module std.experimental.allocator.region; import std.experimental.allocator.common; /* (This type is not public.) A $(D BasicRegion) allocator allocates memory straight from an externally- provided storage as backend. There is no deallocation, and once the region is full, allocation requests return $(D null). Therefore, $(D Region)s are often used in conjunction with freelists and a fallback general-purpose allocator. The region only stores two words, corresponding to the current position in the store and the available length. One allocation entails rounding up the allocation size for alignment purposes, bumping the current pointer, and comparing it against the limit. The $(D minAlign) parameter establishes alignment. If $(D minAlign > 1), the sizes of all allocation requests are rounded up to a multiple of $(D minAlign). Applications aiming at maximum speed may want to choose $(D minAlign = 1) and control alignment externally. */ private struct BasicRegion(uint minAlign = platformAlignment) { import std.exception : enforce; static assert(minAlign.isGoodStaticAlignment); private void* _current, _end; /** Constructs a region backed by a user-provided store. */ this(void[] store) { static if (minAlign > 1) { auto newStore = cast(void*) roundUpToMultipleOf( cast(size_t) store.ptr, alignment); enforce(newStore <= store.ptr + store.length); _current = newStore; } else { _current = store; } _end = store.ptr + store.length; } /** The postblit of $(D BasicRegion) is disabled because such objects should not be copied around naively. */ //@disable this(this); /** Standard allocator primitives. */ enum uint alignment = minAlign; /// Ditto void[] allocate(size_t bytes) { static if (minAlign > 1) const rounded = bytes.roundUpToMultipleOf(alignment); else alias rounded = bytes; auto newCurrent = _current + rounded; if (newCurrent > _end) return null; auto result = _current[0 .. bytes]; _current = newCurrent; assert(cast(ulong) result.ptr % alignment == 0); return result; } /// Ditto void[] alignedAllocate(size_t bytes, uint a) { // Just bump the pointer to the next good allocation auto save = _current; _current = cast(void*) roundUpToMultipleOf( cast(size_t) _current, a); auto b = allocate(bytes); if (b.ptr) return b; // Failed, rollback _current = save; return null; } /// Allocates and returns all memory available to this region. void[] allocateAll() { auto result = _current[0 .. available]; _current = _end; return result; } /// Nonstandard property that returns bytes available for allocation. size_t available() const { return _end - _current; } } /* For implementers' eyes: Region adds more capabilities on top of $(BasicRegion) at the cost of one extra word of storage. $(D Region) "remembers" the beginning of the region and therefore is able to provide implementations of $(D owns) and $(D deallocateAll). For most applications the performance distinction between $(D BasicRegion) and $(D Region) is unimportant, so the latter should be the default choice. */ /** A $(D Region) allocator manages one block of memory provided at construction. There is no deallocation, and once the region is full, allocation requests return $(D null). Therefore, $(D Region)s are often used in conjunction with freelists, a fallback general-purpose allocator, or both. The region stores three words corresponding to the start of the store, the current position in the store, and the end of the store. One allocation entails rounding up the allocation size for alignment purposes, bumping the current pointer, and comparing it against the limit. The $(D minAlign) parameter establishes alignment. If $(D minAlign > 1), the sizes of all allocation requests are rounded up to a multiple of $(D minAlign). Applications aiming at maximum speed may want to choose $(D minAlign = 1) and control alignment externally. */ struct Region(uint minAlign = platformAlignment) { static assert(minAlign.isGoodStaticAlignment); private BasicRegion!(minAlign) base; private void* _begin; /** Constructs a $(D Region) object backed by $(D buffer), which must be aligned to $(D minAlign). */ this(void[] buffer) { base = BasicRegion!minAlign(buffer); assert(buffer.ptr !is &this); _begin = base._current; } /** Standard primitives. */ enum uint alignment = minAlign; /// Ditto void[] allocate(size_t bytes) { return base.allocate(bytes); } /// Ditto void[] alignedAllocate(size_t bytes, uint a) { return base.alignedAllocate(bytes, a); } /// Ditto bool owns(void[] b) const { return b.ptr >= _begin && b.ptr + b.length <= base._end || b is null; } /// Ditto void deallocateAll() { base._current = _begin; } /** Nonstandard function that gives away the initial buffer used by the range, and makes the range unavailable for further allocations. This is useful for deallocating the memory assigned to the region. */ void[] relinquish() { auto result = _begin[0 .. base._end - _begin]; base._current = base._end; return result; } } /// unittest { import std.experimental.allocator.mallocator; auto reg = Region!()(Mallocator.it.allocate(1024 * 64)); scope(exit) Mallocator.it.deallocate(reg.relinquish); auto b = reg.allocate(101); assert(b.length == 101); } /** $(D InSituRegion) is a convenient region that carries its storage within itself (in the form of a statically-sized array). The first template argument is the size of the region and the second is the needed alignment. Depending on the alignment requested and platform details, the actual available storage may be smaller than the compile-time parameter. To make sure that at least $(D n) bytes are available in the region, use $(D InSituRegion!(n + a - 1, a)). */ struct InSituRegion(size_t size, size_t minAlign = platformAlignment) { static assert(minAlign.isGoodStaticAlignment); static assert(size >= minAlign); @disable this(this); // The store will be aligned to double.alignof, regardless of the requested // alignment. union { private ubyte[size] _store = void; private double _forAlignmentOnly = void; } private void* _crt, _end; /** An alias for $(D minAlign), which must be a valid alignment (nonzero power of 2). The start of the region and all allocation requests will be rounded up to a multiple of the alignment. ---- InSituRegion!(4096) a1; assert(a1.alignment == platformAlignment); InSituRegion!(4096, 64) a2; assert(a2.alignment == 64); ---- */ enum uint alignment = minAlign; private void lazyInit() { assert(!_crt); _crt = cast(void*) roundUpToMultipleOf( cast(size_t) _store.ptr, alignment); _end = _store.ptr + _store.length; } /** Allocates $(D bytes) and returns them, or $(D null) if the region cannot accommodate the request. For efficiency reasons, if $(D bytes == 0) the function returns an empty non-null slice. */ void[] allocate(size_t bytes) { // Oddity: we don't return null for null allocation. Instead, we return // an empty slice with a non-null ptr. const rounded = bytes.roundUpToMultipleOf(alignment); auto newCrt = _crt + rounded; assert(newCrt >= _crt); // big overflow again: if (newCrt <= _end) { assert(_crt); // this relies on null + size > null auto result = _crt[0 .. bytes]; _crt = newCrt; return result; } // slow path if (_crt) return null; // Lazy initialize _crt lazyInit(); newCrt = _crt + rounded; goto again; } /** As above, but the memory allocated is aligned at $(D a) bytes. */ void[] alignedAllocate(size_t bytes, uint a) { // Just bump the pointer to the next good allocation auto save = _crt; _crt = cast(void*) roundUpToMultipleOf( cast(size_t) _crt, a); auto b = allocate(bytes); if (b.ptr) return b; // Failed, rollback _crt = save; return null; } /** Returns $(D true) if and only if $(D b) is the result of a successful allocation. For efficiency reasons, if $(D b is null) the function returns $(D false). */ bool owns(void[] b) const { // No nullptr return b.ptr >= _store.ptr && b.ptr + b.length <= _store.ptr + _store.length; } /** Deallocates all memory allocated with this allocator. */ void deallocateAll() { _crt = _store.ptr; } /** Allocates all memory available with this allocator. */ void[] allocateAll() { auto s = available; auto result = _crt[0 .. s]; _crt = _end; return result; } /** Nonstandard function that returns the bytes available for allocation. */ size_t available() { if (!_crt) lazyInit(); return _end - _crt; } } /// unittest { // 128KB region, allocated to x86's cache line InSituRegion!(128 * 1024, 64) r1; auto a1 = r1.allocate(101); assert(a1.length == 101); // 128KB region, with fallback to the garbage collector. import std.experimental.allocator.fallback_allocator; import std.experimental.allocator.free_list; import std.experimental.allocator.gc_allocator; import std.experimental.allocator.heap_block; FallbackAllocator!(InSituRegion!(128 * 1024), GCAllocator) r2; auto a2 = r1.allocate(102); assert(a2.length == 102); // Reap with GC fallback. InSituRegion!(128 * 1024, 8) tmp3; FallbackAllocator!(HeapBlock!(64, 8), GCAllocator) r3; r3.primary = HeapBlock!(64, 8)(tmp3.allocateAll()); auto a3 = r3.allocate(103); assert(a3.length == 103); // Reap/GC with a freelist for small objects up to 16 bytes. InSituRegion!(128 * 1024, 64) tmp4; FreeList!(FallbackAllocator!(HeapBlock!(64, 64), GCAllocator), 0, 16) r4; r4.parent.primary = HeapBlock!(64, 64)(tmp4.allocateAll()); auto a4 = r4.allocate(104); assert(a4.length == 104); } unittest { InSituRegion!(4096) r1; auto a = r1.allocate(2001); assert(a.length == 2001); import std.conv : text; assert(r1.available == 2080, text(r1.available)); InSituRegion!(65536, 1024*4) r2; assert(r2.available <= 65536); a = r2.allocate(2001); assert(a.length == 2001); } private extern(C) void* sbrk(long); private extern(C) int brk(shared void*); /** Allocator backed by $(D $(LUCKY sbrk)) for Posix systems. Due to the fact that $(D sbrk) is not thread-safe $(WEB lifecs.likai.org/2010/02/sbrk-is-not-thread- safe.html, by design), $(D SbrkRegion) uses a mutex internally. This implies that uncontrolled calls to $(D brk) and $(D sbrk) may affect the workings of $(D SbrkRegion) adversely. */ version(Posix) struct SbrkRegion(uint minAlign = platformAlignment) { import core.sys.posix.pthread; static shared pthread_mutex_t sbrkMutex; static assert(minAlign.isGoodStaticAlignment); static assert(size_t.sizeof == (void*).sizeof); private shared void* _brkInitial, _brkCurrent; /** Instance shared by all callers. */ static shared SbrkRegion it; /** Standard allocator primitives. */ enum uint alignment = minAlign; /// Ditto void[] allocate(size_t bytes) shared { static if (minAlign > 1) const rounded = bytes.roundUpToMultipleOf(alignment); else alias rounded = bytes; pthread_mutex_lock(cast(pthread_mutex_t*) &sbrkMutex) || assert(0); scope(exit) pthread_mutex_unlock(cast(pthread_mutex_t*) &sbrkMutex) || assert(0); // Assume sbrk returns the old break. Most online documentation confirms // that, except for http://www.inf.udec.cl/~leo/Malloc_tutorial.pdf, // which claims the returned value is not portable. auto p = sbrk(rounded); if (p == cast(void*) -1) { return null; } if (!_brkInitial) { _brkInitial = cast(shared) p; assert(cast(size_t) _brkInitial % minAlign == 0, "Too large alignment chosen for " ~ typeof(this).stringof); } _brkCurrent = cast(shared) (p + rounded); return p[0 .. bytes]; } /// Ditto void[] alignedAllocate(size_t bytes, uint a) shared { pthread_mutex_lock(cast(pthread_mutex_t*) &sbrkMutex) || assert(0); scope(exit) pthread_mutex_unlock(cast(pthread_mutex_t*) &sbrkMutex) || assert(0); if (!_brkInitial) { // This is one extra call, but it'll happen only once. _brkInitial = cast(shared) sbrk(0); assert(cast(size_t) _brkInitial % minAlign == 0, "Too large alignment chosen for " ~ typeof(this).stringof); (_brkInitial != cast(void*) -1) || assert(0); _brkCurrent = _brkInitial; } immutable size_t delta = cast(shared void*) roundUpToMultipleOf( cast(size_t) _brkCurrent, a) - _brkCurrent; // Still must make sure the total size is aligned to the allocator's // alignment. immutable rounded = (bytes + delta).roundUpToMultipleOf(alignment); auto p = sbrk(rounded); if (p == cast(void*) -1) { return null; } _brkCurrent = cast(shared) (p + rounded); return p[delta .. delta + bytes]; } /** The $(D expand) method may only succeed if the argument is the last block allocated. In that case, $(D expand) attempts to push the break pointer to the right. */ bool expand(ref void[] b, size_t delta) shared { if (b is null) return (b = allocate(delta)) !is null; assert(_brkInitial && _brkCurrent); // otherwise where did b come from? pthread_mutex_lock(cast(pthread_mutex_t*) &sbrkMutex) || assert(0); scope(exit) pthread_mutex_unlock(cast(pthread_mutex_t*) &sbrkMutex) || assert(0); if (_brkCurrent != b.ptr + b.length) return false; // Great, can expand the last block static if (minAlign > 1) const rounded = delta.roundUpToMultipleOf(alignment); else alias rounded = bytes; auto p = sbrk(rounded); if (p == cast(void*) -1) { return false; } _brkCurrent = cast(shared) (p + rounded); b = b.ptr[0 .. b.length + delta]; return true; } /// Ditto bool owns(void[] b) shared { // No need to lock here. assert(!_brkCurrent || b.ptr + b.length <= _brkCurrent); return _brkInitial && b.ptr >= _brkInitial; } /** The $(D deallocate) method only works (and returns $(D true)) on systems that support reducing the break address (i.e. accept calls to $(D sbrk) with negative offsets). OSX does not accept such. In addition the argument must be the last block allocated. */ bool deallocate(void[] b) shared { static if (minAlign > 1) const rounded = b.length.roundUpToMultipleOf(alignment); else const rounded = b.length; pthread_mutex_lock(cast(pthread_mutex_t*) &sbrkMutex) || assert(0); scope(exit) pthread_mutex_unlock(cast(pthread_mutex_t*) &sbrkMutex) || assert(0); if (_brkCurrent != b.ptr + b.length) return false; assert(b.ptr >= _brkInitial); if (sbrk(-rounded) == cast(void*) -1) return false; _brkCurrent = cast(shared) b.ptr; return true; } /** The $(D deallocateAll) method only works (and returns $(D true)) on systems that support reducing the break address (i.e. accept calls to $(D sbrk) with negative offsets). OSX does not accept such. */ bool deallocateAll() shared { pthread_mutex_lock(cast(pthread_mutex_t*) &sbrkMutex) || assert(0); scope(exit) pthread_mutex_unlock(cast(pthread_mutex_t*) &sbrkMutex) || assert(0); return !_brkInitial || brk(_brkInitial) == 0; } /// Standard allocator API. bool empty() { // Also works when they're both null. return _brkCurrent == _brkInitial; } /// Ditto enum bool zeroesAllocations = true; } version(Posix) unittest { // Let's test the assumption that sbrk(n) returns the old address auto p1 = sbrk(0); auto p2 = sbrk(4096); assert(p1 == p2); auto p3 = sbrk(0); assert(p3 == p2 + 4096); // Try to reset brk, but don't make a fuss if it doesn't work sbrk(-4096); } version(Posix) unittest { alias alloc = SbrkRegion!(8).it; auto a = alloc.alignedAllocate(2001, 4096); assert(a.length == 2001); auto b = alloc.allocate(2001); assert(b.length == 2001); assert(alloc.owns(a)); assert(alloc.owns(b)); // reducing the brk does not work on OSX version(OSX) {} else { assert(alloc.deallocate(b)); assert(alloc.deallocateAll); } }