// math.d
/**
* Macros:
* WIKI = StdMath
*
* TABLE_SV =
* SVH = $(TR $(TH $1) $(TH $2))
* SV = $(TR $(TD $1) $(TD $2))
*
* NAN = $(RED NAN)
* SUP = $0
* GAMMA = Γ
* INTEGRAL = ∫
* INTEGRATE = $(BIG ∫$(SMALL $1)$2)
* POWER = $1$2
* BIGSUM = $(BIG Σ $2$(SMALL $1))
* CHOOSE = $(BIG () $(SMALL $1)$(SMALL $2) $(BIG ))
*/
/*
* Author:
* Walter Bright
* Copyright:
* Copyright (c) 2001-2005 by Digital Mars,
* All Rights Reserved,
* www.digitalmars.com
* License:
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
*
* - The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
*
* - Altered source versions must be plainly marked as such, and must not
* be misrepresented as being the original software.
*
* - This notice may not be removed or altered from any source
* distribution.
*
*
*/
module std.math;
//debug=math; // uncomment to turn on debugging printf's
private import std.stdio;
private import std.c.stdio;
private import std.string;
private import std.c.math;
class NotImplemented : Error
{
this(char[] msg)
{
super(msg ~ "not implemented");
}
}
const real E = 2.7182818284590452354L; /** e */
const real LOG2T = 0x1.a934f0979a3715fcp+1; /** log210 */ // 3.32193 fldl2t
const real LOG2E = 0x1.71547652b82fe178p+0; /** log2e */ // 1.4427 fldl2e
const real LOG2 = 0x1.34413509f79fef32p-2; /** log102 */ // 0.30103 fldlg2
const real LOG10E = 0.43429448190325182765; /** log10e */
const real LN2 = 0x1.62e42fefa39ef358p-1; /** ln 2 */ // 0.693147 fldln2
const real LN10 = 2.30258509299404568402; /** ln 10 */
const real PI = 0x1.921fb54442d1846ap+1; /** π */ // 3.14159 fldpi
const real PI_2 = 1.57079632679489661923; /** π / 2 */
const real PI_4 = 0.78539816339744830962; /** π / 4 */
const real M_1_PI = 0.31830988618379067154; /** 1 / π */
const real M_2_PI = 0.63661977236758134308; /** 2 / π */
const real M_2_SQRTPI = 1.12837916709551257390; /** 2 / √π */
const real SQRT2 = 1.41421356237309504880; /** √2 */
const real SQRT1_2 = 0.70710678118654752440; /** √½ */
/*
Octal versions:
PI/64800 0.00001 45530 36176 77347 02143 15351 61441 26767
PI/180 0.01073 72152 11224 72344 25603 54276 63351 22056
PI/8 0.31103 75524 21026 43021 51423 06305 05600 67016
SQRT(1/PI) 0.44067 27240 41233 33210 65616 51051 77327 77303
2/PI 0.50574 60333 44710 40522 47741 16537 21752 32335
PI/4 0.62207 73250 42055 06043 23046 14612 13401 56034
SQRT(2/PI) 0.63041 05147 52066 24106 41762 63612 00272 56161
PI 3.11037 55242 10264 30215 14230 63050 56006 70163
LOG2 0.23210 11520 47674 77674 61076 11263 26013 37111
*/
/***********************************
* Calculates the absolute value
*
* For complex numbers, abs(z) = sqrt( $(POWER z.re, 2) + $(POWER z.im, 2) )
* = hypot(z.re, z.im).
*/
real abs(real x)
{
return fabs(x);
}
/** ditto */
long abs(long x)
{
return x>=0 ? x : -x;
}
/** ditto */
int abs(int x)
{
return x>=0 ? x : -x;
}
/** ditto */
real abs(creal z)
{
return hypot(z.re, z.im);
}
/** ditto */
real abs(ireal y)
{
return fabs(y.im);
}
unittest
{
assert(isPosZero(abs(-0.0L)));
assert(isnan(abs(real.nan)));
assert(abs(-real.infinity) == real.infinity);
assert(abs(-3.2Li) == 3.2L);
assert(abs(71.6Li) == 71.6L);
assert(abs(-56) == 56);
assert(abs(2321312L) == 2321312L);
assert(abs(-1+1i) == sqrt(2.0));
}
/***********************************
* Complex conjugate
*
* conj(x + iy) = x - iy
*
* Note that z * conj(z) = $(POWER z.re, 2) - $(POWER z.im, 2)
* is always a real number
*/
creal conj(creal z)
{
return z.re - z.im*1i;
}
/** ditto */
ireal conj(ireal y)
{
return -y;
}
unittest
{
assert(conj(7 + 3i) == 7-3i);
ireal z = -3.2Li;
assert(conj(z) == -z);
}
/***********************************
* Returns cosine of x. x is in radians.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH cos(x)) $(TH invalid?) )
* $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes) )
* $(TR $(TD ±∞) $(TD $(NAN)) $(TD yes) )
* )
* Bugs:
* Results are undefined if |x| >= $(POWER 2,64).
*/
real cos(real x); /* intrinsic */
/***********************************
* Returns sine of x. x is in radians.
*
* $(TABLE_SV
* x | sin(x) | invalid?
* |
$(NAN) | $(NAN) | yes
* |
±0.0 | ±0.0 | no
* |
±∞ | $(NAN) | yes
* )
* Bugs:
* Results are undefined if |x| >= $(POWER 2,64).
*/
real sin(real x); /* intrinsic */
/****************************************************************************
* Returns tangent of x. x is in radians.
*
* $(TABLE_SV
* |
x | tan(x) | invalid?
* |
$(NAN) | $(NAN) | yes
* |
±0.0 | ±0.0 | no
* |
±∞ | $(NAN) | yes
* )
*/
real tan(real x)
{
asm
{
fld x[EBP] ; // load theta
fxam ; // test for oddball values
fstsw AX ;
sahf ;
jc trigerr ; // x is NAN, infinity, or empty
// 387's can handle denormals
SC18: fptan ;
fstp ST(0) ; // dump X, which is always 1
fstsw AX ;
sahf ;
jnp Lret ; // C2 = 1 (x is out of range)
// Do argument reduction to bring x into range
fldpi ;
fxch ;
SC17: fprem1 ;
fstsw AX ;
sahf ;
jp SC17 ;
fstp ST(1) ; // remove pi from stack
jmp SC18 ;
trigerr:
fstp ST(0) ; // dump theta
}
return real.nan;
Lret:
;
}
unittest
{
static real vals[][2] = // angle,tan
[
[ 0, 0],
[ .5, .5463024898],
[ 1, 1.557407725],
[ 1.5, 14.10141995],
[ 2, -2.185039863],
[ 2.5,-.7470222972],
[ 3, -.1425465431],
[ 3.5, .3745856402],
[ 4, 1.157821282],
[ 4.5, 4.637332055],
[ 5, -3.380515006],
[ 5.5,-.9955840522],
[ 6, -.2910061914],
[ 6.5, .2202772003],
[ 10, .6483608275],
// special angles
[ PI_4, 1],
//[ PI_2, real.infinity],
[ 3*PI_4, -1],
[ PI, 0],
[ 5*PI_4, 1],
//[ 3*PI_2, -real.infinity],
[ 7*PI_4, -1],
[ 2*PI, 0],
// overflow
[ real.infinity, real.nan],
[ real.nan, real.nan],
[ 1e+100, real.nan],
];
int i;
for (i = 0; i < vals.length; i++)
{
real x = vals[i][0];
real r = vals[i][1];
real t = tan(x);
//printf("tan(%Lg) = %Lg, should be %Lg\n", x, t, r);
assert(mfeq(r, t, .0000001));
x = -x;
r = -r;
t = tan(x);
//printf("tan(%Lg) = %Lg, should be %Lg\n", x, t, r);
assert(mfeq(r, t, .0000001));
}
}
/***************
* Calculates the arc cosine of x,
* returning a value ranging from -π/2 to π/2.
*
* $(TABLE_SV
* |
x | acos(x) | invalid?
* |
>1.0 | $(NAN) | yes
* |
<-1.0 | $(NAN) | yes
* |
$(NAN) | $(NAN) | yes
* )
*/
real acos(real x) { return std.c.math.acosl(x); }
/***************
* Calculates the arc sine of x,
* returning a value ranging from -π/2 to π/2.
*
* $(TABLE_SV
* |
x | asin(x) | invalid?
* |
±0.0 | ±0.0 | no
* |
>1.0 | $(NAN) | yes
* |
<-1.0 | $(NAN) | yes
* )
*/
real asin(real x) { return std.c.math.asinl(x); }
/***************
* Calculates the arc tangent of x,
* returning a value ranging from -π/2 to π/2.
*
* $(TABLE_SV
* |
x | atan(x) | invalid?
* |
±0.0 | ±0.0 | no
* |
±∞ | $(NAN) | yes
* )
*/
real atan(real x) { return std.c.math.atanl(x); }
/***************
* Calculates the arc tangent of y / x,
* returning a value ranging from -π/2 to π/2.
*
* $(TABLE_SV
* |
x | y | atan(x, y)
* |
$(NAN) | anything | $(NAN)
* |
anything | $(NAN) | $(NAN)
* |
±0.0 | > 0.0 | ±0.0
* |
±0.0 | ±0.0 | ±0.0
* |
±0.0 | < 0.0 | ±π
* |
±0.0 | -0.0 | ±π
* |
> 0.0 | ±0.0 | π/2
* |
< 0.0 | ±0.0 | π/2
* |
> 0.0 | ∞ | ±0.0
* |
±∞ | anything | ±π/2
* |
> 0.0 | -∞ | ±π
* |
±∞ | ∞ | ±π/4
* |
±∞ | -∞ | ±3π/4
* )
*/
real atan2(real x, real y) { return std.c.math.atan2l(x,y); }
/***********************************
* Calculates the hyperbolic cosine of x.
*
* $(TABLE_SV
* |
x | cosh(x) | invalid?
* |
±∞ | ±0.0 | no
* )
*/
real cosh(real x) { return std.c.math.coshl(x); }
/***********************************
* Calculates the hyperbolic sine of x.
*
* $(TABLE_SV
* |
x | sinh(x) | invalid?
* |
±0.0 | ±0.0 | no
* |
±∞ | ±∞ | no
* )
*/
real sinh(real x) { return std.c.math.sinhl(x); }
/***********************************
* Calculates the hyperbolic tangent of x.
*
* $(TABLE_SV
* |
x | tanh(x) | invalid?
* |
±0.0 | ±0.0 | no
* |
±∞ | ±1.0 | no
* )
*/
real tanh(real x) { return std.c.math.tanhl(x); }
//real acosh(real x) { return std.c.math.acoshl(x); }
//real asinh(real x) { return std.c.math.asinhl(x); }
//real atanh(real x) { return std.c.math.atanhl(x); }
/***********************************
* Calculates the inverse hyperbolic cosine of x.
*
* Mathematically, acosh(x) = log(x + sqrt( x*x - 1))
*
* $(TABLE_DOMRG
* $(DOMAIN 1..∞)
* $(RANGE 1..log(real.max), ∞) )
* $(TABLE_SV
* $(SVH x, acosh(x) )
* $(SV $(NAN), $(NAN) )
* $(SV <1, $(NAN) )
* $(SV 1, 0 )
* $(SV +∞,+∞)
* )
*/
real acosh(real x)
{
if (x > 1/real.epsilon)
return LN2 + log(x);
else
return log(x + sqrt(x*x - 1));
}
unittest
{
assert(isnan(acosh(0.9)));
assert(isnan(acosh(real.nan)));
assert(acosh(1)==0.0);
assert(acosh(real.infinity) == real.infinity);
}
/***********************************
* Calculates the inverse hyperbolic sine of x.
*
* Mathematically,
* ---------------
* asinh(x) = log( x + sqrt( x*x + 1 )) // if x >= +0
* asinh(x) = -log(-x + sqrt( x*x + 1 )) // if x <= -0
* -------------
*
* $(TABLE_SV
* $(SVH x, asinh(x) )
* $(SV $(NAN), $(NAN) )
* $(SV ±0, ±0 )
* $(SV ±∞,±∞)
* )
*/
real asinh(real x)
{
if (fabs(x) > 1 / real.epsilon) // beyond this point, x*x + 1 == x*x
return copysign(LN2 + log(fabs(x)), x);
else
{
// sqrt(x*x + 1) == 1 + x * x / ( 1 + sqrt(x*x + 1) )
return copysign(log1p(fabs(x) + x*x / (1 + sqrt(x*x + 1)) ), x);
}
}
unittest
{
assert(isPosZero(asinh(0.0)));
assert(isNegZero(asinh(-0.0)));
assert(asinh(real.infinity) == real.infinity);
assert(asinh(-real.infinity) == -real.infinity);
assert(isnan(asinh(real.nan)));
}
/***********************************
* Calculates the inverse hyperbolic tangent of x,
* returning a value from ranging from -1 to 1.
*
* Mathematically, atanh(x) = log( (1+x)/(1-x) ) / 2
*
*
* $(TABLE_DOMRG
* $(DOMAIN -∞..∞)
* $(RANGE -1..1) )
* $(TABLE_SV
* $(SVH x, acosh(x) )
* $(SV $(NAN), $(NAN) )
* $(SV ±0, ±0)
* $(SV -∞, -0)
* )
*/
real atanh(real x)
{
// log( (1+x)/(1-x) ) == log ( 1 + (2*x)/(1-x) )
return 0.5 * log1p( 2 * x / (1 - x) );
}
unittest
{
assert(isPosZero(atanh(0.0)));
assert(isNegZero(atanh(-0.0)));
assert(isnan(atanh(real.nan)));
assert(isNegZero(atanh(-real.infinity)));
}
/*****************************************
* Returns x rounded to a long value using the current rounding mode.
* If the integer value of x is
* greater than long.max, the result is
* indeterminate.
*/
long rndtol(real x); /* intrinsic */
/*****************************************
* Returns x rounded to a long value using the FE_TONEAREST rounding mode.
* If the integer value of x is
* greater than long.max, the result is
* indeterminate.
*/
extern (C) real rndtonl(real x);
/***************************************
* Compute square root of x.
*
* $(TABLE_SV
* |
x | sqrt(x) | invalid?
* |
-0.0 | -0.0 | no
* |
<0.0 | $(NAN) | yes
* |
+∞ | +∞ | no
* )
*/
float sqrt(float x); /* intrinsic */
double sqrt(double x); /* intrinsic */ /// ditto
real sqrt(real x); /* intrinsic */ /// ditto
creal sqrt(creal z)
{
creal c;
real x,y,w,r;
if (z == 0)
{
c = 0;
}
else
{ real z_re = z.re;
real z_im = z.im;
x = fabs(z_re);
y = fabs(z_im);
if (x >= y)
{
r = y / x;
w = sqrt(x) * sqrt(0.5 * (1 + sqrt(1 + r * r)));
}
else
{
r = x / y;
w = sqrt(y) * sqrt(0.5 * (r + sqrt(1 + r * r)));
}
if (z_re >= 0)
{
c = w + (z_im / (w + w)) * 1.0i;
}
else
{
if (z_im < 0)
w = -w;
c = z_im / (w + w) + w * 1.0i;
}
}
return c;
}
/**********************
* Calculates e$(SUP x).
*
* $(TABLE_SV
* |
x | exp(x)
* |
+∞ | +∞
* |
-∞ | +0.0
* )
*/
real exp(real x) { return std.c.math.expl(x); }
/**********************
* Calculates 2$(SUP x).
*
* $(TABLE_SV
* |
x | exp2(x)
* |
+∞ | +∞
* |
-∞ | +0.0
* )
*/
real exp2(real x) { return std.c.math.exp2l(x); }
/******************************************
* Calculates the value of the natural logarithm base (e)
* raised to the power of x, minus 1.
*
* For very small x, expm1(x) is more accurate
* than exp(x)-1.
*
* $(TABLE_SV
* |
x | e$(SUP x)-1
* |
±0.0 | ±0.0
* |
+∞ | +∞
* |
-∞ | -1.0
* )
*/
real expm1(real x) { return std.c.math.expm1l(x); }
/*********************************************************************
* Separate floating point value into significand and exponent.
*
* Returns:
* Calculate and return x and exp such that
* value =x*2$(SUP exp) and
* .5 <= |x| < 1.0
* x has same sign as value.
*
* $(TABLE_SV
* |
value | returns | exp
* |
±0.0 | ±0.0 | 0
* |
+∞ | +∞ | int.max
* |
-∞ | -∞ | int.min
* |
±$(NAN) | ±$(NAN) | int.min
* )
*/
real frexp(real value, out int exp)
{
ushort* vu = cast(ushort*)&value;
long* vl = cast(long*)&value;
uint ex;
// If exponent is non-zero
ex = vu[4] & 0x7FFF;
if (ex)
{
if (ex == 0x7FFF)
{ // infinity or NaN
if (*vl & 0x7FFFFFFFFFFFFFFF) // if NaN
{ *vl |= 0xC000000000000000; // convert $(NAN)S to $(NAN)Q
exp = int.min;
}
else if (vu[4] & 0x8000)
{ // negative infinity
exp = int.min;
}
else
{ // positive infinity
exp = int.max;
}
}
else
{
exp = ex - 0x3FFE;
vu[4] = (0x8000 & vu[4]) | 0x3FFE;
}
}
else if (!*vl)
{
// value is +-0.0
exp = 0;
}
else
{ // denormal
int i = -0x3FFD;
do
{
i--;
*vl <<= 1;
} while (*vl > 0);
exp = i;
vu[4] = (0x8000 & vu[4]) | 0x3FFE;
}
return value;
}
unittest
{
static real vals[][3] = // x,frexp,exp
[
[0.0, 0.0, 0],
[-0.0, -0.0, 0],
[1.0, .5, 1],
[-1.0, -.5, 1],
[2.0, .5, 2],
[155.67e20, 0x1.A5F1C2EB3FE4Fp-1, 74], // normal
[1.0e-320, 0.98829225, -1063],
[real.min, .5, -16381],
[real.min/2.0L, .5, -16382], // denormal
[real.infinity,real.infinity,int.max],
[-real.infinity,-real.infinity,int.min],
[real.nan,real.nan,int.min],
[-real.nan,-real.nan,int.min],
// Don't really support signalling nan's in D
//[real.nans,real.nan,int.min],
//[-real.nans,-real.nan,int.min],
];
int i;
for (i = 0; i < vals.length; i++)
{
real x = vals[i][0];
real e = vals[i][1];
int exp = cast(int)vals[i][2];
int eptr;
real v = frexp(x, eptr);
//printf("frexp(%Lg) = %.8Lg, should be %.8Lg, eptr = %d, should be %d\n", x, v, e, eptr, exp);
assert(mfeq(e, v, .0000001));
assert(exp == eptr);
}
}
/******************************************
* Extracts the exponent of x as a signed integral value.
*
* If x is not a special value, the result is the same as
* cast(int)logb(x).
*
* $(TABLE_SV
* |
x | ilogb(x) | Range error?
* |
0 | FP_ILOGB0 | yes
* |
±∞ | +∞ | no
* |
$(NAN) | FP_ILOGBNAN | no
* )
*/
int ilogb(real x) { return std.c.math.ilogbl(x); }
alias std.c.math.FP_ILOGB0 FP_ILOGB0;
alias std.c.math.FP_ILOGBNAN FP_ILOGBNAN;
/*******************************************
* Compute n * 2$(SUP exp)
* References: frexp
*/
real ldexp(real n, int exp); /* intrinsic */
/**************************************
* Calculate the natural logarithm of x.
*
* $(TABLE_SV
* |
x | log(x) | divide by 0? | invalid?
* |
±0.0 | -∞ | yes | no
* |
< 0.0 | $(NAN) | no | yes
* |
+∞ | +∞ | no | no
* )
*/
real log(real x) { return std.c.math.logl(x); }
/**************************************
* Calculate the base-10 logarithm of x.
*
* $(TABLE_SV
* |
x | log10(x) | divide by 0? | invalid?
* |
±0.0 | -∞ | yes | no
* |
< 0.0 | $(NAN) | no | yes
* |
+∞ | +∞ | no | no
* )
*/
real log10(real x) { return std.c.math.log10l(x); }
/******************************************
* Calculates the natural logarithm of 1 + x.
*
* For very small x, log1p(x) will be more accurate than
* log(1 + x).
*
* $(TABLE_SV
* |
x | log1p(x) | divide by 0? | invalid?
* |
±0.0 | ±0.0 | no | no
* |
-1.0 | -∞ | yes | no
* |
<-1.0 | $(NAN) | no | yes
* |
+∞ | -∞ | no | no
* )
*/
real log1p(real x) { return std.c.math.log1pl(x); }
/***************************************
* Calculates the base-2 logarithm of x:
* log2x
*
* $(TABLE_SV
* |
x | log2(x) | divide by 0? | invalid?
* |
±0.0 | -∞ | yes | no
* |
< 0.0 | $(NAN) | no | yes
* |
+∞ | +∞ | no | no
* )
*/
real log2(real x) { return std.c.math.log2l(x); }
/*****************************************
* Extracts the exponent of x as a signed integral value.
*
* If x is subnormal, it is treated as if it were normalized.
* For a positive, finite x:
*
* -----
* 1 <= $(I x) * FLT_RADIX$(SUP -logb(x)) < FLT_RADIX
* -----
*
* $(TABLE_SV
* |
x | logb(x) | Divide by 0?
* |
±∞ | +∞ | no
* |
±0.0 | -∞ | yes
* )
*/
real logb(real x) { return std.c.math.logbl(x); }
/************************************
* Calculates the remainder from the calculation x/y.
* Returns:
* The value of x - i * y, where i is the number of times that y can
* be completely subtracted from x. The result has the same sign as x.
*
* $(TABLE_SV
* |
x | y | modf(x, y) | invalid?
* |
±0.0 | not 0.0 | ±0.0 | no
* |
±∞ | anything | $(NAN) | yes
* |
anything | ±0.0 | $(NAN) | yes
* |
!=±∞ | ±∞ | x | no
* )
*/
real modf(real x, inout real y) { return std.c.math.modfl(x,&y); }
/*************************************
* Efficiently calculates x * 2$(SUP n).
*
* scalbn handles underflow and overflow in
* the same fashion as the basic arithmetic operators.
*
* $(TABLE_SV
* |
x | scalb(x)
* |
±∞ | ±∞
* |
±0.0 | ±0.0
* )
*/
real scalbn(real x, int n)
{
version (linux)
return std.c.math.scalbnl(x, n);
else
throw new NotImplemented("scalbn");
}
/***************
* Calculates the cube root x.
*
* $(TABLE_SV
* |
x | cbrt(x) | invalid?
* |
±0.0 | ±0.0 | no
* |
$(NAN) | $(NAN) | yes
* |
±∞ | ±∞ | no
* )
*/
real cbrt(real x) { return std.c.math.cbrtl(x); }
/*******************************
* Returns |x|
*
* $(TABLE_SV
* |
x | fabs(x)
* |
±0.0 | +0.0
* |
±∞ | +∞
* )
*/
real fabs(real x); /* intrinsic */
/***********************************************************************
* Calculates the length of the
* hypotenuse of a right-angled triangle with sides of length x and y.
* The hypotenuse is the value of the square root of
* the sums of the squares of x and y:
*
* sqrt(x² + y²)
*
* Note that hypot(x, y), hypot(y, x) and
* hypot(x, -y) are equivalent.
*
* $(TABLE_SV
* |
x | y | hypot(x, y) | invalid?
* |
x | ±0.0 | |x| | no
* |
±∞ | y | +∞ | no
* |
±∞ | $(NAN) | +∞ | no
* )
*/
real hypot(real x, real y)
{
/*
* This is based on code from:
* Cephes Math Library Release 2.1: January, 1989
* Copyright 1984, 1987, 1989 by Stephen L. Moshier
* Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
const int PRECL = 32;
const int MAXEXPL = real.max_exp; //16384;
const int MINEXPL = real.min_exp; //-16384;
real xx, yy, b, re, im;
int ex, ey, e;
// Note, hypot(INFINITY, NAN) = INFINITY.
if (isinf(x) || isinf(y))
return real.infinity;
if (isnan(x))
return x;
if (isnan(y))
return y;
re = fabs(x);
im = fabs(y);
if (re == 0.0)
return im;
if (im == 0.0)
return re;
// Get the exponents of the numbers
xx = frexp(re, ex);
yy = frexp(im, ey);
// Check if one number is tiny compared to the other
e = ex - ey;
if (e > PRECL)
return re;
if (e < -PRECL)
return im;
// Find approximate exponent e of the geometric mean.
e = (ex + ey) >> 1;
// Rescale so mean is about 1
xx = ldexp(re, -e);
yy = ldexp(im, -e);
// Hypotenuse of the right triangle
b = sqrt(xx * xx + yy * yy);
// Compute the exponent of the answer.
yy = frexp(b, ey);
ey = e + ey;
// Check it for overflow and underflow.
if (ey > MAXEXPL + 2)
{
//return __matherr(_OVERFLOW, INFINITY, x, y, "hypotl");
return real.infinity;
}
if (ey < MINEXPL - 2)
return 0.0;
// Undo the scaling
b = ldexp(b, e);
return b;
}
unittest
{
static real vals[][3] = // x,y,hypot
[
[ 0, 0, 0],
[ 0, -0, 0],
[ 3, 4, 5],
[ -300, -400, 500],
[ real.min, real.min, 4.75473e-4932L],
[ real.max/2, real.max/2, 0x1.6a09e667f3bcc908p+16383L /*8.41267e+4931L*/],
[ real.infinity, real.nan, real.infinity],
[ real.nan, real.nan, real.nan],
];
int i;
for (i = 0; i < vals.length; i++)
{
real x = vals[i][0];
real y = vals[i][1];
real z = vals[i][2];
real h = hypot(x, y);
//printf("hypot(%Lg, %Lg) = %Lg, should be %Lg\n", x, y, h, z);
//if (!mfeq(z, h, .0000001))
//printf("%La\n", h);
assert(mfeq(z, h, .0000001));
}
}
/**********************************
* Returns the error function of x.
*
*
*/
real erf(real x) { return std.c.math.erfl(x); }
/**********************************
* Returns the complementary error function of x, which is 1 - erf(x).
*
*
*/
real erfc(real x) { return std.c.math.erfcl(x); }
/***********************************
* Natural logarithm of gamma function.
*
* Returns the base e (2.718...) logarithm of the absolute
* value of the gamma function of the argument.
*
* For reals, lgamma is equivalent to log(fabs(gamma(x))).
*
* $(TABLE_SV
* |
x | lgamma(x) | invalid?
* |
$(NAN) | $(NAN) | yes
* |
integer <= 0 | +∞ | yes
* |
±∞ | +∞ | no
* )
*/
/* Documentation prepared by Don Clugston */
real lgamma(real x)
{
return std.c.math.lgammal(x);
// Use etc.gamma.lgamma for those C systems that are missing it
}
/***********************************
* The Gamma function, $(GAMMA)(x)
*
* $(GAMMA)(x) is a generalisation of the factorial function
* to real and complex numbers.
* Like x!, $(GAMMA)(x+1) = x*$(GAMMA)(x).
*
* Mathematically, if z.re > 0 then
* $(GAMMA)(z) =$(INTEGRAL)0∞tz-1e-tdt
*
* $(TABLE_SV
* |
x | $(GAMMA)(x) | invalid?
* |
$(NAN) | $(NAN) | yes
* |
±0.0 | ±∞ | yes
* |
integer > 0 | (x-1)! | no
* |
integer < 0 | $(NAN) | yes
* |
+∞ | +∞ | no
* |
-∞ | $(NAN) | yes
* )
*
* References:
* $(LINK http://en.wikipedia.org/wiki/Gamma_function),
* $(LINK http://www.netlib.org/cephes/ldoubdoc.html#gamma)
*/
/* Documentation prepared by Don Clugston */
real tgamma(real x)
{
return std.c.math.tgammal(x);
// Use etc.gamma.tgamma for those C systems that are missing it
}
/**************************************
* Returns the value of x rounded upward to the next integer
* (toward positive infinity).
*/
real ceil(real x) { return std.c.math.ceill(x); }
/**************************************
* Returns the value of x rounded downward to the next integer
* (toward negative infinity).
*/
real floor(real x) { return std.c.math.floorl(x); }
/******************************************
* Rounds x to the nearest integer value, using the current rounding
* mode.
*
* Unlike the rint functions, nearbyint does not raise the
* FE_INEXACT exception.
*/
real nearbyint(real x) { return std.c.math.nearbyintl(x); }
/**********************************
* Rounds x to the nearest integer value, using the current rounding
* mode.
* If the return value is not equal to x, the FE_INEXACT
* exception is raised.
* nearbyint performs
* the same operation, but does not set the FE_INEXACT exception.
*/
real rint(real x); /* intrinsic */
/***************************************
* Rounds x to the nearest integer value, using the current rounding
* mode.
*/
long lrint(real x)
{
version (linux)
return std.c.math.llrintl(x);
else
throw new NotImplemented("lrint");
}
/*******************************************
* Return the value of x rounded to the nearest integer.
* If the fractional part of x is exactly 0.5, the return value is rounded to
* the even integer.
*/
real round(real x) { return std.c.math.roundl(x); }
/**********************************************
* Return the value of x rounded to the nearest integer.
*
* If the fractional part of x is exactly 0.5, the return value is rounded
* away from zero.
*/
long lround(real x)
{
version (linux)
return std.c.math.llroundl(x);
else
throw new NotImplemented("lround");
}
/****************************************************
* Returns the integer portion of x, dropping the fractional portion.
*
* This is also known as "chop" rounding.
*/
real trunc(real x) { return std.c.math.truncl(x); }
/****************************************************
* Calculate the remainder x REM y, following IEC 60559.
*
* REM is the value of x - y * n, where n is the integer nearest the exact
* value of x / y.
* If |n - x / y| == 0.5, n is even.
* If the result is zero, it has the same sign as x.
* Otherwise, the sign of the result is the sign of x / y.
* Precision mode has no affect on the remainder functions.
*
* remquo returns n in the parameter n.
*
* $(TABLE_SV
* |
x | y | remainder(x, y) | n | invalid?
* |
±0.0 | not 0.0 | ±0.0 | 0.0 | no
* |
±∞ | anything | $(NAN) | ? | yes
* |
anything | ±0.0 | $(NAN) | ? | yes
* |
!= ±∞ | ±∞ | x | ? | no
* )
*/
real remainder(real x, real y) { return std.c.math.remainderl(x, y); }
real remquo(real x, real y, out int n) /// ditto
{
version (linux)
return std.c.math.remquol(x, y, &n);
else
throw new NotImplemented("remquo");
}
/*********************************
* Returns !=0 if e is a NaN.
*/
int isnan(real e)
{
ushort* pe = cast(ushort *)&e;
ulong* ps = cast(ulong *)&e;
return (pe[4] & 0x7FFF) == 0x7FFF &&
*ps & 0x7FFFFFFFFFFFFFFF;
}
unittest
{
assert(isnan(float.nan));
assert(isnan(-double.nan));
assert(isnan(real.nan));
assert(!isnan(53.6));
assert(!isnan(float.infinity));
}
/*********************************
* Returns !=0 if e is finite.
*/
int isfinite(real e)
{
ushort* pe = cast(ushort *)&e;
return (pe[4] & 0x7FFF) != 0x7FFF;
}
unittest
{
assert(isfinite(1.23));
assert(!isfinite(double.infinity));
assert(!isfinite(float.nan));
}
/*********************************
* Returns !=0 if x is normalized.
*/
/* Need one for each format because subnormal floats might
* be converted to normal reals.
*/
int isnormal(float x)
{
uint *p = cast(uint *)&x;
uint e;
e = *p & 0x7F800000;
//printf("e = x%x, *p = x%x\n", e, *p);
return e && e != 0x7F800000;
}
/// ditto
int isnormal(double d)
{
uint *p = cast(uint *)&d;
uint e;
e = p[1] & 0x7FF00000;
return e && e != 0x7FF00000;
}
/// ditto
int isnormal(real e)
{
ushort* pe = cast(ushort *)&e;
long* ps = cast(long *)&e;
return (pe[4] & 0x7FFF) != 0x7FFF && *ps < 0;
}
unittest
{
float f = 3;
double d = 500;
real e = 10e+48;
assert(isnormal(f));
assert(isnormal(d));
assert(isnormal(e));
}
/*********************************
* Is number subnormal? (Also called "denormal".)
* Subnormals have a 0 exponent and a 0 most significant mantissa bit.
*/
/* Need one for each format because subnormal floats might
* be converted to normal reals.
*/
int issubnormal(float f)
{
uint *p = cast(uint *)&f;
//printf("*p = x%x\n", *p);
return (*p & 0x7F800000) == 0 && *p & 0x007FFFFF;
}
unittest
{
float f = 3.0;
for (f = 1.0; !issubnormal(f); f /= 2)
assert(f != 0);
}
/// ditto
int issubnormal(double d)
{
uint *p = cast(uint *)&d;
return (p[1] & 0x7FF00000) == 0 && (p[0] || p[1] & 0x000FFFFF);
}
unittest
{
double f;
for (f = 1; !issubnormal(f); f /= 2)
assert(f != 0);
}
/// ditto
int issubnormal(real e)
{
ushort* pe = cast(ushort *)&e;
long* ps = cast(long *)&e;
return (pe[4] & 0x7FFF) == 0 && *ps > 0;
}
unittest
{
real f;
for (f = 1; !issubnormal(f); f /= 2)
assert(f != 0);
}
/*********************************
* Return !=0 if e is ±∞.
*/
int isinf(real e)
{
ushort* pe = cast(ushort *)&e;
ulong* ps = cast(ulong *)&e;
return (pe[4] & 0x7FFF) == 0x7FFF &&
*ps == 0x8000000000000000;
}
unittest
{
assert(isinf(float.infinity));
assert(!isinf(float.nan));
assert(isinf(double.infinity));
assert(isinf(-real.infinity));
assert(isinf(-1.0 / 0.0));
}
/*********************************
* Return 1 if sign bit of e is set, 0 if not.
*/
int signbit(real e)
{
ubyte* pe = cast(ubyte *)&e;
//printf("e = %Lg\n", e);
return (pe[9] & 0x80) != 0;
}
unittest
{
debug (math) printf("math.signbit.unittest\n");
assert(!signbit(float.nan));
assert(signbit(-float.nan));
assert(!signbit(168.1234));
assert(signbit(-168.1234));
assert(!signbit(0.0));
assert(signbit(-0.0));
}
/*********************************
* Return a value composed of to with from's sign bit.
*/
real copysign(real to, real from)
{
ubyte* pto = cast(ubyte *)&to;
ubyte* pfrom = cast(ubyte *)&from;
pto[9] &= 0x7F;
pto[9] |= pfrom[9] & 0x80;
return to;
}
unittest
{
real e;
e = copysign(21, 23.8);
assert(e == 21);
e = copysign(-21, 23.8);
assert(e == 21);
e = copysign(21, -23.8);
assert(e == -21);
e = copysign(-21, -23.8);
assert(e == -21);
e = copysign(real.nan, -23.8);
assert(isnan(e) && signbit(e));
}
/******************************************
* Creates a quiet NAN with the information from tagp[] embedded in it.
*/
real nan(char[] tagp) { return std.c.math.nanl(toStringz(tagp)); }
/******************************************
* Calculates the next representable value after x in the direction of y.
*
* If y > x, the result will be the next largest floating-point value;
* if y < x, the result will be the next smallest value.
* If x == y, the result is y.
* The FE_INEXACT and FE_OVERFLOW exceptions will be raised if x is finite and
* the function result is infinite. The FE_INEXACT and FE_UNDERFLOW
* exceptions will be raised if the function value is subnormal, and x is
* not equal to y.
*/
real nextafter(real x, real y)
{
version (linux)
return std.c.math.nextafterl(x, y);
else
throw new NotImplemented("nextafter");
}
//real nexttoward(real x, real y) { return std.c.math.nexttowardl(x, y); }
/*******************************************
* Returns the positive difference between x and y.
* Returns:
*
* x, y | fdim(x, y)
* | x > y | x - y
* | x <= y | +0.0
* |
*/
real fdim(real x, real y) { return (x > y) ? x - y : +0.0; }
/****************************************
* Returns the larger of x and y.
*/
real fmax(real x, real y) { return x > y ? x : y; }
/****************************************
* Returns the smaller of x and y.
*/
real fmin(real x, real y) { return x < y ? x : y; }
/**************************************
* Returns (x * y) + z, rounding only once according to the
* current rounding mode.
*/
real fma(real x, real y, real z) { return (x * y) + z; }
/*******************************************************************
* Fast integral powers.
*/
real pow(real x, uint n)
{
real p;
switch (n)
{
case 0:
p = 1.0;
break;
case 1:
p = x;
break;
case 2:
p = x * x;
break;
default:
p = 1.0;
while (1)
{
if (n & 1)
p *= x;
n >>= 1;
if (!n)
break;
x *= x;
}
break;
}
return p;
}
/// ditto
real pow(real x, int n)
{
if (n < 0)
return pow(x, cast(real)n);
else
return pow(x, cast(uint)n);
}
/*********************************************
* Calculates x$(SUP y).
*
* $(TABLE_SV
* |
* x | y | pow(x, y) | div 0 | invalid?
* |
* anything | ±0.0 | 1.0 | no | no
* |
* |x| > 1 | +∞ | +∞ | no | no
* |
* |x| < 1 | +∞ | +0.0 | no | no
* |
* |x| > 1 | -∞ | +0.0 | no | no
* |
* |x| < 1 | -∞ | +∞ | no | no
* |
* +∞ | > 0.0 | +∞ | no | no
* |
* +∞ | < 0.0 | +0.0 | no | no
* |
* -∞ | odd integer > 0.0 | -∞ | no | no
* |
* -∞ | > 0.0, not odd integer | +∞ | no | no
* |
* -∞ | odd integer < 0.0 | -0.0 | no | no
* |
* -∞ | < 0.0, not odd integer | +0.0 | no | no
* |
* ±1.0 | ±∞ | $(NAN) | no | yes
* |
* < 0.0 | finite, nonintegral | $(NAN) | no | yes
* |
* ±0.0 | odd integer < 0.0 | ±∞ | yes | no
* |
* ±0.0 | < 0.0, not odd integer | +∞ | yes | no
* |
* ±0.0 | odd integer > 0.0 | ±0.0 | no | no
* |
* ±0.0 | > 0.0, not odd integer | +0.0 | no | no
* )
*/
real pow(real x, real y)
{
version (linux) // C pow() often does not handle special values correctly
{
if (isnan(y))
return real.nan;
if (y == 0)
return 1; // even if x is $(NAN)
if (isnan(x) && y != 0)
return real.nan;
if (isinf(y))
{
if (fabs(x) > 1)
{
if (signbit(y))
return +0.0;
else
return real.infinity;
}
else if (fabs(x) == 1)
{
return real.nan;
}
else // < 1
{
if (signbit(y))
return real.infinity;
else
return +0.0;
}
}
if (isinf(x))
{
if (signbit(x))
{ long i;
i = cast(long)y;
if (y > 0)
{
if (i == y && i & 1)
return -real.infinity;
else
return real.infinity;
}
else if (y < 0)
{
if (i == y && i & 1)
return -0.0;
else
return +0.0;
}
}
else
{
if (y > 0)
return real.infinity;
else if (y < 0)
return +0.0;
}
}
if (x == 0.0)
{
if (signbit(x))
{ long i;
i = cast(long)y;
if (y > 0)
{
if (i == y && i & 1)
return -0.0;
else
return +0.0;
}
else if (y < 0)
{
if (i == y && i & 1)
return -real.infinity;
else
return real.infinity;
}
}
else
{
if (y > 0)
return +0.0;
else if (y < 0)
return real.infinity;
}
}
}
return std.c.math.powl(x, y);
}
unittest
{
real x = 46;
assert(pow(x,0) == 1.0);
assert(pow(x,1) == x);
assert(pow(x,2) == x * x);
assert(pow(x,3) == x * x * x);
assert(pow(x,8) == (x * x) * (x * x) * (x * x) * (x * x));
}
/****************************************
* Simple function to compare two floating point values
* to a specified precision.
* Returns:
* 1 match
* 0 nomatch
*/
private int mfeq(real x, real y, real precision)
{
if (x == y)
return 1;
if (isnan(x))
return isnan(y);
if (isnan(y))
return 0;
return fabs(x - y) <= precision;
}
// Returns true if x is +0.0 (This function is used in unit tests)
bool isPosZero(real x)
{
return (x == 0) && (signbit(x) == 0);
}
// Returns true if x is -0.0 (This function is used in unit tests)
bool isNegZero(real x)
{
return (x == 0) && signbit(x);
}
/**************************************
* To what precision is x equal to y?
*
* Returns: the number of mantissa bits which are equal in x and y.
* eg, 0x1.F8p+60 and 0x1.F1p+60 are equal to 5 bits of precision.
*
* $(TABLE_SV
* |
x | y | feqrel(x, y)
* |
x | x | real.mant_dig
* |
x | >= 2*x | 0
* |
x | <= x/2 | 0
* |
$(NAN) | any | 0
* |
any | $(NAN) | 0
* )
*/
int feqrel(real x, real y)
{
/* Public Domain. Author: Don Clugston, 18 Aug 2005.
*/
if (x == y)
return real.mant_dig; // ensure diff!=0, cope with INF.
real diff = fabs(x - y);
ushort *pa = cast(ushort *)(&x);
ushort *pb = cast(ushort *)(&y);
ushort *pd = cast(ushort *)(&diff);
// The difference in abs(exponent) between x or y and abs(x-y)
// is equal to the number of mantissa bits of x which are
// equal to y. If negative, x and y have different exponents.
// If positive, x and y are equal to 'bitsdiff' bits.
// AND with 0x7FFF to form the absolute value.
// To avoid out-by-1 errors, we subtract 1 so it rounds down
// if the exponents were different. This means 'bitsdiff' is
// always 1 lower than we want, except that if bitsdiff==0,
// they could have 0 or 1 bits in common.
int bitsdiff = ( ((pa[4]&0x7FFF) + (pb[4]&0x7FFF)-1)>>1) - pd[4];
if (pd[4] == 0)
{ // Difference is denormal
// For denormals, we need to add the number of zeros that
// lie at the start of diff's mantissa.
// We do this by multiplying by 2^real.mant_dig
diff *= 0x1p+63;
return bitsdiff + real.mant_dig - pd[4];
}
if (bitsdiff > 0)
return bitsdiff + 1; // add the 1 we subtracted before
// Avoid out-by-1 errors when factor is almost 2.
return (bitsdiff == 0) ? (pa[4] == pb[4]) : 0;
}
unittest
{
// Exact equality
assert(feqrel(real.max,real.max)==real.mant_dig);
assert(feqrel(0,0)==real.mant_dig);
assert(feqrel(7.1824,7.1824)==real.mant_dig);
assert(feqrel(real.infinity,real.infinity)==real.mant_dig);
// a few bits away from exact equality
real w=1;
for (int i=1; i0 + a1x + a2x² + a3x³ ...
*
* Uses Horner's rule A(x) = a0 + x(a1 + x(a2 + x(a3 + ...)))
* Params:
* A = array of coefficients a0, a1, etc.
*/
real poly(real x, real[] A)
in
{
assert(A.length > 0);
}
body
{
version (D_InlineAsm_X86)
{
version (Windows)
{
asm // assembler by W. Bright
{
// EDX = (A.length - 1) * real.sizeof
mov ECX,A[EBP] ; // ECX = A.length
dec ECX ;
lea EDX,[ECX][ECX*8] ;
add EDX,ECX ;
add EDX,A+4[EBP] ;
fld real ptr [EDX] ; // ST0 = coeff[ECX]
jecxz return_ST ;
fld x[EBP] ; // ST0 = x
fxch ST(1) ; // ST1 = x, ST0 = r
align 4 ;
L2: fmul ST,ST(1) ; // r *= x
fld real ptr -10[EDX] ;
sub EDX,10 ; // deg--
faddp ST(1),ST ;
dec ECX ;
jne L2 ;
fxch ST(1) ; // ST1 = r, ST0 = x
fstp ST(0) ; // dump x
align 4 ;
return_ST: ;
;
}
}
else
{
asm // assembler by W. Bright
{
// EDX = (A.length - 1) * real.sizeof
mov ECX,A[EBP] ; // ECX = A.length
dec ECX ;
lea EDX,[ECX*8] ;
lea EDX,[EDX][ECX*4] ;
add EDX,A+4[EBP] ;
fld real ptr [EDX] ; // ST0 = coeff[ECX]
jecxz return_ST ;
fld x[EBP] ; // ST0 = x
fxch ST(1) ; // ST1 = x, ST0 = r
align 4 ;
L2: fmul ST,ST(1) ; // r *= x
fld real ptr -12[EDX] ;
sub EDX,12 ; // deg--
faddp ST(1),ST ;
dec ECX ;
jne L2 ;
fxch ST(1) ; // ST1 = r, ST0 = x
fstp ST(0) ; // dump x
align 4 ;
return_ST: ;
;
}
}
}
else
{
int i = A.length - 1;
real r = A[i];
while (--i >= 0)
{
r *= x;
r += A[i];
}
return r;
}
}
unittest
{
debug (math) printf("math.poly.unittest\n");
real x = 3.1;
static real pp[] = [56.1, 32.7, 6];
assert( poly(x, pp) == (56.1L + (32.7L + 6L * x) * x) );
}
|