// Written in the D programming language. /** Functions that manipulate other functions. Macros: WIKI = Phobos/StdFunctional Copyright: Copyright Andrei Alexandrescu 2008 - 2009. License: Boost License 1.0. Authors: $(WEB erdani.org, Andrei Alexandrescu) Copyright Andrei Alexandrescu 2008 - 2009. Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) */ module std.functional; import std.metastrings, std.stdio, std.traits, std.typecons, std.typetuple; // for making various functions visible in *naryFun import std.algorithm, std.contracts, std.conv, std.math, std.range, std.string; /** Transforms a string representing an expression into a unary function. The string must use symbol name $(D a) as the parameter. Example: ---- alias unaryFun!("(a & 1) == 0") isEven; assert(isEven(2) && !isEven(1)); ---- */ template unaryFun(alias funbody, bool byRef = false, string parmName = "a") { alias unaryFunImpl!(funbody, byRef, parmName).result unaryFun; } template unaryFunImpl(alias fun, bool byRef, string parmName = "a") { static if (is(typeof(fun) : string)) { template Body(ElementType) { // enum testAsExpression = "{"~ElementType.stringof // ~" "~parmName~"; return ("~fun~");}()"; enum testAsExpression = "{ ElementType "~parmName ~"; return ("~fun~");}()"; enum testAsStmts = "{"~ElementType.stringof ~" "~parmName~"; "~fun~"}()"; // pragma(msg, "Expr: "~testAsExpression); // pragma(msg, "Stmts: "~testAsStmts); static if (__traits(compiles, mixin(testAsExpression))) { enum string code = "return (" ~ fun ~ ");"; alias typeof(mixin(testAsExpression)) ReturnType; } // else static if (__traits(compiles, mixin(testAsStmts))) // { // enum string code = fun; // alias typeof(mixin(testAsStmts)) ReturnType; // } else { // Credit for this idea goes to Don Clugston // static assert is a bit broken, // better to do it this way to provide a backtrace. // pragma(msg, "Bad unary function: " ~ fun ~ " for type " // ~ ElementType.stringof); static assert(false, "Bad unary function: " ~ fun ~ " for type " ~ ElementType.stringof); } } static if (byRef) { Body!(ElementType).ReturnType result(ElementType)(ref ElementType a) { mixin(Body!(ElementType).code); } } else { Body!(ElementType).ReturnType result(ElementType)(ElementType __a) { mixin("alias __a "~parmName~";"); mixin(Body!(ElementType).code); } // string mixme = "Body!(ElementType).ReturnType" // " result(ElementType)(ElementType a) // { " ~ Body!(ElementType).code ~ " }"; // mixin(mixme); } } else { alias fun result; } } unittest { static int f1(int a) { return a + 1; } static assert(is(typeof(unaryFun!(f1)(1)) == int)); assert(unaryFun!(f1)(41) == 42); int f2(int a) { return a + 1; } static assert(is(typeof(unaryFun!(f2)(1)) == int)); assert(unaryFun!(f2)(41) == 42); assert(unaryFun!("a + 1")(41) == 42); //assert(unaryFun!("return a + 1;")(41) == 42); } /** Transforms a string representing an expression into a Boolean binary predicate. The string must use symbol names $(D a) and $(D b) as the compared elements. Example: ---- alias binaryFun!("a < b") less; assert(less(1, 2) && !less(2, 1)); alias binaryFun!("a > b") greater; assert(!greater("1", "2") && greater("2", "1")); ---- */ template binaryFun(alias funbody, string parm1Name = "a", string parm2Name = "b") { alias binaryFunImpl!(funbody, parm1Name, parm2Name).result binaryFun; } template binaryFunImpl(alias fun, string parm1Name, string parm2Name) { static if (is(typeof(fun) : string)) { template Body(ElementType1, ElementType2) { enum testAsExpression = "{ ElementType1 " ~parm1Name~"; ElementType2 " ~parm2Name~"; return ("~fun~");}()"; // enum testAsExpression = "{"~ElementType1.stringof // ~" "~parm1Name~"; "~ElementType2.stringof // ~" "~parm2Name~"; return ("~fun~");}()"; // enum testAsStmts = "{"~ElementType1.stringof // ~" "~parm1Name~"; "~ElementType2.stringof // ~" "~parm2Name~"; "~fun~"}()"; static if (__traits(compiles, mixin(testAsExpression))) { enum string code = "return (" ~ fun ~ ");"; alias typeof(mixin(testAsExpression)) ReturnType; } // else static if (__traits(compiles, mixin(testAsStmts))) // { // enum string code = fun; // alias typeof(mixin(testAsStmts)) ReturnType; // } else { // Credit for this idea goes to Don Clugston enum string msg = "Bad binary function q{" ~ fun ~ "}." ~" You need to use a valid D expression using symbols " ~parm1Name~" of type "~ElementType1.stringof~" and " ~parm2Name~" of type "~ElementType2.stringof~"." ~(fun.length && fun[$ - 1] == ';' ? " The trailing semicolon is _not_ needed." : "") ~(fun.length && fun[$ - 1] == '}' ? " The trailing bracket is mistaken." : ""); static assert(false, msg); } } Body!(ElementType1, ElementType2).ReturnType result(ElementType1, ElementType2) (ElementType1 __a, ElementType2 __b) { mixin("alias __a "~parm1Name~";"); mixin("alias __b "~parm2Name~";"); mixin(Body!(ElementType1, ElementType2).code); } } else { alias fun result; } // static if (is(typeof(comp) : string)) // { // // @@@BUG1816@@@: typeof(mixin(comp)) should work // typeof({ // static ElementType1 a; // static ElementType2 b; // return mixin(comp); // }()) // binaryFun(ElementType1, ElementType2) // (ElementType1 a, ElementType2 b) // { // return mixin(comp); // } // } // else // { // alias comp binaryFun; // } } unittest { alias binaryFun!(q{a < b}) less; assert(less(1, 2) && !less(2, 1)); assert(less("1", "2") && !less("2", "1")); static int f1(int a, string b) { return a + 1; } static assert(is(typeof(binaryFun!(f1)(1, "2")) == int)); assert(binaryFun!(f1)(41, "a") == 42); string f2(int a, string b) { return b ~ "2"; } static assert(is(typeof(binaryFun!(f2)(1, "1")) == string)); assert(binaryFun!(f2)(1, "4") == "42"); assert(binaryFun!("a + b")(41, 1) == 42); //@@BUG //assert(binaryFun!("return a + b;")(41, 1) == 42); } /* Predicate that returns $(D_PARAM a < b). */ //bool less(T)(T a, T b) { return a < b; } //alias binaryFun!(q{a < b}) less; /* Predicate that returns $(D_PARAM a > b). */ //alias binaryFun!(q{a > b}) greater; /* Predicate that returns $(D_PARAM a == b). */ //alias binaryFun!(q{a == b}) equalTo; /* Binary predicate that reverses the order of arguments, e.g., given $(D pred(a, b)), returns $(D pred(b, a)). */ template binaryRevertArgs(alias pred) { typeof({ ElementType1 a; ElementType2 b; return pred(b, a);}()) binaryRevertArgs(ElementType1, ElementType2)(ElementType1 a, ElementType2 b) { return pred(b, a); } } unittest { alias binaryRevertArgs!(binaryFun!("a < b")) gt; assert(gt(2, 1) && !gt(1, 1)); int x = 42; bool xyz(int a, int b) { return a * x < b / x; } auto foo = &xyz; foo(4, 5); alias binaryRevertArgs!(foo) zyx; assert(zyx(5, 4) == foo(4, 5)); } /** Negates predicate $(D pred). Example: ---- string a = " Hello, world!"; assert(find!(not!isspace)(a) == "Hello, world!"); ---- */ template not(alias pred) { bool not(T...)(T args) { return !pred(args); } } /** Curries $(D fun) by tying its first argument to a particular value. Example: ---- int fun(int a, int b) { return a + b; } alias curry!(fun, 5) fun5; assert(fun5(6) == 11); ---- Note that in most cases you'd use an alias instead of a value assignment. Using an alias allows you to curry template functions without committing to a particular type of the function. */ template curry(alias fun, alias arg) { static if (is(typeof(fun) == delegate) || is(typeof(fun) == function)) { ReturnType!fun curry(ParameterTypeTuple!fun[1] arg2) { return fun(arg, arg2); } } else { auto curry(T)(T arg2) if (is(typeof(fun(arg, T.init)))) { return fun(arg, arg2); } } } unittest { // static int f1(int a, int b) { return a + b; } // assert(curry!(f1, 5)(6) == 11); int x = 5; int f2(int a, int b) { return a + b; } assert(curry!(f2, x)(6) == 11); auto dg = &f2; auto f3 = &curry!(dg, x); assert(f3(6) == 11); } /*private*/ template Adjoin(F...) { template For(V...) { static if (F.length == 0) { alias TypeTuple!() Result; } else { alias F[0] headFun; alias typeof({ V values; return headFun(values); }()) Head; alias TypeTuple!(Head, Adjoin!(F[1 .. $]).For!(V).Result) Result; } // Tuple!(Result) fun(V...)(V a) // { // typeof(return) result; // foreach (i, Unused; Result) // { // result.field[i] = F[i](a); // } // return result; // } } } /** Takes multiple functions and adjoins them together. The result is a $(XREF typecons, Tuple) with one element per passed-in function. Upon invocation, the returned tuple is the adjoined results of all functions. Example: ---- static bool f1(int a) { return a != 0; } static int f2(int a) { return a / 2; } auto x = adjoin!(f1, f2)(5); assert(is(typeof(x) == Tuple!(bool, int))); assert(x._0 == true && x.field[1] == 2); ---- */ template adjoin(F...) { Tuple!(Adjoin!(F).For!(V).Result) adjoin(V...)(V a) { typeof(return) result; foreach (i, Unused; Adjoin!(F).For!(V).Result) { result.field[i] = F[i](a); } return result; } } unittest { static bool F1(int a) { return a != 0; } static int F2(int a) { return a / 2; } auto x = adjoin!(F1, F2)(5); alias Adjoin!(F1, F2).For!(int).Result R; assert(is(typeof(x) == Tuple!(bool, int))); assert(x.field[0] && x.field[1] == 2); } // /*private*/ template NaryFun(string fun, string letter, V...) // { // static if (V.length == 0) // { // enum args = ""; // } // else // { // enum args = V[0].stringof~" "~letter~"; " // ~NaryFun!(fun, [letter[0] + 1], V[1..$]).args; // enum code = args ~ "return "~fun~";"; // } // alias void Result; // } // unittest // { // writeln(NaryFun!("a * b * 2", "a", int, double).code); // } // /** // naryFun // */ // template naryFun(string fun) // { // //NaryFun!(fun, "a", V).Result // int naryFun(V...)(V values) // { // enum string code = NaryFun!(fun, "a", V).code; // mixin(code); // } // } // unittest // { // alias naryFun!("a + b") test; // test(1, 2); // } /** Composes passed-in functions $(D fun[0], fun[1], ...) returning a function $(D f(x)) that in turn returns $(D fun[0](fun[1](...(x)))...). Each function can be a regular functions, a delegate, or a string. Example: ---- // First split a string in whitespace-separated tokens and then // convert each token into an integer assert(compose!(map!(to!(int)), split)("1 2 3") == [1, 2, 3]); ---- */ template compose(fun...) { alias composeImpl!(fun).doIt compose; } // Implementation of compose template composeImpl(fun...) { static if (fun.length == 2) { // starch static if (is(typeof(fun[0]) : string)) alias unaryFun!(fun[0]) fun0; else alias fun[0] fun0; static if (is(typeof(fun[1]) : string)) alias unaryFun!(fun[1]) fun1; else alias fun[1] fun1; // protein: the core composition operation typeof({ E a; return fun0(fun1(a)); }()) doIt(E)(E a) { return fun0(fun1(a)); } } else { // protein: assembling operations alias composeImpl!(fun[0], composeImpl!(fun[1 .. $]).doIt).doIt doIt; } } /** Pipes functions in sequence. Offers the same functionality as $(D compose), but with functions specified in reverse order. This may lead to more readable code in some situation because the order of execution is the same as lexical order. Example: ---- // Read an entire text file, split the resulting string in // whitespace-separated tokens, and then convert each token into an // integer int[] a = pipe!(readText, split, map!(to!(int)))("file.txt"); ---- */ template pipe(fun...) { alias compose!(Reverse!(fun)) pipe; } unittest { // string foo(int a) { return to!(string)(a); } // int bar(string a) { return to!(int)(a) + 1; } // double baz(int a) { return a + 0.5; } // assert(compose!(baz, bar, foo)(1) == 2.5); // assert(pipe!(foo, bar, baz)(1) == 2.5); // assert(compose!(baz, `to!(int)(a) + 1`, foo)(1) == 2.5); // assert(compose!(baz, bar)("1"[]) == 2.5); // @@@BUG@@@ //assert(compose!(baz, bar)("1") == 2.5); // @@@BUG@@@ //assert(compose!(`a + 0.5`, `to!(int)(a) + 1`, foo)(1) == 2.5); } private struct DelegateFaker(F) { /* * What all the stuff below does is this: *-------------------- * struct DelegateFaker(F) { * extern(linkage) * [ref] ReturnType!F doIt(ParameterTypeTuple!F args) [@attributes] * { * auto fp = cast(F) &this; * return fp(args); * } * } *-------------------- */ // We will use MemberFunctionGenerator in std.typecons. This is a policy // configuration for generating the doIt(). template GeneratingPolicy() { // Inform the genereator that we only have type information. enum WITHOUT_SYMBOL = true; // Generate the function body of doIt(). template generateFunctionBody(unused...) { enum generateFunctionBody = // [ref] ReturnType doIt(ParameterTypeTuple args) @attributes q{ // When this function gets called, the this pointer isn't // really a this pointer (no instance even really exists), but // a function pointer that points to the function to be called. // Cast it to the correct type and call it. auto fp = cast(F) &this; // XXX doesn't work with @safe return fp(args); }; } } // Type information used by the generated code. alias FuncInfo!(F) FuncInfo_doIt; // Generate the member function doIt(). mixin( std.typecons.MemberFunctionGenerator!(GeneratingPolicy!()) .generateFunction!("FuncInfo_doIt", "doIt", F) ); } /**Convert a callable to a delegate with the same parameter list and * return type, avoiding heap allocations and use of auxiliary storage. * * Examples: * --- * void doStuff() { * writeln("Hello, world."); * } * * void runDelegate(void delegate() myDelegate) { * myDelegate(); * } * * auto delegateToPass = toDelegate(&doStuff); * runDelegate(delegateToPass); // Calls doStuff, prints "Hello, world." * --- * * BUGS: * $(UL * $(LI Does not work with $(D @safe) functions.) * $(LI Ignores C-style / D-style variadic arguments.) * ) */ auto toDelegate(F)(auto ref F fp) if (isCallable!(F)) { static if (is(F == delegate)) { return fp; } else static if (is(typeof(&F.opCall) == delegate) || (is(typeof(&F.opCall) V : V*) && is(V == function))) { return toDelegate(&fp.opCall); } else { alias typeof(&(new DelegateFaker!(F)).doIt) DelType; static struct DelegateFields { union { DelType del; //pragma(msg, typeof(del)); struct { void* contextPtr; void* funcPtr; } } } // fp is stored in the returned delegate's context pointer. // The returned delegate's function pointer points to // DelegateFaker.doIt. DelegateFields df; df.contextPtr = cast(void*) fp; DelegateFaker!(F) dummy; auto dummyDel = &(dummy.doIt); df.funcPtr = dummyDel.funcptr; return df.del; } } unittest { static int inc(ref uint num) { num++; return 8675309; } uint myNum = 0; auto incMyNumDel = toDelegate(&inc); static assert(is(typeof(incMyNumDel) == int delegate(ref uint))); auto returnVal = incMyNumDel(myNum); assert(myNum == 1); interface I { int opCall(); } class C: I { int opCall() { inc(myNum); return myNum;} } auto c = new C; auto i = cast(I) c; auto getvalc = toDelegate(c); assert(getvalc() == 2); auto getvali = toDelegate(i); assert(getvali() == 3); struct S1 { int opCall() { inc(myNum); return myNum; } } static assert(!is(typeof(&s1.opCall) == delegate)); S1 s1; auto getvals1 = toDelegate(s1); assert(getvals1() == 4); struct S2 { static int opCall() { return 123456; } } static assert(!is(typeof(&S2.opCall) == delegate)); S2 s2; auto getvals2 =&S2.opCall; assert(getvals2() == 123456); /* test for attributes */ { static int refvar = 0xDeadFace; static ref int func_ref() { return refvar; } static int func_pure() pure { return 1; } static int func_nothrow() nothrow { return 2; } static int func_property() @property { return 3; } static int func_safe() @safe { return 4; } static int func_trusted() @trusted { return 5; } static int func_system() @system { return 6; } static int func_pure_nothrow() pure nothrow { return 7; } static int func_pure_nothrow_safe() pure @safe { return 8; } auto dg_ref = toDelegate(&func_ref); auto dg_pure = toDelegate(&func_pure); auto dg_nothrow = toDelegate(&func_nothrow); auto dg_property = toDelegate(&func_property); //auto dg_safe = toDelegate(&func_safe); auto dg_trusted = toDelegate(&func_trusted); auto dg_system = toDelegate(&func_system); auto dg_pure_nothrow = toDelegate(&func_pure_nothrow); //auto dg_pure_nothrow_safe = toDelegate(&func_pure_nothrow_safe); //static assert(is(typeof(dg_ref) == ref int delegate())); // [BUG@DMD] static assert(is(typeof(dg_pure) == int delegate() pure)); static assert(is(typeof(dg_nothrow) == int delegate() nothrow)); static assert(is(typeof(dg_property) == int delegate() @property)); //static assert(is(typeof(dg_safe) == int delegate() @safe)); static assert(is(typeof(dg_trusted) == int delegate() @trusted)); static assert(is(typeof(dg_system) == int delegate() @system)); static assert(is(typeof(dg_pure_nothrow) == int delegate() pure nothrow)); //static assert(is(typeof(dg_pure_nothrow_safe) == int delegate() pure nothrow @safe)); assert(dg_ref() == refvar); assert(dg_pure() == 1); assert(dg_nothrow() == 2); assert(dg_property() == 3); //assert(dg_safe() == 4); assert(dg_trusted() == 5); assert(dg_system() == 6); assert(dg_pure_nothrow() == 7); //assert(dg_pure_nothrow_safe() == 8); } /* test for linkage */ { struct S { extern(C) static void xtrnC() {} extern(D) static void xtrnD() {} } auto dg_xtrnC = toDelegate(&S.xtrnC); auto dg_xtrnD = toDelegate(&S.xtrnD); static assert(! is(typeof(dg_xtrnC) == typeof(dg_xtrnD))); } }