// Written in the D programming language. /** Module that will replace the built-in types $(D cfloat), $(D cdouble), $(D creal), $(D ifloat), $(D idouble), and $(D ireal). Authors: Lars Tandle Kyllingstad Copyright: Copyright (c) 2010, Lars T. Kyllingstad. License: $(WEB boost.org/LICENSE_1_0.txt, Boost License 1.0) */ module std.complex; import std.format; import std.math; import std.numeric; import std.traits; /** A complex number parametrised by a type T. Bugs: Some operators, such as opAssign and opOpAssign, should return by ref, but currently don't. This will be implemented as soon as $(LINK2 http://d.puremagic.com/issues/show_bug.cgi?id=2460, DMD bug 2460) is fixed. */ struct Complex(T) if (isFloatingPoint!T) { /** The real part of the number. */ T re; /** The imaginary part of the number. */ T im; /** Calculate the absolute value (or modulus) of the number. */ @property T abs() const { return hypot(re, im); } /** Calculate the argument (or phase) of the number. */ @property T arg() const { return atan2(im, re); } /** Return the complex conjugate of the number. */ @property Complex conj() const { return Complex(re, -im); } // ASSIGNMENT OPERATORS // TODO: Make operators return by ref when DMD bug 2460 is fixed. // this = complex Complex opAssign(R : T)(Complex!R z) { re = z.re; im = z.im; return this; } // this = numeric Complex opAssign(R : T)(R r) { re = r; im = 0; return this; } // COMPARISON OPERATORS // this == complex bool opEquals(R : T)(Complex!R z) const { return re == z.re && im == z.im; } // this == numeric bool opEquals(R : T)(R r) const { return re == r && im == 0; } // UNARY OPERATORS // +complex Complex opUnary(string op)() const if (op == "+") { return this; } // -complex Complex opUnary(string op)() const if (op == "-") { return Complex(-re, -im); } // BINARY OPERATORS // complex op complex Complex!(CommonType!(T,R)) opBinary(string op, R)(Complex!R z) const { alias typeof(return) C; auto w = C(this.re, this.im); return w.opOpAssign!(op)(z); } // complex op numeric Complex!(CommonType!(T,R)) opBinary(string op, R)(R r) const if (isNumeric!R) { alias typeof(return) C; auto w = C(this.re, this.im); return w.opOpAssign!(op)(r); } // numeric + complex, numeric * complex Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(R r) const if ((op == "+" || op == "*") && (isNumeric!R)) { return opBinary!(op)(r); } // numeric - complex Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(R r) const if (op == "-" && isNumeric!R) { return Complex(r - re, -im); } // numeric / complex Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(R r) const if (op == "/" && isNumeric!R) { typeof(return) w; alias FPTemporary!(typeof(w.re)) Tmp; if (fabs(re) < fabs(im)) { Tmp ratio = re/im; Tmp rdivd = r/(re*ratio + im); w.re = rdivd*ratio; w.im = -rdivd; } else { Tmp ratio = im/re; Tmp rdivd = r/(re + im*ratio); w.re = rdivd; w.im = -rdivd*ratio; } return w; } // OPASSIGN OPERATORS // complex += complex, complex -= complex Complex opOpAssign(string op, C)(C z) if ((op == "+" || op == "-") && is(C R == Complex!R)) { mixin ("re "~op~"= z.re;"); mixin ("im "~op~"= z.im;"); return this; } // complex *= complex Complex opOpAssign(string op, C)(C z) if (op == "*" && is(C R == Complex!R)) { auto temp = re*z.re - im*z.im; im = im*z.re + re*z.im; re = temp; return this; } // complex /= complex Complex opOpAssign(string op, C)(C z) if (op == "/" && is(C R == Complex!R)) { if (fabs(z.re) < fabs(z.im)) { FPTemporary!T ratio = z.re/z.im; FPTemporary!T denom = z.re*ratio + z.im; auto temp = (re*ratio + im)/denom; im = (im*ratio - re)/denom; re = temp; } else { FPTemporary!T ratio = z.im/z.re; FPTemporary!T denom = z.re + z.im*ratio; auto temp = (re + im*ratio)/denom; im = (im - re*ratio)/denom; re = temp; } return this; } // complex ^^= complex Complex opOpAssign(string op, C)(C z) if (op == "^^" && is(C R == Complex!R)) { FPTemporary!T r = abs; FPTemporary!T t = arg; FPTemporary!T ab = r^^z.re * exp(-t*z.im); FPTemporary!T ar = t*z.re + log(r)*z.im; re = ab*cos(ar); im = ab*sin(ar); return this; } // complex += numeric, complex -= numeric Complex opOpAssign(string op, U : T)(U a) if (op == "+" || op == "-") { mixin ("re "~op~"= a;"); return this; } // complex *= numeric, complex /= numeric Complex opOpAssign(string op, U : T)(U a) if (op == "*" || op == "/") { mixin ("re "~op~"= a;"); mixin ("im "~op~"= a;"); return this; } // complex ^^= real Complex opOpAssign(string op, R)(R r) if (op == "^^" && isFloatingPoint!R) { FPTemporary!T ab = abs^^r; FPTemporary!T ar = arg*r; re = ab*cos(ar); im = ab*sin(ar); return this; } // complex ^^= int Complex opOpAssign(string op, U)(U i) if (op == "^^" && isIntegral!U) { switch (i) { case 0: re = 1.0; im = 0.0; break; case 1: // identity; do nothing break; case 2: this *= this; break; case 3: auto z = this; this *= z; this *= z; break; default: this ^^= cast(real) i; } return this; } /** Convert the complex number to a string representation. If a $(D sink) delegate is specified, the string is passed to it and this function returns $(D null). Otherwise, this function returns the string representation directly. The output format is controlled via $(D formatSpec), which should consist of a single POSIX format specifier, including the percent (%) character. Note that complex numbers are floating point numbers, so the only valid format characters are 'e', 'f', 'g', 'a', and 's', where 's' gives the default behaviour. Positional parameters are not valid in this context. See the $(LINK2 std_format.html, std.format documentation) for more information. */ string toString (void delegate(const(char)[]) sink = null, string formatSpec = "%s") const { if (sink == null) { char[] buf; buf.reserve(100); toString((const(char)[] s) { buf ~= s; }, formatSpec); return cast(string) buf; } formattedWrite(sink, formatSpec, re); if (signbit(im) == 0) sink("+"); formattedWrite(sink, formatSpec, im); sink("i"); return null; } } unittest { enum EPS = double.epsilon; // Check abs() and arg() auto c1 = Complex!double(1.0, 1.0); assert (approxEqual(c1.abs, sqrt(2.0), EPS)); assert (approxEqual(c1.arg, PI_4, EPS)); auto c1c = c1.conj; assert (c1c.re == 1.0 && c1c.im == -1.0); // Check unary operations. auto c2 = Complex!double(0.5, 2.0); assert (c2 == +c2); assert ((-c2).re == -(c2.re)); assert ((-c2).im == -(c2.im)); assert (c2 == -(-c2)); // Check complex-complex operations. auto cpc = c1 + c2; assert (cpc.re == c1.re + c2.re); assert (cpc.im == c1.im + c2.im); auto cmc = c1 - c2; assert (cmc.re == c1.re - c2.re); assert (cmc.im == c1.im - c2.im); auto ctc = c1 * c2; assert (approxEqual(ctc.abs, c1.abs*c2.abs, EPS)); assert (approxEqual(ctc.arg, c1.arg+c2.arg, EPS)); auto cdc = c1 / c2; assert (approxEqual(cdc.abs, c1.abs/c2.abs, EPS)); assert (approxEqual(cdc.arg, c1.arg-c2.arg, EPS)); auto cec = c1^^c2; assert (approxEqual(cec.re, 0.11524131979943839881, EPS)); assert (approxEqual(cec.im, 0.21870790452746026696, EPS)); // Check complex-real operations. double a = 123.456; auto cpr = c1 + a; assert (cpr.re == c1.re + a); assert (cpr.im == c1.im); auto cmr = c1 - a; assert (cmr.re == c1.re - a); assert (cmr.im == c1.im); auto ctr = c1 * a; assert (ctr.re == c1.re*a); assert (ctr.im == c1.im*a); auto cdr = c1 / a; assert (approxEqual(cdr.abs, c1.abs/a, EPS)); assert (approxEqual(cdr.arg, c1.arg, EPS)); auto rpc = a + c1; assert (rpc == cpr); auto rmc = a - c1; assert (rmc.re == a-c1.re); assert (rmc.im == -c1.im); auto rtc = a * c1; assert (rtc == ctr); auto rdc = a / c1; assert (approxEqual(rdc.abs, a/c1.abs, EPS)); assert (approxEqual(rdc.arg, -c1.arg, EPS)); auto cer = c1^^3.0; assert (approxEqual(cer.abs, c1.abs^^3, EPS)); assert (approxEqual(cer.arg, c1.arg*3, EPS)); // Check Complex-int operations. foreach (i; 0..6) { auto cei = c1^^i; assert (approxEqual(cei.abs, c1.abs^^i, EPS)); // Use cos() here to deal with arguments that go outside // the (-pi,pi] interval (only an issue for i>3). assert (approxEqual(cos(cei.arg), cos(c1.arg*i), EPS)); } // Check operations between different complex types. auto cf = Complex!float(1.0, 1.0); auto cr = Complex!real(1.0, 1.0); auto c1pcf = c1 + cf; auto c1pcr = c1 + cr; static assert (is(typeof(c1pcf) == Complex!double)); static assert (is(typeof(c1pcr) == Complex!real)); assert (c1pcf.re == c1pcr.re); assert (c1pcf.im == c1pcr.im); } unittest { // Assignments and comparisons Complex!double z; z = 1; assert (z == 1); assert (z.re == 1.0 && z.im == 0.0); z = 2.0; assert (z == 2.0); assert (z.re == 2.0 && z.im == 0.0); z = 1.0L; assert (z == 1.0L); assert (z.re == 1.0 && z.im == 0.0); auto w = Complex!real(1.0, 1.0); z = w; assert (z == w); assert (z.re == 1.0 && z.im == 1.0); auto c = Complex!float(2.0, 2.0); z = c; assert (z == c); assert (z.re == 2.0 && z.im == 2.0); } unittest { // Convert to string. // Using default format specifier auto z1 = Complex!real(0.123456789, 0.123456789); char[] s1; z1.toString((const(char)[] c) { s1 ~= c; }); assert (s1 == "0.123457+0.123457i"); assert (s1 == z1.toString()); // Using custom format specifier auto z2 = z1.conj; char[] s2; z2.toString((const(char)[] c) { s2 ~= c; }, "%.8e"); assert (s2 == "1.23456789e-01-1.23456789e-01i"); assert (s2 == z2.toString(null, "%.8e")); } /* Fold Complex!(Complex!T) to Complex!T. The rationale for this is that just like the real line is a subspace of the complex plane, the complex plane is a subspace of itself. Example of usage: --- Complex!T addI(T)(T x) { return x + Complex!T(0.0, 1.0); } --- The above will work if T is both real and complex. */ template Complex(T) if (is(T R == Complex!R)) { alias T Complex; } unittest { static assert (is(Complex!(Complex!real) == Complex!real)); Complex!T addI(T)(T x) { return x + Complex!T(0.0, 1.0); } auto z1 = addI(1.0); assert (z1.re == 1.0 && z1.im == 1.0); enum one = Complex!double(1.0, 0.0); auto z2 = addI(one); assert (z1 == z2); } /** Construct a complex number given its absolute value and argument. */ Complex!(CommonType!(T, U)) fromPolar(T, U)(T modulus, U argument) { return Complex!(CommonType!(T,U)) (modulus*cos(argument), modulus*sin(argument)); } unittest { auto z = fromPolar(sqrt(2.0), PI_4); assert (approxEqual(z.re, 1.0L, real.epsilon)); assert (approxEqual(z.im, 1.0L, real.epsilon)); }