if (!__ctfe) { assert(isSorted!pred(range[0 .. mid])); assert(isSorted!pred(range[mid .. range.length])); } } body { assert(mid < range.length); // Reduce range of elements immutable firstElement = gallopForwardUpper(range[0 .. mid], range[mid]); immutable lastElement = gallopReverseLower(range[mid .. range.length], range[mid - 1]) + mid; range = range[firstElement .. lastElement]; mid -= firstElement; if (mid == 0 || mid == range.length) return; // Call function which will copy smaller run into temporary memory if (mid <= range.length / 2) { temp = ensureCapacity(mid, temp); minGallop = mergeLo(range, mid, minGallop, temp); } else { temp = ensureCapacity(range.length - mid, temp); minGallop = mergeHi(range, mid, minGallop, temp); } } // Enlarge size of temporary memory if needed T[] ensureCapacity(size_t minCapacity, T[] temp) out(ret) { assert(ret.length >= minCapacity); } body { if (temp.length < minCapacity) { size_t newSize = 1<<(bsr(minCapacity)+1); //Test for overflow if (newSize < minCapacity) newSize = minCapacity; if (__ctfe) temp.length = newSize; else temp = uninitializedArray!(T[])(newSize); } return temp; } // Merge front to back. Returns new value of minGallop. // temp must be large enough to store range[0 .. mid] size_t mergeLo(R range, immutable size_t mid, size_t minGallop, T[] temp) out { if (!__ctfe) assert(isSorted!pred(range)); } body { assert(mid <= range.length); assert(temp.length >= mid); // Copy run into temporary memory temp = temp[0 .. mid]; copy(range[0 .. mid], temp); // Move first element into place range[0] = range[mid]; size_t i = 1, lef = 0, rig = mid + 1; size_t count_lef, count_rig; immutable lef_end = temp.length - 1; if (lef < lef_end && rig < range.length) outer: while(true) { count_lef = 0; count_rig = 0; // Linear merge while ((count_lef | count_rig) < minGallop) { if (lessEqual(temp[lef], range[rig])) { range[i++] = temp[lef++]; if(lef >= lef_end) break outer; ++count_lef; count_rig = 0; } else { range[i++] = range[rig++]; if(rig >= range.length) break outer; count_lef = 0; ++count_rig; } } // Gallop merge do { count_lef = gallopForwardUpper(temp[lef .. $], range[rig]); foreach (j; 0 .. count_lef) range[i++] = temp[lef++]; if(lef >= temp.length) break outer; count_rig = gallopForwardLower(range[rig .. range.length], temp[lef]); foreach (j; 0 .. count_rig) range[i++] = range[rig++]; if (rig >= range.length) while(true) { range[i++] = temp[lef++]; if(lef >= temp.length) break outer; } if (minGallop > 0) --minGallop; } while (count_lef >= minimalGallop || count_rig >= minimalGallop); minGallop += 2; } // Move remaining elements from right while (rig < range.length) range[i++] = range[rig++]; // Move remaining elements from left while (lef < temp.length) range[i++] = temp[lef++]; return minGallop > 0 ? minGallop : 1; } // Merge back to front. Returns new value of minGallop. // temp must be large enough to store range[mid .. range.length] size_t mergeHi(R range, immutable size_t mid, size_t minGallop, T[] temp) out { if (!__ctfe) assert(isSorted!pred(range)); } body { assert(mid <= range.length); assert(temp.length >= range.length - mid); // Copy run into temporary memory temp = temp[0 .. range.length - mid]; copy(range[mid .. range.length], temp); // Move first element into place range[range.length - 1] = range[mid - 1]; size_t i = range.length - 2, lef = mid - 2, rig = temp.length - 1; size_t count_lef, count_rig; outer: while(true) { count_lef = 0; count_rig = 0; // Linear merge while((count_lef | count_rig) < minGallop) { if(greaterEqual(temp[rig], range[lef])) { range[i--] = temp[rig]; if(rig == 1) { // Move remaining elements from left while(true) { range[i--] = range[lef]; if(lef == 0) break; --lef; } // Move last element into place range[i] = temp[0]; break outer; } --rig; count_lef = 0; ++count_rig; } else { range[i--] = range[lef]; if(lef == 0) while(true) { range[i--] = temp[rig]; if(rig == 0) break outer; --rig; } --lef; ++count_lef; count_rig = 0; } } // Gallop merge do { count_rig = rig - gallopReverseLower(temp[0 .. rig], range[lef]); foreach(j; 0 .. count_rig) { range[i--] = temp[rig]; if(rig == 0) break outer; --rig; } count_lef = lef - gallopReverseUpper(range[0 .. lef], temp[rig]); foreach(j; 0 .. count_lef) { range[i--] = range[lef]; if(lef == 0) while(true) { range[i--] = temp[rig]; if(rig == 0) break outer; --rig; } --lef; } if(minGallop > 0) --minGallop; } while(count_lef >= minimalGallop || count_rig >= minimalGallop); minGallop += 2; } return minGallop > 0 ? minGallop : 1; } // false = forward / lower, true = reverse / upper template gallopSearch(bool forwardReverse, bool lowerUpper) { // Gallop search on range according to attributes forwardReverse and lowerUpper size_t gallopSearch(R)(R range, T value) out(ret) { assert(ret <= range.length); } body { size_t lower = 0, center = 1, upper = range.length; alias gap = center; static if (forwardReverse) { static if (!lowerUpper) alias comp = lessEqual; // reverse lower static if (lowerUpper) alias comp = less; // reverse upper // Gallop Search Reverse while (gap <= upper) { if (comp(value, range[upper - gap])) { upper -= gap; gap *= 2; } else { lower = upper - gap; break; } } // Binary Search Reverse while (upper != lower) { center = lower + (upper - lower) / 2; if (comp(value, range[center])) upper = center; else lower = center + 1; } } else { static if (!lowerUpper) alias comp = greater; // forward lower static if (lowerUpper) alias comp = greaterEqual; // forward upper // Gallop Search Forward while (lower + gap < upper) { if (comp(value, range[lower + gap])) { lower += gap; gap *= 2; } else { upper = lower + gap; break; } } // Binary Search Forward while (lower != upper) { center = lower + (upper - lower) / 2; if (comp(value, range[center])) lower = center + 1; else upper = center; } } return lower; } } alias gallopForwardLower = gallopSearch!(false, false); alias gallopForwardUpper = gallopSearch!(false, true); alias gallopReverseLower = gallopSearch!( true, false); alias gallopReverseUpper = gallopSearch!( true, true); } unittest { import std.random : Random, uniform, randomShuffle; // Element type with two fields static struct E { size_t value, index; } // Generates data especially for testing sorting with Timsort static E[] genSampleData(uint seed) { auto rnd = Random(seed); E[] arr; arr.length = 64 * 64; // We want duplicate values for testing stability foreach(i, ref v; arr) v.value = i / 64; // Swap ranges at random middle point (test large merge operation) immutable mid = uniform(arr.length / 4, arr.length / 4 * 3, rnd); swapRanges(arr[0 .. mid], arr[mid .. $]); // Shuffle last 1/8 of the array (test insertion sort and linear merge) randomShuffle(arr[$ / 8 * 7 .. $], rnd); // Swap few random elements (test galloping mode) foreach(i; 0 .. arr.length / 64) { immutable a = uniform(0, arr.length, rnd), b = uniform(0, arr.length, rnd); swap(arr[a], arr[b]); } // Now that our test array is prepped, store original index value // This will allow us to confirm the array was sorted stably foreach(i, ref v; arr) v.index = i; return arr; } // Tests the Timsort function for correctness and stability static bool testSort(uint seed) { auto arr = genSampleData(seed); // Now sort the array! static bool comp(E a, E b) { return a.value < b.value; } sort!(comp, SwapStrategy.stable)(arr); // Test that the array was sorted correctly assert(isSorted!comp(arr)); // Test that the array was sorted stably foreach(i; 0 .. arr.length - 1) { if(arr[i].value == arr[i + 1].value) assert(arr[i].index < arr[i + 1].index); } return true; } enum seed = 310614065; testSort(seed); //@@BUG: Timsort fails with CTFE as of DMD 2.060 // enum result = testSort(seed); } unittest {//bugzilla 4584 assert(isSorted!"a hashFun(a) < hashFun(b))(array); // Sort strings by hash, fast (only computes arr.length hashes): schwartzSort!(hashFun, "a < b")(array); ---- The $(D schwartzSort) function might require less temporary data and be faster than the Perl idiom or the decorate-sort-undecorate idiom present in Python and Lisp. This is because sorting is done in-place and only minimal extra data (one array of transformed elements) is created. To check whether an array was sorted and benefit of the speedup of Schwartz sorting, a function $(D schwartzIsSorted) is not provided because the effect can be achieved by calling $(D isSorted!less(map!transform(r))). Returns: The initial range wrapped as a $(D SortedRange) with the predicate $(D (a, b) => binaryFun!less(transform(a), transform(b))). */ SortedRange!(R, ((a, b) => binaryFun!less(unaryFun!transform(a), unaryFun!transform(b)))) schwartzSort(alias transform, alias less = "a < b", SwapStrategy ss = SwapStrategy.unstable, R)(R r) if (isRandomAccessRange!R && hasLength!R) { import core.stdc.stdlib : malloc, free; import std.conv : emplace; import std.string : representation; alias T = typeof(unaryFun!transform(r.front)); auto xform1 = (cast(T*) malloc(r.length * T.sizeof))[0 .. r.length]; size_t length; scope(exit) { static if (hasElaborateDestructor!T) { foreach (i; 0 .. length) collectException(destroy(xform1[i])); } free(xform1.ptr); } for (; length != r.length; ++length) { emplace(xform1.ptr + length, unaryFun!transform(r[length])); } // Make sure we use ubyte[] and ushort[], not char[] and wchar[] // for the intermediate array, lest zip gets confused. static if (isNarrowString!(typeof(xform1))) { auto xform = xform1.representation(); } else { alias xform = xform1; } zip(xform, r).sort!((a, b) => binaryFun!less(a[0], b[0]), ss)(); return typeof(return)(r); } unittest { // issue 4909 Tuple!(char)[] chars; schwartzSort!"a[0]"(chars); } unittest { // issue 5924 Tuple!(char)[] chars; schwartzSort!((Tuple!(char) c){ return c[0]; })(chars); } unittest { import std.math : log2; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); static double entropy(double[] probs) { double result = 0; foreach (p; probs) { if (!p) continue; //enforce(p > 0 && p <= 1, "Wrong probability passed to entropy"); result -= p * log2(p); } return result; } auto lowEnt = ([ 1.0, 0, 0 ]).dup, midEnt = ([ 0.1, 0.1, 0.8 ]).dup, highEnt = ([ 0.31, 0.29, 0.4 ]).dup; double arr[][] = new double[][3]; arr[0] = midEnt; arr[1] = lowEnt; arr[2] = highEnt; schwartzSort!(entropy, q{a > b})(arr); assert(arr[0] == highEnt); assert(arr[1] == midEnt); assert(arr[2] == lowEnt); assert(isSorted!("a > b")(map!(entropy)(arr))); } unittest { import std.math : log2; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); static double entropy(double[] probs) { double result = 0; foreach (p; probs) { if (!p) continue; //enforce(p > 0 && p <= 1, "Wrong probability passed to entropy"); result -= p * log2(p); } return result; } auto lowEnt = ([ 1.0, 0, 0 ]).dup, midEnt = ([ 0.1, 0.1, 0.8 ]).dup, highEnt = ([ 0.31, 0.29, 0.4 ]).dup; double arr[][] = new double[][3]; arr[0] = midEnt; arr[1] = lowEnt; arr[2] = highEnt; schwartzSort!(entropy, q{a < b})(arr); assert(arr[0] == lowEnt); assert(arr[1] == midEnt); assert(arr[2] == highEnt); assert(isSorted!("a < b")(map!(entropy)(arr))); } // partialSort /** Reorders the random-access range $(D r) such that the range $(D r[0 .. mid]) is the same as if the entire $(D r) were sorted, and leaves the range $(D r[mid .. r.length]) in no particular order. Performs $(BIGOH r.length * log(mid)) evaluations of $(D pred). The implementation simply calls $(D topN!(less, ss)(r, n)) and then $(D sort!(less, ss)(r[0 .. n])). */ void partialSort(alias less = "a < b", SwapStrategy ss = SwapStrategy.unstable, Range)(Range r, size_t n) if (isRandomAccessRange!(Range) && hasLength!(Range) && hasSlicing!(Range)) { topN!(less, ss)(r, n); sort!(less, ss)(r[0 .. n]); } /// unittest { int[] a = [ 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 ]; partialSort(a, 5); assert(a[0 .. 5] == [ 0, 1, 2, 3, 4 ]); } // completeSort /** Sorts the random-access range $(D chain(lhs, rhs)) according to predicate $(D less). The left-hand side of the range $(D lhs) is assumed to be already sorted; $(D rhs) is assumed to be unsorted. The exact strategy chosen depends on the relative sizes of $(D lhs) and $(D rhs). Performs $(BIGOH lhs.length + rhs.length * log(rhs.length)) (best case) to $(BIGOH (lhs.length + rhs.length) * log(lhs.length + rhs.length)) (worst-case) evaluations of $(D swap). */ void completeSort(alias less = "a < b", SwapStrategy ss = SwapStrategy.unstable, Range1, Range2)(SortedRange!(Range1, less) lhs, Range2 rhs) if (hasLength!(Range2) && hasSlicing!(Range2)) { // Probably this algorithm can be optimized by using in-place // merge auto lhsOriginal = lhs.release(); foreach (i; 0 .. rhs.length) { auto sortedSoFar = chain(lhsOriginal, rhs[0 .. i]); auto ub = assumeSorted!less(sortedSoFar).upperBound(rhs[i]); if (!ub.length) continue; bringToFront(ub.release(), rhs[i .. i + 1]); } } /// unittest { int[] a = [ 1, 2, 3 ]; int[] b = [ 4, 0, 6, 5 ]; completeSort(assumeSorted(a), b); assert(a == [ 0, 1, 2 ]); assert(b == [ 3, 4, 5, 6 ]); } // isSorted /** Checks whether a forward range is sorted according to the comparison operation $(D less). Performs $(BIGOH r.length) evaluations of $(D less). */ bool isSorted(alias less = "a < b", Range)(Range r) if (isForwardRange!(Range)) { import std.conv : text; if (r.empty) return true; static if (isRandomAccessRange!Range && hasLength!Range) { immutable limit = r.length - 1; foreach (i; 0 .. limit) { if (!binaryFun!less(r[i + 1], r[i])) continue; assert( !binaryFun!less(r[i], r[i + 1]), text("Predicate for isSorted is not antisymmetric. Both", " pred(a, b) and pred(b, a) are true for a=", r[i], " and b=", r[i+1], " in positions ", i, " and ", i + 1)); return false; } } else { auto ahead = r; ahead.popFront(); size_t i; for (; !ahead.empty; ahead.popFront(), r.popFront(), ++i) { if (!binaryFun!less(ahead.front, r.front)) continue; // Check for antisymmetric predicate assert( !binaryFun!less(r.front, ahead.front), text("Predicate for isSorted is not antisymmetric. Both", " pred(a, b) and pred(b, a) are true for a=", r.front, " and b=", ahead.front, " in positions ", i, " and ", i + 1)); return false; } } return true; } /// unittest { int[] arr = [4, 3, 2, 1]; assert(!isSorted(arr)); sort(arr); assert(isSorted(arr)); sort!("a > b")(arr); assert(isSorted!("a > b")(arr)); } unittest { import std.conv : to; // Issue 9457 auto x = "abcd"; assert(isSorted(x)); auto y = "acbd"; assert(!isSorted(y)); int[] a = [1, 2, 3]; assert(isSorted(a)); int[] b = [1, 3, 2]; assert(!isSorted(b)); dchar[] ds = "コーヒーが好きです"d.dup; sort(ds); string s = to!string(ds); assert(isSorted(ds)); // random-access assert(isSorted(s)); // bidirectional } // makeIndex /** Computes an index for $(D r) based on the comparison $(D less). The index is a sorted array of pointers or indices into the original range. This technique is similar to sorting, but it is more flexible because (1) it allows "sorting" of immutable collections, (2) allows binary search even if the original collection does not offer random access, (3) allows multiple indexes, each on a different predicate, and (4) may be faster when dealing with large objects. However, using an index may also be slower under certain circumstances due to the extra indirection, and is always larger than a sorting-based solution because it needs space for the index in addition to the original collection. The complexity is the same as $(D sort)'s. The first overload of $(D makeIndex) writes to a range containing pointers, and the second writes to a range containing offsets. The first overload requires $(D Range) to be a forward range, and the latter requires it to be a random-access range. $(D makeIndex) overwrites its second argument with the result, but never reallocates it. Returns: The pointer-based version returns a $(D SortedRange) wrapper over index, of type $(D SortedRange!(RangeIndex, (a, b) => binaryFun!less(*a, *b))) thus reflecting the ordering of the index. The index-based version returns $(D void) because the ordering relation involves not only $(D index) but also $(D r). Throws: If the second argument's length is less than that of the range indexed, an exception is thrown. */ SortedRange!(RangeIndex, (a, b) => binaryFun!less(*a, *b)) makeIndex( alias less = "a < b", SwapStrategy ss = SwapStrategy.unstable, Range, RangeIndex) (Range r, RangeIndex index) if (isForwardRange!(Range) && isRandomAccessRange!(RangeIndex) && is(ElementType!(RangeIndex) : ElementType!(Range)*)) { import std.exception : enforce; // assume collection already ordered size_t i; for (; !r.empty; r.popFront(), ++i) index[i] = addressOf(r.front); enforce(index.length == i); // sort the index sort!((a, b) => binaryFun!less(*a, *b), ss)(index); return typeof(return)(index); } /// Ditto void makeIndex( alias less = "a < b", SwapStrategy ss = SwapStrategy.unstable, Range, RangeIndex) (Range r, RangeIndex index) if (isRandomAccessRange!Range && !isInfinite!Range && isRandomAccessRange!RangeIndex && !isInfinite!RangeIndex && isIntegral!(ElementType!RangeIndex)) { import std.exception : enforce; import std.conv : to; alias IndexType = Unqual!(ElementType!RangeIndex); enforce(r.length == index.length, "r and index must be same length for makeIndex."); static if (IndexType.sizeof < size_t.sizeof) { enforce(r.length <= IndexType.max, "Cannot create an index with " ~ "element type " ~ IndexType.stringof ~ " with length " ~ to!string(r.length) ~ "."); } for (IndexType i = 0; i < r.length; ++i) { index[cast(size_t) i] = i; } // sort the index sort!((a, b) => binaryFun!less(r[cast(size_t) a], r[cast(size_t) b]), ss) (index); } /// unittest { immutable(int[]) arr = [ 2, 3, 1, 5, 0 ]; // index using pointers auto index1 = new immutable(int)*[arr.length]; makeIndex!("a < b")(arr, index1); assert(isSorted!("*a < *b")(index1)); // index using offsets auto index2 = new size_t[arr.length]; makeIndex!("a < b")(arr, index2); assert(isSorted! ((size_t a, size_t b){ return arr[a] < arr[b];}) (index2)); } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); immutable(int)[] arr = [ 2, 3, 1, 5, 0 ]; // index using pointers auto index1 = new immutable(int)*[arr.length]; alias ImmRange = typeof(arr); alias ImmIndex = typeof(index1); static assert(isForwardRange!(ImmRange)); static assert(isRandomAccessRange!(ImmIndex)); static assert(!isIntegral!(ElementType!(ImmIndex))); static assert(is(ElementType!(ImmIndex) : ElementType!(ImmRange)*)); makeIndex!("a < b")(arr, index1); assert(isSorted!("*a < *b")(index1)); // index using offsets auto index2 = new long[arr.length]; makeIndex(arr, index2); assert(isSorted! ((long a, long b){ return arr[cast(size_t) a] < arr[cast(size_t) b]; })(index2)); // index strings using offsets string[] arr1 = ["I", "have", "no", "chocolate"]; auto index3 = new byte[arr1.length]; makeIndex(arr1, index3); assert(isSorted! ((byte a, byte b){ return arr1[a] < arr1[b];}) (index3)); } /** Specifies whether the output of certain algorithm is desired in sorted format. */ enum SortOutput { no, /// Don't sort output yes, /// Sort output } void topNIndex( alias less = "a < b", SwapStrategy ss = SwapStrategy.unstable, Range, RangeIndex)(Range r, RangeIndex index, SortOutput sorted = SortOutput.no) if (isIntegral!(ElementType!(RangeIndex))) { import std.container : BinaryHeap; import std.exception : enforce; if (index.empty) return; enforce(ElementType!(RangeIndex).max >= index.length, "Index type too small"); bool indirectLess(ElementType!(RangeIndex) a, ElementType!(RangeIndex) b) { return binaryFun!(less)(r[a], r[b]); } auto heap = BinaryHeap!(RangeIndex, indirectLess)(index, 0); foreach (i; 0 .. r.length) { heap.conditionalInsert(cast(ElementType!RangeIndex) i); } if (sorted == SortOutput.yes) { while (!heap.empty) heap.removeFront(); } } void topNIndex( alias less = "a < b", SwapStrategy ss = SwapStrategy.unstable, Range, RangeIndex)(Range r, RangeIndex index, SortOutput sorted = SortOutput.no) if (is(ElementType!(RangeIndex) == ElementType!(Range)*)) { import std.container : BinaryHeap; if (index.empty) return; static bool indirectLess(const ElementType!(RangeIndex) a, const ElementType!(RangeIndex) b) { return binaryFun!less(*a, *b); } auto heap = BinaryHeap!(RangeIndex, indirectLess)(index, 0); foreach (i; 0 .. r.length) { heap.conditionalInsert(&r[i]); } if (sorted == SortOutput.yes) { while (!heap.empty) heap.removeFront(); } } unittest { import std.conv : text; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); { int[] a = [ 10, 8, 9, 2, 4, 6, 7, 1, 3, 5 ]; int*[] b = new int*[5]; topNIndex!("a > b")(a, b, SortOutput.yes); //foreach (e; b) writeln(*e); assert(b == [ &a[0], &a[2], &a[1], &a[6], &a[5]]); } { int[] a = [ 10, 8, 9, 2, 4, 6, 7, 1, 3, 5 ]; auto b = new ubyte[5]; topNIndex!("a > b")(a, b, SortOutput.yes); //foreach (e; b) writeln(e, ":", a[e]); assert(b == [ cast(ubyte) 0, cast(ubyte)2, cast(ubyte)1, cast(ubyte)6, cast(ubyte)5], text(b)); } } /+ // topNIndexImpl // @@@BUG1904 /*private*/ void topNIndexImpl( alias less, bool sortAfter, SwapStrategy ss, SRange, TRange)(SRange source, TRange target) { alias lessFun = binaryFun!(less); static assert(ss == SwapStrategy.unstable, "Stable indexing not yet implemented"); alias SIter = Iterator!(SRange); alias TElem = std.iterator.ElementType!(TRange); enum usingInt = isIntegral!(TElem); static if (usingInt) { enforce(source.length <= TElem.max, "Numeric overflow at risk in computing topNIndexImpl"); } // types and functions used within SIter index2iter(TElem a) { static if (!usingInt) return a; else return begin(source) + a; } bool indirectLess(TElem a, TElem b) { return lessFun(*index2iter(a), *index2iter(b)); } void indirectCopy(SIter from, ref TElem to) { static if (!usingInt) to = from; else to = cast(TElem)(from - begin(source)); } // copy beginning of collection into the target auto sb = begin(source), se = end(source), tb = begin(target), te = end(target); for (; sb != se; ++sb, ++tb) { if (tb == te) break; indirectCopy(sb, *tb); } // if the index's size is same as the source size, just quicksort it // otherwise, heap-insert stuff in it. if (sb == se) { // everything in source is now in target... just sort the thing static if (sortAfter) sort!(indirectLess, ss)(target); } else { // heap-insert te = tb; tb = begin(target); target = range(tb, te); makeHeap!(indirectLess)(target); // add stuff to heap for (; sb != se; ++sb) { if (!lessFun(*sb, *index2iter(*tb))) continue; // copy the source over the smallest indirectCopy(sb, *tb); heapify!(indirectLess)(target, tb); } static if (sortAfter) sortHeap!(indirectLess)(target); } } /** topNIndex */ void topNIndex( alias less, SwapStrategy ss = SwapStrategy.unstable, SRange, TRange)(SRange source, TRange target) { return .topNIndexImpl!(less, false, ss)(source, target); } /// Ditto void topNIndex( string less, SwapStrategy ss = SwapStrategy.unstable, SRange, TRange)(SRange source, TRange target) { return .topNIndexImpl!(binaryFun!(less), false, ss)(source, target); } // partialIndex /** Computes an index for $(D source) based on the comparison $(D less) and deposits the result in $(D target). It is acceptable that $(D target.length < source.length), in which case only the smallest $(D target.length) elements in $(D source) get indexed. The target provides a sorted "view" into $(D source). This technique is similar to sorting and partial sorting, but it is more flexible because (1) it allows "sorting" of immutable collections, (2) allows binary search even if the original collection does not offer random access, (3) allows multiple indexes, each on a different comparison criterion, (4) may be faster when dealing with large objects. However, using an index may also be slower under certain circumstances due to the extra indirection, and is always larger than a sorting-based solution because it needs space for the index in addition to the original collection. The complexity is $(BIGOH source.length * log(target.length)). Two types of indexes are accepted. They are selected by simply passing the appropriate $(D target) argument: $(OL $(LI Indexes of type $(D Iterator!(Source)), in which case the index will be sorted with the predicate $(D less(*a, *b));) $(LI Indexes of an integral type (e.g. $(D size_t)), in which case the index will be sorted with the predicate $(D less(source[a], source[b])).)) Example: ---- immutable arr = [ 2, 3, 1 ]; int* index[3]; partialIndex(arr, index); assert(*index[0] == 1 && *index[1] == 2 && *index[2] == 3); assert(isSorted!("*a < *b")(index)); ---- */ void partialIndex( alias less, SwapStrategy ss = SwapStrategy.unstable, SRange, TRange)(SRange source, TRange target) { return .topNIndexImpl!(less, true, ss)(source, target); } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); immutable arr = [ 2, 3, 1 ]; auto index = new immutable(int)*[3]; partialIndex!(binaryFun!("a < b"))(arr, index); assert(*index[0] == 1 && *index[1] == 2 && *index[2] == 3); assert(isSorted!("*a < *b")(index)); } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); static bool less(int a, int b) { return a < b; } { string[] x = ([ "c", "a", "b", "d" ]).dup; // test with integrals auto index1 = new size_t[x.length]; partialIndex!(q{a < b})(x, index1); assert(index1[0] == 1 && index1[1] == 2 && index1[2] == 0 && index1[3] == 3); // half-sized index1 = new size_t[x.length / 2]; partialIndex!(q{a < b})(x, index1); assert(index1[0] == 1 && index1[1] == 2); // and with iterators auto index = new string*[x.length]; partialIndex!(q{a < b})(x, index); assert(isSorted!(q{*a < *b})(index)); assert(*index[0] == "a" && *index[1] == "b" && *index[2] == "c" && *index[3] == "d"); } { immutable arr = [ 2, 3, 1 ]; auto index = new immutable(int)*[arr.length]; partialIndex!(less)(arr, index); assert(*index[0] == 1 && *index[1] == 2 && *index[2] == 3); assert(isSorted!(q{*a < *b})(index)); } // random data auto b = rndstuff!(string)(); auto index = new string*[b.length]; partialIndex!((a, b) => std.uni.toUpper(a) < std.uni.toUpper(b))(b, index); assert(isSorted!((a, b) => std.uni.toUpper(*a) < std.uni.toUpper(*b))(index)); // random data with indexes auto index1 = new size_t[b.length]; bool cmp(string x, string y) { return std.uni.toUpper(x) < std.uni.toUpper(y); } partialIndex!(cmp)(b, index1); bool check(size_t x, size_t y) { return std.uni.toUpper(b[x]) < std.uni.toUpper(b[y]); } assert(isSorted!(check)(index1)); } // Commented out for now, needs reimplementation // // schwartzMakeIndex // /** // Similar to $(D makeIndex) but using $(D schwartzSort) to sort the // index. // Example: // ---- // string[] arr = [ "ab", "c", "Ab", "C" ]; // auto index = schwartzMakeIndex!(toUpper, less, SwapStrategy.stable)(arr); // assert(*index[0] == "ab" && *index[1] == "Ab" // && *index[2] == "c" && *index[2] == "C"); // assert(isSorted!("toUpper(*a) < toUpper(*b)")(index)); // ---- // */ // Iterator!(Range)[] schwartzMakeIndex( // alias transform, // alias less, // SwapStrategy ss = SwapStrategy.unstable, // Range)(Range r) // { // alias Iter = Iterator!(Range); // auto result = new Iter[r.length]; // // assume collection already ordered // size_t i = 0; // foreach (it; begin(r) .. end(r)) // { // result[i++] = it; // } // // sort the index // alias Transformed = typeof(transform(*result[0])); // static bool indirectLess(Transformed a, Transformed b) // { // return less(a, b); // } // static Transformed indirectTransform(Iter a) // { // return transform(*a); // } // schwartzSort!(indirectTransform, less, ss)(result); // return result; // } // /// Ditto // Iterator!(Range)[] schwartzMakeIndex( // alias transform, // string less = q{a < b}, // SwapStrategy ss = SwapStrategy.unstable, // Range)(Range r) // { // return .schwartzMakeIndex!( // transform, binaryFun!(less), ss, Range)(r); // } // version (wyda) unittest // { // string[] arr = [ "D", "ab", "c", "Ab", "C" ]; // auto index = schwartzMakeIndex!(toUpper, "a < b", // SwapStrategy.stable)(arr); // assert(isSorted!(q{toUpper(*a) < toUpper(*b)})(index)); // assert(*index[0] == "ab" && *index[1] == "Ab" // && *index[2] == "c" && *index[3] == "C"); // // random data // auto b = rndstuff!(string)(); // auto index1 = schwartzMakeIndex!(toUpper)(b); // assert(isSorted!("toUpper(*a) < toUpper(*b)")(index1)); // } +/ // canFind /++ Convenience function. Like find, but only returns whether or not the search was succesful. +/ template canFind(alias pred="a == b") { /++ Returns $(D true) if and only if any value $(D v) found in the input range $(D range) satisfies the predicate $(D pred). Performs (at most) $(BIGOH r.length) evaluations of $(D pred). +/ bool canFind(Range)(Range haystack) if (is(typeof(find!pred(haystack)))) { return any!pred(haystack); } /++ Returns $(D true) if and only if $(D value) can be found in $(D range). Performs $(BIGOH needle.length) evaluations of $(D pred). +/ bool canFind(Range, Element)(Range haystack, Element needle) if (is(typeof(find!pred(haystack, needle)))) { return !find!pred(haystack, needle).empty; } /++ Returns the 1-based index of the first needle found in $(D haystack). If no needle is found, then $(D 0) is returned. So, if used directly in the condition of an if statement or loop, the result will be $(D true) if one of the needles is found and $(D false) if none are found, whereas if the result is used elsewhere, it can either be cast to $(D bool) for the same effect or used to get which needle was found first without having to deal with the tuple that $(D LREF find) returns for the same operation. +/ size_t canFind(Range, Ranges...)(Range haystack, Ranges needles) if (Ranges.length > 1 && allSatisfy!(isForwardRange, Ranges) && is(typeof(find!pred(haystack, needles)))) { return find!pred(haystack, needles)[1]; } } /// unittest { assert(canFind([0, 1, 2, 3], 2) == true); assert(canFind([0, 1, 2, 3], [1, 2], [2, 3])); assert(canFind([0, 1, 2, 3], [1, 2], [2, 3]) == 1); assert(canFind([0, 1, 2, 3], [1, 7], [2, 3])); assert(canFind([0, 1, 2, 3], [1, 7], [2, 3]) == 2); assert(canFind([0, 1, 2, 3], 4) == false); assert(!canFind([0, 1, 2, 3], [1, 3], [2, 4])); assert(canFind([0, 1, 2, 3], [1, 3], [2, 4]) == 0); } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); auto a = rndstuff!(int)(); if (a.length) { auto b = a[a.length / 2]; assert(canFind(a, b)); } } unittest { assert(equal!(canFind!"a < b")([[1, 2, 3], [7, 8, 9]], [2, 8])); } /++ Checks if $(I _any) of the elements verifies $(D pred). $(D !any) can be used to verify that $(I none) of the elemnets verify $(D pred). +/ template any(alias pred = "a") { /++ Returns $(D true) if and only if $(I _any) value $(D v) found in the input range $(D range) satisfies the predicate $(D pred). Performs (at most) $(BIGOH r.length) evaluations of $(D pred). +/ bool any(Range)(Range range) if (isInputRange!Range && is(typeof(unaryFun!pred(range.front)))) { return !find!pred(range).empty; } } /// unittest { import std.ascii : isWhite; assert( all!(any!isWhite)(["a a", "b b"])); assert(!any!(all!isWhite)(["a a", "b b"])); } /++ $(D any) can also be used without a predicate, if its items can be evaluated to true or false in a conditional statement. $(D !any) can be a convenient way to quickly test that $(I none) of the elements of a range evaluate to true. +/ unittest { int[3] vals1 = [0, 0, 0]; assert(!any(vals1[])); //none of vals1 evaluate to true int[3] vals2 = [2, 0, 2]; assert( any(vals2[])); assert(!all(vals2[])); int[3] vals3 = [3, 3, 3]; assert( any(vals3[])); assert( all(vals3[])); } unittest { debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); auto a = [ 1, 2, 0, 4 ]; assert(any!"a == 2"(a)); } /++ Checks if $(I _all) of the elements verify $(D pred). +/ template all(alias pred = "a") { /++ Returns $(D true) if and only if $(I _all) values $(D v) found in the input range $(D range) satisfy the predicate $(D pred). Performs (at most) $(BIGOH r.length) evaluations of $(D pred). +/ bool all(Range)(Range range) if (isInputRange!Range && is(typeof(unaryFun!pred(range.front)))) { import std.functional : not; return find!(not!(unaryFun!pred))(range).empty; } } /// unittest { assert( all!"a & 1"([1, 3, 5, 7, 9])); assert(!all!"a & 1"([1, 2, 3, 5, 7, 9])); } /++ $(D all) can also be used without a predicate, if its items can be evaluated to true or false in a conditional statement. This can be a convenient way to quickly evaluate that $(I _all) of the elements of a range are true. +/ unittest { int[3] vals = [5, 3, 18]; assert( all(vals[])); } unittest { int x = 1; assert(all!(a => a > x)([2, 3])); } unittest { int x = 1; assert(all!(a => a > x)([2, 3])); } /** Copies the top $(D n) elements of the input range $(D source) into the random-access range $(D target), where $(D n = target.length). Elements of $(D source) are not touched. If $(D sorted) is $(D true), the target is sorted. Otherwise, the target respects the $(WEB en.wikipedia.org/wiki/Binary_heap, heap property). */ TRange topNCopy(alias less = "a < b", SRange, TRange) (SRange source, TRange target, SortOutput sorted = SortOutput.no) if (isInputRange!(SRange) && isRandomAccessRange!(TRange) && hasLength!(TRange) && hasSlicing!(TRange)) { import std.container : BinaryHeap; if (target.empty) return target; auto heap = BinaryHeap!(TRange, less)(target, 0); foreach (e; source) heap.conditionalInsert(e); auto result = target[0 .. heap.length]; if (sorted == SortOutput.yes) { while (!heap.empty) heap.removeFront(); } return result; } /// unittest { int[] a = [ 10, 16, 2, 3, 1, 5, 0 ]; int[] b = new int[3]; topNCopy(a, b, SortOutput.yes); assert(b == [ 0, 1, 2 ]); } unittest { import std.random : Random, unpredictableSeed, uniform, randomShuffle; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); auto r = Random(unpredictableSeed); ptrdiff_t[] a = new ptrdiff_t[uniform(1, 1000, r)]; foreach (i, ref e; a) e = i; randomShuffle(a, r); auto n = uniform(0, a.length, r); ptrdiff_t[] b = new ptrdiff_t[n]; topNCopy!(binaryFun!("a < b"))(a, b, SortOutput.yes); assert(isSorted!(binaryFun!("a < b"))(b)); } /** Lazily computes the union of two or more ranges $(D rs). The ranges are assumed to be sorted by $(D less). Elements in the output are not unique; the length of the output is the sum of the lengths of the inputs. (The $(D length) member is offered if all ranges also have length.) The element types of all ranges must have a common type. */ struct SetUnion(alias less = "a < b", Rs...) if (allSatisfy!(isInputRange, Rs)) { private: Rs _r; alias comp = binaryFun!(less); uint _crt; void adjustPosition(uint candidate = 0)() { static if (candidate == Rs.length) { _crt = _crt.max; } else { if (_r[candidate].empty) { adjustPosition!(candidate + 1)(); return; } foreach (i, U; Rs[candidate + 1 .. $]) { enum j = candidate + i + 1; if (_r[j].empty) continue; if (comp(_r[j].front, _r[candidate].front)) { // a new candidate was found adjustPosition!(j)(); return; } } // Found a successful candidate _crt = candidate; } } public: alias ElementType = CommonType!(staticMap!(.ElementType, Rs)); this(Rs rs) { this._r = rs; adjustPosition(); } @property bool empty() { return _crt == _crt.max; } void popFront() { // Assumes _crt is correct assert(!empty); foreach (i, U; Rs) { if (i < _crt) continue; // found _crt assert(!_r[i].empty); _r[i].popFront(); adjustPosition(); return; } assert(false); } @property ElementType front() { assert(!empty); // Assume _crt is correct foreach (i, U; Rs) { if (i < _crt) continue; assert(!_r[i].empty); return _r[i].front; } assert(false); } static if (allSatisfy!(isForwardRange, Rs)) { @property auto save() { auto ret = this; foreach (ti, elem; _r) { ret._r[ti] = elem.save; } return ret; } } static if (allSatisfy!(hasLength, Rs)) { @property size_t length() { size_t result; foreach (i, U; Rs) { result += _r[i].length; } return result; } alias opDollar = length; } } /// Ditto SetUnion!(less, Rs) setUnion(alias less = "a < b", Rs...) (Rs rs) { return typeof(return)(rs); } /// unittest { int[] a = [ 1, 2, 4, 5, 7, 9 ]; int[] b = [ 0, 1, 2, 4, 7, 8 ]; int[] c = [ 10 ]; assert(setUnion(a, b).length == a.length + b.length); assert(equal(setUnion(a, b), [0, 1, 1, 2, 2, 4, 4, 5, 7, 7, 8, 9][])); assert(equal(setUnion(a, c, b), [0, 1, 1, 2, 2, 4, 4, 5, 7, 7, 8, 9, 10][])); static assert(isForwardRange!(typeof(setUnion(a, b)))); } /** Lazily computes the intersection of two or more input ranges $(D ranges). The ranges are assumed to be sorted by $(D less). The element types of the ranges must have a common type. */ struct SetIntersection(alias less = "a < b", Rs...) if (Rs.length >= 2 && allSatisfy!(isInputRange, Rs) && !is(CommonType!(staticMap!(ElementType, Rs)) == void)) { private: Rs _input; alias comp = binaryFun!less; alias ElementType = CommonType!(staticMap!(.ElementType, Rs)); // Positions to the first elements that are all equal void adjustPosition() { if (empty) return; size_t done = Rs.length; static if (Rs.length > 1) while (true) { foreach (i, ref r; _input) { alias next = _input[(i + 1) % Rs.length]; if (comp(next.front, r.front)) { do { next.popFront(); if (next.empty) return; } while(comp(next.front, r.front)); done = Rs.length; } if (--done == 0) return; } } } public: this(Rs input) { this._input = input; // position to the first element adjustPosition(); } @property bool empty() { foreach (ref r; _input) { if (r.empty) return true; } return false; } void popFront() { assert(!empty); static if (Rs.length > 1) foreach (i, ref r; _input) { alias next = _input[(i + 1) % Rs.length]; assert(!comp(r.front, next.front)); } foreach (ref r; _input) { r.popFront(); } adjustPosition(); } @property ElementType front() { assert(!empty); return _input[0].front; } static if (allSatisfy!(isForwardRange, Rs)) { @property SetIntersection save() { auto ret = this; foreach (i, ref r; _input) { ret._input[i] = r.save; } return ret; } } } /// Ditto SetIntersection!(less, Rs) setIntersection(alias less = "a < b", Rs...)(Rs ranges) if (Rs.length >= 2 && allSatisfy!(isInputRange, Rs) && !is(CommonType!(staticMap!(ElementType, Rs)) == void)) { return typeof(return)(ranges); } /// unittest { int[] a = [ 1, 2, 4, 5, 7, 9 ]; int[] b = [ 0, 1, 2, 4, 7, 8 ]; int[] c = [ 0, 1, 4, 5, 7, 8 ]; assert(equal(setIntersection(a, a), a)); assert(equal(setIntersection(a, b), [1, 2, 4, 7])); assert(equal(setIntersection(a, b, c), [1, 4, 7])); } unittest { int[] a = [ 1, 2, 4, 5, 7, 9 ]; int[] b = [ 0, 1, 2, 4, 7, 8 ]; int[] c = [ 0, 1, 4, 5, 7, 8 ]; int[] d = [ 1, 3, 4 ]; int[] e = [ 4, 5 ]; assert(equal(setIntersection(a, a), a)); assert(equal(setIntersection(a, a, a), a)); assert(equal(setIntersection(a, b), [1, 2, 4, 7])); assert(equal(setIntersection(a, b, c), [1, 4, 7])); assert(equal(setIntersection(a, b, c, d), [1, 4])); assert(equal(setIntersection(a, b, c, d, e), [4])); auto inpA = a.filter!(_ => true), inpB = b.filter!(_ => true); auto inpC = c.filter!(_ => true), inpD = d.filter!(_ => true); assert(equal(setIntersection(inpA, inpB, inpC, inpD), [1, 4])); assert(equal(setIntersection(a, b, b, a), [1, 2, 4, 7])); assert(equal(setIntersection(a, c, b), [1, 4, 7])); assert(equal(setIntersection(b, a, c), [1, 4, 7])); assert(equal(setIntersection(b, c, a), [1, 4, 7])); assert(equal(setIntersection(c, a, b), [1, 4, 7])); assert(equal(setIntersection(c, b, a), [1, 4, 7])); } /** Lazily computes the difference of $(D r1) and $(D r2). The two ranges are assumed to be sorted by $(D less). The element types of the two ranges must have a common type. */ struct SetDifference(alias less = "a < b", R1, R2) if (isInputRange!(R1) && isInputRange!(R2)) { private: R1 r1; R2 r2; alias comp = binaryFun!(less); void adjustPosition() { while (!r1.empty) { if (r2.empty || comp(r1.front, r2.front)) break; if (comp(r2.front, r1.front)) { r2.popFront(); } else { // both are equal r1.popFront(); r2.popFront(); } } } public: this(R1 r1, R2 r2) { this.r1 = r1; this.r2 = r2; // position to the first element adjustPosition(); } void popFront() { r1.popFront(); adjustPosition(); } @property ElementType!(R1) front() { assert(!empty); return r1.front; } static if (isForwardRange!R1 && isForwardRange!R2) { @property typeof(this) save() { auto ret = this; ret.r1 = r1.save; ret.r2 = r2.save; return ret; } } @property bool empty() { return r1.empty; } } /// Ditto SetDifference!(less, R1, R2) setDifference(alias less = "a < b", R1, R2) (R1 r1, R2 r2) { return typeof(return)(r1, r2); } /// unittest { int[] a = [ 1, 2, 4, 5, 7, 9 ]; int[] b = [ 0, 1, 2, 4, 7, 8 ]; assert(equal(setDifference(a, b), [5, 9][])); static assert(isForwardRange!(typeof(setDifference(a, b)))); } /** Lazily computes the symmetric difference of $(D r1) and $(D r2), i.e. the elements that are present in exactly one of $(D r1) and $(D r2). The two ranges are assumed to be sorted by $(D less), and the output is also sorted by $(D less). The element types of the two ranges must have a common type. */ struct SetSymmetricDifference(alias less = "a < b", R1, R2) if (isInputRange!(R1) && isInputRange!(R2)) { private: R1 r1; R2 r2; //bool usingR2; alias comp = binaryFun!(less); void adjustPosition() { while (!r1.empty && !r2.empty) { if (comp(r1.front, r2.front) || comp(r2.front, r1.front)) { break; } // equal, pop both r1.popFront(); r2.popFront(); } } public: this(R1 r1, R2 r2) { this.r1 = r1; this.r2 = r2; // position to the first element adjustPosition(); } void popFront() { assert(!empty); if (r1.empty) r2.popFront(); else if (r2.empty) r1.popFront(); else { // neither is empty if (comp(r1.front, r2.front)) { r1.popFront(); } else { assert(comp(r2.front, r1.front)); r2.popFront(); } } adjustPosition(); } @property ElementType!(R1) front() { assert(!empty); if (r2.empty || !r1.empty && comp(r1.front, r2.front)) { return r1.front; } assert(r1.empty || comp(r2.front, r1.front)); return r2.front; } static if (isForwardRange!R1 && isForwardRange!R2) { @property typeof(this) save() { auto ret = this; ret.r1 = r1.save; ret.r2 = r2.save; return ret; } } ref auto opSlice() { return this; } @property bool empty() { return r1.empty && r2.empty; } } /// Ditto SetSymmetricDifference!(less, R1, R2) setSymmetricDifference(alias less = "a < b", R1, R2) (R1 r1, R2 r2) { return typeof(return)(r1, r2); } /// unittest { int[] a = [ 1, 2, 4, 5, 7, 9 ]; int[] b = [ 0, 1, 2, 4, 7, 8 ]; assert(equal(setSymmetricDifference(a, b), [0, 5, 8, 9][])); static assert(isForwardRange!(typeof(setSymmetricDifference(a, b)))); } // Internal random array generators version(unittest) { private enum size_t maxArraySize = 50; private enum size_t minArraySize = maxArraySize - 1; private string[] rndstuff(T : string)() { import std.random : Random, unpredictableSeed, uniform; static Random rnd; static bool first = true; if (first) { rnd = Random(unpredictableSeed); first = false; } string[] result = new string[uniform(minArraySize, maxArraySize, rnd)]; string alpha = "abcdefghijABCDEFGHIJ"; foreach (ref s; result) { foreach (i; 0 .. uniform(0u, 20u, rnd)) { auto j = uniform(0, alpha.length - 1, rnd); s ~= alpha[j]; } } return result; } private int[] rndstuff(T : int)() { import std.random : Random, unpredictableSeed, uniform; static Random rnd; static bool first = true; if (first) { rnd = Random(unpredictableSeed); first = false; } int[] result = new int[uniform(minArraySize, maxArraySize, rnd)]; foreach (ref i; result) { i = uniform(-100, 100, rnd); } return result; } private double[] rndstuff(T : double)() { double[] result; foreach (i; rndstuff!(int)()) { result ~= i / 50.0; } return result; } //Reference type input range private class ReferenceInputRange(T) { this(Range)(Range r) if (isInputRange!Range) {_payload = array(r);} final @property ref T front(){return _payload.front;} final void popFront(){_payload.popFront();} final @property bool empty(){return _payload.empty;} protected T[] _payload; } //Reference forward range private class ReferenceForwardRange(T) : ReferenceInputRange!T { this(Range)(Range r) if (isInputRange!Range) {super(r);} final @property ReferenceForwardRange save() {return new ReferenceForwardRange!T(_payload);} } //Infinite input range private class ReferenceInfiniteInputRange(T) { this(T first = T.init) {_val = first;} final @property T front(){return _val;} final void popFront(){++_val;} enum bool empty = false; protected T _val; } //Infinite forward range private class ReferenceInfiniteForwardRange(T) : ReferenceInfiniteInputRange!T { this(T first = T.init) {super(first);} final @property ReferenceInfiniteForwardRange save() {return new ReferenceInfiniteForwardRange!T(_val);} } } // NWayUnion /** Computes the union of multiple sets. The input sets are passed as a range of ranges and each is assumed to be sorted by $(D less). Computation is done lazily, one union element at a time. The complexity of one $(D popFront) operation is $(BIGOH log(ror.length)). However, the length of $(D ror) decreases as ranges in it are exhausted, so the complexity of a full pass through $(D NWayUnion) is dependent on the distribution of the lengths of ranges contained within $(D ror). If all ranges have the same length $(D n) (worst case scenario), the complexity of a full pass through $(D NWayUnion) is $(BIGOH n * ror.length * log(ror.length)), i.e., $(D log(ror.length)) times worse than just spanning all ranges in turn. The output comes sorted (unstably) by $(D less). Warning: Because $(D NWayUnion) does not allocate extra memory, it will leave $(D ror) modified. Namely, $(D NWayUnion) assumes ownership of $(D ror) and discretionarily swaps and advances elements of it. If you want $(D ror) to preserve its contents after the call, you may want to pass a duplicate to $(D NWayUnion) (and perhaps cache the duplicate in between calls). */ struct NWayUnion(alias less, RangeOfRanges) { import std.container : BinaryHeap; private alias ElementType = .ElementType!(.ElementType!RangeOfRanges); private alias comp = binaryFun!less; private RangeOfRanges _ror; static bool compFront(.ElementType!RangeOfRanges a, .ElementType!RangeOfRanges b) { // revert comparison order so we get the smallest elements first return comp(b.front, a.front); } BinaryHeap!(RangeOfRanges, compFront) _heap; this(RangeOfRanges ror) { // Preemptively get rid of all empty ranges in the input // No need for stability either _ror = remove!("a.empty", SwapStrategy.unstable)(ror); //Build the heap across the range _heap.acquire(_ror); } @property bool empty() { return _ror.empty; } @property auto ref front() { return _heap.front.front; } void popFront() { _heap.removeFront(); // let's look at the guy just popped _ror.back.popFront(); if (_ror.back.empty) { _ror.popBack(); // nothing else to do: the empty range is not in the // heap and not in _ror return; } // Put the popped range back in the heap _heap.conditionalInsert(_ror.back) || assert(false); } } /// Ditto NWayUnion!(less, RangeOfRanges) nWayUnion (alias less = "a < b", RangeOfRanges) (RangeOfRanges ror) { return typeof(return)(ror); } /// unittest { double[][] a = [ [ 1, 4, 7, 8 ], [ 1, 7 ], [ 1, 7, 8], [ 4 ], [ 7 ], ]; auto witness = [ 1, 1, 1, 4, 4, 7, 7, 7, 7, 8, 8 ]; assert(equal(nWayUnion(a), witness)); } // largestPartialIntersection /** Given a range of sorted forward ranges $(D ror), copies to $(D tgt) the elements that are common to most ranges, along with their number of occurrences. All ranges in $(D ror) are assumed to be sorted by $(D less). Only the most frequent $(D tgt.length) elements are returned. Example: ---- // Figure which number can be found in most arrays of the set of // arrays below. double[][] a = [ [ 1, 4, 7, 8 ], [ 1, 7 ], [ 1, 7, 8], [ 4 ], [ 7 ], ]; auto b = new Tuple!(double, uint)[1]; largestPartialIntersection(a, b); // First member is the item, second is the occurrence count assert(b[0] == tuple(7.0, 4u)); ---- $(D 7.0) is the correct answer because it occurs in $(D 4) out of the $(D 5) inputs, more than any other number. The second member of the resulting tuple is indeed $(D 4) (recording the number of occurrences of $(D 7.0)). If more of the top-frequent numbers are needed, just create a larger $(D tgt) range. In the axample above, creating $(D b) with length $(D 2) yields $(D tuple(1.0, 3u)) in the second position. The function $(D largestPartialIntersection) is useful for e.g. searching an $(LUCKY inverted index) for the documents most likely to contain some terms of interest. The complexity of the search is $(BIGOH n * log(tgt.length)), where $(D n) is the sum of lengths of all input ranges. This approach is faster than keeping an associative array of the occurrences and then selecting its top items, and also requires less memory ($(D largestPartialIntersection) builds its result directly in $(D tgt) and requires no extra memory). Warning: Because $(D largestPartialIntersection) does not allocate extra memory, it will leave $(D ror) modified. Namely, $(D largestPartialIntersection) assumes ownership of $(D ror) and discretionarily swaps and advances elements of it. If you want $(D ror) to preserve its contents after the call, you may want to pass a duplicate to $(D largestPartialIntersection) (and perhaps cache the duplicate in between calls). */ void largestPartialIntersection (alias less = "a < b", RangeOfRanges, Range) (RangeOfRanges ror, Range tgt, SortOutput sorted = SortOutput.no) { struct UnitWeights { static int opIndex(ElementType!(ElementType!RangeOfRanges)) { return 1; } } return largestPartialIntersectionWeighted!less(ror, tgt, UnitWeights(), sorted); } // largestPartialIntersectionWeighted /** Similar to $(D largestPartialIntersection), but associates a weight with each distinct element in the intersection. Example: ---- // Figure which number can be found in most arrays of the set of // arrays below, with specific per-element weights double[][] a = [ [ 1, 4, 7, 8 ], [ 1, 7 ], [ 1, 7, 8], [ 4 ], [ 7 ], ]; auto b = new Tuple!(double, uint)[1]; double[double] weights = [ 1:1.2, 4:2.3, 7:1.1, 8:1.1 ]; largestPartialIntersectionWeighted(a, b, weights); // First member is the item, second is the occurrence count assert(b[0] == tuple(4.0, 2u)); ---- The correct answer in this case is $(D 4.0), which, although only appears two times, has a total weight $(D 4.6) (three times its weight $(D 2.3)). The value $(D 7) is weighted with $(D 1.1) and occurs four times for a total weight $(D 4.4). */ void largestPartialIntersectionWeighted (alias less = "a < b", RangeOfRanges, Range, WeightsAA) (RangeOfRanges ror, Range tgt, WeightsAA weights, SortOutput sorted = SortOutput.no) { if (tgt.empty) return; alias InfoType = ElementType!Range; bool heapComp(InfoType a, InfoType b) { return weights[a[0]] * a[1] > weights[b[0]] * b[1]; } topNCopy!heapComp(group(nWayUnion!less(ror)), tgt, sorted); } unittest { import std.conv : text; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); double[][] a = [ [ 1, 4, 7, 8 ], [ 1, 7 ], [ 1, 7, 8], [ 4 ], [ 7 ], ]; auto b = new Tuple!(double, uint)[2]; largestPartialIntersection(a, b, SortOutput.yes); //sort(b); //writeln(b); assert(b == [ tuple(7.0, 4u), tuple(1.0, 3u) ][], text(b)); assert(a[0].empty); } unittest { import std.conv : text; debug(std_algorithm) scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); string[][] a = [ [ "1", "4", "7", "8" ], [ "1", "7" ], [ "1", "7", "8"], [ "4" ], [ "7" ], ]; auto b = new Tuple!(string, uint)[2]; largestPartialIntersection(a, b, SortOutput.yes); //writeln(b); assert(b == [ tuple("7", 4u), tuple("1", 3u) ][], text(b)); } unittest { //scope(success) writeln("unittest @", __FILE__, ":", __LINE__, " done."); // Figure which number can be found in most arrays of the set of // arrays below, with specific per-element weights double[][] a = [ [ 1, 4, 7, 8 ], [ 1, 7 ], [ 1, 7, 8], [ 4 ], [ 7 ], ]; auto b = new Tuple!(double, uint)[1]; double[double] weights = [ 1:1.2, 4:2.3, 7:1.1, 8:1.1 ]; largestPartialIntersectionWeighted(a, b, weights); // First member is the item, second is the occurrence count //writeln(b[0]); assert(b[0] == tuple(4.0, 2u)); } unittest { import std.container : Array; alias T = Tuple!(uint, uint); const Array!T arrayOne = Array!T( [ T(1,2), T(3,4) ] ); const Array!T arrayTwo = Array!T([ T(1,2), T(3,4) ] ); assert(arrayOne == arrayTwo); } // nextPermutation /** * Permutes $(D range) in-place to the next lexicographically greater * permutation. * * The predicate $(D less) defines the lexicographical ordering to be used on * the range. * * If the range is currently the lexicographically greatest permutation, it is * permuted back to the least permutation and false is returned. Otherwise, * true is returned. One can thus generate all permutations of a range by * sorting it according to $(D less), which produces the lexicographically * least permutation, and then calling nextPermutation until it returns false. * This is guaranteed to generate all distinct permutations of the range * exactly once. If there are $(I N) elements in the range and all of them are * unique, then $(I N)! permutations will be generated. Otherwise, if there are * some duplicated elements, fewer permutations will be produced. ---- // Enumerate all permutations int[] a = [1,2,3,4,5]; do { // use the current permutation and // proceed to the next permutation of the array. } while (nextPermutation(a)); ---- * Returns: false if the range was lexicographically the greatest, in which * case the range is reversed back to the lexicographically smallest * permutation; otherwise returns true. */ bool nextPermutation(alias less="a binaryFun!less(i.front, a))( takeExactly(retro(range), n)); assert(!j.empty); // shouldn't happen since i.front < last.front swap(i.front, j.front); reverse(takeExactly(retro(range), n)); return true; } /// unittest { // Step through all permutations of a sorted array in lexicographic order int[] a = [1,2,3]; assert(nextPermutation(a) == true); assert(a == [1,3,2]); assert(nextPermutation(a) == true); assert(a == [2,1,3]); assert(nextPermutation(a) == true); assert(a == [2,3,1]); assert(nextPermutation(a) == true); assert(a == [3,1,2]); assert(nextPermutation(a) == true); assert(a == [3,2,1]); assert(nextPermutation(a) == false); assert(a == [1,2,3]); } /// unittest { // Step through permutations of an array containing duplicate elements: int[] a = [1,1,2]; assert(nextPermutation(a) == true); assert(a == [1,2,1]); assert(nextPermutation(a) == true); assert(a == [2,1,1]); assert(nextPermutation(a) == false); assert(a == [1,1,2]); } unittest { // Boundary cases: arrays of 0 or 1 element. int[] a1 = []; assert(!nextPermutation(a1)); assert(a1 == []); int[] a2 = [1]; assert(!nextPermutation(a2)); assert(a2 == [1]); } unittest { auto a1 = [1, 2, 3, 4]; assert(nextPermutation(a1)); assert(equal(a1, [1, 2, 4, 3])); assert(nextPermutation(a1)); assert(equal(a1, [1, 3, 2, 4])); assert(nextPermutation(a1)); assert(equal(a1, [1, 3, 4, 2])); assert(nextPermutation(a1)); assert(equal(a1, [1, 4, 2, 3])); assert(nextPermutation(a1)); assert(equal(a1, [1, 4, 3, 2])); assert(nextPermutation(a1)); assert(equal(a1, [2, 1, 3, 4])); assert(nextPermutation(a1)); assert(equal(a1, [2, 1, 4, 3])); assert(nextPermutation(a1)); assert(equal(a1, [2, 3, 1, 4])); assert(nextPermutation(a1)); assert(equal(a1, [2, 3, 4, 1])); assert(nextPermutation(a1)); assert(equal(a1, [2, 4, 1, 3])); assert(nextPermutation(a1)); assert(equal(a1, [2, 4, 3, 1])); assert(nextPermutation(a1)); assert(equal(a1, [3, 1, 2, 4])); assert(nextPermutation(a1)); assert(equal(a1, [3, 1, 4, 2])); assert(nextPermutation(a1)); assert(equal(a1, [3, 2, 1, 4])); assert(nextPermutation(a1)); assert(equal(a1, [3, 2, 4, 1])); assert(nextPermutation(a1)); assert(equal(a1, [3, 4, 1, 2])); assert(nextPermutation(a1)); assert(equal(a1, [3, 4, 2, 1])); assert(nextPermutation(a1)); assert(equal(a1, [4, 1, 2, 3])); assert(nextPermutation(a1)); assert(equal(a1, [4, 1, 3, 2])); assert(nextPermutation(a1)); assert(equal(a1, [4, 2, 1, 3])); assert(nextPermutation(a1)); assert(equal(a1, [4, 2, 3, 1])); assert(nextPermutation(a1)); assert(equal(a1, [4, 3, 1, 2])); assert(nextPermutation(a1)); assert(equal(a1, [4, 3, 2, 1])); assert(!nextPermutation(a1)); assert(equal(a1, [1, 2, 3, 4])); } unittest { // Test with non-default sorting order int[] a = [3,2,1]; assert(nextPermutation!"a > b"(a) == true); assert(a == [3,1,2]); assert(nextPermutation!"a > b"(a) == true); assert(a == [2,3,1]); assert(nextPermutation!"a > b"(a) == true); assert(a == [2,1,3]); assert(nextPermutation!"a > b"(a) == true); assert(a == [1,3,2]); assert(nextPermutation!"a > b"(a) == true); assert(a == [1,2,3]); assert(nextPermutation!"a > b"(a) == false); assert(a == [3,2,1]); } // nextEvenPermutation /** * Permutes $(D range) in-place to the next lexicographically greater $(I even) * permutation. * * The predicate $(D less) defines the lexicographical ordering to be used on * the range. * * An even permutation is one which is produced by swapping an even number of * pairs of elements in the original range. The set of $(I even) permutations * is distinct from the set of $(I all) permutations only when there are no * duplicate elements in the range. If the range has $(I N) unique elements, * then there are exactly $(I N)!/2 even permutations. * * If the range is already the lexicographically greatest even permutation, it * is permuted back to the least even permutation and false is returned. * Otherwise, true is returned, and the range is modified in-place to be the * lexicographically next even permutation. * * One can thus generate the even permutations of a range with unique elements * by starting with the lexicographically smallest permutation, and repeatedly * calling nextEvenPermutation until it returns false. ---- // Enumerate even permutations int[] a = [1,2,3,4,5]; do { // use the current permutation and // proceed to the next even permutation of the array. } while (nextEvenPermutation(a)); ---- * One can also generate the $(I odd) permutations of a range by noting that * permutations obey the rule that even + even = even, and odd + even = odd. * Thus, by swapping the last two elements of a lexicographically least range, * it is turned into the first odd permutation. Then calling * nextEvenPermutation on this first odd permutation will generate the next * even permutation relative to this odd permutation, which is actually the * next odd permutation of the original range. Thus, by repeatedly calling * nextEvenPermutation until it returns false, one enumerates the odd * permutations of the original range. ---- // Enumerate odd permutations int[] a = [1,2,3,4,5]; swap(a[$-2], a[$-1]); // a is now the first odd permutation of [1,2,3,4,5] do { // use the current permutation and // proceed to the next odd permutation of the original array // (which is an even permutation of the first odd permutation). } while (nextEvenPermutation(a)); ---- * * Warning: Since even permutations are only distinct from all permutations * when the range elements are unique, this function assumes that there are no * duplicate elements under the specified ordering. If this is not _true, some * permutations may fail to be generated. When the range has non-unique * elements, you should use $(MYREF nextPermutation) instead. * * Returns: false if the range was lexicographically the greatest, in which * case the range is reversed back to the lexicographically smallest * permutation; otherwise returns true. */ bool nextEvenPermutation(alias less="a binaryFun!less(i.front, a))( takeExactly(retro(range), n)); // shouldn't happen since i.front < last.front assert(!j.empty); swap(i.front, j.front); oddParity = !oddParity; } else { // Entire range is decreasing: it's lexicographically // the greatest. ret = false; } reverse(takeExactly(retro(range), n)); if ((n / 2) % 2 == 1) oddParity = !oddParity; } while(oddParity); return ret; } /// unittest { // Step through even permutations of a sorted array in lexicographic order int[] a = [1,2,3]; assert(nextEvenPermutation(a) == true); assert(a == [2,3,1]); assert(nextEvenPermutation(a) == true); assert(a == [3,1,2]); assert(nextEvenPermutation(a) == false); assert(a == [1,2,3]); } unittest { auto a3 = [ 1, 2, 3, 4 ]; int count = 1; while (nextEvenPermutation(a3)) count++; assert(count == 12); } unittest { // Test with non-default sorting order auto a = [ 3, 2, 1 ]; assert(nextEvenPermutation!"a > b"(a) == true); assert(a == [ 2, 1, 3 ]); assert(nextEvenPermutation!"a > b"(a) == true); assert(a == [ 1, 3, 2 ]); assert(nextEvenPermutation!"a > b"(a) == false); assert(a == [ 3, 2, 1 ]); } unittest { // Test various cases of rollover auto a = [ 3, 1, 2 ]; assert(nextEvenPermutation(a) == false); assert(a == [ 1, 2, 3 ]); auto b = [ 3, 2, 1 ]; assert(nextEvenPermutation(b) == false); assert(b == [ 1, 3, 2 ]); } /** Even permutations are useful for generating coordinates of certain geometric shapes. Here's a non-trivial example: */ unittest { import std.math : sqrt; // Print the 60 vertices of a uniform truncated icosahedron (soccer ball) enum real Phi = (1.0 + sqrt(5.0)) / 2.0; // Golden ratio real[][] seeds = [ [0.0, 1.0, 3.0*Phi], [1.0, 2.0+Phi, 2.0*Phi], [Phi, 2.0, Phi^^3] ]; size_t n; foreach (seed; seeds) { // Loop over even permutations of each seed do { // Loop over all sign changes of each permutation size_t i; do { // Generate all possible sign changes for (i=0; i < seed.length; i++) { if (seed[i] != 0.0) { seed[i] = -seed[i]; if (seed[i] < 0.0) break; } } n++; } while (i < seed.length); } while (nextEvenPermutation(seed)); } assert(n == 60); } // cartesianProduct /** Lazily computes the Cartesian product of two or more ranges. The product is a _range of tuples of elements from each respective range. The conditions for the two-range case are as follows: If both ranges are finite, then one must be (at least) a forward range and the other an input range. If one _range is infinite and the other finite, then the finite _range must be a forward _range, and the infinite range can be an input _range. If both ranges are infinite, then both must be forward ranges. When there are more than two ranges, the above conditions apply to each adjacent pair of ranges. */ auto cartesianProduct(R1, R2)(R1 range1, R2 range2) { static if (isInfinite!R1 && isInfinite!R2) { static if (isForwardRange!R1 && isForwardRange!R2) { // This algorithm traverses the cartesian product by alternately // covering the right and bottom edges of an increasing square area // over the infinite table of combinations. This schedule allows us // to require only forward ranges. return zip(sequence!"n"(cast(size_t)0), range1.save, range2.save, repeat(range1), repeat(range2)) .map!(function(a) => chain( zip(repeat(a[1]), take(a[4].save, a[0])), zip(take(a[3].save, a[0]+1), repeat(a[2])) ))() .joiner(); } else static assert(0, "cartesianProduct of infinite ranges requires "~ "forward ranges"); } else static if (isInputRange!R2 && isForwardRange!R1 && !isInfinite!R1) { return joiner(map!((ElementType!R2 a) => zip(range1.save, repeat(a))) (range2)); } else static if (isInputRange!R1 && isForwardRange!R2 && !isInfinite!R2) { return joiner(map!((ElementType!R1 a) => zip(repeat(a), range2.save)) (range1)); } else static assert(0, "cartesianProduct involving finite ranges must "~ "have at least one finite forward range"); } /// unittest { auto N = sequence!"n"(0); // the range of natural numbers auto N2 = cartesianProduct(N, N); // the range of all pairs of natural numbers // Various arbitrary number pairs can be found in the range in finite time. assert(canFind(N2, tuple(0, 0))); assert(canFind(N2, tuple(123, 321))); assert(canFind(N2, tuple(11, 35))); assert(canFind(N2, tuple(279, 172))); } /// unittest { auto B = [ 1, 2, 3 ]; auto C = [ 4, 5, 6 ]; auto BC = cartesianProduct(B, C); foreach (n; [[1, 4], [2, 4], [3, 4], [1, 5], [2, 5], [3, 5], [1, 6], [2, 6], [3, 6]]) { assert(canFind(BC, tuple(n[0], n[1]))); } } unittest { // Test cartesian product of two infinite ranges auto Even = sequence!"2*n"(0); auto Odd = sequence!"2*n+1"(0); auto EvenOdd = cartesianProduct(Even, Odd); foreach (pair; [[0, 1], [2, 1], [0, 3], [2, 3], [4, 1], [4, 3], [0, 5], [2, 5], [4, 5], [6, 1], [6, 3], [6, 5]]) { assert(canFind(EvenOdd, tuple(pair[0], pair[1]))); } // This should terminate in finite time assert(canFind(EvenOdd, tuple(124, 73))); assert(canFind(EvenOdd, tuple(0, 97))); assert(canFind(EvenOdd, tuple(42, 1))); } unittest { // Test cartesian product of an infinite input range and a finite forward // range. auto N = sequence!"n"(0); auto M = [100, 200, 300]; auto NM = cartesianProduct(N,M); foreach (pair; [[0, 100], [0, 200], [0, 300], [1, 100], [1, 200], [1, 300], [2, 100], [2, 200], [2, 300], [3, 100], [3, 200], [3, 300]]) { assert(canFind(NM, tuple(pair[0], pair[1]))); } // We can't solve the halting problem, so we can only check a finite // initial segment here. assert(!canFind(NM.take(100), tuple(100, 0))); assert(!canFind(NM.take(100), tuple(1, 1))); assert(!canFind(NM.take(100), tuple(100, 200))); auto MN = cartesianProduct(M,N); foreach (pair; [[100, 0], [200, 0], [300, 0], [100, 1], [200, 1], [300, 1], [100, 2], [200, 2], [300, 2], [100, 3], [200, 3], [300, 3]]) { assert(canFind(MN, tuple(pair[0], pair[1]))); } // We can't solve the halting problem, so we can only check a finite // initial segment here. assert(!canFind(MN.take(100), tuple(0, 100))); assert(!canFind(MN.take(100), tuple(0, 1))); assert(!canFind(MN.take(100), tuple(100, 200))); } unittest { // Test cartesian product of two finite ranges. auto X = [1, 2, 3]; auto Y = [4, 5, 6]; auto XY = cartesianProduct(X, Y); auto Expected = [[1, 4], [1, 5], [1, 6], [2, 4], [2, 5], [2, 6], [3, 4], [3, 5], [3, 6]]; // Verify Expected ⊆ XY foreach (pair; Expected) { assert(canFind(XY, tuple(pair[0], pair[1]))); } // Verify XY ⊆ Expected foreach (pair; XY) { assert(canFind(Expected, [pair[0], pair[1]])); } // And therefore, by set comprehension, XY == Expected } unittest { auto N = sequence!"n"(0); // To force the template to fall to the second case, we wrap N in a struct // that doesn't allow bidirectional access. struct FwdRangeWrapper(R) { R impl; // Input range API @property auto front() { return impl.front; } void popFront() { impl.popFront(); } static if (isInfinite!R) enum empty = false; else @property bool empty() { return impl.empty; } // Forward range API @property auto save() { return typeof(this)(impl.save); } } auto fwdWrap(R)(R range) { return FwdRangeWrapper!R(range); } // General test: two infinite bidirectional ranges auto N2 = cartesianProduct(N, N); assert(canFind(N2, tuple(0, 0))); assert(canFind(N2, tuple(123, 321))); assert(canFind(N2, tuple(11, 35))); assert(canFind(N2, tuple(279, 172))); // Test first case: forward range with bidirectional range auto fwdN = fwdWrap(N); auto N2_a = cartesianProduct(fwdN, N); assert(canFind(N2_a, tuple(0, 0))); assert(canFind(N2_a, tuple(123, 321))); assert(canFind(N2_a, tuple(11, 35))); assert(canFind(N2_a, tuple(279, 172))); // Test second case: bidirectional range with forward range auto N2_b = cartesianProduct(N, fwdN); assert(canFind(N2_b, tuple(0, 0))); assert(canFind(N2_b, tuple(123, 321))); assert(canFind(N2_b, tuple(11, 35))); assert(canFind(N2_b, tuple(279, 172))); // Test third case: finite forward range with (infinite) input range static struct InpRangeWrapper(R) { R impl; // Input range API @property auto front() { return impl.front; } void popFront() { impl.popFront(); } static if (isInfinite!R) enum empty = false; else @property bool empty() { return impl.empty; } } auto inpWrap(R)(R r) { return InpRangeWrapper!R(r); } auto inpN = inpWrap(N); auto B = [ 1, 2, 3 ]; auto fwdB = fwdWrap(B); auto BN = cartesianProduct(fwdB, inpN); assert(equal(map!"[a[0],a[1]]"(BN.take(10)), [[1, 0], [2, 0], [3, 0], [1, 1], [2, 1], [3, 1], [1, 2], [2, 2], [3, 2], [1, 3]])); // Test fourth case: (infinite) input range with finite forward range auto NB = cartesianProduct(inpN, fwdB); assert(equal(map!"[a[0],a[1]]"(NB.take(10)), [[0, 1], [0, 2], [0, 3], [1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [2, 3], [3, 1]])); // General finite range case auto C = [ 4, 5, 6 ]; auto BC = cartesianProduct(B, C); foreach (n; [[1, 4], [2, 4], [3, 4], [1, 5], [2, 5], [3, 5], [1, 6], [2, 6], [3, 6]]) { assert(canFind(BC, tuple(n[0], n[1]))); } } /// ditto auto cartesianProduct(R1, R2, RR...)(R1 range1, R2 range2, RR otherRanges) { import std.string : format; /* We implement the n-ary cartesian product by recursively invoking the * binary cartesian product. To make the resulting range nicer, we denest * one level of tuples so that a ternary cartesian product, for example, * returns 3-element tuples instead of nested 2-element tuples. */ enum string denest = format("tuple(a[0], %(a[1][%d]%|,%))", iota(0, otherRanges.length+1)); return map!denest( cartesianProduct(range1, cartesianProduct(range2, otherRanges)) ); } unittest { auto N = sequence!"n"(0); auto N3 = cartesianProduct(N, N, N); // Check that tuples are properly denested assert(is(ElementType!(typeof(N3)) == Tuple!(size_t,size_t,size_t))); assert(canFind(N3, tuple(0, 27, 7))); assert(canFind(N3, tuple(50, 23, 71))); assert(canFind(N3, tuple(9, 3, 0))); } version(none) // This unittest causes `make -f posix.mak unittest` to run out of memory. Why? unittest { auto N = sequence!"n"(0); auto N4 = cartesianProduct(N, N, N, N); // Check that tuples are properly denested assert(is(ElementType!(typeof(N4)) == Tuple!(size_t,size_t,size_t,size_t))); assert(canFind(N4, tuple(1, 2, 3, 4))); assert(canFind(N4, tuple(4, 3, 2, 1))); assert(canFind(N4, tuple(10, 31, 7, 12))); } /// unittest { auto A = [ 1, 2, 3 ]; auto B = [ 'a', 'b', 'c' ]; auto C = [ "x", "y", "z" ]; auto ABC = cartesianProduct(A, B, C); assert(ABC.equal([ tuple(1, 'a', "x"), tuple(2, 'a', "x"), tuple(3, 'a', "x"), tuple(1, 'b', "x"), tuple(2, 'b', "x"), tuple(3, 'b', "x"), tuple(1, 'c', "x"), tuple(2, 'c', "x"), tuple(3, 'c', "x"), tuple(1, 'a', "y"), tuple(2, 'a', "y"), tuple(3, 'a', "y"), tuple(1, 'b', "y"), tuple(2, 'b', "y"), tuple(3, 'b', "y"), tuple(1, 'c', "y"), tuple(2, 'c', "y"), tuple(3, 'c', "y"), tuple(1, 'a', "z"), tuple(2, 'a', "z"), tuple(3, 'a', "z"), tuple(1, 'b', "z"), tuple(2, 'b', "z"), tuple(3, 'b', "z"), tuple(1, 'c', "z"), tuple(2, 'c', "z"), tuple(3, 'c', "z"), ])); } /** Find $(D value) _among $(D values), returning the 1-based index of the first matching value in $(D values), or $(D 0) if $(D value) is not _among $(D values). The predicate $(D pred) is used to compare values, and uses equality by default. See_Also: $(XREF algorithm, find) for finding a value in a range. */ uint among(alias pred = (a, b) => a == b, Value, Values...) (Value value, Values values) if (Values.length != 0) { foreach (uint i, ref v; values) { import std.functional : binaryFun; if (binaryFun!pred(value, v)) return i + 1; } return 0; } /// Ditto template among(values...) if (isExpressionTuple!values) { uint among(Value)(Value value) if (!is(CommonType!(Value, values) == void)) { switch (value) { foreach (uint i, v; values) case v: return i + 1; default: return 0; } } } /// unittest { assert(3.among(1, 42, 24, 3, 2)); if (auto pos = "bar".among("foo", "bar", "baz")) assert(pos == 2); else assert(false); // 42 is larger than 24 assert(42.among!((lhs, rhs) => lhs > rhs)(43, 24, 100) == 2); } /** Alternatively, $(D values) can be passed at compile-time, allowing for a more efficient search, but one that only supports matching on equality: */ unittest { assert(3.among!(2, 3, 4)); assert("bar".among!("foo", "bar", "baz") == 2); } unittest { if (auto pos = 3.among(1, 2, 3)) assert(pos == 3); else assert(false); assert(!4.among(1, 2, 3)); auto position = "hello".among("hello", "world"); assert(position); assert(position == 1); alias values = TypeTuple!("foo", "bar", "baz"); auto arr = [values]; assert(arr[0 .. "foo".among(values)] == ["foo"]); assert(arr[0 .. "bar".among(values)] == ["foo", "bar"]); assert(arr[0 .. "baz".among(values)] == arr); assert("foobar".among(values) == 0); if (auto pos = 3.among!(1, 2, 3)) assert(pos == 3); else assert(false); assert(!4.among!(1, 2, 3)); position = "hello".among!("hello", "world"); assert(position); assert(position == 1); static assert(!__traits(compiles, "a".among!("a", 42))); static assert(!__traits(compiles, (Object.init).among!(42, "a"))); }