// Written in the D programming language. /** This module contains the $(LREF Complex) type, which is used to represent _complex numbers, along with related mathematical operations and functions. $(LREF Complex) will eventually $(LINK2 ../deprecate.html, replace) the built-in types $(D cfloat), $(D cdouble), $(D creal), $(D ifloat), $(D idouble), and $(D ireal). Authors: Lars Tandle Kyllingstad, Don Clugston Copyright: Copyright (c) 2010, Lars T. Kyllingstad. License: $(WEB boost.org/LICENSE_1_0.txt, Boost License 1.0) Source: $(PHOBOSSRC std/_complex.d) */ module std.complex; import std.format; import std.math; import std.numeric; import std.traits; /** Helper function that returns a _complex number with the specified real and imaginary parts. If neither $(D re) nor $(D im) are floating-point numbers, this function returns a $(D Complex!double). Otherwise, the return type is deduced using $(D std.traits.CommonType!(R, I)). Examples: --- auto c = complex(2.0); static assert (is(typeof(c) == Complex!double)); assert (c.re == 2.0); assert (c.im == 0.0); auto w = complex(2); static assert (is(typeof(w) == Complex!double)); assert (w == c); auto z = complex(1, 3.14L); static assert (is(typeof(z) == Complex!real)); assert (z.re == 1.0L); assert (z.im == 3.14L); --- */ auto complex(T)(T re) @safe pure nothrow if (is(T : double)) { static if (isFloatingPoint!T) return Complex!T(re, 0); else return Complex!double(re, 0); } /// ditto auto complex(R, I)(R re, I im) @safe pure nothrow if (is(R : double) && is(I : double)) { static if (isFloatingPoint!R || isFloatingPoint!I) return Complex!(CommonType!(R, I))(re, im); else return Complex!double(re, im); } unittest { auto a = complex(1.0); static assert (is(typeof(a) == Complex!double)); assert (a.re == 1.0); assert (a.im == 0.0); auto b = complex(2.0L); static assert (is(typeof(b) == Complex!real)); assert (b.re == 2.0L); assert (b.im == 0.0L); auto c = complex(1.0, 2.0); static assert (is(typeof(c) == Complex!double)); assert (c.re == 1.0); assert (c.im == 2.0); auto d = complex(3.0, 4.0L); static assert (is(typeof(d) == Complex!real)); assert (d.re == 3.0); assert (d.im == 4.0L); auto e = complex(1); static assert (is(typeof(e) == Complex!double)); assert (e.re == 1); assert (e.im == 0); auto f = complex(1L, 2); static assert (is(typeof(f) == Complex!double)); assert (f.re == 1L); assert (f.im == 2); auto g = complex(3, 4.0L); static assert (is(typeof(g) == Complex!real)); assert (g.re == 3); assert (g.im == 4.0L); } /** A complex number parametrised by a type $(D T), which must be either $(D float), $(D double) or $(D real). */ struct Complex(T) if (isFloatingPoint!T) { /** The real part of the number. */ T re; /** The imaginary part of the number. */ T im; /** Converts the complex number to a string representation. If a $(D sink) delegate is specified, the string is passed to it and this function returns $(D null). Otherwise, this function returns the string representation directly. The output format is controlled via $(D formatSpec), which should consist of a single POSIX format specifier, including the percent (%) character. Note that complex numbers are floating point numbers, so the only valid format characters are 'e', 'f', 'g', 'a', and 's', where 's' gives the default behaviour. Positional parameters are not valid in this context. See the $(LINK2 std_format.html, std.format documentation) for more information. */ string toString(scope void delegate(const(char)[]) sink = null, string formatSpec = "%s") const { if (sink == null) { char[] buf; buf.reserve(100); toString((const(char)[] s) { buf ~= s; }, formatSpec); return cast(string) buf; } formattedWrite(sink, formatSpec, re); if (signbit(im) == 0) sink("+"); formattedWrite(sink, formatSpec, im); sink("i"); return null; } @safe pure nothrow: // ASSIGNMENT OPERATORS // this = complex ref Complex opAssign(R : T)(Complex!R z) { re = z.re; im = z.im; return this; } // this = numeric ref Complex opAssign(R : T)(R r) { re = r; im = 0; return this; } // COMPARISON OPERATORS // this == complex bool opEquals(R : T)(Complex!R z) const { return re == z.re && im == z.im; } // this == numeric bool opEquals(R : T)(R r) const { return re == r && im == 0; } // UNARY OPERATORS // +complex Complex opUnary(string op)() const if (op == "+") { return this; } // -complex Complex opUnary(string op)() const if (op == "-") { return Complex(-re, -im); } // BINARY OPERATORS // complex op complex Complex!(CommonType!(T,R)) opBinary(string op, R)(Complex!R z) const { alias typeof(return) C; auto w = C(this.re, this.im); return w.opOpAssign!(op)(z); } // complex op numeric Complex!(CommonType!(T,R)) opBinary(string op, R)(R r) const if (isNumeric!R) { alias typeof(return) C; auto w = C(this.re, this.im); return w.opOpAssign!(op)(r); } // numeric + complex, numeric * complex Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(R r) const if ((op == "+" || op == "*") && (isNumeric!R)) { return opBinary!(op)(r); } // numeric - complex Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(R r) const if (op == "-" && isNumeric!R) { return Complex(r - re, -im); } // numeric / complex Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(R r) const if (op == "/" && isNumeric!R) { typeof(return) w; alias FPTemporary!(typeof(w.re)) Tmp; if (fabs(re) < fabs(im)) { Tmp ratio = re/im; Tmp rdivd = r/(re*ratio + im); w.re = rdivd*ratio; w.im = -rdivd; } else { Tmp ratio = im/re; Tmp rdivd = r/(re + im*ratio); w.re = rdivd; w.im = -rdivd*ratio; } return w; } // OP-ASSIGN OPERATORS // complex += complex, complex -= complex ref Complex opOpAssign(string op, C)(C z) if ((op == "+" || op == "-") && is(C R == Complex!R)) { mixin ("re "~op~"= z.re;"); mixin ("im "~op~"= z.im;"); return this; } // complex *= complex ref Complex opOpAssign(string op, C)(C z) if (op == "*" && is(C R == Complex!R)) { auto temp = re*z.re - im*z.im; im = im*z.re + re*z.im; re = temp; return this; } // complex /= complex ref Complex opOpAssign(string op, C)(C z) if (op == "/" && is(C R == Complex!R)) { if (fabs(z.re) < fabs(z.im)) { FPTemporary!T ratio = z.re/z.im; FPTemporary!T denom = z.re*ratio + z.im; auto temp = (re*ratio + im)/denom; im = (im*ratio - re)/denom; re = temp; } else { FPTemporary!T ratio = z.im/z.re; FPTemporary!T denom = z.re + z.im*ratio; auto temp = (re + im*ratio)/denom; im = (im - re*ratio)/denom; re = temp; } return this; } // complex ^^= complex ref Complex opOpAssign(string op, C)(C z) if (op == "^^" && is(C R == Complex!R)) { FPTemporary!T r = abs(this); FPTemporary!T t = arg(this); FPTemporary!T ab = r^^z.re * exp(-t*z.im); FPTemporary!T ar = t*z.re + log(r)*z.im; re = ab*std.math.cos(ar); im = ab*std.math.sin(ar); return this; } // complex += numeric, complex -= numeric ref Complex opOpAssign(string op, U : T)(U a) if (op == "+" || op == "-") { mixin ("re "~op~"= a;"); return this; } // complex *= numeric, complex /= numeric ref Complex opOpAssign(string op, U : T)(U a) if (op == "*" || op == "/") { mixin ("re "~op~"= a;"); mixin ("im "~op~"= a;"); return this; } // complex ^^= real ref Complex opOpAssign(string op, R)(R r) if (op == "^^" && isFloatingPoint!R) { FPTemporary!T ab = abs(this)^^r; FPTemporary!T ar = arg(this)*r; re = ab*std.math.cos(ar); im = ab*std.math.sin(ar); return this; } // complex ^^= int ref Complex opOpAssign(string op, U)(U i) if (op == "^^" && isIntegral!U) { switch (i) { case 0: re = 1.0; im = 0.0; break; case 1: // identity; do nothing break; case 2: this *= this; break; case 3: auto z = this; this *= z; this *= z; break; default: this ^^= cast(real) i; } return this; } } unittest { enum EPS = double.epsilon; auto c1 = complex(1.0, 1.0); // Check unary operations. auto c2 = Complex!double(0.5, 2.0); assert (c2 == +c2); assert ((-c2).re == -(c2.re)); assert ((-c2).im == -(c2.im)); assert (c2 == -(-c2)); // Check complex-complex operations. auto cpc = c1 + c2; assert (cpc.re == c1.re + c2.re); assert (cpc.im == c1.im + c2.im); auto cmc = c1 - c2; assert (cmc.re == c1.re - c2.re); assert (cmc.im == c1.im - c2.im); auto ctc = c1 * c2; assert (approxEqual(abs(ctc), abs(c1)*abs(c2), EPS)); assert (approxEqual(arg(ctc), arg(c1)+arg(c2), EPS)); auto cdc = c1 / c2; assert (approxEqual(abs(cdc), abs(c1)/abs(c2), EPS)); assert (approxEqual(arg(cdc), arg(c1)-arg(c2), EPS)); auto cec = c1^^c2; assert (approxEqual(cec.re, 0.11524131979943839881, EPS)); assert (approxEqual(cec.im, 0.21870790452746026696, EPS)); // Check complex-real operations. double a = 123.456; auto cpr = c1 + a; assert (cpr.re == c1.re + a); assert (cpr.im == c1.im); auto cmr = c1 - a; assert (cmr.re == c1.re - a); assert (cmr.im == c1.im); auto ctr = c1 * a; assert (ctr.re == c1.re*a); assert (ctr.im == c1.im*a); auto cdr = c1 / a; assert (approxEqual(abs(cdr), abs(c1)/a, EPS)); assert (approxEqual(arg(cdr), arg(c1), EPS)); auto rpc = a + c1; assert (rpc == cpr); auto rmc = a - c1; assert (rmc.re == a-c1.re); assert (rmc.im == -c1.im); auto rtc = a * c1; assert (rtc == ctr); auto rdc = a / c1; assert (approxEqual(abs(rdc), a/abs(c1), EPS)); assert (approxEqual(arg(rdc), -arg(c1), EPS)); auto cer = c1^^3.0; assert (approxEqual(abs(cer), abs(c1)^^3, EPS)); assert (approxEqual(arg(cer), arg(c1)*3, EPS)); // Check Complex-int operations. foreach (i; 0..6) { auto cei = c1^^i; assert (approxEqual(abs(cei), abs(c1)^^i, EPS)); // Use cos() here to deal with arguments that go outside // the (-pi,pi] interval (only an issue for i>3). assert (approxEqual(std.math.cos(arg(cei)), std.math.cos(arg(c1)*i), EPS)); } // Check operations between different complex types. auto cf = Complex!float(1.0, 1.0); auto cr = Complex!real(1.0, 1.0); auto c1pcf = c1 + cf; auto c1pcr = c1 + cr; static assert (is(typeof(c1pcf) == Complex!double)); static assert (is(typeof(c1pcr) == Complex!real)); assert (c1pcf.re == c1pcr.re); assert (c1pcf.im == c1pcr.im); } unittest { // Assignments and comparisons Complex!double z; z = 1; assert (z == 1); assert (z.re == 1.0 && z.im == 0.0); z = 2.0; assert (z == 2.0); assert (z.re == 2.0 && z.im == 0.0); z = 1.0L; assert (z == 1.0L); assert (z.re == 1.0 && z.im == 0.0); auto w = Complex!real(1.0, 1.0); z = w; assert (z == w); assert (z.re == 1.0 && z.im == 1.0); auto c = Complex!float(2.0, 2.0); z = c; assert (z == c); assert (z.re == 2.0 && z.im == 2.0); } unittest { // Convert to string. // Using default format specifier auto z1 = Complex!real(0.123456789, 0.123456789); char[] s1; z1.toString((const(char)[] c) { s1 ~= c; }); assert (s1 == "0.123457+0.123457i"); assert (s1 == z1.toString()); // Using custom format specifier auto z2 = conj(z1); char[] s2; z2.toString((const(char)[] c) { s2 ~= c; }, "%.8e"); assert (s2 == "1.23456789e-01-1.23456789e-01i"); assert (s2 == z2.toString(null, "%.8e")); } /* Makes Complex!(Complex!T) fold to Complex!T. The rationale for this is that just like the real line is a subspace of the complex plane, the complex plane is a subspace of itself. Example of usage: --- Complex!T addI(T)(T x) { return x + Complex!T(0.0, 1.0); } --- The above will work if T is both real and complex. */ template Complex(T) if (is(T R == Complex!R)) { alias T Complex; } unittest { static assert (is(Complex!(Complex!real) == Complex!real)); Complex!T addI(T)(T x) { return x + Complex!T(0.0, 1.0); } auto z1 = addI(1.0); assert (z1.re == 1.0 && z1.im == 1.0); enum one = Complex!double(1.0, 0.0); auto z2 = addI(one); assert (z1 == z2); } /** Calculates the absolute value (or modulus) of a complex number. */ T abs(T)(Complex!T z) @safe pure nothrow { return hypot(z.re, z.im); } unittest { assert (abs(complex(1.0)) == 1.0); assert (abs(complex(0.0, 1.0)) == 1.0); assert (abs(complex(1.0L, -2.0L)) == std.math.sqrt(5.0L)); } /** Calculates the argument (or phase) of a complex number. */ T arg(T)(Complex!T z) @safe pure nothrow { return atan2(z.im, z.re); } unittest { assert (arg(complex(1.0)) == 0.0); assert (arg(complex(0.0L, 1.0L)) == PI_2); assert (arg(complex(1.0L, 1.0L)) == PI_4); } /** Returns the complex conjugate of a complex number. */ Complex!T conj(T)(Complex!T z) @safe pure nothrow { return Complex!T(z.re, -z.im); } unittest { assert (conj(complex(1.0)) == complex(1.0)); assert (conj(complex(1.0, 2.0)) == complex(1.0, -2.0)); } /** Constructs a complex number given its absolute value and argument. */ Complex!(CommonType!(T, U)) fromPolar(T, U)(T modulus, U argument) @safe pure nothrow { return Complex!(CommonType!(T,U)) (modulus*std.math.cos(argument), modulus*std.math.sin(argument)); } unittest { auto z = fromPolar(std.math.sqrt(2.0), PI_4); assert (approxEqual(z.re, 1.0L, real.epsilon)); assert (approxEqual(z.im, 1.0L, real.epsilon)); } /** Trigonometric functions. */ Complex!T sin(T)(Complex!T z) @safe pure nothrow { auto cs = expi(z.re); auto csh = coshisinh(z.im); return typeof(return)(cs.im * csh.re, cs.re * csh.im); } unittest { assert(sin(complex(0.0)) == 0.0); assert(sin(complex(2.0L, 0)) == std.math.sin(2.0L)); } /// ditto Complex!T cos(T)(Complex!T z) @safe pure nothrow { auto cs = expi(z.re); auto csh = coshisinh(z.im); return typeof(return)(cs.re * csh.re, - cs.im * csh.im); } unittest{ assert(cos(complex(0.0)) == 1.0); assert(cos(complex(1.3L)) == std.math.cos(1.3L)); assert(cos(complex(0, 5.2L)) == cosh(5.2L)); } /** Calculates cos(y) + i sin(y). Note: $(D expi) is included here for convenience and for easy migration of code that uses $(XREF math,_expi). Unlike $(XREF math,_expi), which uses the x87 $(I fsincos) instruction when possible, this function is no faster than calculating cos(y) and sin(y) separately. */ Complex!real expi(real y) @trusted pure nothrow { return Complex!real(std.math.cos(y), std.math.sin(y)); } unittest { assert(expi(1.3e5L) == complex(std.math.cos(1.3e5L), std.math.sin(1.3e5L))); assert(expi(0.0L) == 1.0L); auto z1 = expi(1.234); auto z2 = std.math.expi(1.234); assert(z1.re == z2.re && z1.im == z2.im); } /** Square root. */ Complex!T sqrt(T)(Complex!T z) @safe pure nothrow { typeof(return) c; real x,y,w,r; if (z == 0) { c = typeof(return)(0, 0); } else { real z_re = z.re; real z_im = z.im; x = fabs(z_re); y = fabs(z_im); if (x >= y) { r = y / x; w = std.math.sqrt(x) * std.math.sqrt(0.5 * (1 + std.math.sqrt(1 + r * r))); } else { r = x / y; w = std.math.sqrt(y) * std.math.sqrt(0.5 * (r + std.math.sqrt(1 + r * r))); } if (z_re >= 0) { c = typeof(return)(w, z_im / (w + w)); } else { if (z_im < 0) w = -w; c = typeof(return)(z_im / (w + w), w); } } return c; } unittest { assert (sqrt(complex(0.0)) == 0.0); assert (sqrt(complex(1.0L, 0)) == std.math.sqrt(1.0L)); assert (sqrt(complex(-1.0L, 0)) == complex(0, 1.0L)); }