/** Cyclic Redundancy Check (32-bit) implementation. $(SCRIPT inhibitQuickIndex = 1;) $(DIVC quickindex, $(BOOKTABLE , $(TR $(TH Category) $(TH Functions) ) $(TR $(TDNW Template API) $(TD $(MYREF CRC32) ) ) $(TR $(TDNW OOP API) $(TD $(MYREF CRC32Digest)) ) $(TR $(TDNW Helpers) $(TD $(MYREF crcHexString) $(MYREF crc32Of)) ) ) ) * * This module conforms to the APIs defined in $(D std.digest.digest). To understand the * differences between the template and the OOP API, see $(D std.digest.digest). * * This module publicly imports $(D std.digest.digest) and can be used as a stand-alone * module. * * Note: * CRCs are usually printed with the MSB first. When using * $(REF toHexString, std,digest,digest) the result will be in an unexpected * order. Use $(REF toHexString, std,digest,digest)'s optional order parameter * to specify decreasing order for the correct result. The $(LREF crcHexString) * alias can also be used for this purpose. * * License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0). * * Authors: Pavel "EvilOne" Minayev, Alex Rønne Petersen, Johannes Pfau * * References: * $(LINK2 http://en.wikipedia.org/wiki/Cyclic_redundancy_check, Wikipedia on CRC) * * Source: $(PHOBOSSRC std/digest/_crc.d) * * Standards: * Implements the 'common' IEEE CRC32 variant * (LSB-first order, Initial value uint.max, complement result) * * CTFE: * Digests do not work in CTFE */ /* * Copyright (c) 2001 - 2002 * Pavel "EvilOne" Minayev * Copyright (c) 2012 * Alex Rønne Petersen * Distributed under the Boost Software License, Version 1.0. * (See accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) */ module std.digest.crc; public import std.digest.digest; version(unittest) import std.exception; /// @safe unittest { //Template API import std.digest.crc; ubyte[4] hash = crc32Of("The quick brown fox jumps over the lazy dog"); assert(crcHexString(hash) == "414FA339"); //Feeding data ubyte[1024] data; CRC32 crc; crc.put(data[]); crc.start(); //Start again crc.put(data[]); hash = crc.finish(); } /// @safe unittest { //OOP API import std.digest.crc; auto crc = new CRC32Digest(); ubyte[] hash = crc.digest("The quick brown fox jumps over the lazy dog"); assert(crcHexString(hash) == "414FA339"); //352441c2 //Feeding data ubyte[1024] data; crc.put(data[]); crc.reset(); //Start again crc.put(data[]); hash = crc.finish(); } private uint[256][8] genTables(uint polynomial) { uint[256][8] res = void; foreach (i; 0 .. 0x100) { uint crc = i; foreach (_; 0 .. 8) crc = (crc >> 1) ^ (-int(crc & 1) & polynomial); res[0][i] = crc; } foreach (i; 0 .. 0x100) { res[1][i] = (res[0][i] >> 8) ^ res[0][res[0][i] & 0xFF]; res[2][i] = (res[1][i] >> 8) ^ res[0][res[1][i] & 0xFF]; res[3][i] = (res[2][i] >> 8) ^ res[0][res[2][i] & 0xFF]; res[4][i] = (res[3][i] >> 8) ^ res[0][res[3][i] & 0xFF]; res[5][i] = (res[4][i] >> 8) ^ res[0][res[4][i] & 0xFF]; res[6][i] = (res[5][i] >> 8) ^ res[0][res[5][i] & 0xFF]; res[7][i] = (res[6][i] >> 8) ^ res[0][res[6][i] & 0xFF]; } return res; } private static immutable uint[256][8] crc32Tables = genTables(0xEDB88320); @system unittest { auto tables = genTables(0xEDB88320); assert(tables[0][0] == 0x00000000 && tables[0][$ - 1] == 0x2d02ef8d && tables[7][$ - 1] == 0x264b06e6); } /** * Template API CRC32 implementation. * See $(D std.digest.digest) for differences between template and OOP API. */ struct CRC32 { private: // magic initialization constants uint _state = uint.max; public: /** * Use this to feed the digest with data. * Also implements the $(REF isOutputRange, std,range,primitives) * interface for $(D ubyte) and $(D const(ubyte)[]). */ void put(scope const(ubyte)[] data...) @trusted pure nothrow @nogc { uint crc = _state; // process eight bytes at once while (data.length >= 8) { // Use byte-wise reads to support architectures without HW support // for unaligned reads. This can be optimized by compilers to a single // 32-bit read if unaligned reads are supported. // DMD is not able to do this optimization though, so explicitly // do unaligned reads for DMD's architectures. version (X86) enum hasLittleEndianUnalignedReads = true; else version (X86_64) enum hasLittleEndianUnalignedReads = true; else enum hasLittleEndianUnalignedReads = false; // leave decision to optimizer static if (hasLittleEndianUnalignedReads) { uint one = (cast(uint*) data.ptr)[0] ^ crc; uint two = (cast(uint*) data.ptr)[1]; } else { uint one = (data.ptr[3] << 24 | data.ptr[2] << 16 | data.ptr[1] << 8 | data.ptr[0]) ^ crc; uint two = (data.ptr[7] << 24 | data.ptr[6] << 16 | data.ptr[5] << 8 | data.ptr[4]); } crc = crc32Tables[0][two >> 24] ^ crc32Tables[1][(two >> 16) & 0xFF] ^ crc32Tables[2][(two >> 8) & 0xFF] ^ crc32Tables[3][two & 0xFF] ^ crc32Tables[4][one >> 24] ^ crc32Tables[5][(one >> 16) & 0xFF] ^ crc32Tables[6][(one >> 8) & 0xFF] ^ crc32Tables[7][one & 0xFF]; data = data[8 .. $]; } // remaining 1 to 7 bytes foreach (d; data) crc = (crc >> 8) ^ crc32Tables[0][(crc & 0xFF) ^ d]; _state = crc; } /// @safe unittest { CRC32 dig; dig.put(cast(ubyte) 0); //single ubyte dig.put(cast(ubyte) 0, cast(ubyte) 0); //variadic ubyte[10] buf; dig.put(buf); //buffer } /** * Used to initialize the CRC32 digest. * * Note: * For this CRC32 Digest implementation calling start after default construction * is not necessary. Calling start is only necessary to reset the Digest. * * Generic code which deals with different Digest types should always call start though. */ void start() @safe pure nothrow @nogc { this = CRC32.init; } /// @safe unittest { CRC32 digest; //digest.start(); //Not necessary digest.put(0); } /** * Returns the finished CRC32 hash. This also calls $(LREF start) to * reset the internal state. */ ubyte[4] finish() @safe pure nothrow @nogc { auto tmp = peek(); start(); return tmp; } /// @safe unittest { //Simple example CRC32 hash; hash.put(cast(ubyte) 0); ubyte[4] result = hash.finish(); } /** * Works like $(D finish) but does not reset the internal state, so it's possible * to continue putting data into this CRC32 after a call to peek. */ ubyte[4] peek() const @safe pure nothrow @nogc { import std.bitmanip : nativeToLittleEndian; //Complement, LSB first / Little Endian, see http://rosettacode.org/wiki/CRC-32 return nativeToLittleEndian(~_state); } } /// @safe unittest { //Simple example, hashing a string using crc32Of helper function ubyte[4] hash = crc32Of("abc"); //Let's get a hash string assert(crcHexString(hash) == "352441C2"); } /// @safe unittest { //Using the basic API CRC32 hash; ubyte[1024] data; //Initialize data here... hash.put(data); ubyte[4] result = hash.finish(); } /// @safe unittest { //Let's use the template features: //Note: When passing a CRC32 to a function, it must be passed by reference! void doSomething(T)(ref T hash) if (isDigest!T) { hash.put(cast(ubyte) 0); } CRC32 crc; crc.start(); doSomething(crc); assert(crcHexString(crc.finish()) == "D202EF8D"); } @safe unittest { assert(isDigest!CRC32); } @system unittest { ubyte[4] digest; CRC32 crc; crc.put(cast(ubyte[])"abcdefghijklmnopqrstuvwxyz"); assert(crc.peek() == cast(ubyte[]) x"bd50274c"); crc.start(); crc.put(cast(ubyte[])""); assert(crc.finish() == cast(ubyte[]) x"00000000"); digest = crc32Of(""); assert(digest == cast(ubyte[]) x"00000000"); //Test vector from http://rosettacode.org/wiki/CRC-32 assert(crcHexString(crc32Of("The quick brown fox jumps over the lazy dog")) == "414FA339"); digest = crc32Of("a"); assert(digest == cast(ubyte[]) x"43beb7e8"); digest = crc32Of("abc"); assert(digest == cast(ubyte[]) x"c2412435"); digest = crc32Of("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"); assert(digest == cast(ubyte[]) x"5f3f1a17"); digest = crc32Of("message digest"); assert(digest == cast(ubyte[]) x"7f9d1520"); digest = crc32Of("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"); assert(digest == cast(ubyte[]) x"d2e6c21f"); digest = crc32Of("1234567890123456789012345678901234567890"~ "1234567890123456789012345678901234567890"); assert(digest == cast(ubyte[]) x"724aa97c"); assert(crcHexString(cast(ubyte[4]) x"c3fcd3d7") == "D7D3FCC3"); } /** * This is a convenience alias for $(REF digest, std,digest,digest) using the * CRC32 implementation. * * Params: * data = $(D InputRange) of $(D ElementType) implicitly convertible to * $(D ubyte), $(D ubyte[]) or $(D ubyte[num]) or one or more arrays * of any type. * * Returns: * CRC32 of data */ //simple alias doesn't work here, hope this gets inlined... ubyte[4] crc32Of(T...)(T data) { return digest!(CRC32, T)(data); } /// @system unittest { ubyte[] data = [4,5,7,25]; assert(data.crc32Of == [167, 180, 199, 131]); import std.utf : byChar; assert("hello"d.byChar.crc32Of == [134, 166, 16, 54]); ubyte[4] hash = "abc".crc32Of(); assert(hash == digest!CRC32("ab", "c")); import std.range : iota; enum ubyte S = 5, F = 66; assert(iota(S, F).crc32Of == [59, 140, 234, 154]); } /** * This is a convenience alias for $(REF toHexString, std,digest,digest) * producing the usual CRC32 string output. */ public alias crcHexString = toHexString!(Order.decreasing); ///ditto public alias crcHexString = toHexString!(Order.decreasing, 16); /** * OOP API CRC32 implementation. * See $(D std.digest.digest) for differences between template and OOP API. * * This is an alias for $(D $(REF WrapperDigest, std,digest,digest)!CRC32), see * there for more information. */ alias CRC32Digest = WrapperDigest!CRC32; /// @safe unittest { //Simple example, hashing a string using Digest.digest helper function auto crc = new CRC32Digest(); ubyte[] hash = crc.digest("abc"); //Let's get a hash string assert(crcHexString(hash) == "352441C2"); } /// @system unittest { //Let's use the OOP features: void test(Digest dig) { dig.put(cast(ubyte) 0); } auto crc = new CRC32Digest(); test(crc); //Let's use a custom buffer: ubyte[4] buf; ubyte[] result = crc.finish(buf[]); assert(crcHexString(result) == "D202EF8D"); } /// @safe unittest { //Simple example auto hash = new CRC32Digest(); hash.put(cast(ubyte) 0); ubyte[] result = hash.finish(); } /// @system unittest { //using a supplied buffer ubyte[4] buf; auto hash = new CRC32Digest(); hash.put(cast(ubyte) 0); ubyte[] result = hash.finish(buf[]); //The result is now in result (and in buf. If you pass a buffer which is bigger than //necessary, result will have the correct length, but buf will still have it's original //length) } @system unittest { import std.range; auto crc = new CRC32Digest(); crc.put(cast(ubyte[])"abcdefghijklmnopqrstuvwxyz"); assert(crc.peek() == cast(ubyte[]) x"bd50274c"); crc.reset(); crc.put(cast(ubyte[])""); assert(crc.finish() == cast(ubyte[]) x"00000000"); crc.put(cast(ubyte[])"abcdefghijklmnopqrstuvwxyz"); ubyte[20] result; auto result2 = crc.finish(result[]); assert(result[0 .. 4] == result2 && result2 == cast(ubyte[]) x"bd50274c"); debug assertThrown!Error(crc.finish(result[0 .. 3])); assert(crc.length == 4); assert(crc.digest("") == cast(ubyte[]) x"00000000"); assert(crc.digest("a") == cast(ubyte[]) x"43beb7e8"); assert(crc.digest("abc") == cast(ubyte[]) x"c2412435"); assert(crc.digest("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq") == cast(ubyte[]) x"5f3f1a17"); assert(crc.digest("message digest") == cast(ubyte[]) x"7f9d1520"); assert(crc.digest("abcdefghijklmnopqrstuvwxyz") == cast(ubyte[]) x"bd50274c"); assert(crc.digest("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789") == cast(ubyte[]) x"d2e6c21f"); assert(crc.digest("1234567890123456789012345678901234567890", "1234567890123456789012345678901234567890") == cast(ubyte[]) x"724aa97c"); ubyte[] onemilliona = new ubyte[1000000]; onemilliona[] = 'a'; auto digest = crc32Of(onemilliona); assert(digest == cast(ubyte[]) x"BCBF25DC"); auto oneMillionRange = repeat!ubyte(cast(ubyte)'a', 1000000); digest = crc32Of(oneMillionRange); assert(digest == cast(ubyte[]) x"BCBF25DC"); }