// Written in the D programming language.
/**
$(SCRIPT inhibitQuickIndex = 1;)
$(BOOKTABLE ,
$(TR $(TH Category) $(TH Members) )
$(TR $(TDNW Constants) $(TD
$(MYREF E) $(MYREF PI) $(MYREF PI_2) $(MYREF PI_4) $(MYREF M_1_PI)
$(MYREF M_2_PI) $(MYREF M_2_SQRTPI) $(MYREF LN10) $(MYREF LN2)
$(MYREF LOG2) $(MYREF LOG2E) $(MYREF LOG2T) $(MYREF LOG10E)
$(MYREF SQRT2) $(MYREF SQRT1_2)
))
$(TR $(TDNW Classics) $(TD
$(MYREF abs) $(MYREF fabs) $(MYREF sqrt) $(MYREF cbrt) $(MYREF hypot) $(MYREF poly)
))
$(TR $(TDNW Trigonometry) $(TD
$(MYREF sin) $(MYREF cos) $(MYREF tan) $(MYREF asin) $(MYREF acos)
$(MYREF atan) $(MYREF atan2) $(MYREF sinh) $(MYREF cosh) $(MYREF tanh)
$(MYREF asinh) $(MYREF acosh) $(MYREF atanh) $(MYREF expi)
))
$(TR $(TDNW Rounding) $(TD
$(MYREF ceil) $(MYREF floor) $(MYREF round) $(MYREF lround)
$(MYREF trunc) $(MYREF rint) $(MYREF lrint) $(MYREF nearbyint)
$(MYREF rndtol)
))
$(TR $(TDNW Exponentiation & Logarithms) $(TD
$(MYREF pow) $(MYREF exp) $(MYREF exp2) $(MYREF expm1) $(MYREF ldexp)
$(MYREF frexp) $(MYREF log) $(MYREF log2) $(MYREF log10) $(MYREF logb)
$(MYREF ilogb) $(MYREF log1p) $(MYREF scalbn)
))
$(TR $(TDNW Modulus) $(TD
$(MYREF fmod) $(MYREF modf) $(MYREF remainder)
))
$(TR $(TDNW Floating-point operations) $(TD
$(MYREF approxEqual) $(MYREF feqrel) $(MYREF fdim) $(MYREF fmax)
$(MYREF fmin) $(MYREF fma) $(MYREF nextDown) $(MYREF nextUp)
$(MYREF nextafter) $(MYREF NaN) $(MYREF getNaNPayload)
))
$(TR $(TDNW Introspection) $(TD
$(MYREF isFinite) $(MYREF isIdentical) $(MYREF isInfinity) $(MYREF isNaN)
$(MYREF isNormal) $(MYREF isSubnormal) $(MYREF signbit) $(MYREF sgn)
$(MYREF copysign)
))
$(TR $(TDNW Complex Numbers) $(TD
$(MYREF abs) $(MYREF conj) $(MYREF sin) $(MYREF cos) $(MYREF expi)
))
$(TR $(TDNW Hardware Control) $(TD
$(MYREF IeeeFlags) $(MYREF FloatingPointControl)
))
)
* Elementary mathematical functions
*
* Contains the elementary mathematical functions (powers, roots,
* and trigonometric functions), and low-level floating-point operations.
* Mathematical special functions are available in std.mathspecial.
*
* The functionality closely follows the IEEE754-2008 standard for
* floating-point arithmetic, including the use of camelCase names rather
* than C99-style lower case names. All of these functions behave correctly
* when presented with an infinity or NaN.
*
* The following IEEE 'real' formats are currently supported:
* $(UL
* $(LI 64 bit Big-endian 'double' (eg PowerPC))
* $(LI 128 bit Big-endian 'quadruple' (eg SPARC))
* $(LI 64 bit Little-endian 'double' (eg x86-SSE2))
* $(LI 80 bit Little-endian, with implied bit 'real80' (eg x87, Itanium))
* $(LI 128 bit Little-endian 'quadruple' (not implemented on any known processor!))
* $(LI Non-IEEE 128 bit Big-endian 'doubledouble' (eg PowerPC) has partial support)
* )
* Unlike C, there is no global 'errno' variable. Consequently, almost all of
* these functions are pure nothrow.
*
* Status:
* The semantics and names of feqrel and approxEqual will be revised.
*
* Macros:
* WIKI = Phobos/StdMath
* MYREF = $1
*
* TABLE_SV =
* SVH = $(TR $(TH $1) $(TH $2))
* SV = $(TR $(TD $1) $(TD $2))
*
* NAN = $(RED NAN)
* SUP = $0
* GAMMA = Γ
* THETA = θ
* INTEGRAL = ∫
* INTEGRATE = $(BIG ∫$(SMALL $1)$2)
* POWER = $1$2
* SUB = $1$2
* BIGSUM = $(BIG Σ $2$(SMALL $1))
* CHOOSE = $(BIG () $(SMALL $1)$(SMALL $2) $(BIG ))
* PLUSMN = ±
* INFIN = ∞
* PLUSMNINF = ±∞
* PI = π
* LT = <
* GT = >
* SQRT = √
* HALF = ½
*
* Copyright: Copyright Digital Mars 2000 - 2011.
* D implementations of tan, atan, atan2, exp, expm1, exp2, log, log10, log1p,
* log2, floor, ceil and lrint functions are based on the CEPHES math library,
* which is Copyright (C) 2001 Stephen L. Moshier
* and are incorporated herein by permission of the author. The author
* reserves the right to distribute this material elsewhere under different
* copying permissions. These modifications are distributed here under
* the following terms:
* License: $(WEB www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
* Authors: $(WEB digitalmars.com, Walter Bright), Don Clugston,
* Conversion of CEPHES math library to D by Iain Buclaw
* Source: $(PHOBOSSRC std/_math.d)
*/
module std.math;
version (Win64)
{
version (D_InlineAsm_X86_64)
version = Win64_DMD_InlineAsm;
}
import core.stdc.math;
import std.traits;
version(LDC)
{
import ldc.intrinsics;
}
version(DigitalMars)
{
version = INLINE_YL2X; // x87 has opcodes for these
}
version (X86)
{
version = X86_Any;
}
version (X86_64)
{
version = X86_Any;
}
version(D_InlineAsm_X86)
{
version = InlineAsm_X86_Any;
}
else version(D_InlineAsm_X86_64)
{
version = InlineAsm_X86_Any;
}
version(unittest)
{
import core.stdc.stdio;
static if(real.sizeof > double.sizeof)
enum uint useDigits = 16;
else
enum uint useDigits = 15;
/******************************************
* Compare floating point numbers to n decimal digits of precision.
* Returns:
* 1 match
* 0 nomatch
*/
private bool equalsDigit(real x, real y, uint ndigits)
{
if (signbit(x) != signbit(y))
return 0;
if (isInfinity(x) && isInfinity(y))
return 1;
if (isInfinity(x) || isInfinity(y))
return 0;
if (isNaN(x) && isNaN(y))
return 1;
if (isNaN(x) || isNaN(y))
return 0;
char[30] bufx;
char[30] bufy;
assert(ndigits < bufx.length);
int ix;
int iy;
version(CRuntime_Microsoft)
alias double real_t;
else
alias real real_t;
ix = sprintf(bufx.ptr, "%.*Lg", ndigits, cast(real_t) x);
iy = sprintf(bufy.ptr, "%.*Lg", ndigits, cast(real_t) y);
assert(ix < bufx.length && ix > 0);
assert(ix < bufy.length && ix > 0);
return bufx[0 .. ix] == bufy[0 .. iy];
}
}
private:
// The following IEEE 'real' formats are currently supported.
version(LittleEndian)
{
static assert(real.mant_dig == 53 || real.mant_dig == 64
|| real.mant_dig == 113,
"Only 64-bit, 80-bit, and 128-bit reals"~
" are supported for LittleEndian CPUs");
}
else
{
static assert(real.mant_dig == 53 || real.mant_dig == 106
|| real.mant_dig == 113,
"Only 64-bit and 128-bit reals are supported for BigEndian CPUs."~
" double-double reals have partial support");
}
// Underlying format exposed through floatTraits
enum RealFormat
{
ieeeHalf,
ieeeSingle,
ieeeDouble,
ieeeExtended, // x87 80-bit real
ieeeExtended53, // x87 real rounded to precision of double.
ibmExtended, // IBM 128-bit extended
ieeeQuadruple,
}
// Constants used for extracting the components of the representation.
// They supplement the built-in floating point properties.
template floatTraits(T)
{
// EXPMASK is a ushort mask to select the exponent portion (without sign)
// EXPPOS_SHORT is the index of the exponent when represented as a ushort array.
// SIGNPOS_BYTE is the index of the sign when represented as a ubyte array.
// RECIP_EPSILON is the value such that (smallest_subnormal) * RECIP_EPSILON == T.min_normal
enum T RECIP_EPSILON = (1/T.epsilon);
static if (T.mant_dig == 24)
{
// Single precision float
enum ushort EXPMASK = 0x7F80;
enum ushort EXPBIAS = 0x3F00;
enum uint EXPMASK_INT = 0x7F80_0000;
enum uint MANTISSAMASK_INT = 0x007F_FFFF;
enum realFormat = RealFormat.ieeeSingle;
version(LittleEndian)
{
enum EXPPOS_SHORT = 1;
enum SIGNPOS_BYTE = 3;
}
else
{
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
}
else static if (T.mant_dig == 53)
{
static if (T.sizeof == 8)
{
// Double precision float, or real == double
enum ushort EXPMASK = 0x7FF0;
enum ushort EXPBIAS = 0x3FE0;
enum uint EXPMASK_INT = 0x7FF0_0000;
enum uint MANTISSAMASK_INT = 0x000F_FFFF; // for the MSB only
enum realFormat = RealFormat.ieeeDouble;
version(LittleEndian)
{
enum EXPPOS_SHORT = 3;
enum SIGNPOS_BYTE = 7;
}
else
{
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
}
else static if (T.sizeof == 12)
{
// Intel extended real80 rounded to double
enum ushort EXPMASK = 0x7FFF;
enum ushort EXPBIAS = 0x3FFE;
enum realFormat = RealFormat.ieeeExtended53;
version(LittleEndian)
{
enum EXPPOS_SHORT = 4;
enum SIGNPOS_BYTE = 9;
}
else
{
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
}
else
static assert(false, "No traits support for " ~ T.stringof);
}
else static if (T.mant_dig == 64)
{
// Intel extended real80
enum ushort EXPMASK = 0x7FFF;
enum ushort EXPBIAS = 0x3FFE;
enum realFormat = RealFormat.ieeeExtended;
version(LittleEndian)
{
enum EXPPOS_SHORT = 4;
enum SIGNPOS_BYTE = 9;
}
else
{
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
}
else static if (T.mant_dig == 113)
{
// Quadruple precision float
enum ushort EXPMASK = 0x7FFF;
enum realFormat = RealFormat.ieeeQuadruple;
version(LittleEndian)
{
enum EXPPOS_SHORT = 7;
enum SIGNPOS_BYTE = 15;
}
else
{
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
}
else static if (T.mant_dig == 106)
{
// IBM Extended doubledouble
enum ushort EXPMASK = 0x7FF0;
enum realFormat = RealFormat.ibmExtended;
// the exponent byte is not unique
version(LittleEndian)
{
enum EXPPOS_SHORT = 7; // [3] is also an exp short
enum SIGNPOS_BYTE = 15;
}
else
{
enum EXPPOS_SHORT = 0; // [4] is also an exp short
enum SIGNPOS_BYTE = 0;
}
}
else
static assert(false, "No traits support for " ~ T.stringof);
}
// These apply to all floating-point types
version(LittleEndian)
{
enum MANTISSA_LSB = 0;
enum MANTISSA_MSB = 1;
}
else
{
enum MANTISSA_LSB = 1;
enum MANTISSA_MSB = 0;
}
// Common code for math implementations.
// Helper for floor/ceil
T floorImpl(T)(T x) @trusted pure nothrow @nogc
{
alias F = floatTraits!(T);
// Take care not to trigger library calls from the compiler,
// while ensuring that we don't get defeated by some optimizers.
union floatBits
{
T rv;
ushort[T.sizeof/2] vu;
}
floatBits y = void;
y.rv = x;
// Find the exponent (power of 2)
static if (F.realFormat == RealFormat.ieeeSingle)
{
int exp = ((y.vu[F.EXPPOS_SHORT] >> 7) & 0xff) - 0x7f;
version (LittleEndian)
int pos = 0;
else
int pos = 3;
}
else static if (F.realFormat == RealFormat.ieeeDouble)
{
int exp = ((y.vu[F.EXPPOS_SHORT] >> 4) & 0x7ff) - 0x3ff;
version (LittleEndian)
int pos = 0;
else
int pos = 3;
}
else static if (F.realFormat == RealFormat.ieeeExtended)
{
int exp = (y.vu[F.EXPPOS_SHORT] & 0x7fff) - 0x3fff;
version (LittleEndian)
int pos = 0;
else
int pos = 4;
}
else static if (F.realFormat == RealFormat.ieeeQuadruple)
{
int exp = (y.vu[F.EXPPOS_SHORT] & 0x7fff) - 0x3fff;
version (LittleEndian)
int pos = 0;
else
int pos = 7;
}
else
static assert(false, "Not implemented for this architecture");
if (exp < 0)
{
if (x < 0.0)
return -1.0;
else
return 0.0;
}
exp = (T.mant_dig - 1) - exp;
// Zero 16 bits at a time.
while (exp >= 16)
{
version (LittleEndian)
y.vu[pos++] = 0;
else
y.vu[pos--] = 0;
exp -= 16;
}
// Clear the remaining bits.
if (exp > 0)
y.vu[pos] &= 0xffff ^ ((1 << exp) - 1);
if ((x < 0.0) && (x != y.rv))
y.rv -= 1.0;
return y.rv;
}
public:
// Values obtained from Wolfram Alpha. 116 bits ought to be enough for anybody.
// Wolfram Alpha LLC. 2011. Wolfram|Alpha. http://www.wolframalpha.com/input/?i=e+in+base+16 (access July 6, 2011).
enum real E = 0x1.5bf0a8b1457695355fb8ac404e7a8p+1L; /** e = 2.718281... */
enum real LOG2T = 0x1.a934f0979a3715fc9257edfe9b5fbp+1L; /** $(SUB log, 2)10 = 3.321928... */
enum real LOG2E = 0x1.71547652b82fe1777d0ffda0d23a8p+0L; /** $(SUB log, 2)e = 1.442695... */
enum real LOG2 = 0x1.34413509f79fef311f12b35816f92p-2L; /** $(SUB log, 10)2 = 0.301029... */
enum real LOG10E = 0x1.bcb7b1526e50e32a6ab7555f5a67cp-2L; /** $(SUB log, 10)e = 0.434294... */
enum real LN2 = 0x1.62e42fefa39ef35793c7673007e5fp-1L; /** ln 2 = 0.693147... */
enum real LN10 = 0x1.26bb1bbb5551582dd4adac5705a61p+1L; /** ln 10 = 2.302585... */
enum real PI = 0x1.921fb54442d18469898cc51701b84p+1L; /** $(_PI) = 3.141592... */
enum real PI_2 = PI/2; /** $(PI) / 2 = 1.570796... */
enum real PI_4 = PI/4; /** $(PI) / 4 = 0.785398... */
enum real M_1_PI = 0x1.45f306dc9c882a53f84eafa3ea69cp-2L; /** 1 / $(PI) = 0.318309... */
enum real M_2_PI = 2*M_1_PI; /** 2 / $(PI) = 0.636619... */
enum real M_2_SQRTPI = 0x1.20dd750429b6d11ae3a914fed7fd8p+0L; /** 2 / $(SQRT)$(PI) = 1.128379... */
enum real SQRT2 = 0x1.6a09e667f3bcc908b2fb1366ea958p+0L; /** $(SQRT)2 = 1.414213... */
enum real SQRT1_2 = SQRT2/2; /** $(SQRT)$(HALF) = 0.707106... */
// Note: Make sure the magic numbers in compiler backend for x87 match these.
/***********************************
* Calculates the absolute value
*
* For complex numbers, abs(z) = sqrt( $(POWER z.re, 2) + $(POWER z.im, 2) )
* = hypot(z.re, z.im).
*/
Num abs(Num)(Num x) @safe pure nothrow
if (is(typeof(Num.init >= 0)) && is(typeof(-Num.init)) &&
!(is(Num* : const(ifloat*)) || is(Num* : const(idouble*))
|| is(Num* : const(ireal*))))
{
static if (isFloatingPoint!(Num))
return fabs(x);
else
return x>=0 ? x : -x;
}
auto abs(Num)(Num z) @safe pure nothrow @nogc
if (is(Num* : const(cfloat*)) || is(Num* : const(cdouble*))
|| is(Num* : const(creal*)))
{
return hypot(z.re, z.im);
}
/** ditto */
real abs(Num)(Num y) @safe pure nothrow @nogc
if (is(Num* : const(ifloat*)) || is(Num* : const(idouble*))
|| is(Num* : const(ireal*)))
{
return fabs(y.im);
}
unittest
{
assert(isIdentical(abs(-0.0L), 0.0L));
assert(isNaN(abs(real.nan)));
assert(abs(-real.infinity) == real.infinity);
assert(abs(-3.2Li) == 3.2L);
assert(abs(71.6Li) == 71.6L);
assert(abs(-56) == 56);
assert(abs(2321312L) == 2321312L);
assert(abs(-1+1i) == sqrt(2.0L));
}
/***********************************
* Complex conjugate
*
* conj(x + iy) = x - iy
*
* Note that z * conj(z) = $(POWER z.re, 2) - $(POWER z.im, 2)
* is always a real number
*/
creal conj(creal z) @safe pure nothrow @nogc
{
return z.re - z.im*1i;
}
/** ditto */
ireal conj(ireal y) @safe pure nothrow @nogc
{
return -y;
}
unittest
{
assert(conj(7 + 3i) == 7-3i);
ireal z = -3.2Li;
assert(conj(z) == -z);
}
/***********************************
* Returns cosine of x. x is in radians.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH cos(x)) $(TH invalid?))
* $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes) )
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) $(TD yes) )
* )
* Bugs:
* Results are undefined if |x| >= $(POWER 2,64).
*/
real cos(real x) @safe pure nothrow @nogc; /* intrinsic */
/***********************************
* Returns sine of x. x is in radians.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH sin(x)) $(TH invalid?))
* $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no))
* $(TR $(TD $(PLUSMNINF)) $(TD $(NAN)) $(TD yes))
* )
* Bugs:
* Results are undefined if |x| >= $(POWER 2,64).
*/
real sin(real x) @safe pure nothrow @nogc; /* intrinsic */
/***********************************
* sine, complex and imaginary
*
* sin(z) = sin(z.re)*cosh(z.im) + cos(z.re)*sinh(z.im)i
*
* If both sin($(THETA)) and cos($(THETA)) are required,
* it is most efficient to use expi($(THETA)).
*/
creal sin(creal z) @safe pure nothrow @nogc
{
creal cs = expi(z.re);
creal csh = coshisinh(z.im);
return cs.im * csh.re + cs.re * csh.im * 1i;
}
/** ditto */
ireal sin(ireal y) @safe pure nothrow @nogc
{
return cosh(y.im)*1i;
}
unittest
{
assert(sin(0.0+0.0i) == 0.0);
assert(sin(2.0+0.0i) == sin(2.0L) );
}
/***********************************
* cosine, complex and imaginary
*
* cos(z) = cos(z.re)*cosh(z.im) - sin(z.re)*sinh(z.im)i
*/
creal cos(creal z) @safe pure nothrow @nogc
{
creal cs = expi(z.re);
creal csh = coshisinh(z.im);
return cs.re * csh.re - cs.im * csh.im * 1i;
}
/** ditto */
real cos(ireal y) @safe pure nothrow @nogc
{
return cosh(y.im);
}
unittest
{
assert(cos(0.0+0.0i)==1.0);
assert(cos(1.3L+0.0i)==cos(1.3L));
assert(cos(5.2Li)== cosh(5.2L));
}
/****************************************************************************
* Returns tangent of x. x is in radians.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH tan(x)) $(TH invalid?))
* $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no))
* $(TR $(TD $(PLUSMNINF)) $(TD $(NAN)) $(TD yes))
* )
*/
real tan(real x) @trusted pure nothrow @nogc
{
version(D_InlineAsm_X86)
{
asm pure nothrow @nogc
{
fld x[EBP] ; // load theta
fxam ; // test for oddball values
fstsw AX ;
sahf ;
jc trigerr ; // x is NAN, infinity, or empty
// 387's can handle subnormals
SC18: fptan ;
fstp ST(0) ; // dump X, which is always 1
fstsw AX ;
sahf ;
jnp Lret ; // C2 = 1 (x is out of range)
// Do argument reduction to bring x into range
fldpi ;
fxch ;
SC17: fprem1 ;
fstsw AX ;
sahf ;
jp SC17 ;
fstp ST(1) ; // remove pi from stack
jmp SC18 ;
trigerr:
jnp Lret ; // if theta is NAN, return theta
fstp ST(0) ; // dump theta
}
return real.nan;
Lret: {}
}
else version(D_InlineAsm_X86_64)
{
version (Win64)
{
asm pure nothrow @nogc
{
fld real ptr [RCX] ; // load theta
}
}
else
{
asm pure nothrow @nogc
{
fld x[RBP] ; // load theta
}
}
asm pure nothrow @nogc
{
fxam ; // test for oddball values
fstsw AX ;
test AH,1 ;
jnz trigerr ; // x is NAN, infinity, or empty
// 387's can handle subnormals
SC18: fptan ;
fstp ST(0) ; // dump X, which is always 1
fstsw AX ;
test AH,4 ;
jz Lret ; // C2 = 1 (x is out of range)
// Do argument reduction to bring x into range
fldpi ;
fxch ;
SC17: fprem1 ;
fstsw AX ;
test AH,4 ;
jnz SC17 ;
fstp ST(1) ; // remove pi from stack
jmp SC18 ;
trigerr:
test AH,4 ;
jz Lret ; // if theta is NAN, return theta
fstp ST(0) ; // dump theta
}
return real.nan;
Lret: {}
}
else
{
// Coefficients for tan(x)
static immutable real[3] P = [
-1.7956525197648487798769E7L,
1.1535166483858741613983E6L,
-1.3093693918138377764608E4L,
];
static immutable real[5] Q = [
-5.3869575592945462988123E7L,
2.5008380182335791583922E7L,
-1.3208923444021096744731E6L,
1.3681296347069295467845E4L,
1.0000000000000000000000E0L,
];
// PI/4 split into three parts.
enum real P1 = 7.853981554508209228515625E-1L;
enum real P2 = 7.946627356147928367136046290398E-9L;
enum real P3 = 3.061616997868382943065164830688E-17L;
// Special cases.
if (x == 0.0 || isNaN(x))
return x;
if (isInfinity(x))
return real.nan;
// Make argument positive but save the sign.
bool sign = false;
if (signbit(x))
{
sign = true;
x = -x;
}
// Compute x mod PI/4.
real y = floor(x / PI_4);
// Strip high bits of integer part.
real z = ldexp(y, -4);
// Compute y - 16 * (y / 16).
z = y - ldexp(floor(z), 4);
// Integer and fraction part modulo one octant.
int j = cast(int)(z);
// Map zeros and singularities to origin.
if (j & 1)
{
j += 1;
y += 1.0;
}
z = ((x - y * P1) - y * P2) - y * P3;
real zz = z * z;
if (zz > 1.0e-20L)
y = z + z * (zz * poly(zz, P) / poly(zz, Q));
else
y = z;
if (j & 2)
y = -1.0 / y;
return (sign) ? -y : y;
}
}
unittest
{
static real[2][] vals = // angle,tan
[
[ 0, 0],
[ .5, .5463024898],
[ 1, 1.557407725],
[ 1.5, 14.10141995],
[ 2, -2.185039863],
[ 2.5,-.7470222972],
[ 3, -.1425465431],
[ 3.5, .3745856402],
[ 4, 1.157821282],
[ 4.5, 4.637332055],
[ 5, -3.380515006],
[ 5.5,-.9955840522],
[ 6, -.2910061914],
[ 6.5, .2202772003],
[ 10, .6483608275],
// special angles
[ PI_4, 1],
//[ PI_2, real.infinity], // PI_2 is not _exactly_ pi/2.
[ 3*PI_4, -1],
[ PI, 0],
[ 5*PI_4, 1],
//[ 3*PI_2, -real.infinity],
[ 7*PI_4, -1],
[ 2*PI, 0],
];
int i;
for (i = 0; i < vals.length; i++)
{
real x = vals[i][0];
real r = vals[i][1];
real t = tan(x);
//printf("tan(%Lg) = %Lg, should be %Lg\n", x, t, r);
if (!isIdentical(r, t)) assert(fabs(r-t) <= .0000001);
x = -x;
r = -r;
t = tan(x);
//printf("tan(%Lg) = %Lg, should be %Lg\n", x, t, r);
if (!isIdentical(r, t) && !(r!=r && t!=t)) assert(fabs(r-t) <= .0000001);
}
// overflow
assert(isNaN(tan(real.infinity)));
assert(isNaN(tan(-real.infinity)));
// NaN propagation
assert(isIdentical( tan(NaN(0x0123L)), NaN(0x0123L) ));
}
unittest
{
assert(equalsDigit(tan(PI / 3), std.math.sqrt(3.0), useDigits));
}
/***************
* Calculates the arc cosine of x,
* returning a value ranging from 0 to $(PI).
*
* $(TABLE_SV
* $(TR $(TH x) $(TH acos(x)) $(TH invalid?))
* $(TR $(TD $(GT)1.0) $(TD $(NAN)) $(TD yes))
* $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD yes))
* $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes))
* )
*/
real acos(real x) @safe pure nothrow @nogc
{
return atan2(sqrt(1-x*x), x);
}
/// ditto
double acos(double x) @safe pure nothrow @nogc { return acos(cast(real)x); }
/// ditto
float acos(float x) @safe pure nothrow @nogc { return acos(cast(real)x); }
unittest
{
assert(equalsDigit(acos(0.5), std.math.PI / 3, useDigits));
}
/***************
* Calculates the arc sine of x,
* returning a value ranging from -$(PI)/2 to $(PI)/2.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH asin(x)) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no))
* $(TR $(TD $(GT)1.0) $(TD $(NAN)) $(TD yes))
* $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD yes))
* )
*/
real asin(real x) @safe pure nothrow @nogc
{
return atan2(x, sqrt(1-x*x));
}
/// ditto
double asin(double x) @safe pure nothrow @nogc { return asin(cast(real)x); }
/// ditto
float asin(float x) @safe pure nothrow @nogc { return asin(cast(real)x); }
unittest
{
assert(equalsDigit(asin(0.5), PI / 6, useDigits));
}
/***************
* Calculates the arc tangent of x,
* returning a value ranging from -$(PI)/2 to $(PI)/2.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH atan(x)) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no))
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) $(TD yes))
* )
*/
real atan(real x) @safe pure nothrow @nogc
{
version(InlineAsm_X86_Any)
{
return atan2(x, 1.0L);
}
else
{
// Coefficients for atan(x)
static immutable real[5] P = [
-5.0894116899623603312185E1L,
-9.9988763777265819915721E1L,
-6.3976888655834347413154E1L,
-1.4683508633175792446076E1L,
-8.6863818178092187535440E-1L,
];
static immutable real[6] Q = [
1.5268235069887081006606E2L,
3.9157570175111990631099E2L,
3.6144079386152023162701E2L,
1.4399096122250781605352E2L,
2.2981886733594175366172E1L,
1.0000000000000000000000E0L,
];
// tan(PI/8)
enum real TAN_PI_8 = 4.1421356237309504880169e-1L;
// tan(3 * PI/8)
enum real TAN3_PI_8 = 2.41421356237309504880169L;
// Special cases.
if (x == 0.0)
return x;
if (isInfinity(x))
return copysign(PI_2, x);
// Make argument positive but save the sign.
bool sign = false;
if (signbit(x))
{
sign = true;
x = -x;
}
// Range reduction.
real y;
if (x > TAN3_PI_8)
{
y = PI_2;
x = -(1.0 / x);
}
else if (x > TAN_PI_8)
{
y = PI_4;
x = (x - 1.0)/(x + 1.0);
}
else
y = 0.0;
// Rational form in x^^2.
real z = x * x;
y = y + (poly(z, P) / poly(z, Q)) * z * x + x;
return (sign) ? -y : y;
}
}
/// ditto
double atan(double x) @safe pure nothrow @nogc { return atan(cast(real)x); }
/// ditto
float atan(float x) @safe pure nothrow @nogc { return atan(cast(real)x); }
unittest
{
assert(equalsDigit(atan(std.math.sqrt(3.0)), PI / 3, useDigits));
}
/***************
* Calculates the arc tangent of y / x,
* returning a value ranging from -$(PI) to $(PI).
*
* $(TABLE_SV
* $(TR $(TH y) $(TH x) $(TH atan(y, x)))
* $(TR $(TD $(NAN)) $(TD anything) $(TD $(NAN)) )
* $(TR $(TD anything) $(TD $(NAN)) $(TD $(NAN)) )
* $(TR $(TD $(PLUSMN)0.0) $(TD $(GT)0.0) $(TD $(PLUSMN)0.0) )
* $(TR $(TD $(PLUSMN)0.0) $(TD +0.0) $(TD $(PLUSMN)0.0) )
* $(TR $(TD $(PLUSMN)0.0) $(TD $(LT)0.0) $(TD $(PLUSMN)$(PI)))
* $(TR $(TD $(PLUSMN)0.0) $(TD -0.0) $(TD $(PLUSMN)$(PI)))
* $(TR $(TD $(GT)0.0) $(TD $(PLUSMN)0.0) $(TD $(PI)/2) )
* $(TR $(TD $(LT)0.0) $(TD $(PLUSMN)0.0) $(TD -$(PI)/2) )
* $(TR $(TD $(GT)0.0) $(TD $(INFIN)) $(TD $(PLUSMN)0.0) )
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD anything) $(TD $(PLUSMN)$(PI)/2))
* $(TR $(TD $(GT)0.0) $(TD -$(INFIN)) $(TD $(PLUSMN)$(PI)) )
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(INFIN)) $(TD $(PLUSMN)$(PI)/4))
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD -$(INFIN)) $(TD $(PLUSMN)3$(PI)/4))
* )
*/
real atan2(real y, real x) @trusted pure nothrow @nogc
{
version(InlineAsm_X86_Any)
{
version (Win64)
{
asm pure nothrow @nogc {
naked;
fld real ptr [RDX]; // y
fld real ptr [RCX]; // x
fpatan;
ret;
}
}
else
{
asm pure nothrow @nogc {
fld y;
fld x;
fpatan;
}
}
}
else
{
// Special cases.
if (isNaN(x) || isNaN(y))
return real.nan;
if (y == 0.0)
{
if (x >= 0 && !signbit(x))
return copysign(0, y);
else
return copysign(PI, y);
}
if (x == 0.0)
return copysign(PI_2, y);
if (isInfinity(x))
{
if (signbit(x))
{
if (isInfinity(y))
return copysign(3*PI_4, y);
else
return copysign(PI, y);
}
else
{
if (isInfinity(y))
return copysign(PI_4, y);
else
return copysign(0.0, y);
}
}
if (isInfinity(y))
return copysign(PI_2, y);
// Call atan and determine the quadrant.
real z = atan(y / x);
if (signbit(x))
{
if (signbit(y))
z = z - PI;
else
z = z + PI;
}
if (z == 0.0)
return copysign(z, y);
return z;
}
}
/// ditto
double atan2(double y, double x) @safe pure nothrow @nogc
{
return atan2(cast(real)y, cast(real)x);
}
/// ditto
float atan2(float y, float x) @safe pure nothrow @nogc
{
return atan2(cast(real)y, cast(real)x);
}
unittest
{
assert(equalsDigit(atan2(1.0L, std.math.sqrt(3.0L)), PI / 6, useDigits));
}
/***********************************
* Calculates the hyperbolic cosine of x.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH cosh(x)) $(TH invalid?))
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)0.0) $(TD no) )
* )
*/
real cosh(real x) @safe pure nothrow @nogc
{
// cosh = (exp(x)+exp(-x))/2.
// The naive implementation works correctly.
real y = exp(x);
return (y + 1.0/y) * 0.5;
}
/// ditto
double cosh(double x) @safe pure nothrow @nogc { return cosh(cast(real)x); }
/// ditto
float cosh(float x) @safe pure nothrow @nogc { return cosh(cast(real)x); }
unittest
{
assert(equalsDigit(cosh(1.0), (E + 1.0 / E) / 2, useDigits));
}
/***********************************
* Calculates the hyperbolic sine of x.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH sinh(x)) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no))
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)$(INFIN)) $(TD no))
* )
*/
real sinh(real x) @safe pure nothrow @nogc
{
// sinh(x) = (exp(x)-exp(-x))/2;
// Very large arguments could cause an overflow, but
// the maximum value of x for which exp(x) + exp(-x)) != exp(x)
// is x = 0.5 * (real.mant_dig) * LN2. // = 22.1807 for real80.
if (fabs(x) > real.mant_dig * LN2)
{
return copysign(0.5 * exp(fabs(x)), x);
}
real y = expm1(x);
return 0.5 * y / (y+1) * (y+2);
}
/// ditto
double sinh(double x) @safe pure nothrow @nogc { return sinh(cast(real)x); }
/// ditto
float sinh(float x) @safe pure nothrow @nogc { return sinh(cast(real)x); }
unittest
{
assert(equalsDigit(sinh(1.0), (E - 1.0 / E) / 2, useDigits));
}
/***********************************
* Calculates the hyperbolic tangent of x.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH tanh(x)) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) )
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)1.0) $(TD no))
* )
*/
real tanh(real x) @safe pure nothrow @nogc
{
// tanh(x) = (exp(x) - exp(-x))/(exp(x)+exp(-x))
if (fabs(x) > real.mant_dig * LN2)
{
return copysign(1, x);
}
real y = expm1(2*x);
return y / (y + 2);
}
/// ditto
double tanh(double x) @safe pure nothrow @nogc { return tanh(cast(real)x); }
/// ditto
float tanh(float x) @safe pure nothrow @nogc { return tanh(cast(real)x); }
unittest
{
assert(equalsDigit(tanh(1.0), sinh(1.0) / cosh(1.0), 15));
}
package:
/* Returns cosh(x) + I * sinh(x)
* Only one call to exp() is performed.
*/
creal coshisinh(real x) @safe pure nothrow @nogc
{
// See comments for cosh, sinh.
if (fabs(x) > real.mant_dig * LN2)
{
real y = exp(fabs(x));
return y * 0.5 + 0.5i * copysign(y, x);
}
else
{
real y = expm1(x);
return (y + 1.0 + 1.0/(y + 1.0)) * 0.5 + 0.5i * y / (y+1) * (y+2);
}
}
unittest
{
creal c = coshisinh(3.0L);
assert(c.re == cosh(3.0L));
assert(c.im == sinh(3.0L));
}
public:
/***********************************
* Calculates the inverse hyperbolic cosine of x.
*
* Mathematically, acosh(x) = log(x + sqrt( x*x - 1))
*
* $(TABLE_DOMRG
* $(DOMAIN 1..$(INFIN))
* $(RANGE 1..log(real.max), $(INFIN)) )
* $(TABLE_SV
* $(SVH x, acosh(x) )
* $(SV $(NAN), $(NAN) )
* $(SV $(LT)1, $(NAN) )
* $(SV 1, 0 )
* $(SV +$(INFIN),+$(INFIN))
* )
*/
real acosh(real x) @safe pure nothrow @nogc
{
if (x > 1/real.epsilon)
return LN2 + log(x);
else
return log(x + sqrt(x*x - 1));
}
/// ditto
double acosh(double x) @safe pure nothrow @nogc { return acosh(cast(real)x); }
/// ditto
float acosh(float x) @safe pure nothrow @nogc { return acosh(cast(real)x); }
unittest
{
assert(isNaN(acosh(0.9)));
assert(isNaN(acosh(real.nan)));
assert(acosh(1.0)==0.0);
assert(acosh(real.infinity) == real.infinity);
assert(isNaN(acosh(0.5)));
assert(equalsDigit(acosh(cosh(3.0)), 3, useDigits));
}
/***********************************
* Calculates the inverse hyperbolic sine of x.
*
* Mathematically,
* ---------------
* asinh(x) = log( x + sqrt( x*x + 1 )) // if x >= +0
* asinh(x) = -log(-x + sqrt( x*x + 1 )) // if x <= -0
* -------------
*
* $(TABLE_SV
* $(SVH x, asinh(x) )
* $(SV $(NAN), $(NAN) )
* $(SV $(PLUSMN)0, $(PLUSMN)0 )
* $(SV $(PLUSMN)$(INFIN),$(PLUSMN)$(INFIN))
* )
*/
real asinh(real x) @safe pure nothrow @nogc
{
return (fabs(x) > 1 / real.epsilon)
// beyond this point, x*x + 1 == x*x
? copysign(LN2 + log(fabs(x)), x)
// sqrt(x*x + 1) == 1 + x * x / ( 1 + sqrt(x*x + 1) )
: copysign(log1p(fabs(x) + x*x / (1 + sqrt(x*x + 1)) ), x);
}
/// ditto
double asinh(double x) @safe pure nothrow @nogc { return asinh(cast(real)x); }
/// ditto
float asinh(float x) @safe pure nothrow @nogc { return asinh(cast(real)x); }
unittest
{
assert(isIdentical(asinh(0.0), 0.0));
assert(isIdentical(asinh(-0.0), -0.0));
assert(asinh(real.infinity) == real.infinity);
assert(asinh(-real.infinity) == -real.infinity);
assert(isNaN(asinh(real.nan)));
assert(equalsDigit(asinh(sinh(3.0)), 3, useDigits));
}
/***********************************
* Calculates the inverse hyperbolic tangent of x,
* returning a value from ranging from -1 to 1.
*
* Mathematically, atanh(x) = log( (1+x)/(1-x) ) / 2
*
*
* $(TABLE_DOMRG
* $(DOMAIN -$(INFIN)..$(INFIN))
* $(RANGE -1..1) )
* $(TABLE_SV
* $(SVH x, acosh(x) )
* $(SV $(NAN), $(NAN) )
* $(SV $(PLUSMN)0, $(PLUSMN)0)
* $(SV -$(INFIN), -0)
* )
*/
real atanh(real x) @safe pure nothrow @nogc
{
// log( (1+x)/(1-x) ) == log ( 1 + (2*x)/(1-x) )
return 0.5 * log1p( 2 * x / (1 - x) );
}
/// ditto
double atanh(double x) @safe pure nothrow @nogc { return atanh(cast(real)x); }
/// ditto
float atanh(float x) @safe pure nothrow @nogc { return atanh(cast(real)x); }
unittest
{
assert(isIdentical(atanh(0.0), 0.0));
assert(isIdentical(atanh(-0.0),-0.0));
assert(isNaN(atanh(real.nan)));
assert(isNaN(atanh(-real.infinity)));
assert(atanh(0.0) == 0);
assert(equalsDigit(atanh(tanh(0.5L)), 0.5, useDigits));
}
/*****************************************
* Returns x rounded to a long value using the current rounding mode.
* If the integer value of x is
* greater than long.max, the result is
* indeterminate.
*/
long rndtol(real x) @nogc @safe pure nothrow; /* intrinsic */
/*****************************************
* Returns x rounded to a long value using the FE_TONEAREST rounding mode.
* If the integer value of x is
* greater than long.max, the result is
* indeterminate.
*/
extern (C) real rndtonl(real x);
/***************************************
* Compute square root of x.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH sqrt(x)) $(TH invalid?))
* $(TR $(TD -0.0) $(TD -0.0) $(TD no))
* $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD yes))
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no))
* )
*/
float sqrt(float x) @nogc @safe pure nothrow; /* intrinsic */
/// ditto
double sqrt(double x) @nogc @safe pure nothrow; /* intrinsic */
/// ditto
real sqrt(real x) @nogc @safe pure nothrow; /* intrinsic */
unittest
{
//ctfe
enum ZX80 = sqrt(7.0f);
enum ZX81 = sqrt(7.0);
enum ZX82 = sqrt(7.0L);
}
creal sqrt(creal z) @nogc @safe pure nothrow
{
creal c;
real x,y,w,r;
if (z == 0)
{
c = 0 + 0i;
}
else
{
real z_re = z.re;
real z_im = z.im;
x = fabs(z_re);
y = fabs(z_im);
if (x >= y)
{
r = y / x;
w = sqrt(x) * sqrt(0.5 * (1 + sqrt(1 + r * r)));
}
else
{
r = x / y;
w = sqrt(y) * sqrt(0.5 * (r + sqrt(1 + r * r)));
}
if (z_re >= 0)
{
c = w + (z_im / (w + w)) * 1.0i;
}
else
{
if (z_im < 0)
w = -w;
c = z_im / (w + w) + w * 1.0i;
}
}
return c;
}
/**
* Calculates e$(SUP x).
*
* $(TABLE_SV
* $(TR $(TH x) $(TH e$(SUP x)) )
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) )
* $(TR $(TD -$(INFIN)) $(TD +0.0) )
* $(TR $(TD $(NAN)) $(TD $(NAN)) )
* )
*/
real exp(real x) @trusted pure nothrow @nogc
{
version(D_InlineAsm_X86)
{
// e^^x = 2^^(LOG2E*x)
// (This is valid because the overflow & underflow limits for exp
// and exp2 are so similar).
return exp2(LOG2E*x);
}
else version(D_InlineAsm_X86_64)
{
// e^^x = 2^^(LOG2E*x)
// (This is valid because the overflow & underflow limits for exp
// and exp2 are so similar).
return exp2(LOG2E*x);
}
else
{
// Coefficients for exp(x)
static immutable real[3] P = [
9.9999999999999999991025E-1L,
3.0299440770744196129956E-2L,
1.2617719307481059087798E-4L,
];
static immutable real[4] Q = [
2.0000000000000000000897E0L,
2.2726554820815502876593E-1L,
2.5244834034968410419224E-3L,
3.0019850513866445504159E-6L,
];
// C1 + C2 = LN2.
enum real C1 = 6.9314575195312500000000E-1L;
enum real C2 = 1.428606820309417232121458176568075500134E-6L;
// Overflow and Underflow limits.
enum real OF = 1.1356523406294143949492E4L;
enum real UF = -1.1432769596155737933527E4L;
// Special cases.
if (isNaN(x))
return x;
if (x > OF)
return real.infinity;
if (x < UF)
return 0.0;
// Express: e^^x = e^^g * 2^^n
// = e^^g * e^^(n * LOG2E)
// = e^^(g + n * LOG2E)
int n = cast(int)floor(LOG2E * x + 0.5);
x -= n * C1;
x -= n * C2;
// Rational approximation for exponential of the fractional part:
// e^^x = 1 + 2x P(x^^2) / (Q(x^^2) - P(x^^2))
real xx = x * x;
real px = x * poly(xx, P);
x = px / (poly(xx, Q) - px);
x = 1.0 + ldexp(x, 1);
// Scale by power of 2.
x = ldexp(x, n);
return x;
}
}
/// ditto
double exp(double x) @safe pure nothrow @nogc { return exp(cast(real)x); }
/// ditto
float exp(float x) @safe pure nothrow @nogc { return exp(cast(real)x); }
unittest
{
assert(equalsDigit(exp(3.0L), E * E * E, useDigits));
}
/**
* Calculates the value of the natural logarithm base (e)
* raised to the power of x, minus 1.
*
* For very small x, expm1(x) is more accurate
* than exp(x)-1.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH e$(SUP x)-1) )
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) )
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) )
* $(TR $(TD -$(INFIN)) $(TD -1.0) )
* $(TR $(TD $(NAN)) $(TD $(NAN)) )
* )
*/
real expm1(real x) @trusted pure nothrow @nogc
{
version(D_InlineAsm_X86)
{
enum PARAMSIZE = (real.sizeof+3)&(0xFFFF_FFFC); // always a multiple of 4
asm pure nothrow @nogc
{
/* expm1() for x87 80-bit reals, IEEE754-2008 conformant.
* Author: Don Clugston.
*
* expm1(x) = 2^^(rndint(y))* 2^^(y-rndint(y)) - 1 where y = LN2*x.
* = 2rndy * 2ym1 + 2rndy - 1, where 2rndy = 2^^(rndint(y))
* and 2ym1 = (2^^(y-rndint(y))-1).
* If 2rndy < 0.5*real.epsilon, result is -1.
* Implementation is otherwise the same as for exp2()
*/
naked;
fld real ptr [ESP+4] ; // x
mov AX, [ESP+4+8]; // AX = exponent and sign
sub ESP, 12+8; // Create scratch space on the stack
// [ESP,ESP+2] = scratchint
// [ESP+4..+6, +8..+10, +10] = scratchreal
// set scratchreal mantissa = 1.0
mov dword ptr [ESP+8], 0;
mov dword ptr [ESP+8+4], 0x80000000;
and AX, 0x7FFF; // drop sign bit
cmp AX, 0x401D; // avoid InvalidException in fist
jae L_extreme;
fldl2e;
fmulp ST(1), ST; // y = x*log2(e)
fist dword ptr [ESP]; // scratchint = rndint(y)
fisub dword ptr [ESP]; // y - rndint(y)
// and now set scratchreal exponent
mov EAX, [ESP];
add EAX, 0x3fff;
jle short L_largenegative;
cmp EAX,0x8000;
jge short L_largepositive;
mov [ESP+8+8],AX;
f2xm1; // 2ym1 = 2^^(y-rndint(y)) -1
fld real ptr [ESP+8] ; // 2rndy = 2^^rndint(y)
fmul ST(1), ST; // ST=2rndy, ST(1)=2rndy*2ym1
fld1;
fsubp ST(1), ST; // ST = 2rndy-1, ST(1) = 2rndy * 2ym1 - 1
faddp ST(1), ST; // ST = 2rndy * 2ym1 + 2rndy - 1
add ESP,12+8;
ret PARAMSIZE;
L_extreme: // Extreme exponent. X is very large positive, very
// large negative, infinity, or NaN.
fxam;
fstsw AX;
test AX, 0x0400; // NaN_or_zero, but we already know x!=0
jz L_was_nan; // if x is NaN, returns x
test AX, 0x0200;
jnz L_largenegative;
L_largepositive:
// Set scratchreal = real.max.
// squaring it will create infinity, and set overflow flag.
mov word ptr [ESP+8+8], 0x7FFE;
fstp ST(0);
fld real ptr [ESP+8]; // load scratchreal
fmul ST(0), ST; // square it, to create havoc!
L_was_nan:
add ESP,12+8;
ret PARAMSIZE;
L_largenegative:
fstp ST(0);
fld1;
fchs; // return -1. Underflow flag is not set.
add ESP,12+8;
ret PARAMSIZE;
}
}
else version(D_InlineAsm_X86_64)
{
asm pure nothrow @nogc
{
naked;
}
version (Win64)
{
asm pure nothrow @nogc
{
fld real ptr [RCX]; // x
mov AX,[RCX+8]; // AX = exponent and sign
}
}
else
{
asm pure nothrow @nogc
{
fld real ptr [RSP+8]; // x
mov AX,[RSP+8+8]; // AX = exponent and sign
}
}
asm pure nothrow @nogc
{
/* expm1() for x87 80-bit reals, IEEE754-2008 conformant.
* Author: Don Clugston.
*
* expm1(x) = 2^(rndint(y))* 2^(y-rndint(y)) - 1 where y = LN2*x.
* = 2rndy * 2ym1 + 2rndy - 1, where 2rndy = 2^(rndint(y))
* and 2ym1 = (2^(y-rndint(y))-1).
* If 2rndy < 0.5*real.epsilon, result is -1.
* Implementation is otherwise the same as for exp2()
*/
sub RSP, 24; // Create scratch space on the stack
// [RSP,RSP+2] = scratchint
// [RSP+4..+6, +8..+10, +10] = scratchreal
// set scratchreal mantissa = 1.0
mov dword ptr [RSP+8], 0;
mov dword ptr [RSP+8+4], 0x80000000;
and AX, 0x7FFF; // drop sign bit
cmp AX, 0x401D; // avoid InvalidException in fist
jae L_extreme;
fldl2e;
fmul ; // y = x*log2(e)
fist dword ptr [RSP]; // scratchint = rndint(y)
fisub dword ptr [RSP]; // y - rndint(y)
// and now set scratchreal exponent
mov EAX, [RSP];
add EAX, 0x3fff;
jle short L_largenegative;
cmp EAX,0x8000;
jge short L_largepositive;
mov [RSP+8+8],AX;
f2xm1; // 2^(y-rndint(y)) -1
fld real ptr [RSP+8] ; // 2^rndint(y)
fmul ST(1), ST;
fld1;
fsubp ST(1), ST;
fadd;
add RSP,24;
ret;
L_extreme: // Extreme exponent. X is very large positive, very
// large negative, infinity, or NaN.
fxam;
fstsw AX;
test AX, 0x0400; // NaN_or_zero, but we already know x!=0
jz L_was_nan; // if x is NaN, returns x
test AX, 0x0200;
jnz L_largenegative;
L_largepositive:
// Set scratchreal = real.max.
// squaring it will create infinity, and set overflow flag.
mov word ptr [RSP+8+8], 0x7FFE;
fstp ST(0);
fld real ptr [RSP+8]; // load scratchreal
fmul ST(0), ST; // square it, to create havoc!
L_was_nan:
add RSP,24;
ret;
L_largenegative:
fstp ST(0);
fld1;
fchs; // return -1. Underflow flag is not set.
add RSP,24;
ret;
}
}
else
{
// Coefficients for exp(x) - 1
static immutable real[5] P = [
-1.586135578666346600772998894928250240826E4L,
2.642771505685952966904660652518429479531E3L,
-3.423199068835684263987132888286791620673E2L,
1.800826371455042224581246202420972737840E1L,
-5.238523121205561042771939008061958820811E-1L,
];
static immutable real[6] Q = [
-9.516813471998079611319047060563358064497E4L,
3.964866271411091674556850458227710004570E4L,
-7.207678383830091850230366618190187434796E3L,
7.206038318724600171970199625081491823079E2L,
-4.002027679107076077238836622982900945173E1L,
1.000000000000000000000000000000000000000E0L,
];
// C1 + C2 = LN2.
enum real C1 = 6.9314575195312500000000E-1L;
enum real C2 = 1.4286068203094172321215E-6L;
// Overflow and Underflow limits.
enum real OF = 1.1356523406294143949492E4L;
enum real UF = -4.5054566736396445112120088E1L;
// Special cases.
if (x > OF)
return real.infinity;
if (x == 0.0)
return x;
if (x < UF)
return -1.0;
// Express x = LN2 (n + remainder), remainder not exceeding 1/2.
int n = cast(int)floor(0.5 + x / LN2);
x -= n * C1;
x -= n * C2;
// Rational approximation:
// exp(x) - 1 = x + 0.5 x^^2 + x^^3 P(x) / Q(x)
real px = x * poly(x, P);
real qx = poly(x, Q);
real xx = x * x;
qx = x + (0.5 * xx + xx * px / qx);
// We have qx = exp(remainder LN2) - 1, so:
// exp(x) - 1 = 2^^n (qx + 1) - 1 = 2^^n qx + 2^^n - 1.
px = ldexp(1.0, n);
x = px * qx + (px - 1.0);
return x;
}
}
/**
* Calculates 2$(SUP x).
*
* $(TABLE_SV
* $(TR $(TH x) $(TH exp2(x)) )
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) )
* $(TR $(TD -$(INFIN)) $(TD +0.0) )
* $(TR $(TD $(NAN)) $(TD $(NAN)) )
* )
*/
real exp2(real x) @nogc @trusted pure nothrow
{
version(D_InlineAsm_X86)
{
enum PARAMSIZE = (real.sizeof+3)&(0xFFFF_FFFC); // always a multiple of 4
asm pure nothrow @nogc
{
/* exp2() for x87 80-bit reals, IEEE754-2008 conformant.
* Author: Don Clugston.
*
* exp2(x) = 2^^(rndint(x))* 2^^(y-rndint(x))
* The trick for high performance is to avoid the fscale(28cycles on core2),
* frndint(19 cycles), leaving f2xm1(19 cycles) as the only slow instruction.
*
* We can do frndint by using fist. BUT we can't use it for huge numbers,
* because it will set the Invalid Operation flag if overflow or NaN occurs.
* Fortunately, whenever this happens the result would be zero or infinity.
*
* We can perform fscale by directly poking into the exponent. BUT this doesn't
* work for the (very rare) cases where the result is subnormal. So we fall back
* to the slow method in that case.
*/
naked;
fld real ptr [ESP+4] ; // x
mov AX, [ESP+4+8]; // AX = exponent and sign
sub ESP, 12+8; // Create scratch space on the stack
// [ESP,ESP+2] = scratchint
// [ESP+4..+6, +8..+10, +10] = scratchreal
// set scratchreal mantissa = 1.0
mov dword ptr [ESP+8], 0;
mov dword ptr [ESP+8+4], 0x80000000;
and AX, 0x7FFF; // drop sign bit
cmp AX, 0x401D; // avoid InvalidException in fist
jae L_extreme;
fist dword ptr [ESP]; // scratchint = rndint(x)
fisub dword ptr [ESP]; // x - rndint(x)
// and now set scratchreal exponent
mov EAX, [ESP];
add EAX, 0x3fff;
jle short L_subnormal;
cmp EAX,0x8000;
jge short L_overflow;
mov [ESP+8+8],AX;
L_normal:
f2xm1;
fld1;
faddp ST(1), ST; // 2^^(x-rndint(x))
fld real ptr [ESP+8] ; // 2^^rndint(x)
add ESP,12+8;
fmulp ST(1), ST;
ret PARAMSIZE;
L_subnormal:
// Result will be subnormal.
// In this rare case, the simple poking method doesn't work.
// The speed doesn't matter, so use the slow fscale method.
fild dword ptr [ESP]; // scratchint
fld1;
fscale;
fstp real ptr [ESP+8]; // scratchreal = 2^^scratchint
fstp ST(0); // drop scratchint
jmp L_normal;
L_extreme: // Extreme exponent. X is very large positive, very
// large negative, infinity, or NaN.
fxam;
fstsw AX;
test AX, 0x0400; // NaN_or_zero, but we already know x!=0
jz L_was_nan; // if x is NaN, returns x
// set scratchreal = real.min_normal
// squaring it will return 0, setting underflow flag
mov word ptr [ESP+8+8], 1;
test AX, 0x0200;
jnz L_waslargenegative;
L_overflow:
// Set scratchreal = real.max.
// squaring it will create infinity, and set overflow flag.
mov word ptr [ESP+8+8], 0x7FFE;
L_waslargenegative:
fstp ST(0);
fld real ptr [ESP+8]; // load scratchreal
fmul ST(0), ST; // square it, to create havoc!
L_was_nan:
add ESP,12+8;
ret PARAMSIZE;
}
}
else version(D_InlineAsm_X86_64)
{
asm pure nothrow @nogc
{
naked;
}
version (Win64)
{
asm pure nothrow @nogc
{
fld real ptr [RCX]; // x
mov AX,[RCX+8]; // AX = exponent and sign
}
}
else
{
asm pure nothrow @nogc
{
fld real ptr [RSP+8]; // x
mov AX,[RSP+8+8]; // AX = exponent and sign
}
}
asm pure nothrow @nogc
{
/* exp2() for x87 80-bit reals, IEEE754-2008 conformant.
* Author: Don Clugston.
*
* exp2(x) = 2^(rndint(x))* 2^(y-rndint(x))
* The trick for high performance is to avoid the fscale(28cycles on core2),
* frndint(19 cycles), leaving f2xm1(19 cycles) as the only slow instruction.
*
* We can do frndint by using fist. BUT we can't use it for huge numbers,
* because it will set the Invalid Operation flag is overflow or NaN occurs.
* Fortunately, whenever this happens the result would be zero or infinity.
*
* We can perform fscale by directly poking into the exponent. BUT this doesn't
* work for the (very rare) cases where the result is subnormal. So we fall back
* to the slow method in that case.
*/
sub RSP, 24; // Create scratch space on the stack
// [RSP,RSP+2] = scratchint
// [RSP+4..+6, +8..+10, +10] = scratchreal
// set scratchreal mantissa = 1.0
mov dword ptr [RSP+8], 0;
mov dword ptr [RSP+8+4], 0x80000000;
and AX, 0x7FFF; // drop sign bit
cmp AX, 0x401D; // avoid InvalidException in fist
jae L_extreme;
fist dword ptr [RSP]; // scratchint = rndint(x)
fisub dword ptr [RSP]; // x - rndint(x)
// and now set scratchreal exponent
mov EAX, [RSP];
add EAX, 0x3fff;
jle short L_subnormal;
cmp EAX,0x8000;
jge short L_overflow;
mov [RSP+8+8],AX;
L_normal:
f2xm1;
fld1;
fadd; // 2^(x-rndint(x))
fld real ptr [RSP+8] ; // 2^rndint(x)
add RSP,24;
fmulp ST(1), ST;
ret;
L_subnormal:
// Result will be subnormal.
// In this rare case, the simple poking method doesn't work.
// The speed doesn't matter, so use the slow fscale method.
fild dword ptr [RSP]; // scratchint
fld1;
fscale;
fstp real ptr [RSP+8]; // scratchreal = 2^scratchint
fstp ST(0); // drop scratchint
jmp L_normal;
L_extreme: // Extreme exponent. X is very large positive, very
// large negative, infinity, or NaN.
fxam;
fstsw AX;
test AX, 0x0400; // NaN_or_zero, but we already know x!=0
jz L_was_nan; // if x is NaN, returns x
// set scratchreal = real.min
// squaring it will return 0, setting underflow flag
mov word ptr [RSP+8+8], 1;
test AX, 0x0200;
jnz L_waslargenegative;
L_overflow:
// Set scratchreal = real.max.
// squaring it will create infinity, and set overflow flag.
mov word ptr [RSP+8+8], 0x7FFE;
L_waslargenegative:
fstp ST(0);
fld real ptr [RSP+8]; // load scratchreal
fmul ST(0), ST; // square it, to create havoc!
L_was_nan:
add RSP,24;
ret;
}
}
else
{
// Coefficients for exp2(x)
static immutable real[3] P = [
2.0803843631901852422887E6L,
3.0286971917562792508623E4L,
6.0614853552242266094567E1L,
];
static immutable real[4] Q = [
6.0027204078348487957118E6L,
3.2772515434906797273099E5L,
1.7492876999891839021063E3L,
1.0000000000000000000000E0L,
];
// Overflow and Underflow limits.
enum real OF = 16384.0L;
enum real UF = -16382.0L;
// Special cases.
if (isNaN(x))
return x;
if (x > OF)
return real.infinity;
if (x < UF)
return 0.0;
// Separate into integer and fractional parts.
int n = cast(int)floor(x + 0.5);
x -= n;
// Rational approximation:
// exp2(x) = 1.0 + 2x P(x^^2) / (Q(x^^2) - P(x^^2))
real xx = x * x;
real px = x * poly(xx, P);
x = px / (poly(xx, Q) - px);
x = 1.0 + ldexp(x, 1);
// Scale by power of 2.
x = ldexp(x, n);
return x;
}
}
unittest
{
assert(feqrel(exp2(0.5L), SQRT2) >= real.mant_dig -1);
assert(exp2(8.0L) == 256.0);
assert(exp2(-9.0L)== 1.0L/512.0);
version(CRuntime_Microsoft) {} else // aexp2/exp2f/exp2l not implemented
{
assert( core.stdc.math.exp2f(0.0f) == 1 );
assert( core.stdc.math.exp2 (0.0) == 1 );
assert( core.stdc.math.exp2l(0.0L) == 1 );
}
}
unittest
{
FloatingPointControl ctrl;
if(FloatingPointControl.hasExceptionTraps)
ctrl.disableExceptions(FloatingPointControl.allExceptions);
ctrl.rounding = FloatingPointControl.roundToNearest;
// @@BUG@@: Non-immutable array literals are ridiculous.
// Note that these are only valid for 80-bit reals: overflow will be different for 64-bit reals.
static const real [2][] exptestpoints =
[ // x, exp(x)
[1.0L, E ],
[0.5L, 0x1.A612_98E1_E069_BC97p+0L ],
[3.0L, E*E*E ],
[0x1.1p13L, 0x1.29aeffefc8ec645p+12557L ], // near overflow
[-0x1.18p13L, 0x1.5e4bf54b4806db9p-12927L ], // near underflow
[-0x1.625p13L, 0x1.a6bd68a39d11f35cp-16358L],
[-0x1p30L, 0 ], // underflow - subnormal
[-0x1.62DAFp13L, 0x1.96c53d30277021dp-16383L ],
[-0x1.643p13L, 0x1p-16444L ],
[-0x1.645p13L, 0 ], // underflow to zero
[0x1p80L, real.infinity ], // far overflow
[real.infinity, real.infinity ],
[0x1.7p13L, real.infinity ] // close overflow
];
real x;
IeeeFlags f;
for (int i=0; i> 4;
vu[F.EXPPOS_SHORT] = cast(ushort)((0x800F & vu[F.EXPPOS_SHORT]) | 0x3FE0);
}
}
else if (!(*vl & 0x7FFF_FFFF_FFFF_FFFF))
{
// value is +-0.0
exp = 0;
}
else
{
// subnormal
value *= F.RECIP_EPSILON;
ex = vu[F.EXPPOS_SHORT] & F.EXPMASK;
exp = ((ex - F.EXPBIAS) >> 4) - T.mant_dig + 1;
vu[F.EXPPOS_SHORT] =
cast(ushort)((0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FE0);
}
return value;
}
else static if (F.realFormat == RealFormat.ieeeSingle)
{
if (ex) // If exponent is non-zero
{
if (ex == F.EXPMASK) // infinity or NaN
{
if (*vi == 0x7F80_0000) // positive infinity
{
exp = int.max;
}
else if (*vi == 0xFF80_0000) // negative infinity
exp = int.min;
else
{ // NaN
*vi |= 0x0040_0000; // convert NaNS to NaNQ
exp = int.min;
}
}
else
{
exp = (ex - F.EXPBIAS) >> 7;
vu[F.EXPPOS_SHORT] = cast(ushort)((0x807F & vu[F.EXPPOS_SHORT]) | 0x3F00);
}
}
else if (!(*vi & 0x7FFF_FFFF))
{
// value is +-0.0
exp = 0;
}
else
{
// subnormal
value *= F.RECIP_EPSILON;
ex = vu[F.EXPPOS_SHORT] & F.EXPMASK;
exp = ((ex - F.EXPBIAS) >> 7) - T.mant_dig + 1;
vu[F.EXPPOS_SHORT] =
cast(ushort)((0x8000 & vu[F.EXPPOS_SHORT]) | 0x3F00);
}
return value;
}
else // static if (F.realFormat == RealFormat.ibmExtended)
{
assert (0, "frexp not implemented");
}
}
unittest
{
import std.typetuple, std.typecons;
foreach (T; TypeTuple!(real, double, float))
{
Tuple!(T, T, int)[] vals = // x,frexp,exp
[
tuple(T(0.0), T( 0.0 ), 0),
tuple(T(-0.0), T( -0.0), 0),
tuple(T(1.0), T( .5 ), 1),
tuple(T(-1.0), T( -.5 ), 1),
tuple(T(2.0), T( .5 ), 2),
tuple(T(float.min_normal/2.0f), T(.5), -126),
tuple(T.infinity, T.infinity, int.max),
tuple(-T.infinity, -T.infinity, int.min),
tuple(T.nan, T.nan, int.min),
tuple(-T.nan, -T.nan, int.min),
];
foreach(elem; vals)
{
T x = elem[0];
T e = elem[1];
int exp = elem[2];
int eptr;
T v = frexp(x, eptr);
assert(isIdentical(e, v));
assert(exp == eptr);
}
static if (floatTraits!(T).realFormat == RealFormat.ieeeExtended)
{
static T[3][] extendedvals = [ // x,frexp,exp
[0x1.a5f1c2eb3fe4efp+73L, 0x1.A5F1C2EB3FE4EFp-1L, 74], // normal
[0x1.fa01712e8f0471ap-1064L, 0x1.fa01712e8f0471ap-1L, -1063],
[T.min_normal, .5, -16381],
[T.min_normal/2.0L, .5, -16382] // subnormal
];
foreach(elem; extendedvals)
{
T x = elem[0];
T e = elem[1];
int exp = cast(int)elem[2];
int eptr;
T v = frexp(x, eptr);
assert(isIdentical(e, v));
assert(exp == eptr);
}
}
}
}
unittest
{
int exp;
real mantissa = frexp(123.456L, exp);
assert(equalsDigit(mantissa * pow(2.0L, cast(real)exp), 123.456L, 19));
assert(frexp(-real.nan, exp) && exp == int.min);
assert(frexp(real.nan, exp) && exp == int.min);
assert(frexp(-real.infinity, exp) == -real.infinity && exp == int.min);
assert(frexp(real.infinity, exp) == real.infinity && exp == int.max);
assert(frexp(-0.0, exp) == -0.0 && exp == 0);
assert(frexp(0.0, exp) == 0.0 && exp == 0);
}
/******************************************
* Extracts the exponent of x as a signed integral value.
*
* If x is not a special value, the result is the same as
* $(D cast(int)logb(x)).
*
* $(TABLE_SV
* $(TR $(TH x) $(TH ilogb(x)) $(TH Range error?))
* $(TR $(TD 0) $(TD FP_ILOGB0) $(TD yes))
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD int.max) $(TD no))
* $(TR $(TD $(NAN)) $(TD FP_ILOGBNAN) $(TD no))
* )
*/
int ilogb(real x) @trusted nothrow @nogc
{
version (Win64_DMD_InlineAsm)
{
asm pure nothrow @nogc
{
naked ;
fld real ptr [RCX] ;
fxam ;
fstsw AX ;
and AH,0x45 ;
cmp AH,0x40 ;
jz Lzeronan ;
cmp AH,5 ;
jz Linfinity ;
cmp AH,1 ;
jz Lzeronan ;
fxtract ;
fstp ST(0) ;
fistp dword ptr 8[RSP] ;
mov EAX,8[RSP] ;
ret ;
Lzeronan:
mov EAX,0x80000000 ;
fstp ST(0) ;
ret ;
Linfinity:
mov EAX,0x7FFFFFFF ;
fstp ST(0) ;
ret ;
}
}
else version (CRuntime_Microsoft)
{
int res;
asm pure nothrow @nogc
{
naked ;
fld real ptr [x] ;
fxam ;
fstsw AX ;
and AH,0x45 ;
cmp AH,0x40 ;
jz Lzeronan ;
cmp AH,5 ;
jz Linfinity ;
cmp AH,1 ;
jz Lzeronan ;
fxtract ;
fstp ST(0) ;
fistp res ;
mov EAX,res ;
jmp Ldone ;
Lzeronan:
mov EAX,0x80000000 ;
fstp ST(0) ;
Linfinity:
mov EAX,0x7FFFFFFF ;
fstp ST(0) ;
Ldone: ;
}
}
else
return core.stdc.math.ilogbl(x);
}
alias FP_ILOGB0 = core.stdc.math.FP_ILOGB0;
alias FP_ILOGBNAN = core.stdc.math.FP_ILOGBNAN;
/*******************************************
* Compute n * 2$(SUP exp)
* References: frexp
*/
real ldexp(real n, int exp) @nogc @safe pure nothrow; /* intrinsic */
unittest
{
static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended)
{
assert(ldexp(1, -16384) == 0x1p-16384L);
assert(ldexp(1, -16382) == 0x1p-16382L);
int x;
real n = frexp(0x1p-16384L, x);
assert(n==0.5L);
assert(x==-16383);
assert(ldexp(n, x)==0x1p-16384L);
}
else static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble)
{
assert(ldexp(1, -1024) == 0x1p-1024L);
assert(ldexp(1, -1022) == 0x1p-1022L);
int x;
real n = frexp(0x1p-1024L, x);
assert(n==0.5L);
assert(x==-1023);
assert(ldexp(n, x)==0x1p-1024L);
}
else static assert(false, "Floating point type real not supported");
}
unittest
{
static real[3][] vals = // value,exp,ldexp
[
[ 0, 0, 0],
[ 1, 0, 1],
[ -1, 0, -1],
[ 1, 1, 2],
[ 123, 10, 125952],
[ real.max, int.max, real.infinity],
[ real.max, -int.max, 0],
[ real.min_normal, -int.max, 0],
];
int i;
for (i = 0; i < vals.length; i++)
{
real x = vals[i][0];
int exp = cast(int)vals[i][1];
real z = vals[i][2];
real l = ldexp(x, exp);
assert(equalsDigit(z, l, 7));
}
}
unittest
{
real r;
r = ldexp(3.0L, 3);
assert(r == 24);
r = ldexp(cast(real) 3.0, cast(int) 3);
assert(r == 24);
real n = 3.0;
int exp = 3;
r = ldexp(n, exp);
assert(r == 24);
}
/**************************************
* Calculate the natural logarithm of x.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH log(x)) $(TH divide by 0?) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no))
* $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes))
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no))
* )
*/
real log(real x) @safe pure nothrow @nogc
{
version (INLINE_YL2X)
return yl2x(x, LN2);
else
{
// Coefficients for log(1 + x)
static immutable real[7] P = [
2.0039553499201281259648E1L,
5.7112963590585538103336E1L,
6.0949667980987787057556E1L,
2.9911919328553073277375E1L,
6.5787325942061044846969E0L,
4.9854102823193375972212E-1L,
4.5270000862445199635215E-5L,
];
static immutable real[7] Q = [
6.0118660497603843919306E1L,
2.1642788614495947685003E2L,
3.0909872225312059774938E2L,
2.2176239823732856465394E2L,
8.3047565967967209469434E1L,
1.5062909083469192043167E1L,
1.0000000000000000000000E0L,
];
// Coefficients for log(x)
static immutable real[4] R = [
-3.5717684488096787370998E1L,
1.0777257190312272158094E1L,
-7.1990767473014147232598E-1L,
1.9757429581415468984296E-3L,
];
static immutable real[4] S = [
-4.2861221385716144629696E2L,
1.9361891836232102174846E2L,
-2.6201045551331104417768E1L,
1.0000000000000000000000E0L,
];
// C1 + C2 = LN2.
enum real C1 = 6.9314575195312500000000E-1L;
enum real C2 = 1.4286068203094172321215E-6L;
// Special cases.
if (isNaN(x))
return x;
if (isInfinity(x) && !signbit(x))
return x;
if (x == 0.0)
return -real.infinity;
if (x < 0.0)
return real.nan;
// Separate mantissa from exponent.
// Note, frexp is used so that denormal numbers will be handled properly.
real y, z;
int exp;
x = frexp(x, exp);
// Logarithm using log(x) = z + z^^3 P(z) / Q(z),
// where z = 2(x - 1)/(x + 1)
if((exp > 2) || (exp < -2))
{
if(x < SQRT1_2)
{ // 2(2x - 1)/(2x + 1)
exp -= 1;
z = x - 0.5;
y = 0.5 * z + 0.5;
}
else
{ // 2(x - 1)/(x + 1)
z = x - 0.5;
z -= 0.5;
y = 0.5 * x + 0.5;
}
x = z / y;
z = x * x;
z = x * (z * poly(z, R) / poly(z, S));
z += exp * C2;
z += x;
z += exp * C1;
return z;
}
// Logarithm using log(1 + x) = x - .5x^^2 + x^^3 P(x) / Q(x)
if (x < SQRT1_2)
{ // 2x - 1
exp -= 1;
x = ldexp(x, 1) - 1.0;
}
else
{
x = x - 1.0;
}
z = x * x;
y = x * (z * poly(x, P) / poly(x, Q));
y += exp * C2;
z = y - ldexp(z, -1);
// Note, the sum of above terms does not exceed x/4,
// so it contributes at most about 1/4 lsb to the error.
z += x;
z += exp * C1;
return z;
}
}
unittest
{
assert(log(E) == 1);
}
/**************************************
* Calculate the base-10 logarithm of x.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH log10(x)) $(TH divide by 0?) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no))
* $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes))
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no))
* )
*/
real log10(real x) @safe pure nothrow @nogc
{
version (INLINE_YL2X)
return yl2x(x, LOG2);
else
{
// Coefficients for log(1 + x)
static immutable real[7] P = [
2.0039553499201281259648E1L,
5.7112963590585538103336E1L,
6.0949667980987787057556E1L,
2.9911919328553073277375E1L,
6.5787325942061044846969E0L,
4.9854102823193375972212E-1L,
4.5270000862445199635215E-5L,
];
static immutable real[7] Q = [
6.0118660497603843919306E1L,
2.1642788614495947685003E2L,
3.0909872225312059774938E2L,
2.2176239823732856465394E2L,
8.3047565967967209469434E1L,
1.5062909083469192043167E1L,
1.0000000000000000000000E0L,
];
// Coefficients for log(x)
static immutable real[4] R = [
-3.5717684488096787370998E1L,
1.0777257190312272158094E1L,
-7.1990767473014147232598E-1L,
1.9757429581415468984296E-3L,
];
static immutable real[4] S = [
-4.2861221385716144629696E2L,
1.9361891836232102174846E2L,
-2.6201045551331104417768E1L,
1.0000000000000000000000E0L,
];
// log10(2) split into two parts.
enum real L102A = 0.3125L;
enum real L102B = -1.14700043360188047862611052755069732318101185E-2L;
// log10(e) split into two parts.
enum real L10EA = 0.5L;
enum real L10EB = -6.570551809674817234887108108339491770560299E-2L;
// Special cases are the same as for log.
if (isNaN(x))
return x;
if (isInfinity(x) && !signbit(x))
return x;
if (x == 0.0)
return -real.infinity;
if (x < 0.0)
return real.nan;
// Separate mantissa from exponent.
// Note, frexp is used so that denormal numbers will be handled properly.
real y, z;
int exp;
x = frexp(x, exp);
// Logarithm using log(x) = z + z^^3 P(z) / Q(z),
// where z = 2(x - 1)/(x + 1)
if((exp > 2) || (exp < -2))
{
if(x < SQRT1_2)
{ // 2(2x - 1)/(2x + 1)
exp -= 1;
z = x - 0.5;
y = 0.5 * z + 0.5;
}
else
{ // 2(x - 1)/(x + 1)
z = x - 0.5;
z -= 0.5;
y = 0.5 * x + 0.5;
}
x = z / y;
z = x * x;
y = x * (z * poly(z, R) / poly(z, S));
goto Ldone;
}
// Logarithm using log(1 + x) = x - .5x^^2 + x^^3 P(x) / Q(x)
if (x < SQRT1_2)
{ // 2x - 1
exp -= 1;
x = ldexp(x, 1) - 1.0;
}
else
x = x - 1.0;
z = x * x;
y = x * (z * poly(x, P) / poly(x, Q));
y = y - ldexp(z, -1);
// Multiply log of fraction by log10(e) and base 2 exponent by log10(2).
// This sequence of operations is critical and it may be horribly
// defeated by some compiler optimizers.
Ldone:
z = y * L10EB;
z += x * L10EB;
z += exp * L102B;
z += y * L10EA;
z += x * L10EA;
z += exp * L102A;
return z;
}
}
unittest
{
//printf("%Lg\n", log10(1000) - 3);
assert(fabs(log10(1000) - 3) < .000001);
}
/******************************************
* Calculates the natural logarithm of 1 + x.
*
* For very small x, log1p(x) will be more accurate than
* log(1 + x).
*
* $(TABLE_SV
* $(TR $(TH x) $(TH log1p(x)) $(TH divide by 0?) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) $(TD no))
* $(TR $(TD -1.0) $(TD -$(INFIN)) $(TD yes) $(TD no))
* $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD no) $(TD yes))
* $(TR $(TD +$(INFIN)) $(TD -$(INFIN)) $(TD no) $(TD no))
* )
*/
real log1p(real x) @safe pure nothrow @nogc
{
version(INLINE_YL2X)
{
// On x87, yl2xp1 is valid if and only if -0.5 <= lg(x) <= 0.5,
// ie if -0.29<=x<=0.414
return (fabs(x) <= 0.25) ? yl2xp1(x, LN2) : yl2x(x+1, LN2);
}
else
{
// Special cases.
if (isNaN(x) || x == 0.0)
return x;
if (isInfinity(x) && !signbit(x))
return x;
if (x == -1.0)
return -real.infinity;
if (x < -1.0)
return real.nan;
return log(x + 1.0);
}
}
/***************************************
* Calculates the base-2 logarithm of x:
* $(SUB log, 2)x
*
* $(TABLE_SV
* $(TR $(TH x) $(TH log2(x)) $(TH divide by 0?) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no) )
* $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes) )
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no) )
* )
*/
real log2(real x) @safe pure nothrow @nogc
{
version (INLINE_YL2X)
return yl2x(x, 1);
else
{
// Coefficients for log(1 + x)
static immutable real[7] P = [
2.0039553499201281259648E1L,
5.7112963590585538103336E1L,
6.0949667980987787057556E1L,
2.9911919328553073277375E1L,
6.5787325942061044846969E0L,
4.9854102823193375972212E-1L,
4.5270000862445199635215E-5L,
];
static immutable real[7] Q = [
6.0118660497603843919306E1L,
2.1642788614495947685003E2L,
3.0909872225312059774938E2L,
2.2176239823732856465394E2L,
8.3047565967967209469434E1L,
1.5062909083469192043167E1L,
1.0000000000000000000000E0L,
];
// Coefficients for log(x)
static immutable real[4] R = [
-3.5717684488096787370998E1L,
1.0777257190312272158094E1L,
-7.1990767473014147232598E-1L,
1.9757429581415468984296E-3L,
];
static immutable real[4] S = [
-4.2861221385716144629696E2L,
1.9361891836232102174846E2L,
-2.6201045551331104417768E1L,
1.0000000000000000000000E0L,
];
// Special cases are the same as for log.
if (isNaN(x))
return x;
if (isInfinity(x) && !signbit(x))
return x;
if (x == 0.0)
return -real.infinity;
if (x < 0.0)
return real.nan;
// Separate mantissa from exponent.
// Note, frexp is used so that denormal numbers will be handled properly.
real y, z;
int exp;
x = frexp(x, exp);
// Logarithm using log(x) = z + z^^3 P(z) / Q(z),
// where z = 2(x - 1)/(x + 1)
if((exp > 2) || (exp < -2))
{
if(x < SQRT1_2)
{ // 2(2x - 1)/(2x + 1)
exp -= 1;
z = x - 0.5;
y = 0.5 * z + 0.5;
}
else
{ // 2(x - 1)/(x + 1)
z = x - 0.5;
z -= 0.5;
y = 0.5 * x + 0.5;
}
x = z / y;
z = x * x;
y = x * (z * poly(z, R) / poly(z, S));
goto Ldone;
}
// Logarithm using log(1 + x) = x - .5x^^2 + x^^3 P(x) / Q(x)
if (x < SQRT1_2)
{ // 2x - 1
exp -= 1;
x = ldexp(x, 1) - 1.0;
}
else
x = x - 1.0;
z = x * x;
y = x * (z * poly(x, P) / poly(x, Q));
y = y - ldexp(z, -1);
// Multiply log of fraction by log10(e) and base 2 exponent by log10(2).
// This sequence of operations is critical and it may be horribly
// defeated by some compiler optimizers.
Ldone:
z = y * (LOG2E - 1.0);
z += x * (LOG2E - 1.0);
z += y;
z += x;
z += exp;
return z;
}
}
unittest
{
assert(equalsDigit(log2(1024), 10, 19));
}
/*****************************************
* Extracts the exponent of x as a signed integral value.
*
* If x is subnormal, it is treated as if it were normalized.
* For a positive, finite x:
*
* 1 $(LT)= $(I x) * FLT_RADIX$(SUP -logb(x)) $(LT) FLT_RADIX
*
* $(TABLE_SV
* $(TR $(TH x) $(TH logb(x)) $(TH divide by 0?) )
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD +$(INFIN)) $(TD no))
* $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) )
* )
*/
real logb(real x) @trusted nothrow @nogc
{
version (Win64_DMD_InlineAsm)
{
asm pure nothrow @nogc
{
naked ;
fld real ptr [RCX] ;
fxtract ;
fstp ST(0) ;
ret ;
}
}
else version (CRuntime_Microsoft)
{
asm pure nothrow @nogc
{
fld x ;
fxtract ;
fstp ST(0) ;
}
}
else
return core.stdc.math.logbl(x);
}
/************************************
* Calculates the remainder from the calculation x/y.
* Returns:
* The value of x - i * y, where i is the number of times that y can
* be completely subtracted from x. The result has the same sign as x.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH y) $(TH fmod(x, y)) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD not 0.0) $(TD $(PLUSMN)0.0) $(TD no))
* $(TR $(TD $(PLUSMNINF)) $(TD anything) $(TD $(NAN)) $(TD yes))
* $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD $(NAN)) $(TD yes))
* $(TR $(TD !=$(PLUSMNINF)) $(TD $(PLUSMNINF)) $(TD x) $(TD no))
* )
*/
real fmod(real x, real y) @trusted nothrow @nogc
{
version (CRuntime_Microsoft)
{
return x % y;
}
else
return core.stdc.math.fmodl(x, y);
}
/************************************
* Breaks x into an integral part and a fractional part, each of which has
* the same sign as x. The integral part is stored in i.
* Returns:
* The fractional part of x.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH i (on input)) $(TH modf(x, i)) $(TH i (on return)))
* $(TR $(TD $(PLUSMNINF)) $(TD anything) $(TD $(PLUSMN)0.0) $(TD $(PLUSMNINF)))
* )
*/
real modf(real x, ref real i) @trusted nothrow @nogc
{
version (CRuntime_Microsoft)
{
i = trunc(x);
return copysign(isInfinity(x) ? 0.0 : x - i, x);
}
else
return core.stdc.math.modfl(x,&i);
}
/*************************************
* Efficiently calculates x * 2$(SUP n).
*
* scalbn handles underflow and overflow in
* the same fashion as the basic arithmetic operators.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH scalb(x)))
* $(TR $(TD $(PLUSMNINF)) $(TD $(PLUSMNINF)) )
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) )
* )
*/
real scalbn(real x, int n) @trusted nothrow @nogc
{
version(InlineAsm_X86_Any) {
// scalbnl is not supported on DMD-Windows, so use asm pure nothrow @nogc.
version (Win64)
{
asm pure nothrow @nogc {
naked ;
mov 16[RSP],RCX ;
fild word ptr 16[RSP] ;
fld real ptr [RDX] ;
fscale ;
fstp ST(1) ;
ret ;
}
}
else
{
asm pure nothrow @nogc {
fild n;
fld x;
fscale;
fstp ST(1);
}
}
}
else
{
return core.stdc.math.scalbnl(x, n);
}
}
unittest
{
assert(scalbn(-real.infinity, 5) == -real.infinity);
}
/***************
* Calculates the cube root of x.
*
* $(TABLE_SV
* $(TR $(TH $(I x)) $(TH cbrt(x)) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) )
* $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes) )
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)$(INFIN)) $(TD no) )
* )
*/
real cbrt(real x) @trusted nothrow @nogc
{
version (CRuntime_Microsoft)
{
version (INLINE_YL2X)
return copysign(exp2(yl2x(fabs(x), 1.0L/3.0L)), x);
else
return core.stdc.math.cbrtl(x);
}
else
return core.stdc.math.cbrtl(x);
}
/*******************************
* Returns |x|
*
* $(TABLE_SV
* $(TR $(TH x) $(TH fabs(x)))
* $(TR $(TD $(PLUSMN)0.0) $(TD +0.0) )
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD +$(INFIN)) )
* )
*/
real fabs(real x) @safe pure nothrow @nogc; /* intrinsic */
/***********************************************************************
* Calculates the length of the
* hypotenuse of a right-angled triangle with sides of length x and y.
* The hypotenuse is the value of the square root of
* the sums of the squares of x and y:
*
* sqrt($(POWER x, 2) + $(POWER y, 2))
*
* Note that hypot(x, y), hypot(y, x) and
* hypot(x, -y) are equivalent.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH y) $(TH hypot(x, y)) $(TH invalid?))
* $(TR $(TD x) $(TD $(PLUSMN)0.0) $(TD |x|) $(TD no))
* $(TR $(TD $(PLUSMNINF)) $(TD y) $(TD +$(INFIN)) $(TD no))
* $(TR $(TD $(PLUSMNINF)) $(TD $(NAN)) $(TD +$(INFIN)) $(TD no))
* )
*/
real hypot(real x, real y) @safe pure nothrow @nogc
{
// Scale x and y to avoid underflow and overflow.
// If one is huge and the other tiny, return the larger.
// If both are huge, avoid overflow by scaling by 1/sqrt(real.max/2).
// If both are tiny, avoid underflow by scaling by sqrt(real.min_normal*real.epsilon).
enum real SQRTMIN = 0.5 * sqrt(real.min_normal); // This is a power of 2.
enum real SQRTMAX = 1.0L / SQRTMIN; // 2^^((max_exp)/2) = nextUp(sqrt(real.max))
static assert(2*(SQRTMAX/2)*(SQRTMAX/2) <= real.max);
// Proves that sqrt(real.max) ~~ 0.5/sqrt(real.min_normal)
static assert(real.min_normal*real.max > 2 && real.min_normal*real.max <= 4);
real u = fabs(x);
real v = fabs(y);
if (!(u >= v)) // check for NaN as well.
{
v = u;
u = fabs(y);
if (u == real.infinity) return u; // hypot(inf, nan) == inf
if (v == real.infinity) return v; // hypot(nan, inf) == inf
}
// Now u >= v, or else one is NaN.
if (v >= SQRTMAX*0.5)
{
// hypot(huge, huge) -- avoid overflow
u *= SQRTMIN*0.5;
v *= SQRTMIN*0.5;
return sqrt(u*u + v*v) * SQRTMAX * 2.0;
}
if (u <= SQRTMIN)
{
// hypot (tiny, tiny) -- avoid underflow
// This is only necessary to avoid setting the underflow
// flag.
u *= SQRTMAX / real.epsilon;
v *= SQRTMAX / real.epsilon;
return sqrt(u*u + v*v) * SQRTMIN * real.epsilon;
}
if (u * real.epsilon > v)
{
// hypot (huge, tiny) = huge
return u;
}
// both are in the normal range
return sqrt(u*u + v*v);
}
unittest
{
static real[3][] vals = // x,y,hypot
[
[ 0.0, 0.0, 0.0],
[ 0.0, -0.0, 0.0],
[ -0.0, -0.0, 0.0],
[ 3.0, 4.0, 5.0],
[ -300, -400, 500],
[0.0, 7.0, 7.0],
[9.0, 9*real.epsilon, 9.0],
[88/(64*sqrt(real.min_normal)), 105/(64*sqrt(real.min_normal)), 137/(64*sqrt(real.min_normal))],
[88/(128*sqrt(real.min_normal)), 105/(128*sqrt(real.min_normal)), 137/(128*sqrt(real.min_normal))],
[3*real.min_normal*real.epsilon, 4*real.min_normal*real.epsilon, 5*real.min_normal*real.epsilon],
[ real.min_normal, real.min_normal, sqrt(2.0L)*real.min_normal],
[ real.max/sqrt(2.0L), real.max/sqrt(2.0L), real.max],
[ real.infinity, real.nan, real.infinity],
[ real.nan, real.infinity, real.infinity],
[ real.nan, real.nan, real.nan],
[ real.nan, real.max, real.nan],
[ real.max, real.nan, real.nan],
];
for (int i = 0; i < vals.length; i++)
{
real x = vals[i][0];
real y = vals[i][1];
real z = vals[i][2];
real h = hypot(x, y);
assert(isIdentical(z,h) || feqrel(z, h) >= real.mant_dig - 1);
}
}
/**************************************
* Returns the value of x rounded upward to the next integer
* (toward positive infinity).
*/
real ceil(real x) @trusted pure nothrow @nogc
{
version (Win64_DMD_InlineAsm)
{
asm pure nothrow @nogc
{
naked ;
fld real ptr [RCX] ;
fstcw 8[RSP] ;
mov AL,9[RSP] ;
mov DL,AL ;
and AL,0xC3 ;
or AL,0x08 ; // round to +infinity
mov 9[RSP],AL ;
fldcw 8[RSP] ;
frndint ;
mov 9[RSP],DL ;
fldcw 8[RSP] ;
ret ;
}
}
else version(CRuntime_Microsoft)
{
short cw;
asm pure nothrow @nogc
{
fld x ;
fstcw cw ;
mov AL,byte ptr cw+1 ;
mov DL,AL ;
and AL,0xC3 ;
or AL,0x08 ; // round to +infinity
mov byte ptr cw+1,AL ;
fldcw cw ;
frndint ;
mov byte ptr cw+1,DL ;
fldcw cw ;
}
}
else
{
// Special cases.
if (isNaN(x) || isInfinity(x))
return x;
real y = floorImpl(x);
if (y < x)
y += 1.0;
return y;
}
}
unittest
{
assert(ceil(+123.456L) == +124);
assert(ceil(-123.456L) == -123);
assert(ceil(-1.234L) == -1);
assert(ceil(-0.123L) == 0);
assert(ceil(0.0L) == 0);
assert(ceil(+0.123L) == 1);
assert(ceil(+1.234L) == 2);
assert(ceil(real.infinity) == real.infinity);
assert(isNaN(ceil(real.nan)));
assert(isNaN(ceil(real.init)));
}
// ditto
double ceil(double x) @trusted pure nothrow @nogc
{
// Special cases.
if (isNaN(x) || isInfinity(x))
return x;
double y = floorImpl(x);
if (y < x)
y += 1.0;
return y;
}
unittest
{
assert(ceil(+123.456) == +124);
assert(ceil(-123.456) == -123);
assert(ceil(-1.234) == -1);
assert(ceil(-0.123) == 0);
assert(ceil(0.0) == 0);
assert(ceil(+0.123) == 1);
assert(ceil(+1.234) == 2);
assert(ceil(double.infinity) == double.infinity);
assert(isNaN(ceil(double.nan)));
assert(isNaN(ceil(double.init)));
}
// ditto
float ceil(float x) @trusted pure nothrow @nogc
{
// Special cases.
if (isNaN(x) || isInfinity(x))
return x;
float y = floorImpl(x);
if (y < x)
y += 1.0;
return y;
}
unittest
{
assert(ceil(+123.456f) == +124);
assert(ceil(-123.456f) == -123);
assert(ceil(-1.234f) == -1);
assert(ceil(-0.123f) == 0);
assert(ceil(0.0f) == 0);
assert(ceil(+0.123f) == 1);
assert(ceil(+1.234f) == 2);
assert(ceil(float.infinity) == float.infinity);
assert(isNaN(ceil(float.nan)));
assert(isNaN(ceil(float.init)));
}
/**************************************
* Returns the value of x rounded downward to the next integer
* (toward negative infinity).
*/
real floor(real x) @trusted pure nothrow @nogc
{
version (Win64_DMD_InlineAsm)
{
asm pure nothrow @nogc
{
naked ;
fld real ptr [RCX] ;
fstcw 8[RSP] ;
mov AL,9[RSP] ;
mov DL,AL ;
and AL,0xC3 ;
or AL,0x04 ; // round to -infinity
mov 9[RSP],AL ;
fldcw 8[RSP] ;
frndint ;
mov 9[RSP],DL ;
fldcw 8[RSP] ;
ret ;
}
}
else version(CRuntime_Microsoft)
{
short cw;
asm pure nothrow @nogc
{
fld x ;
fstcw cw ;
mov AL,byte ptr cw+1 ;
mov DL,AL ;
and AL,0xC3 ;
or AL,0x04 ; // round to -infinity
mov byte ptr cw+1,AL ;
fldcw cw ;
frndint ;
mov byte ptr cw+1,DL ;
fldcw cw ;
}
}
else
{
// Special cases.
if (isNaN(x) || isInfinity(x) || x == 0.0)
return x;
return floorImpl(x);
}
}
unittest
{
assert(floor(+123.456L) == +123);
assert(floor(-123.456L) == -124);
assert(floor(-1.234L) == -2);
assert(floor(-0.123L) == -1);
assert(floor(0.0L) == 0);
assert(floor(+0.123L) == 0);
assert(floor(+1.234L) == 1);
assert(floor(real.infinity) == real.infinity);
assert(isNaN(floor(real.nan)));
assert(isNaN(floor(real.init)));
}
// ditto
double floor(double x) @trusted pure nothrow @nogc
{
// Special cases.
if (isNaN(x) || isInfinity(x) || x == 0.0)
return x;
return floorImpl(x);
}
unittest
{
assert(floor(+123.456) == +123);
assert(floor(-123.456) == -124);
assert(floor(-1.234) == -2);
assert(floor(-0.123) == -1);
assert(floor(0.0) == 0);
assert(floor(+0.123) == 0);
assert(floor(+1.234) == 1);
assert(floor(double.infinity) == double.infinity);
assert(isNaN(floor(double.nan)));
assert(isNaN(floor(double.init)));
}
// ditto
float floor(float x) @trusted pure nothrow @nogc
{
// Special cases.
if (isNaN(x) || isInfinity(x) || x == 0.0)
return x;
return floorImpl(x);
}
unittest
{
assert(floor(+123.456f) == +123);
assert(floor(-123.456f) == -124);
assert(floor(-1.234f) == -2);
assert(floor(-0.123f) == -1);
assert(floor(0.0f) == 0);
assert(floor(+0.123f) == 0);
assert(floor(+1.234f) == 1);
assert(floor(float.infinity) == float.infinity);
assert(isNaN(floor(float.nan)));
assert(isNaN(floor(float.init)));
}
/******************************************
* Rounds x to the nearest integer value, using the current rounding
* mode.
*
* Unlike the rint functions, nearbyint does not raise the
* FE_INEXACT exception.
*/
real nearbyint(real x) @trusted nothrow @nogc
{
version (CRuntime_Microsoft)
{
assert(0); // not implemented in C library
}
else
return core.stdc.math.nearbyintl(x);
}
/**********************************
* Rounds x to the nearest integer value, using the current rounding
* mode.
* If the return value is not equal to x, the FE_INEXACT
* exception is raised.
* $(B nearbyint) performs
* the same operation, but does not set the FE_INEXACT exception.
*/
real rint(real x) @safe pure nothrow @nogc; /* intrinsic */
/***************************************
* Rounds x to the nearest integer value, using the current rounding
* mode.
*
* This is generally the fastest method to convert a floating-point number
* to an integer. Note that the results from this function
* depend on the rounding mode, if the fractional part of x is exactly 0.5.
* If using the default rounding mode (ties round to even integers)
* lrint(4.5) == 4, lrint(5.5)==6.
*/
long lrint(real x) @trusted pure nothrow @nogc
{
version(InlineAsm_X86_Any)
{
version (Win64)
{
asm pure nothrow @nogc
{
naked;
fld real ptr [RCX];
fistp qword ptr 8[RSP];
mov RAX,8[RSP];
ret;
}
}
else
{
long n;
asm pure nothrow @nogc
{
fld x;
fistp n;
}
return n;
}
}
else
{
alias F = floatTraits!(real);
static if (F.realFormat == RealFormat.ieeeDouble)
{
long result;
// Rounding limit when casting from real(double) to ulong.
enum real OF = 4.50359962737049600000E15L;
uint* vi = cast(uint*)(&x);
// Find the exponent and sign
uint msb = vi[MANTISSA_MSB];
uint lsb = vi[MANTISSA_LSB];
int exp = ((msb >> 20) & 0x7ff) - 0x3ff;
int sign = msb >> 31;
msb &= 0xfffff;
msb |= 0x100000;
if (exp < 63)
{
if (exp >= 52)
result = (cast(long) msb << (exp - 20)) | (lsb << (exp - 52));
else
{
// Adjust x and check result.
real j = sign ? -OF : OF;
x = (j + x) - j;
msb = vi[MANTISSA_MSB];
lsb = vi[MANTISSA_LSB];
exp = ((msb >> 20) & 0x7ff) - 0x3ff;
msb &= 0xfffff;
msb |= 0x100000;
if (exp < 0)
result = 0;
else if (exp < 20)
result = cast(long) msb >> (20 - exp);
else if (exp == 20)
result = cast(long) msb;
else
result = (cast(long) msb << (exp - 20)) | (lsb >> (52 - exp));
}
}
else
{
// It is left implementation defined when the number is too large.
return cast(long) x;
}
return sign ? -result : result;
}
else static if (F.realFormat == RealFormat.ieeeExtended)
{
long result;
// Rounding limit when casting from real(80-bit) to ulong.
enum real OF = 9.22337203685477580800E18L;
ushort* vu = cast(ushort*)(&x);
uint* vi = cast(uint*)(&x);
// Find the exponent and sign
int exp = (vu[F.EXPPOS_SHORT] & 0x7fff) - 0x3fff;
int sign = (vu[F.EXPPOS_SHORT] >> 15) & 1;
if (exp < 63)
{
// Adjust x and check result.
real j = sign ? -OF : OF;
x = (j + x) - j;
exp = (vu[F.EXPPOS_SHORT] & 0x7fff) - 0x3fff;
version (LittleEndian)
{
if (exp < 0)
result = 0;
else if (exp <= 31)
result = vi[1] >> (31 - exp);
else
result = (cast(long) vi[1] << (exp - 31)) | (vi[0] >> (63 - exp));
}
else
{
if (exp < 0)
result = 0;
else if (exp <= 31)
result = vi[1] >> (31 - exp);
else
result = (cast(long) vi[1] << (exp - 31)) | (vi[2] >> (63 - exp));
}
}
else
{
// It is left implementation defined when the number is too large
// to fit in a 64bit long.
return cast(long) x;
}
return sign ? -result : result;
}
else
{
static assert(false, "Only 64-bit and 80-bit reals are supported by lrint()");
}
}
}
unittest
{
assert(lrint(4.5) == 4);
assert(lrint(5.5) == 6);
assert(lrint(-4.5) == -4);
assert(lrint(-5.5) == -6);
assert(lrint(int.max - 0.5) == 2147483646L);
assert(lrint(int.max + 0.5) == 2147483648L);
assert(lrint(int.min - 0.5) == -2147483648L);
assert(lrint(int.min + 0.5) == -2147483648L);
}
/*******************************************
* Return the value of x rounded to the nearest integer.
* If the fractional part of x is exactly 0.5, the return value is rounded to
* the even integer.
*/
real round(real x) @trusted nothrow @nogc
{
version (CRuntime_Microsoft)
{
auto old = FloatingPointControl.getControlState();
FloatingPointControl.setControlState((old & ~FloatingPointControl.ROUNDING_MASK) | FloatingPointControl.roundToZero);
x = rint((x >= 0) ? x + 0.5 : x - 0.5);
FloatingPointControl.setControlState(old);
return x;
}
else
return core.stdc.math.roundl(x);
}
/**********************************************
* Return the value of x rounded to the nearest integer.
*
* If the fractional part of x is exactly 0.5, the return value is rounded
* away from zero.
*/
long lround(real x) @trusted nothrow @nogc
{
version (Posix)
return core.stdc.math.llroundl(x);
else
assert (0, "lround not implemented");
}
version(Posix)
{
unittest
{
assert(lround(0.49) == 0);
assert(lround(0.5) == 1);
assert(lround(1.5) == 2);
}
}
/****************************************************
* Returns the integer portion of x, dropping the fractional portion.
*
* This is also known as "chop" rounding.
*/
real trunc(real x) @trusted nothrow @nogc
{
version (Win64_DMD_InlineAsm)
{
asm pure nothrow @nogc
{
naked ;
fld real ptr [RCX] ;
fstcw 8[RSP] ;
mov AL,9[RSP] ;
mov DL,AL ;
and AL,0xC3 ;
or AL,0x0C ; // round to 0
mov 9[RSP],AL ;
fldcw 8[RSP] ;
frndint ;
mov 9[RSP],DL ;
fldcw 8[RSP] ;
ret ;
}
}
else version(CRuntime_Microsoft)
{
short cw;
asm pure nothrow @nogc
{
fld x ;
fstcw cw ;
mov AL,byte ptr cw+1 ;
mov DL,AL ;
and AL,0xC3 ;
or AL,0x0C ; // round to 0
mov byte ptr cw+1,AL ;
fldcw cw ;
frndint ;
mov byte ptr cw+1,DL ;
fldcw cw ;
}
}
else
return core.stdc.math.truncl(x);
}
/****************************************************
* Calculate the remainder x REM y, following IEC 60559.
*
* REM is the value of x - y * n, where n is the integer nearest the exact
* value of x / y.
* If |n - x / y| == 0.5, n is even.
* If the result is zero, it has the same sign as x.
* Otherwise, the sign of the result is the sign of x / y.
* Precision mode has no effect on the remainder functions.
*
* remquo returns n in the parameter n.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH y) $(TH remainder(x, y)) $(TH n) $(TH invalid?))
* $(TR $(TD $(PLUSMN)0.0) $(TD not 0.0) $(TD $(PLUSMN)0.0) $(TD 0.0) $(TD no))
* $(TR $(TD $(PLUSMNINF)) $(TD anything) $(TD $(NAN)) $(TD ?) $(TD yes))
* $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD $(NAN)) $(TD ?) $(TD yes))
* $(TR $(TD != $(PLUSMNINF)) $(TD $(PLUSMNINF)) $(TD x) $(TD ?) $(TD no))
* )
*
* Note: remquo not supported on windows
*/
real remainder(real x, real y) @trusted nothrow @nogc
{
version (CRuntime_Microsoft)
{
int n;
return remquo(x, y, n);
}
else
return core.stdc.math.remainderl(x, y);
}
real remquo(real x, real y, out int n) @trusted nothrow @nogc /// ditto
{
version (Posix)
return core.stdc.math.remquol(x, y, &n);
else
assert (0, "remquo not implemented");
}
/** IEEE exception status flags ('sticky bits')
These flags indicate that an exceptional floating-point condition has occurred.
They indicate that a NaN or an infinity has been generated, that a result
is inexact, or that a signalling NaN has been encountered. If floating-point
exceptions are enabled (unmasked), a hardware exception will be generated
instead of setting these flags.
Example:
----
real a=3.5;
// Set all the flags to zero
resetIeeeFlags();
assert(!ieeeFlags.divByZero);
// Perform a division by zero.
a/=0.0L;
assert(a==real.infinity);
assert(ieeeFlags.divByZero);
// Create a NaN
a*=0.0L;
assert(ieeeFlags.invalid);
assert(isNaN(a));
// Check that calling func() has no effect on the
// status flags.
IeeeFlags f = ieeeFlags;
func();
assert(ieeeFlags == f);
----
*/
struct IeeeFlags
{
private:
// The x87 FPU status register is 16 bits.
// The Pentium SSE2 status register is 32 bits.
uint flags;
version (X86_Any)
{
// Applies to both x87 status word (16 bits) and SSE2 status word(32 bits).
enum : int
{
INEXACT_MASK = 0x20,
UNDERFLOW_MASK = 0x10,
OVERFLOW_MASK = 0x08,
DIVBYZERO_MASK = 0x04,
INVALID_MASK = 0x01
}
// Don't bother about subnormals, they are not supported on most CPUs.
// SUBNORMAL_MASK = 0x02;
}
else version (PPC)
{
// PowerPC FPSCR is a 32-bit register.
enum : int
{
INEXACT_MASK = 0x600,
UNDERFLOW_MASK = 0x010,
OVERFLOW_MASK = 0x008,
DIVBYZERO_MASK = 0x020,
INVALID_MASK = 0xF80 // PowerPC has five types of invalid exceptions.
}
}
else version (PPC64)
{
// PowerPC FPSCR is a 32-bit register.
enum : int
{
INEXACT_MASK = 0x600,
UNDERFLOW_MASK = 0x010,
OVERFLOW_MASK = 0x008,
DIVBYZERO_MASK = 0x020,
INVALID_MASK = 0xF80 // PowerPC has five types of invalid exceptions.
}
}
else version (ARM)
{
// ARM FPSCR is a 32bit register
enum : int
{
INEXACT_MASK = 0x1000,
UNDERFLOW_MASK = 0x0800,
OVERFLOW_MASK = 0x0400,
DIVBYZERO_MASK = 0x0200,
INVALID_MASK = 0x0100
}
}
else version(SPARC)
{
// SPARC FSR is a 32bit register
//(64 bits for Sparc 7 & 8, but high 32 bits are uninteresting).
enum : int
{
INEXACT_MASK = 0x020,
UNDERFLOW_MASK = 0x080,
OVERFLOW_MASK = 0x100,
DIVBYZERO_MASK = 0x040,
INVALID_MASK = 0x200
}
}
else
static assert(0, "Not implemented");
private:
static uint getIeeeFlags()
{
version(D_InlineAsm_X86)
{
asm pure nothrow @nogc
{
fstsw AX;
// NOTE: If compiler supports SSE2, need to OR the result with
// the SSE2 status register.
// Clear all irrelevant bits
and EAX, 0x03D;
}
}
else version(D_InlineAsm_X86_64)
{
asm pure nothrow @nogc
{
fstsw AX;
// NOTE: If compiler supports SSE2, need to OR the result with
// the SSE2 status register.
// Clear all irrelevant bits
and RAX, 0x03D;
}
}
else version (SPARC)
{
/*
int retval;
asm pure nothrow @nogc { st %fsr, retval; }
return retval;
*/
assert(0, "Not yet supported");
}
else version (ARM)
{
assert(false, "Not yet supported.");
}
else
assert(0, "Not yet supported");
}
static void resetIeeeFlags()
{
version(InlineAsm_X86_Any)
{
asm pure nothrow @nogc
{
fnclex;
}
}
else
{
/* SPARC:
int tmpval;
asm pure nothrow @nogc { st %fsr, tmpval; }
tmpval &=0xFFFF_FC00;
asm pure nothrow @nogc { ld tmpval, %fsr; }
*/
assert(0, "Not yet supported");
}
}
public:
version (IeeeFlagsSupport) {
/// The result cannot be represented exactly, so rounding occurred.
/// (example: x = sin(0.1); )
@property bool inexact() { return (flags & INEXACT_MASK) != 0; }
/// A zero was generated by underflow (example: x = real.min*real.epsilon/2;)
@property bool underflow() { return (flags & UNDERFLOW_MASK) != 0; }
/// An infinity was generated by overflow (example: x = real.max*2;)
@property bool overflow() { return (flags & OVERFLOW_MASK) != 0; }
/// An infinity was generated by division by zero (example: x = 3/0.0; )
@property bool divByZero() { return (flags & DIVBYZERO_MASK) != 0; }
/// A machine NaN was generated. (example: x = real.infinity * 0.0; )
@property bool invalid() { return (flags & INVALID_MASK) != 0; }
}
}
version(X86_Any)
{
version = IeeeFlagsSupport;
}
else version(ARM)
{
version = IeeeFlagsSupport;
}
/// Set all of the floating-point status flags to false.
void resetIeeeFlags() { IeeeFlags.resetIeeeFlags(); }
/// Return a snapshot of the current state of the floating-point status flags.
@property IeeeFlags ieeeFlags()
{
return IeeeFlags(IeeeFlags.getIeeeFlags());
}
/** Control the Floating point hardware
Change the IEEE754 floating-point rounding mode and the floating-point
hardware exceptions.
By default, the rounding mode is roundToNearest and all hardware exceptions
are disabled. For most applications, debugging is easier if the $(I division
by zero), $(I overflow), and $(I invalid operation) exceptions are enabled.
These three are combined into a $(I severeExceptions) value for convenience.
Note in particular that if $(I invalidException) is enabled, a hardware trap
will be generated whenever an uninitialized floating-point variable is used.
All changes are temporary. The previous state is restored at the
end of the scope.
Example:
----
{
FloatingPointControl fpctrl;
// Enable hardware exceptions for division by zero, overflow to infinity,
// invalid operations, and uninitialized floating-point variables.
fpctrl.enableExceptions(FloatingPointControl.severeExceptions);
// This will generate a hardware exception, if x is a
// default-initialized floating point variable:
real x; // Add `= 0` or even `= real.nan` to not throw the exception.
real y = x * 3.0;
// The exception is only thrown for default-uninitialized NaN-s.
// NaN-s with other payload are valid:
real z = y * real.nan; // ok
// Changing the rounding mode:
fpctrl.rounding = FloatingPointControl.roundUp;
assert(rint(1.1) == 2);
// The set hardware exceptions will be disabled when leaving this scope.
// The original rounding mode will also be restored.
}
// Ensure previous values are returned:
assert(!FloatingPointControl.enabledExceptions);
assert(FloatingPointControl.rounding == FloatingPointControl.roundToNearest);
assert(rint(1.1) == 1);
----
*/
struct FloatingPointControl
{
alias RoundingMode = uint;
/** IEEE rounding modes.
* The default mode is roundToNearest.
*/
version(ARM)
{
enum : RoundingMode
{
roundToNearest = 0x000000,
roundDown = 0x400000,
roundUp = 0x800000,
roundToZero = 0xC00000
}
}
else
{
enum : RoundingMode
{
roundToNearest = 0x0000,
roundDown = 0x0400,
roundUp = 0x0800,
roundToZero = 0x0C00
}
}
/** IEEE hardware exceptions.
* By default, all exceptions are masked (disabled).
*/
version(ARM)
{
enum : uint
{
subnormalException = 0x8000,
inexactException = 0x1000,
underflowException = 0x0800,
overflowException = 0x0400,
divByZeroException = 0x0200,
invalidException = 0x0100,
/// Severe = The overflow, division by zero, and invalid exceptions.
severeExceptions = overflowException | divByZeroException
| invalidException,
allExceptions = severeExceptions | underflowException
| inexactException | subnormalException,
}
}
else
{
enum : uint
{
inexactException = 0x20,
underflowException = 0x10,
overflowException = 0x08,
divByZeroException = 0x04,
subnormalException = 0x02,
invalidException = 0x01,
/// Severe = The overflow, division by zero, and invalid exceptions.
severeExceptions = overflowException | divByZeroException
| invalidException,
allExceptions = severeExceptions | underflowException
| inexactException | subnormalException,
}
}
private:
version(ARM)
{
enum uint EXCEPTION_MASK = 0x9F00;
enum uint ROUNDING_MASK = 0xC00000;
}
else version(X86)
{
enum ushort EXCEPTION_MASK = 0x3F;
enum ushort ROUNDING_MASK = 0xC00;
}
else version(X86_64)
{
enum ushort EXCEPTION_MASK = 0x3F;
enum ushort ROUNDING_MASK = 0xC00;
}
else
static assert(false, "Architecture not supported");
public:
/// Returns true if the current FPU supports exception trapping
@property static bool hasExceptionTraps() @safe nothrow @nogc
{
version(X86)
return true;
else version(X86_64)
return true;
else version(ARM)
{
auto oldState = getControlState();
// If exceptions are not supported, we set the bit but read it back as zero
// https://sourceware.org/ml/libc-ports/2012-06/msg00091.html
setControlState(oldState | (divByZeroException & EXCEPTION_MASK));
bool result = (getControlState() & EXCEPTION_MASK) != 0;
setControlState(oldState);
return result;
}
else
static assert(false, "Not implemented for this architecture");
}
/// Enable (unmask) specific hardware exceptions. Multiple exceptions may be ORed together.
void enableExceptions(uint exceptions) @nogc
{
assert(hasExceptionTraps);
initialize();
version(ARM)
setControlState(getControlState() | (exceptions & EXCEPTION_MASK));
else
setControlState(getControlState() & ~(exceptions & EXCEPTION_MASK));
}
/// Disable (mask) specific hardware exceptions. Multiple exceptions may be ORed together.
void disableExceptions(uint exceptions) @nogc
{
assert(hasExceptionTraps);
initialize();
version(ARM)
setControlState(getControlState() & ~(exceptions & EXCEPTION_MASK));
else
setControlState(getControlState() | (exceptions & EXCEPTION_MASK));
}
//// Change the floating-point hardware rounding mode
@property void rounding(RoundingMode newMode) @nogc
{
initialize();
setControlState((getControlState() & ~ROUNDING_MASK) | (newMode & ROUNDING_MASK));
}
/// Return the exceptions which are currently enabled (unmasked)
@property static uint enabledExceptions() @nogc
{
assert(hasExceptionTraps);
version(ARM)
return (getControlState() & EXCEPTION_MASK);
else
return (getControlState() & EXCEPTION_MASK) ^ EXCEPTION_MASK;
}
/// Return the currently active rounding mode
@property static RoundingMode rounding() @nogc
{
return cast(RoundingMode)(getControlState() & ROUNDING_MASK);
}
/// Clear all pending exceptions, then restore the original exception state and rounding mode.
~this() @nogc
{
clearExceptions();
if (initialized)
setControlState(savedState);
}
private:
ControlState savedState;
bool initialized = false;
version(ARM)
{
alias ControlState = uint;
}
else
{
alias ControlState = ushort;
}
void initialize() @nogc
{
// BUG: This works around the absence of this() constructors.
if (initialized) return;
clearExceptions();
savedState = getControlState();
initialized = true;
}
// Clear all pending exceptions
static void clearExceptions() @nogc
{
version (InlineAsm_X86_Any)
{
asm nothrow @nogc
{
fclex;
}
}
else
assert(0, "Not yet supported");
}
// Read from the control register
static ushort getControlState() @trusted nothrow @nogc
{
version (D_InlineAsm_X86)
{
short cont;
asm nothrow @nogc
{
xor EAX, EAX;
fstcw cont;
}
return cont;
}
else
version (D_InlineAsm_X86_64)
{
short cont;
asm nothrow @nogc
{
xor RAX, RAX;
fstcw cont;
}
return cont;
}
else
assert(0, "Not yet supported");
}
// Set the control register
static void setControlState(ushort newState) @trusted nothrow @nogc
{
version (InlineAsm_X86_Any)
{
version (Win64)
{
asm nothrow @nogc
{
naked;
mov 8[RSP],RCX;
fclex;
fldcw 8[RSP];
ret;
}
}
else
{
asm nothrow @nogc
{
fclex;
fldcw newState;
}
}
}
else
assert(0, "Not yet supported");
}
}
unittest
{
void ensureDefaults()
{
assert(FloatingPointControl.rounding
== FloatingPointControl.roundToNearest);
if(FloatingPointControl.hasExceptionTraps)
assert(FloatingPointControl.enabledExceptions == 0);
}
{
FloatingPointControl ctrl;
}
ensureDefaults();
{
FloatingPointControl ctrl;
ctrl.rounding = FloatingPointControl.roundDown;
assert(FloatingPointControl.rounding == FloatingPointControl.roundDown);
}
ensureDefaults();
if(FloatingPointControl.hasExceptionTraps)
{
FloatingPointControl ctrl;
ctrl.enableExceptions(FloatingPointControl.divByZeroException
| FloatingPointControl.overflowException);
assert(ctrl.enabledExceptions ==
(FloatingPointControl.divByZeroException
| FloatingPointControl.overflowException));
ctrl.rounding = FloatingPointControl.roundUp;
assert(FloatingPointControl.rounding == FloatingPointControl.roundUp);
}
ensureDefaults();
}
/*********************************
* Returns !=0 if e is a NaN.
*/
bool isNaN(X)(X x) @nogc @trusted pure nothrow
if (isFloatingPoint!(X))
{
alias F = floatTraits!(X);
static if (F.realFormat == RealFormat.ieeeSingle)
{
uint* p = cast(uint *)&x;
return ((*p & 0x7F80_0000) == 0x7F80_0000)
&& *p & 0x007F_FFFF; // not infinity
}
else static if (F.realFormat == RealFormat.ieeeDouble)
{
ulong* p = cast(ulong *)&x;
return ((*p & 0x7FF0_0000_0000_0000) == 0x7FF0_0000_0000_0000)
&& *p & 0x000F_FFFF_FFFF_FFFF; // not infinity
}
else static if (F.realFormat == RealFormat.ieeeExtended)
{
ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
ulong* ps = cast(ulong *)&x;
return e == F.EXPMASK &&
*ps & 0x7FFF_FFFF_FFFF_FFFF; // not infinity
}
else static if (F.realFormat == RealFormat.ieeeQuadruple)
{
ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
ulong* ps = cast(ulong *)&x;
return e == F.EXPMASK &&
(ps[MANTISSA_LSB] | (ps[MANTISSA_MSB]& 0x0000_FFFF_FFFF_FFFF)) != 0;
}
else
{
return x != x;
}
}
deprecated("isNaN is not defined for integer types")
bool isNaN(X)(X x) @nogc @trusted pure nothrow
if (isIntegral!(X))
{
return isNaN(cast(float)x);
}
unittest
{
import std.typetuple;
foreach(T; TypeTuple!(float, double, real))
{
// CTFE-able tests
assert(isNaN(T.init));
assert(isNaN(-T.init));
assert(isNaN(T.nan));
assert(isNaN(-T.nan));
assert(!isNaN(T.infinity));
assert(!isNaN(-T.infinity));
assert(!isNaN(cast(T)53.6));
assert(!isNaN(cast(T)-53.6));
// Runtime tests
shared T f;
f = T.init;
assert(isNaN(f));
assert(isNaN(-f));
f = T.nan;
assert(isNaN(f));
assert(isNaN(-f));
f = T.infinity;
assert(!isNaN(f));
assert(!isNaN(-f));
f = cast(T)53.6;
assert(!isNaN(f));
assert(!isNaN(-f));
}
}
/*********************************
* Returns !=0 if e is finite (not infinite or $(NAN)).
*/
int isFinite(X)(X e) @trusted pure nothrow @nogc
{
alias F = floatTraits!(X);
ushort* pe = cast(ushort *)&e;
return (pe[F.EXPPOS_SHORT] & F.EXPMASK) != F.EXPMASK;
}
unittest
{
assert(isFinite(1.23f));
assert(isFinite(float.max));
assert(isFinite(float.min_normal));
assert(!isFinite(float.nan));
assert(!isFinite(float.infinity));
assert(isFinite(1.23));
assert(isFinite(double.max));
assert(isFinite(double.min_normal));
assert(!isFinite(double.nan));
assert(!isFinite(double.infinity));
assert(isFinite(1.23L));
assert(isFinite(real.max));
assert(isFinite(real.min_normal));
assert(!isFinite(real.nan));
assert(!isFinite(real.infinity));
}
deprecated("isFinite is not defined for integer types")
int isFinite(X)(X x) @trusted pure nothrow @nogc
if (isIntegral!(X))
{
return isFinite(cast(float)x);
}
/*********************************
* Returns !=0 if x is normalized (not zero, subnormal, infinite, or $(NAN)).
*/
/* Need one for each format because subnormal floats might
* be converted to normal reals.
*/
int isNormal(X)(X x) @trusted pure nothrow @nogc
{
alias F = floatTraits!(X);
static if (F.realFormat == RealFormat.ibmExtended)
{
// doubledouble is normal if the least significant part is normal.
return isNormal((cast(double*)&x)[MANTISSA_LSB]);
}
else
{
ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
return (e != F.EXPMASK && e != 0);
}
}
unittest
{
float f = 3;
double d = 500;
real e = 10e+48;
assert(isNormal(f));
assert(isNormal(d));
assert(isNormal(e));
f = d = e = 0;
assert(!isNormal(f));
assert(!isNormal(d));
assert(!isNormal(e));
assert(!isNormal(real.infinity));
assert(isNormal(-real.max));
assert(!isNormal(real.min_normal/4));
}
/*********************************
* Is number subnormal? (Also called "denormal".)
* Subnormals have a 0 exponent and a 0 most significant mantissa bit.
*/
/* Need one for each format because subnormal floats might
* be converted to normal reals.
*/
int isSubnormal(X)(X x) @trusted pure nothrow @nogc
{
alias F = floatTraits!(X);
static if (F.realFormat == RealFormat.ieeeSingle)
{
uint *p = cast(uint *)&x;
return (*p & F.EXPMASK_INT) == 0 && *p & F.MANTISSAMASK_INT;
}
else static if (F.realFormat == RealFormat.ieeeDouble)
{
uint *p = cast(uint *)&x;
return (p[MANTISSA_MSB] & F.EXPMASK_INT) == 0
&& (p[MANTISSA_LSB] || p[MANTISSA_MSB] & F.MANTISSAMASK_INT);
}
else static if (F.realFormat == RealFormat.ieeeQuadruple)
{
ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
long* ps = cast(long *)&x;
return (e == 0 &&
(((ps[MANTISSA_LSB]|(ps[MANTISSA_MSB]& 0x0000_FFFF_FFFF_FFFF))) != 0));
}
else static if (F.realFormat == RealFormat.ieeeExtended)
{
ushort* pe = cast(ushort *)&x;
long* ps = cast(long *)&x;
return (pe[F.EXPPOS_SHORT] & F.EXPMASK) == 0 && *ps > 0;
}
else static if (F.realFormat == RealFormat.ibmExtended)
{
return isSubnormal((cast(double*)&x)[MANTISSA_MSB]);
}
else
{
static assert(false, "Not implemented for this architecture");
}
}
unittest
{
import std.typetuple;
foreach (T; TypeTuple!(float, double, real))
{
T f;
for (f = 1.0; !isSubnormal(f); f /= 2)
assert(f != 0);
}
}
deprecated("isSubnormal is not defined for integer types")
int isSubnormal(X)(X x) @trusted pure nothrow @nogc
if (isIntegral!X)
{
return isSubnormal(cast(double)x);
}
/*********************************
* Return !=0 if e is $(PLUSMN)$(INFIN).
*/
bool isInfinity(X)(X x) @nogc @trusted pure nothrow
if (isFloatingPoint!(X))
{
alias F = floatTraits!(X);
static if (F.realFormat == RealFormat.ieeeSingle)
{
return ((*cast(uint *)&x) & 0x7FFF_FFFF) == 0x7F80_0000;
}
else static if (F.realFormat == RealFormat.ieeeDouble)
{
return ((*cast(ulong *)&x) & 0x7FFF_FFFF_FFFF_FFFF)
== 0x7FF0_0000_0000_0000;
}
else static if (F.realFormat == RealFormat.ieeeExtended)
{
ushort e = cast(ushort)(F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]);
ulong* ps = cast(ulong *)&x;
// On Motorola 68K, infinity can have hidden bit = 1 or 0. On x86, it is always 1.
return e == F.EXPMASK && (*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0;
}
else static if (F.realFormat == RealFormat.ibmExtended)
{
return (((cast(ulong *)&x)[MANTISSA_MSB]) & 0x7FFF_FFFF_FFFF_FFFF)
== 0x7FF8_0000_0000_0000;
}
else static if (F.realFormat == RealFormat.ieeeQuadruple)
{
long* ps = cast(long *)&x;
return (ps[MANTISSA_LSB] == 0)
&& (ps[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_0000_0000_0000;
}
else
{
return (x - 1) == x;
}
}
unittest
{
// CTFE-able tests
assert(!isInfinity(float.init));
assert(!isInfinity(-float.init));
assert(!isInfinity(float.nan));
assert(!isInfinity(-float.nan));
assert(isInfinity(float.infinity));
assert(isInfinity(-float.infinity));
assert(isInfinity(-1.0f / 0.0f));
assert(!isInfinity(double.init));
assert(!isInfinity(-double.init));
assert(!isInfinity(double.nan));
assert(!isInfinity(-double.nan));
assert(isInfinity(double.infinity));
assert(isInfinity(-double.infinity));
assert(isInfinity(-1.0 / 0.0));
assert(!isInfinity(real.init));
assert(!isInfinity(-real.init));
assert(!isInfinity(real.nan));
assert(!isInfinity(-real.nan));
assert(isInfinity(real.infinity));
assert(isInfinity(-real.infinity));
assert(isInfinity(-1.0L / 0.0L));
// Runtime tests
shared float f;
f = float.init;
assert(!isInfinity(f));
assert(!isInfinity(-f));
f = float.nan;
assert(!isInfinity(f));
assert(!isInfinity(-f));
f = float.infinity;
assert(isInfinity(f));
assert(isInfinity(-f));
f = (-1.0f / 0.0f);
assert(isInfinity(f));
shared double d;
d = double.init;
assert(!isInfinity(d));
assert(!isInfinity(-d));
d = double.nan;
assert(!isInfinity(d));
assert(!isInfinity(-d));
d = double.infinity;
assert(isInfinity(d));
assert(isInfinity(-d));
d = (-1.0 / 0.0);
assert(isInfinity(d));
shared real e;
e = real.init;
assert(!isInfinity(e));
assert(!isInfinity(-e));
e = real.nan;
assert(!isInfinity(e));
assert(!isInfinity(-e));
e = real.infinity;
assert(isInfinity(e));
assert(isInfinity(-e));
e = (-1.0L / 0.0L);
assert(isInfinity(e));
}
/*********************************
* Is the binary representation of x identical to y?
*
* Same as ==, except that positive and negative zero are not identical,
* and two $(NAN)s are identical if they have the same 'payload'.
*/
bool isIdentical(real x, real y) @trusted pure nothrow @nogc
{
// We're doing a bitwise comparison so the endianness is irrelevant.
long* pxs = cast(long *)&x;
long* pys = cast(long *)&y;
alias F = floatTraits!(real);
static if (F.realFormat == RealFormat.ieeeDouble)
{
return pxs[0] == pys[0];
}
else static if (F.realFormat == RealFormat.ieeeQuadruple
|| F.realFormat == RealFormat.ibmExtended)
{
return pxs[0] == pys[0] && pxs[1] == pys[1];
}
else
{
ushort* pxe = cast(ushort *)&x;
ushort* pye = cast(ushort *)&y;
return pxe[4] == pye[4] && pxs[0] == pys[0];
}
}
/*********************************
* Return 1 if sign bit of e is set, 0 if not.
*/
int signbit(X)(X x) @nogc @trusted pure nothrow
{
alias F = floatTraits!(X);
return ((cast(ubyte *)&x)[F.SIGNPOS_BYTE] & 0x80) != 0;
}
unittest
{
debug (math) printf("math.signbit.unittest\n");
assert(!signbit(float.nan));
assert(signbit(-float.nan));
assert(!signbit(168.1234f));
assert(signbit(-168.1234f));
assert(!signbit(0.0f));
assert(signbit(-0.0f));
assert(signbit(-float.max));
assert(!signbit(float.max));
assert(!signbit(double.nan));
assert(signbit(-double.nan));
assert(!signbit(168.1234));
assert(signbit(-168.1234));
assert(!signbit(0.0));
assert(signbit(-0.0));
assert(signbit(-double.max));
assert(!signbit(double.max));
assert(!signbit(real.nan));
assert(signbit(-real.nan));
assert(!signbit(168.1234L));
assert(signbit(-168.1234L));
assert(!signbit(0.0L));
assert(signbit(-0.0L));
assert(signbit(-real.max));
assert(!signbit(real.max));
}
deprecated("signbit is not defined for integer types")
int signbit(X)(X x) @nogc @trusted pure nothrow
if (isIntegral!X)
{
return signbit(cast(float)x);
}
/*********************************
* Return a value composed of to with from's sign bit.
*/
R copysign(R, X)(R to, X from) @trusted pure nothrow @nogc
if (isFloatingPoint!(R) && isFloatingPoint!(X))
{
ubyte* pto = cast(ubyte *)&to;
const ubyte* pfrom = cast(ubyte *)&from;
alias T = floatTraits!(R);
alias F = floatTraits!(X);
pto[T.SIGNPOS_BYTE] &= 0x7F;
pto[T.SIGNPOS_BYTE] |= pfrom[F.SIGNPOS_BYTE] & 0x80;
return to;
}
// ditto
R copysign(R, X)(X to, R from) @trusted pure nothrow @nogc
if (isIntegral!(X) && isFloatingPoint!(R))
{
return copysign(cast(R)to, from);
}
unittest
{
import std.typetuple;
foreach (X; TypeTuple!(float, double, real, int, long))
{
foreach (Y; TypeTuple!(float, double, real))
{
X x = 21;
Y y = 23.8;
Y e = void;
e = copysign(x, y);
assert(e == 21.0);
e = copysign(-x, y);
assert(e == 21.0);
e = copysign(x, -y);
assert(e == -21.0);
e = copysign(-x, -y);
assert(e == -21.0);
static if (isFloatingPoint!X)
{
e = copysign(X.nan, y);
assert(isNaN(e) && !signbit(e));
e = copysign(X.nan, -y);
assert(isNaN(e) && signbit(e));
}
}
}
}
deprecated("copysign : from can't be of integer type")
R copysign(R, X)(X to, R from) @trusted pure nothrow @nogc
if (isIntegral!R)
{
return copysign(to, cast(float)from);
}
/*********************************
Returns $(D -1) if $(D x < 0), $(D x) if $(D x == 0), $(D 1) if
$(D x > 0), and $(NAN) if x==$(NAN).
*/
F sgn(F)(F x) @safe pure nothrow @nogc
{
// @@@TODO@@@: make this faster
return x > 0 ? 1 : x < 0 ? -1 : x;
}
unittest
{
debug (math) printf("math.sgn.unittest\n");
assert(sgn(168.1234) == 1);
assert(sgn(-168.1234) == -1);
assert(sgn(0.0) == 0);
assert(sgn(-0.0) == 0);
}
// Functions for NaN payloads
/*
* A 'payload' can be stored in the significand of a $(NAN). One bit is required
* to distinguish between a quiet and a signalling $(NAN). This leaves 22 bits
* of payload for a float; 51 bits for a double; 62 bits for an 80-bit real;
* and 111 bits for a 128-bit quad.
*/
/**
* Create a quiet $(NAN), storing an integer inside the payload.
*
* For floats, the largest possible payload is 0x3F_FFFF.
* For doubles, it is 0x3_FFFF_FFFF_FFFF.
* For 80-bit or 128-bit reals, it is 0x3FFF_FFFF_FFFF_FFFF.
*/
real NaN(ulong payload) @trusted pure nothrow @nogc
{
alias F = floatTraits!(real);
static if (F.realFormat == RealFormat.ieeeExtended)
{
// real80 (in x86 real format, the implied bit is actually
// not implied but a real bit which is stored in the real)
ulong v = 3; // implied bit = 1, quiet bit = 1
}
else
{
ulong v = 1; // no implied bit. quiet bit = 1
}
ulong a = payload;
// 22 Float bits
ulong w = a & 0x3F_FFFF;
a -= w;
v <<=22;
v |= w;
a >>=22;
// 29 Double bits
v <<=29;
w = a & 0xFFF_FFFF;
v |= w;
a -= w;
a >>=29;
static if (F.realFormat == RealFormat.ieeeDouble)
{
v |= 0x7FF0_0000_0000_0000;
real x;
* cast(ulong *)(&x) = v;
return x;
}
else
{
v <<=11;
a &= 0x7FF;
v |= a;
real x = real.nan;
// Extended real bits
static if (F.realFormat == RealFormat.ieeeQuadruple)
{
v <<= 1; // there's no implicit bit
version(LittleEndian)
{
*cast(ulong*)(6+cast(ubyte*)(&x)) = v;
}
else
{
*cast(ulong*)(2+cast(ubyte*)(&x)) = v;
}
}
else
{
*cast(ulong *)(&x) = v;
}
return x;
}
}
unittest
{
static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble)
{
auto x = NaN(1);
auto xl = *cast(ulong*)&x;
assert(xl & 0x8_0000_0000_0000UL); //non-signaling bit, bit 52
assert((xl & 0x7FF0_0000_0000_0000UL) == 0x7FF0_0000_0000_0000UL); //all exp bits set
}
}
/**
* Extract an integral payload from a $(NAN).
*
* Returns:
* the integer payload as a ulong.
*
* For floats, the largest possible payload is 0x3F_FFFF.
* For doubles, it is 0x3_FFFF_FFFF_FFFF.
* For 80-bit or 128-bit reals, it is 0x3FFF_FFFF_FFFF_FFFF.
*/
ulong getNaNPayload(real x) @trusted pure nothrow @nogc
{
// assert(isNaN(x));
alias F = floatTraits!(real);
static if (F.realFormat == RealFormat.ieeeDouble)
{
ulong m = *cast(ulong *)(&x);
// Make it look like an 80-bit significand.
// Skip exponent, and quiet bit
m &= 0x0007_FFFF_FFFF_FFFF;
m <<= 10;
}
else static if (F.realFormat == RealFormat.ieeeQuadruple)
{
version(LittleEndian)
{
ulong m = *cast(ulong*)(6+cast(ubyte*)(&x));
}
else
{
ulong m = *cast(ulong*)(2+cast(ubyte*)(&x));
}
m >>= 1; // there's no implicit bit
}
else
{
ulong m = *cast(ulong *)(&x);
}
// ignore implicit bit and quiet bit
ulong f = m & 0x3FFF_FF00_0000_0000L;
ulong w = f >>> 40;
w |= (m & 0x00FF_FFFF_F800L) << (22 - 11);
w |= (m & 0x7FF) << 51;
return w;
}
debug(UnitTest)
{
unittest
{
real nan4 = NaN(0x789_ABCD_EF12_3456);
static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended
|| floatTraits!(real).realFormat == RealFormat.ieeeQuadruple)
{
assert (getNaNPayload(nan4) == 0x789_ABCD_EF12_3456);
}
else
{
assert (getNaNPayload(nan4) == 0x1_ABCD_EF12_3456);
}
double nan5 = nan4;
assert (getNaNPayload(nan5) == 0x1_ABCD_EF12_3456);
float nan6 = nan4;
assert (getNaNPayload(nan6) == 0x12_3456);
nan4 = NaN(0xFABCD);
assert (getNaNPayload(nan4) == 0xFABCD);
nan6 = nan4;
assert (getNaNPayload(nan6) == 0xFABCD);
nan5 = NaN(0x100_0000_0000_3456);
assert(getNaNPayload(nan5) == 0x0000_0000_3456);
}
}
/**
* Calculate the next largest floating point value after x.
*
* Return the least number greater than x that is representable as a real;
* thus, it gives the next point on the IEEE number line.
*
* $(TABLE_SV
* $(SVH x, nextUp(x) )
* $(SV -$(INFIN), -real.max )
* $(SV $(PLUSMN)0.0, real.min_normal*real.epsilon )
* $(SV real.max, $(INFIN) )
* $(SV $(INFIN), $(INFIN) )
* $(SV $(NAN), $(NAN) )
* )
*/
real nextUp(real x) @trusted pure nothrow @nogc
{
alias F = floatTraits!(real);
static if (F.realFormat == RealFormat.ieeeDouble)
{
return nextUp(cast(double)x);
}
else static if (F.realFormat == RealFormat.ieeeQuadruple)
{
ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
if (e == F.EXPMASK)
{
// NaN or Infinity
if (x == -real.infinity) return -real.max;
return x; // +Inf and NaN are unchanged.
}
ulong* ps = cast(ulong *)&e;
if (ps[MANTISSA_LSB] & 0x8000_0000_0000_0000)
{
// Negative number
if (ps[MANTISSA_LSB] == 0
&& ps[MANTISSA_MSB] == 0x8000_0000_0000_0000)
{
// it was negative zero, change to smallest subnormal
ps[MANTISSA_LSB] = 0x0000_0000_0000_0001;
ps[MANTISSA_MSB] = 0;
return x;
}
--*ps;
if (ps[MANTISSA_LSB] == 0) --ps[MANTISSA_MSB];
}
else
{
// Positive number
++ps[MANTISSA_LSB];
if (ps[MANTISSA_LSB] == 0) ++ps[MANTISSA_MSB];
}
return x;
}
else static if (F.realFormat == RealFormat.ieeeExtended)
{
// For 80-bit reals, the "implied bit" is a nuisance...
ushort *pe = cast(ushort *)&x;
ulong *ps = cast(ulong *)&x;
if ((pe[F.EXPPOS_SHORT] & F.EXPMASK) == F.EXPMASK)
{
// First, deal with NANs and infinity
if (x == -real.infinity) return -real.max;
return x; // +Inf and NaN are unchanged.
}
if (pe[F.EXPPOS_SHORT] & 0x8000)
{
// Negative number -- need to decrease the significand
--*ps;
// Need to mask with 0x7FFF... so subnormals are treated correctly.
if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_FFFF_FFFF_FFFF)
{
if (pe[F.EXPPOS_SHORT] == 0x8000) // it was negative zero
{
*ps = 1;
pe[F.EXPPOS_SHORT] = 0; // smallest subnormal.
return x;
}
--pe[F.EXPPOS_SHORT];
if (pe[F.EXPPOS_SHORT] == 0x8000)
return x; // it's become a subnormal, implied bit stays low.
*ps = 0xFFFF_FFFF_FFFF_FFFF; // set the implied bit
return x;
}
return x;
}
else
{
// Positive number -- need to increase the significand.
// Works automatically for positive zero.
++*ps;
if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0)
{
// change in exponent
++pe[F.EXPPOS_SHORT];
*ps = 0x8000_0000_0000_0000; // set the high bit
}
}
return x;
}
else // static if (F.realFormat == RealFormat.ibmExtended)
{
assert (0, "nextUp not implemented");
}
}
/** ditto */
double nextUp(double x) @trusted pure nothrow @nogc
{
ulong *ps = cast(ulong *)&x;
if ((*ps & 0x7FF0_0000_0000_0000) == 0x7FF0_0000_0000_0000)
{
// First, deal with NANs and infinity
if (x == -x.infinity) return -x.max;
return x; // +INF and NAN are unchanged.
}
if (*ps & 0x8000_0000_0000_0000) // Negative number
{
if (*ps == 0x8000_0000_0000_0000) // it was negative zero
{
*ps = 0x0000_0000_0000_0001; // change to smallest subnormal
return x;
}
--*ps;
}
else
{ // Positive number
++*ps;
}
return x;
}
/** ditto */
float nextUp(float x) @trusted pure nothrow @nogc
{
uint *ps = cast(uint *)&x;
if ((*ps & 0x7F80_0000) == 0x7F80_0000)
{
// First, deal with NANs and infinity
if (x == -x.infinity) return -x.max;
return x; // +INF and NAN are unchanged.
}
if (*ps & 0x8000_0000) // Negative number
{
if (*ps == 0x8000_0000) // it was negative zero
{
*ps = 0x0000_0001; // change to smallest subnormal
return x;
}
--*ps;
}
else
{
// Positive number
++*ps;
}
return x;
}
/**
* Calculate the next smallest floating point value before x.
*
* Return the greatest number less than x that is representable as a real;
* thus, it gives the previous point on the IEEE number line.
*
* $(TABLE_SV
* $(SVH x, nextDown(x) )
* $(SV $(INFIN), real.max )
* $(SV $(PLUSMN)0.0, -real.min_normal*real.epsilon )
* $(SV -real.max, -$(INFIN) )
* $(SV -$(INFIN), -$(INFIN) )
* $(SV $(NAN), $(NAN) )
* )
*/
real nextDown(real x) @safe pure nothrow @nogc
{
return -nextUp(-x);
}
/** ditto */
double nextDown(double x) @safe pure nothrow @nogc
{
return -nextUp(-x);
}
/** ditto */
float nextDown(float x) @safe pure nothrow @nogc
{
return -nextUp(-x);
}
unittest
{
assert( nextDown(1.0 + real.epsilon) == 1.0);
}
unittest
{
static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended)
{
// Tests for 80-bit reals
assert(isIdentical(nextUp(NaN(0xABC)), NaN(0xABC)));
// negative numbers
assert( nextUp(-real.infinity) == -real.max );
assert( nextUp(-1.0L-real.epsilon) == -1.0 );
assert( nextUp(-2.0L) == -2.0 + real.epsilon);
// subnormals and zero
assert( nextUp(-real.min_normal) == -real.min_normal*(1-real.epsilon) );
assert( nextUp(-real.min_normal*(1-real.epsilon)) == -real.min_normal*(1-2*real.epsilon) );
assert( isIdentical(-0.0L, nextUp(-real.min_normal*real.epsilon)) );
assert( nextUp(-0.0L) == real.min_normal*real.epsilon );
assert( nextUp(0.0L) == real.min_normal*real.epsilon );
assert( nextUp(real.min_normal*(1-real.epsilon)) == real.min_normal );
assert( nextUp(real.min_normal) == real.min_normal*(1+real.epsilon) );
// positive numbers
assert( nextUp(1.0L) == 1.0 + real.epsilon );
assert( nextUp(2.0L-real.epsilon) == 2.0 );
assert( nextUp(real.max) == real.infinity );
assert( nextUp(real.infinity)==real.infinity );
}
double n = NaN(0xABC);
assert(isIdentical(nextUp(n), n));
// negative numbers
assert( nextUp(-double.infinity) == -double.max );
assert( nextUp(-1-double.epsilon) == -1.0 );
assert( nextUp(-2.0) == -2.0 + double.epsilon);
// subnormals and zero
assert( nextUp(-double.min_normal) == -double.min_normal*(1-double.epsilon) );
assert( nextUp(-double.min_normal*(1-double.epsilon)) == -double.min_normal*(1-2*double.epsilon) );
assert( isIdentical(-0.0, nextUp(-double.min_normal*double.epsilon)) );
assert( nextUp(0.0) == double.min_normal*double.epsilon );
assert( nextUp(-0.0) == double.min_normal*double.epsilon );
assert( nextUp(double.min_normal*(1-double.epsilon)) == double.min_normal );
assert( nextUp(double.min_normal) == double.min_normal*(1+double.epsilon) );
// positive numbers
assert( nextUp(1.0) == 1.0 + double.epsilon );
assert( nextUp(2.0-double.epsilon) == 2.0 );
assert( nextUp(double.max) == double.infinity );
float fn = NaN(0xABC);
assert(isIdentical(nextUp(fn), fn));
float f = -float.min_normal*(1-float.epsilon);
float f1 = -float.min_normal;
assert( nextUp(f1) == f);
f = 1.0f+float.epsilon;
f1 = 1.0f;
assert( nextUp(f1) == f );
f1 = -0.0f;
assert( nextUp(f1) == float.min_normal*float.epsilon);
assert( nextUp(float.infinity)==float.infinity );
assert(nextDown(1.0L+real.epsilon)==1.0);
assert(nextDown(1.0+double.epsilon)==1.0);
f = 1.0f+float.epsilon;
assert(nextDown(f)==1.0);
assert(nextafter(1.0+real.epsilon, -real.infinity)==1.0);
}
/******************************************
* Calculates the next representable value after x in the direction of y.
*
* If y > x, the result will be the next largest floating-point value;
* if y < x, the result will be the next smallest value.
* If x == y, the result is y.
*
* Remarks:
* This function is not generally very useful; it's almost always better to use
* the faster functions nextUp() or nextDown() instead.
*
* The FE_INEXACT and FE_OVERFLOW exceptions will be raised if x is finite and
* the function result is infinite. The FE_INEXACT and FE_UNDERFLOW
* exceptions will be raised if the function value is subnormal, and x is
* not equal to y.
*/
T nextafter(T)(T x, T y) @safe pure nothrow @nogc
{
if (x == y) return y;
return ((y>x) ? nextUp(x) : nextDown(x));
}
unittest
{
float a = 1;
assert(is(typeof(nextafter(a, a)) == float));
assert(nextafter(a, a.infinity) > a);
double b = 2;
assert(is(typeof(nextafter(b, b)) == double));
assert(nextafter(b, b.infinity) > b);
real c = 3;
assert(is(typeof(nextafter(c, c)) == real));
assert(nextafter(c, c.infinity) > c);
}
//real nexttoward(real x, real y) { return core.stdc.math.nexttowardl(x, y); }
/*******************************************
* Returns the positive difference between x and y.
* Returns:
* $(TABLE_SV
* $(TR $(TH x, y) $(TH fdim(x, y)))
* $(TR $(TD x $(GT) y) $(TD x - y))
* $(TR $(TD x $(LT)= y) $(TD +0.0))
* )
*/
real fdim(real x, real y) @safe pure nothrow @nogc { return (x > y) ? x - y : +0.0; }
/****************************************
* Returns the larger of x and y.
*/
real fmax(real x, real y) @safe pure nothrow @nogc { return x > y ? x : y; }
/****************************************
* Returns the smaller of x and y.
*/
real fmin(real x, real y) @safe pure nothrow @nogc { return x < y ? x : y; }
/**************************************
* Returns (x * y) + z, rounding only once according to the
* current rounding mode.
*
* BUGS: Not currently implemented - rounds twice.
*/
real fma(real x, real y, real z) @safe pure nothrow @nogc { return (x * y) + z; }
/*******************************************************************
* Compute the value of x $(SUP n), where n is an integer
*/
Unqual!F pow(F, G)(F x, G n) @nogc @trusted pure nothrow
if (isFloatingPoint!(F) && isIntegral!(G))
{
real p = 1.0, v = void;
Unsigned!(Unqual!G) m = n;
if (n < 0)
{
switch (n)
{
case -1:
return 1 / x;
case -2:
return 1 / (x * x);
default:
}
m = -n;
v = p / x;
}
else
{
switch (n)
{
case 0:
return 1.0;
case 1:
return x;
case 2:
return x * x;
default:
}
v = x;
}
while (1)
{
if (m & 1)
p *= v;
m >>= 1;
if (!m)
break;
v *= v;
}
return p;
}
unittest
{
// Make sure it instantiates and works properly on immutable values and
// with various integer and float types.
immutable real x = 46;
immutable float xf = x;
immutable double xd = x;
immutable uint one = 1;
immutable ushort two = 2;
immutable ubyte three = 3;
immutable ulong eight = 8;
immutable int neg1 = -1;
immutable short neg2 = -2;
immutable byte neg3 = -3;
immutable long neg8 = -8;
assert(pow(x,0) == 1.0);
assert(pow(xd,one) == x);
assert(pow(xf,two) == x * x);
assert(pow(x,three) == x * x * x);
assert(pow(x,eight) == (x * x) * (x * x) * (x * x) * (x * x));
assert(pow(x, neg1) == 1 / x);
version(X86_64)
{
pragma(msg, "test disabled on x86_64, see bug 5628");
}
else version(ARM)
{
pragma(msg, "test disabled on ARM, see bug 5628");
}
else
{
assert(pow(xd, neg2) == 1 / (x * x));
assert(pow(xf, neg8) == 1 / ((x * x) * (x * x) * (x * x) * (x * x)));
}
assert(feqrel(pow(x, neg3), 1 / (x * x * x)) >= real.mant_dig - 1);
}
unittest
{
assert(equalsDigit(pow(2.0L, 10.0L), 1024, 19));
}
/** Compute the value of an integer x, raised to the power of a positive
* integer n.
*
* If both x and n are 0, the result is 1.
* If n is negative, an integer divide error will occur at runtime,
* regardless of the value of x.
*/
typeof(Unqual!(F).init * Unqual!(G).init) pow(F, G)(F x, G n) @nogc @trusted pure nothrow
if (isIntegral!(F) && isIntegral!(G))
{
if (n<0) return x/0; // Only support positive powers
typeof(return) p, v = void;
Unqual!G m = n;
switch (m)
{
case 0:
p = 1;
break;
case 1:
p = x;
break;
case 2:
p = x * x;
break;
default:
v = x;
p = 1;
while (1){
if (m & 1)
p *= v;
m >>= 1;
if (!m)
break;
v *= v;
}
break;
}
return p;
}
unittest
{
immutable int one = 1;
immutable byte two = 2;
immutable ubyte three = 3;
immutable short four = 4;
immutable long ten = 10;
assert(pow(two, three) == 8);
assert(pow(two, ten) == 1024);
assert(pow(one, ten) == 1);
assert(pow(ten, four) == 10_000);
assert(pow(four, 10) == 1_048_576);
assert(pow(three, four) == 81);
}
/**Computes integer to floating point powers.*/
real pow(I, F)(I x, F y) @nogc @trusted pure nothrow
if(isIntegral!I && isFloatingPoint!F)
{
return pow(cast(real) x, cast(Unqual!F) y);
}
/*********************************************
* Calculates x$(SUP y).
*
* $(TABLE_SV
* $(TR $(TH x) $(TH y) $(TH pow(x, y))
* $(TH div 0) $(TH invalid?))
* $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD 1.0)
* $(TD no) $(TD no) )
* $(TR $(TD |x| $(GT) 1) $(TD +$(INFIN)) $(TD +$(INFIN))
* $(TD no) $(TD no) )
* $(TR $(TD |x| $(LT) 1) $(TD +$(INFIN)) $(TD +0.0)
* $(TD no) $(TD no) )
* $(TR $(TD |x| $(GT) 1) $(TD -$(INFIN)) $(TD +0.0)
* $(TD no) $(TD no) )
* $(TR $(TD |x| $(LT) 1) $(TD -$(INFIN)) $(TD +$(INFIN))
* $(TD no) $(TD no) )
* $(TR $(TD +$(INFIN)) $(TD $(GT) 0.0) $(TD +$(INFIN))
* $(TD no) $(TD no) )
* $(TR $(TD +$(INFIN)) $(TD $(LT) 0.0) $(TD +0.0)
* $(TD no) $(TD no) )
* $(TR $(TD -$(INFIN)) $(TD odd integer $(GT) 0.0) $(TD -$(INFIN))
* $(TD no) $(TD no) )
* $(TR $(TD -$(INFIN)) $(TD $(GT) 0.0, not odd integer) $(TD +$(INFIN))
* $(TD no) $(TD no))
* $(TR $(TD -$(INFIN)) $(TD odd integer $(LT) 0.0) $(TD -0.0)
* $(TD no) $(TD no) )
* $(TR $(TD -$(INFIN)) $(TD $(LT) 0.0, not odd integer) $(TD +0.0)
* $(TD no) $(TD no) )
* $(TR $(TD $(PLUSMN)1.0) $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN))
* $(TD no) $(TD yes) )
* $(TR $(TD $(LT) 0.0) $(TD finite, nonintegral) $(TD $(NAN))
* $(TD no) $(TD yes))
* $(TR $(TD $(PLUSMN)0.0) $(TD odd integer $(LT) 0.0) $(TD $(PLUSMNINF))
* $(TD yes) $(TD no) )
* $(TR $(TD $(PLUSMN)0.0) $(TD $(LT) 0.0, not odd integer) $(TD +$(INFIN))
* $(TD yes) $(TD no))
* $(TR $(TD $(PLUSMN)0.0) $(TD odd integer $(GT) 0.0) $(TD $(PLUSMN)0.0)
* $(TD no) $(TD no) )
* $(TR $(TD $(PLUSMN)0.0) $(TD $(GT) 0.0, not odd integer) $(TD +0.0)
* $(TD no) $(TD no) )
* )
*/
Unqual!(Largest!(F, G)) pow(F, G)(F x, G y) @nogc @trusted pure nothrow
if (isFloatingPoint!(F) && isFloatingPoint!(G))
{
alias Float = typeof(return);
static real impl(real x, real y) @nogc pure nothrow
{
// Special cases.
if (isNaN(y))
return y;
if (isNaN(x) && y != 0.0)
return x;
// Even if x is NaN.
if (y == 0.0)
return 1.0;
if (y == 1.0)
return x;
if (isInfinity(y))
{
if (fabs(x) > 1)
{
if (signbit(y))
return +0.0;
else
return F.infinity;
}
else if (fabs(x) == 1)
{
return y * 0; // generate NaN.
}
else // < 1
{
if (signbit(y))
return F.infinity;
else
return +0.0;
}
}
if (isInfinity(x))
{
if (signbit(x))
{
long i = cast(long)y;
if (y > 0.0)
{
if (i == y && i & 1)
return -F.infinity;
else
return F.infinity;
}
else if (y < 0.0)
{
if (i == y && i & 1)
return -0.0;
else
return +0.0;
}
}
else
{
if (y > 0.0)
return F.infinity;
else if (y < 0.0)
return +0.0;
}
}
if (x == 0.0)
{
if (signbit(x))
{
long i = cast(long)y;
if (y > 0.0)
{
if (i == y && i & 1)
return -0.0;
else
return +0.0;
}
else if (y < 0.0)
{
if (i == y && i & 1)
return -F.infinity;
else
return F.infinity;
}
}
else
{
if (y > 0.0)
return +0.0;
else if (y < 0.0)
return F.infinity;
}
}
if (x == 1.0)
return 1.0;
if (y >= F.max)
{
if ((x > 0.0 && x < 1.0) || (x > -1.0 && x < 0.0))
return 0.0;
if (x > 1.0 || x < -1.0)
return F.infinity;
}
if (y <= -F.max)
{
if ((x > 0.0 && x < 1.0) || (x > -1.0 && x < 0.0))
return F.infinity;
if (x > 1.0 || x < -1.0)
return 0.0;
}
if (x >= F.max)
{
if (y > 0.0)
return F.infinity;
else
return 0.0;
}
if (x <= -F.max)
{
long i = cast(long)y;
if (y > 0.0)
{
if (i == y && i & 1)
return -F.infinity;
else
return F.infinity;
}
else if (y < 0.0)
{
if (i == y && i & 1)
return -0.0;
else
return +0.0;
}
}
// Integer power of x.
long iy = cast(long)y;
if (iy == y && fabs(y) < 32768.0)
return pow(x, iy);
double sign = 1.0;
if (x < 0)
{
// Result is real only if y is an integer
// Check for a non-zero fractional part
if (y > -1.0 / real.epsilon && y < 1.0 / real.epsilon)
{
long w = cast(long)y;
if (w != y)
return sqrt(x); // Complex result -- create a NaN
if (w & 1) sign = -1.0;
}
x = -x;
}
version(INLINE_YL2X)
{
// If x > 0, x ^^ y == 2 ^^ ( y * log2(x) )
// TODO: This is not accurate in practice. A fast and accurate
// (though complicated) method is described in:
// "An efficient rounding boundary test for pow(x, y)
// in double precision", C.Q. Lauter and V. Lefèvre, INRIA (2007).
return sign * exp2( yl2x(x, y) );
}
else
{
// If x > 0, x ^^ y == 2 ^^ ( y * log2(x) )
// TODO: This is not accurate in practice. A fast and accurate
// (though complicated) method is described in:
// "An efficient rounding boundary test for pow(x, y)
// in double precision", C.Q. Lauter and V. Lefèvre, INRIA (2007).
Float w = exp2(y * log2(x));
return sign * w;
}
}
return impl(x, y);
}
unittest
{
// Test all the special values. These unittests can be run on Windows
// by temporarily changing the version(linux) to version(all).
immutable float zero = 0;
immutable real one = 1;
immutable double two = 2;
immutable float three = 3;
immutable float fnan = float.nan;
immutable double dnan = double.nan;
immutable real rnan = real.nan;
immutable dinf = double.infinity;
immutable rninf = -real.infinity;
assert(pow(fnan, zero) == 1);
assert(pow(dnan, zero) == 1);
assert(pow(rnan, zero) == 1);
assert(pow(two, dinf) == double.infinity);
assert(isIdentical(pow(0.2f, dinf), +0.0));
assert(pow(0.99999999L, rninf) == real.infinity);
assert(isIdentical(pow(1.000000001, rninf), +0.0));
assert(pow(dinf, 0.001) == dinf);
assert(isIdentical(pow(dinf, -0.001), +0.0));
assert(pow(rninf, 3.0L) == rninf);
assert(pow(rninf, 2.0L) == real.infinity);
assert(isIdentical(pow(rninf, -3.0), -0.0));
assert(isIdentical(pow(rninf, -2.0), +0.0));
// @@@BUG@@@ somewhere
version(OSX) {} else assert(isNaN(pow(one, dinf)));
version(OSX) {} else assert(isNaN(pow(-one, dinf)));
assert(isNaN(pow(-0.2, PI)));
// boundary cases. Note that epsilon == 2^^-n for some n,
// so 1/epsilon == 2^^n is always even.
assert(pow(-1.0L, 1/real.epsilon - 1.0L) == -1.0L);
assert(pow(-1.0L, 1/real.epsilon) == 1.0L);
assert(isNaN(pow(-1.0L, 1/real.epsilon-0.5L)));
assert(isNaN(pow(-1.0L, -1/real.epsilon+0.5L)));
assert(pow(0.0, -3.0) == double.infinity);
assert(pow(-0.0, -3.0) == -double.infinity);
assert(pow(0.0, -PI) == double.infinity);
assert(pow(-0.0, -PI) == double.infinity);
assert(isIdentical(pow(0.0, 5.0), 0.0));
assert(isIdentical(pow(-0.0, 5.0), -0.0));
assert(isIdentical(pow(0.0, 6.0), 0.0));
assert(isIdentical(pow(-0.0, 6.0), 0.0));
// Now, actual numbers.
assert(approxEqual(pow(two, three), 8.0));
assert(approxEqual(pow(two, -2.5), 0.1767767));
// Test integer to float power.
immutable uint twoI = 2;
assert(approxEqual(pow(twoI, three), 8.0));
}
/**************************************
* To what precision is x equal to y?
*
* Returns: the number of mantissa bits which are equal in x and y.
* eg, 0x1.F8p+60 and 0x1.F1p+60 are equal to 5 bits of precision.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH y) $(TH feqrel(x, y)))
* $(TR $(TD x) $(TD x) $(TD real.mant_dig))
* $(TR $(TD x) $(TD $(GT)= 2*x) $(TD 0))
* $(TR $(TD x) $(TD $(LT)= x/2) $(TD 0))
* $(TR $(TD $(NAN)) $(TD any) $(TD 0))
* $(TR $(TD any) $(TD $(NAN)) $(TD 0))
* )
*/
int feqrel(X)(X x, X y) @trusted pure nothrow @nogc
if (isFloatingPoint!(X))
{
/* Public Domain. Author: Don Clugston, 18 Aug 2005.
*/
alias F = floatTraits!(X);
static if (F.realFormat == RealFormat.ibmExtended)
{
if (cast(double*)(&x)[MANTISSA_MSB] == cast(double*)(&y)[MANTISSA_MSB])
{
return double.mant_dig
+ feqrel(cast(double*)(&x)[MANTISSA_LSB],
cast(double*)(&y)[MANTISSA_LSB]);
}
else
{
return feqrel(cast(double*)(&x)[MANTISSA_MSB],
cast(double*)(&y)[MANTISSA_MSB]);
}
}
else
{
static assert (F.realFormat == RealFormat.ieeeSingle
|| F.realFormat == RealFormat.ieeeDouble
|| F.realFormat == RealFormat.ieeeExtended
|| F.realFormat == RealFormat.ieeeQuadruple);
if (x == y)
return X.mant_dig; // ensure diff!=0, cope with INF.
X diff = fabs(x - y);
ushort *pa = cast(ushort *)(&x);
ushort *pb = cast(ushort *)(&y);
ushort *pd = cast(ushort *)(&diff);
// The difference in abs(exponent) between x or y and abs(x-y)
// is equal to the number of significand bits of x which are
// equal to y. If negative, x and y have different exponents.
// If positive, x and y are equal to 'bitsdiff' bits.
// AND with 0x7FFF to form the absolute value.
// To avoid out-by-1 errors, we subtract 1 so it rounds down
// if the exponents were different. This means 'bitsdiff' is
// always 1 lower than we want, except that if bitsdiff==0,
// they could have 0 or 1 bits in common.
static if (F.realFormat == RealFormat.ieeeExtended
|| F.realFormat == RealFormat.ieeeQuadruple)
{
int bitsdiff = ( ((pa[F.EXPPOS_SHORT] & F.EXPMASK)
+ (pb[F.EXPPOS_SHORT] & F.EXPMASK) - 1) >> 1)
- pd[F.EXPPOS_SHORT];
}
else static if (F.realFormat == RealFormat.ieeeDouble)
{
int bitsdiff = (( ((pa[F.EXPPOS_SHORT]&0x7FF0)
+ (pb[F.EXPPOS_SHORT]&0x7FF0)-0x10)>>1)
- (pd[F.EXPPOS_SHORT]&0x7FF0))>>4;
}
else static if (F.realFormat == RealFormat.ieeeSingle)
{
int bitsdiff = (( ((pa[F.EXPPOS_SHORT]&0x7F80)
+ (pb[F.EXPPOS_SHORT]&0x7F80)-0x80)>>1)
- (pd[F.EXPPOS_SHORT]&0x7F80))>>7;
}
if ( (pd[F.EXPPOS_SHORT] & F.EXPMASK) == 0)
{ // Difference is subnormal
// For subnormals, we need to add the number of zeros that
// lie at the start of diff's significand.
// We do this by multiplying by 2^^real.mant_dig
diff *= F.RECIP_EPSILON;
return bitsdiff + X.mant_dig - pd[F.EXPPOS_SHORT];
}
if (bitsdiff > 0)
return bitsdiff + 1; // add the 1 we subtracted before
// Avoid out-by-1 errors when factor is almost 2.
static if (F.realFormat == RealFormat.ieeeExtended
|| F.realFormat == RealFormat.ieeeQuadruple)
{
return (bitsdiff == 0) ? (pa[F.EXPPOS_SHORT] == pb[F.EXPPOS_SHORT]) : 0;
}
else static if (F.realFormat == RealFormat.ieeeDouble
|| F.realFormat == RealFormat.ieeeSingle)
{
if (bitsdiff == 0
&& !((pa[F.EXPPOS_SHORT] ^ pb[F.EXPPOS_SHORT]) & F.EXPMASK))
{
return 1;
} else return 0;
}
}
}
unittest
{
void testFeqrel(F)()
{
// Exact equality
assert(feqrel(F.max, F.max) == F.mant_dig);
assert(feqrel!(F)(0.0, 0.0) == F.mant_dig);
assert(feqrel(F.infinity, F.infinity) == F.mant_dig);
// a few bits away from exact equality
F w=1;
for (int i = 1; i < F.mant_dig - 1; ++i)
{
assert(feqrel!(F)(1.0 + w * F.epsilon, 1.0) == F.mant_dig-i);
assert(feqrel!(F)(1.0 - w * F.epsilon, 1.0) == F.mant_dig-i);
assert(feqrel!(F)(1.0, 1 + (w-1) * F.epsilon) == F.mant_dig - i + 1);
w*=2;
}
assert(feqrel!(F)(1.5+F.epsilon, 1.5) == F.mant_dig-1);
assert(feqrel!(F)(1.5-F.epsilon, 1.5) == F.mant_dig-1);
assert(feqrel!(F)(1.5-F.epsilon, 1.5+F.epsilon) == F.mant_dig-2);
// Numbers that are close
assert(feqrel!(F)(0x1.Bp+84, 0x1.B8p+84) == 5);
assert(feqrel!(F)(0x1.8p+10, 0x1.Cp+10) == 2);
assert(feqrel!(F)(1.5 * (1 - F.epsilon), 1.0L) == 2);
assert(feqrel!(F)(1.5, 1.0) == 1);
assert(feqrel!(F)(2 * (1 - F.epsilon), 1.0L) == 1);
// Factors of 2
assert(feqrel(F.max, F.infinity) == 0);
assert(feqrel!(F)(2 * (1 - F.epsilon), 1.0L) == 1);
assert(feqrel!(F)(1.0, 2.0) == 0);
assert(feqrel!(F)(4.0, 1.0) == 0);
// Extreme inequality
assert(feqrel(F.nan, F.nan) == 0);
assert(feqrel!(F)(0.0L, -F.nan) == 0);
assert(feqrel(F.nan, F.infinity) == 0);
assert(feqrel(F.infinity, -F.infinity) == 0);
assert(feqrel(F.max, -F.max) == 0);
}
assert(feqrel(7.1824L, 7.1824L) == real.mant_dig);
static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended)
{
assert(feqrel(real.min_normal / 8, real.min_normal / 17) == 3);
}
testFeqrel!(real)();
testFeqrel!(double)();
testFeqrel!(float)();
}
package: // Not public yet
/* Return the value that lies halfway between x and y on the IEEE number line.
*
* Formally, the result is the arithmetic mean of the binary significands of x
* and y, multiplied by the geometric mean of the binary exponents of x and y.
* x and y must have the same sign, and must not be NaN.
* Note: this function is useful for ensuring O(log n) behaviour in algorithms
* involving a 'binary chop'.
*
* Special cases:
* If x and y are within a factor of 2, (ie, feqrel(x, y) > 0), the return value
* is the arithmetic mean (x + y) / 2.
* If x and y are even powers of 2, the return value is the geometric mean,
* ieeeMean(x, y) = sqrt(x * y).
*
*/
T ieeeMean(T)(T x, T y) @trusted pure nothrow @nogc
in
{
// both x and y must have the same sign, and must not be NaN.
assert(signbit(x) == signbit(y));
assert(x == x && y == y);
}
body
{
// Runtime behaviour for contract violation:
// If signs are opposite, or one is a NaN, return 0.
if (!((x>=0 && y>=0) || (x<=0 && y<=0))) return 0.0;
// The implementation is simple: cast x and y to integers,
// average them (avoiding overflow), and cast the result back to a floating-point number.
alias F = floatTraits!(T);
T u;
static if (F.realFormat == RealFormat.ieeeExtended)
{
// There's slight additional complexity because they are actually
// 79-bit reals...
ushort *ue = cast(ushort *)&u;
ulong *ul = cast(ulong *)&u;
ushort *xe = cast(ushort *)&x;
ulong *xl = cast(ulong *)&x;
ushort *ye = cast(ushort *)&y;
ulong *yl = cast(ulong *)&y;
// Ignore the useless implicit bit. (Bonus: this prevents overflows)
ulong m = ((*xl) & 0x7FFF_FFFF_FFFF_FFFFL) + ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL);
// @@@ BUG? @@@
// Cast shouldn't be here
ushort e = cast(ushort) ((xe[F.EXPPOS_SHORT] & F.EXPMASK)
+ (ye[F.EXPPOS_SHORT] & F.EXPMASK));
if (m & 0x8000_0000_0000_0000L)
{
++e;
m &= 0x7FFF_FFFF_FFFF_FFFFL;
}
// Now do a multi-byte right shift
uint c = e & 1; // carry
e >>= 1;
m >>>= 1;
if (c)
m |= 0x4000_0000_0000_0000L; // shift carry into significand
if (e)
*ul = m | 0x8000_0000_0000_0000L; // set implicit bit...
else
*ul = m; // ... unless exponent is 0 (subnormal or zero).
ue[4]= e | (xe[F.EXPPOS_SHORT]& 0x8000); // restore sign bit
}
else static if (F.realFormat == RealFormat.ieeeQuadruple)
{
// This would be trivial if 'ucent' were implemented...
ulong *ul = cast(ulong *)&u;
ulong *xl = cast(ulong *)&x;
ulong *yl = cast(ulong *)&y;
// Multi-byte add, then multi-byte right shift.
ulong mh = ((xl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL)
+ (yl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL));
// Discard the lowest bit (to avoid overflow)
ulong ml = (xl[MANTISSA_LSB]>>>1) + (yl[MANTISSA_LSB]>>>1);
// add the lowest bit back in, if necessary.
if (xl[MANTISSA_LSB] & yl[MANTISSA_LSB] & 1)
{
++ml;
if (ml == 0) ++mh;
}
mh >>>=1;
ul[MANTISSA_MSB] = mh | (xl[MANTISSA_MSB] & 0x8000_0000_0000_0000);
ul[MANTISSA_LSB] = ml;
}
else static if (F.realFormat == RealFormat.ieeeDouble)
{
ulong *ul = cast(ulong *)&u;
ulong *xl = cast(ulong *)&x;
ulong *yl = cast(ulong *)&y;
ulong m = (((*xl) & 0x7FFF_FFFF_FFFF_FFFFL)
+ ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL)) >>> 1;
m |= ((*xl) & 0x8000_0000_0000_0000L);
*ul = m;
}
else static if (F.realFormat == RealFormat.ieeeSingle)
{
uint *ul = cast(uint *)&u;
uint *xl = cast(uint *)&x;
uint *yl = cast(uint *)&y;
uint m = (((*xl) & 0x7FFF_FFFF) + ((*yl) & 0x7FFF_FFFF)) >>> 1;
m |= ((*xl) & 0x8000_0000);
*ul = m;
}
else
{
assert(0, "Not implemented");
}
return u;
}
unittest
{
assert(ieeeMean(-0.0,-1e-20)<0);
assert(ieeeMean(0.0,1e-20)>0);
assert(ieeeMean(1.0L,4.0L)==2L);
assert(ieeeMean(2.0*1.013,8.0*1.013)==4*1.013);
assert(ieeeMean(-1.0L,-4.0L)==-2L);
assert(ieeeMean(-1.0,-4.0)==-2);
assert(ieeeMean(-1.0f,-4.0f)==-2f);
assert(ieeeMean(-1.0,-2.0)==-1.5);
assert(ieeeMean(-1*(1+8*real.epsilon),-2*(1+8*real.epsilon))
==-1.5*(1+5*real.epsilon));
assert(ieeeMean(0x1p60,0x1p-10)==0x1p25);
static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended)
{
assert(ieeeMean(1.0L,real.infinity)==0x1p8192L);
assert(ieeeMean(0.0L,real.infinity)==1.5);
}
assert(ieeeMean(0.5*real.min_normal*(1-4*real.epsilon),0.5*real.min_normal)
== 0.5*real.min_normal*(1-2*real.epsilon));
}
public:
/***********************************
* Evaluate polynomial A(x) = $(SUB a, 0) + $(SUB a, 1)x + $(SUB a, 2)$(POWER x,2)
* + $(SUB a,3)$(POWER x,3); ...
*
* Uses Horner's rule A(x) = $(SUB a, 0) + x($(SUB a, 1) + x($(SUB a, 2)
* + x($(SUB a, 3) + ...)))
* Params:
* x = the value to evaluate.
* A = array of coefficients $(SUB a, 0), $(SUB a, 1), etc.
*/
real poly(real x, const real[] A) @trusted pure nothrow @nogc
in
{
assert(A.length > 0);
}
body
{
version (D_InlineAsm_X86)
{
version (Windows)
{
// BUG: This code assumes a frame pointer in EBP.
asm pure nothrow @nogc // assembler by W. Bright
{
// EDX = (A.length - 1) * real.sizeof
mov ECX,A[EBP] ; // ECX = A.length
dec ECX ;
lea EDX,[ECX][ECX*8] ;
add EDX,ECX ;
add EDX,A+4[EBP] ;
fld real ptr [EDX] ; // ST0 = coeff[ECX]
jecxz return_ST ;
fld x[EBP] ; // ST0 = x
fxch ST(1) ; // ST1 = x, ST0 = r
align 4 ;
L2: fmul ST,ST(1) ; // r *= x
fld real ptr -10[EDX] ;
sub EDX,10 ; // deg--
faddp ST(1),ST ;
dec ECX ;
jne L2 ;
fxch ST(1) ; // ST1 = r, ST0 = x
fstp ST(0) ; // dump x
align 4 ;
return_ST: ;
;
}
}
else version (linux)
{
asm pure nothrow @nogc // assembler by W. Bright
{
// EDX = (A.length - 1) * real.sizeof
mov ECX,A[EBP] ; // ECX = A.length
dec ECX ;
lea EDX,[ECX*8] ;
lea EDX,[EDX][ECX*4] ;
add EDX,A+4[EBP] ;
fld real ptr [EDX] ; // ST0 = coeff[ECX]
jecxz return_ST ;
fld x[EBP] ; // ST0 = x
fxch ST(1) ; // ST1 = x, ST0 = r
align 4 ;
L2: fmul ST,ST(1) ; // r *= x
fld real ptr -12[EDX] ;
sub EDX,12 ; // deg--
faddp ST(1),ST ;
dec ECX ;
jne L2 ;
fxch ST(1) ; // ST1 = r, ST0 = x
fstp ST(0) ; // dump x
align 4 ;
return_ST: ;
;
}
}
else version (OSX)
{
asm pure nothrow @nogc // assembler by W. Bright
{
// EDX = (A.length - 1) * real.sizeof
mov ECX,A[EBP] ; // ECX = A.length
dec ECX ;
lea EDX,[ECX*8] ;
add EDX,EDX ;
add EDX,A+4[EBP] ;
fld real ptr [EDX] ; // ST0 = coeff[ECX]
jecxz return_ST ;
fld x[EBP] ; // ST0 = x
fxch ST(1) ; // ST1 = x, ST0 = r
align 4 ;
L2: fmul ST,ST(1) ; // r *= x
fld real ptr -16[EDX] ;
sub EDX,16 ; // deg--
faddp ST(1),ST ;
dec ECX ;
jne L2 ;
fxch ST(1) ; // ST1 = r, ST0 = x
fstp ST(0) ; // dump x
align 4 ;
return_ST: ;
;
}
}
else version (FreeBSD)
{
asm pure nothrow @nogc // assembler by W. Bright
{
// EDX = (A.length - 1) * real.sizeof
mov ECX,A[EBP] ; // ECX = A.length
dec ECX ;
lea EDX,[ECX*8] ;
lea EDX,[EDX][ECX*4] ;
add EDX,A+4[EBP] ;
fld real ptr [EDX] ; // ST0 = coeff[ECX]
jecxz return_ST ;
fld x[EBP] ; // ST0 = x
fxch ST(1) ; // ST1 = x, ST0 = r
align 4 ;
L2: fmul ST,ST(1) ; // r *= x
fld real ptr -12[EDX] ;
sub EDX,12 ; // deg--
faddp ST(1),ST ;
dec ECX ;
jne L2 ;
fxch ST(1) ; // ST1 = r, ST0 = x
fstp ST(0) ; // dump x
align 4 ;
return_ST: ;
;
}
}
else version (Android)
{
asm pure nothrow @nogc // assembler by W. Bright
{
// EDX = (A.length - 1) * real.sizeof
mov ECX,A[EBP] ; // ECX = A.length
dec ECX ;
lea EDX,[ECX*8] ;
lea EDX,[EDX][ECX*4] ;
add EDX,A+4[EBP] ;
fld real ptr [EDX] ; // ST0 = coeff[ECX]
jecxz return_ST ;
fld x[EBP] ; // ST0 = x
fxch ST(1) ; // ST1 = x, ST0 = r
align 4 ;
L2: fmul ST,ST(1) ; // r *= x
fld real ptr -12[EDX] ;
sub EDX,12 ; // deg--
faddp ST(1),ST ;
dec ECX ;
jne L2 ;
fxch ST(1) ; // ST1 = r, ST0 = x
fstp ST(0) ; // dump x
align 4 ;
return_ST: ;
;
}
}
else
{
static assert(0);
}
}
else
{
ptrdiff_t i = A.length - 1;
real r = A[i];
while (--i >= 0)
{
r *= x;
r += A[i];
}
return r;
}
}
unittest
{
debug (math) printf("math.poly.unittest\n");
real x = 3.1;
static real[] pp = [56.1, 32.7, 6];
assert( poly(x, pp) == (56.1L + (32.7L + 6L * x) * x) );
}
/**
Computes whether $(D lhs) is approximately equal to $(D rhs)
admitting a maximum relative difference $(D maxRelDiff) and a
maximum absolute difference $(D maxAbsDiff).
If the two inputs are ranges, $(D approxEqual) returns true if and
only if the ranges have the same number of elements and if $(D
approxEqual) evaluates to $(D true) for each pair of elements.
*/
bool approxEqual(T, U, V)(T lhs, U rhs, V maxRelDiff, V maxAbsDiff = 1e-5)
{
import std.range;
static if (isInputRange!T)
{
static if (isInputRange!U)
{
// Two ranges
for (;; lhs.popFront(), rhs.popFront())
{
if (lhs.empty) return rhs.empty;
if (rhs.empty) return lhs.empty;
if (!approxEqual(lhs.front, rhs.front, maxRelDiff, maxAbsDiff))
return false;
}
}
else
{
// lhs is range, rhs is number
for (; !lhs.empty; lhs.popFront())
{
if (!approxEqual(lhs.front, rhs, maxRelDiff, maxAbsDiff))
return false;
}
return true;
}
}
else
{
static if (isInputRange!U)
{
// lhs is number, rhs is array
return approxEqual(rhs, lhs, maxRelDiff, maxAbsDiff);
}
else
{
// two numbers
//static assert(is(T : real) && is(U : real));
if (rhs == 0)
{
return fabs(lhs) <= maxAbsDiff;
}
static if (is(typeof(lhs.infinity)) && is(typeof(rhs.infinity)))
{
if (lhs == lhs.infinity && rhs == rhs.infinity ||
lhs == -lhs.infinity && rhs == -rhs.infinity) return true;
}
return fabs((lhs - rhs) / rhs) <= maxRelDiff
|| maxAbsDiff != 0 && fabs(lhs - rhs) <= maxAbsDiff;
}
}
}
/**
Returns $(D approxEqual(lhs, rhs, 1e-2, 1e-5)).
*/
bool approxEqual(T, U)(T lhs, U rhs)
{
return approxEqual(lhs, rhs, 1e-2, 1e-5);
}
unittest
{
assert(approxEqual(1.0, 1.0099));
assert(!approxEqual(1.0, 1.011));
float[] arr1 = [ 1.0, 2.0, 3.0 ];
double[] arr2 = [ 1.001, 1.999, 3 ];
assert(approxEqual(arr1, arr2));
real num = real.infinity;
assert(num == real.infinity); // Passes.
assert(approxEqual(num, real.infinity)); // Fails.
num = -real.infinity;
assert(num == -real.infinity); // Passes.
assert(approxEqual(num, -real.infinity)); // Fails.
}
// Included for backwards compatibility with Phobos1
alias isnan = isNaN;
alias isfinite = isFinite;
alias isnormal = isNormal;
alias issubnormal = isSubnormal;
alias isinf = isInfinity;
/* **********************************
* Building block functions, they
* translate to a single x87 instruction.
*/
real yl2x(real x, real y) @nogc @safe pure nothrow; // y * log2(x)
real yl2xp1(real x, real y) @nogc @safe pure nothrow; // y * log2(x + 1)
unittest
{
version (INLINE_YL2X)
{
assert(yl2x(1024, 1) == 10);
assert(yl2xp1(1023, 1) == 10);
}
}
unittest
{
real num = real.infinity;
assert(num == real.infinity); // Passes.
assert(approxEqual(num, real.infinity)); // Fails.
}
unittest
{
float f = sqrt(2.0f);
assert(fabs(f * f - 2.0f) < .00001);
double d = sqrt(2.0);
assert(fabs(d * d - 2.0) < .00001);
real r = sqrt(2.0L);
assert(fabs(r * r - 2.0) < .00001);
}
unittest
{
float f = fabs(-2.0f);
assert(f == 2);
double d = fabs(-2.0);
assert(d == 2);
real r = fabs(-2.0L);
assert(r == 2);
}
unittest
{
float f = sin(-2.0f);
assert(fabs(f - -0.909297f) < .00001);
double d = sin(-2.0);
assert(fabs(d - -0.909297f) < .00001);
real r = sin(-2.0L);
assert(fabs(r - -0.909297f) < .00001);
}
unittest
{
float f = cos(-2.0f);
assert(fabs(f - -0.416147f) < .00001);
double d = cos(-2.0);
assert(fabs(d - -0.416147f) < .00001);
real r = cos(-2.0L);
assert(fabs(r - -0.416147f) < .00001);
}
unittest
{
float f = tan(-2.0f);
assert(fabs(f - 2.18504f) < .00001);
double d = tan(-2.0);
assert(fabs(d - 2.18504f) < .00001);
real r = tan(-2.0L);
assert(fabs(r - 2.18504f) < .00001);
}
@safe pure nothrow unittest
{
// issue 6381: floor/ceil should be usable in pure function.
auto x = floor(1.2);
auto y = ceil(1.2);
}