Merge pull request #1022 from quickfur/permute

Implement nextPermutation and nextEvenPermutation
This commit is contained in:
Andrei Alexandrescu 2013-02-03 16:28:36 -08:00
commit 61d26e7dcf

View file

@ -25,7 +25,8 @@ splitter) $(MYREF uniq) )
$(TR $(TDNW Sorting) $(TD $(MYREF completeSort) $(MYREF isPartitioned)
$(MYREF isSorted) $(MYREF makeIndex) $(MYREF partialSort) $(MYREF
partition) $(MYREF partition3) $(MYREF schwartzSort) $(MYREF sort)
$(MYREF topN) $(MYREF topNCopy) )
$(MYREF topN) $(MYREF topNCopy) $(MYREF nextPermutation)
$(MYREF nextEvenPermutation) )
)
$(TR $(TDNW Set operations) $(TD $(MYREF
largestPartialIntersection) $(MYREF largestPartialIntersectionWeighted)
@ -235,6 +236,12 @@ range.)
$(TR $(TDNW $(LREF topNCopy)) $(TD Copies out the top elements
of a range.)
)
$(TR $(TDNW $(LREF nextPermutation)) $(TD Computes the next lexicographically
greater permutation of a range in-place.)
)
$(TR $(TDNW $(LREF nextEvenPermutation)) $(TD Computes the next
lexicographically greater even permutation of a range in-place.)
)
$(LEADINGROW Set operations
)
$(TR $(TDNW $(LREF largestPartialIntersection)) $(TD Copies out
@ -10745,3 +10752,471 @@ unittest
assert(arrayOne == arrayTwo);
}
// nextPermutation
/**
* Permutes $(D range) in-place to the next lexicographically greater
* permutation.
*
* The predicate $(D less) defines the lexicographical ordering to be used on
* the range.
*
* If the range is currently the lexicographically greatest permutation, it is
* permuted back to the least permutation and false is returned. Otherwise,
* true is returned. One can thus generate all permutations of a range by
* sorting it according to $(D less), which produces the lexicographically
* least permutation, and then calling nextPermutation until it returns false.
* This is guaranteed to generate all distinct permutations of the range
* exactly once. If there are $(I N) elements in the range and all of them are
* unique, then $(I N)! permutations will be generated. Otherwise, if there are
* some duplicated elements, fewer permutations will be produced.
----
// Enumerate all permutations
int[] a = [1,2,3,4,5];
while (nextPermutation(a))
{
// a now contains the next permutation of the array.
}
----
* Returns: false if the range was lexicographically the greatest, in which
* case the range is reversed back to the lexicographically smallest
* permutation; otherwise returns true.
*
* Example:
----
// Step through all permutations of a sorted array in lexicographic order
int[] a = [1,2,3];
assert(nextPermutation(a) == true);
assert(a == [1,3,2]);
assert(nextPermutation(a) == true);
assert(a == [2,1,3]);
assert(nextPermutation(a) == true);
assert(a == [2,3,1]);
assert(nextPermutation(a) == true);
assert(a == [3,1,2]);
assert(nextPermutation(a) == true);
assert(a == [3,2,1]);
assert(nextPermutation(a) == false);
assert(a == [1,2,3]);
----
----
// Step through permutations of an array containing duplicate elements:
int[] a = [1,1,2];
assert(nextPermutation(a) == true);
assert(a == [1,2,1]);
assert(nextPermutation(a) == true);
assert(a == [2,1,1]);
assert(nextPermutation(a) == false);
assert(a == [1,1,2]);
----
*/
bool nextPermutation(alias less="a<b", BidirectionalRange)
(ref BidirectionalRange range)
if (isBidirectionalRange!BidirectionalRange &&
hasSwappableElements!BidirectionalRange)
{
// Ranges of 0 or 1 element have no distinct permutations.
if (range.empty) return false;
auto i = retro(range);
auto last = i.save;
// Find last occurring increasing pair of elements
size_t n = 1;
for (i.popFront(); !i.empty; i.popFront(), last.popFront(), n++)
{
if (binaryFun!less(i.front, last.front))
break;
}
if (i.empty) {
// Entire range is decreasing: it's lexicographically the greatest. So
// wrap it around.
range.reverse();
return false;
}
// Find last element greater than i.front.
auto j = find!((a) => binaryFun!less(i.front, a))(
takeExactly(retro(range), n));
assert(!j.empty); // shouldn't happen since i.front < last.front
swap(i.front, j.front);
reverse(takeExactly(retro(range), n));
return true;
}
unittest
{
// Boundary cases: arrays of 0 or 1 element.
int[] a1 = [];
assert(!nextPermutation(a1));
assert(a1 == []);
int[] a2 = [1];
assert(!nextPermutation(a2));
assert(a2 == [1]);
}
unittest
{
int[] a = [1,2,3];
assert(nextPermutation(a) == true);
assert(a == [1,3,2]);
assert(nextPermutation(a) == true);
assert(a == [2,1,3]);
assert(nextPermutation(a) == true);
assert(a == [2,3,1]);
assert(nextPermutation(a) == true);
assert(a == [3,1,2]);
assert(nextPermutation(a) == true);
assert(a == [3,2,1]);
assert(nextPermutation(a) == false);
assert(a == [1,2,3]);
}
unittest
{
auto a1 = [1, 2, 3, 4];
assert(nextPermutation(a1));
assert(equal(a1, [1, 2, 4, 3]));
assert(nextPermutation(a1));
assert(equal(a1, [1, 3, 2, 4]));
assert(nextPermutation(a1));
assert(equal(a1, [1, 3, 4, 2]));
assert(nextPermutation(a1));
assert(equal(a1, [1, 4, 2, 3]));
assert(nextPermutation(a1));
assert(equal(a1, [1, 4, 3, 2]));
assert(nextPermutation(a1));
assert(equal(a1, [2, 1, 3, 4]));
assert(nextPermutation(a1));
assert(equal(a1, [2, 1, 4, 3]));
assert(nextPermutation(a1));
assert(equal(a1, [2, 3, 1, 4]));
assert(nextPermutation(a1));
assert(equal(a1, [2, 3, 4, 1]));
assert(nextPermutation(a1));
assert(equal(a1, [2, 4, 1, 3]));
assert(nextPermutation(a1));
assert(equal(a1, [2, 4, 3, 1]));
assert(nextPermutation(a1));
assert(equal(a1, [3, 1, 2, 4]));
assert(nextPermutation(a1));
assert(equal(a1, [3, 1, 4, 2]));
assert(nextPermutation(a1));
assert(equal(a1, [3, 2, 1, 4]));
assert(nextPermutation(a1));
assert(equal(a1, [3, 2, 4, 1]));
assert(nextPermutation(a1));
assert(equal(a1, [3, 4, 1, 2]));
assert(nextPermutation(a1));
assert(equal(a1, [3, 4, 2, 1]));
assert(nextPermutation(a1));
assert(equal(a1, [4, 1, 2, 3]));
assert(nextPermutation(a1));
assert(equal(a1, [4, 1, 3, 2]));
assert(nextPermutation(a1));
assert(equal(a1, [4, 2, 1, 3]));
assert(nextPermutation(a1));
assert(equal(a1, [4, 2, 3, 1]));
assert(nextPermutation(a1));
assert(equal(a1, [4, 3, 1, 2]));
assert(nextPermutation(a1));
assert(equal(a1, [4, 3, 2, 1]));
assert(!nextPermutation(a1));
assert(equal(a1, [1, 2, 3, 4]));
}
unittest
{
// Test array with duplicate elements
int[] a = [1,1,2];
assert(nextPermutation(a) == true);
assert(a == [1,2,1]);
assert(nextPermutation(a) == true);
assert(a == [2,1,1]);
assert(nextPermutation(a) == false);
assert(a == [1,1,2]);
}
unittest
{
// Test with non-default sorting order
int[] a = [3,2,1];
assert(nextPermutation!"a > b"(a) == true);
assert(a == [3,1,2]);
assert(nextPermutation!"a > b"(a) == true);
assert(a == [2,3,1]);
assert(nextPermutation!"a > b"(a) == true);
assert(a == [2,1,3]);
assert(nextPermutation!"a > b"(a) == true);
assert(a == [1,3,2]);
assert(nextPermutation!"a > b"(a) == true);
assert(a == [1,2,3]);
assert(nextPermutation!"a > b"(a) == false);
assert(a == [3,2,1]);
}
// nextEvenPermutation
/**
* Permutes $(D range) in-place to the next lexicographically greater $(I even)
* permutation.
*
* The predicate $(D less) defines the lexicographical ordering to be used on
* the range.
*
* An even permutation is one which is produced by swapping an even number of
* pairs of elements in the original range. The set of $(I even) permutations
* is distinct from the set of $(I all) permutations only when there are no
* duplicate elements in the range. If the range has $(I N) unique elements,
* then there are exactly $(I N)!/2 even permutations.
*
* If the range is already the lexicographically greatest even permutation, it
* is permuted back to the least even permutation and false is returned.
* Otherwise, true is returned, and the range is modified in-place to be the
* lexicographically next even permutation.
*
* One can thus generate the even permutations of a range with unique elements
* by starting with the lexicographically smallest permutation, and repeatedly
* calling nextEvenPermutation until it returns false.
----
// Enumerate even permutations
int[] a = [1,2,3,4,5];
while (nextEvenPermutation(a))
{
// a now contains the next even permutation of the array.
}
----
* One can also generate the $(I odd) permutations of a range by noting that
* permutations obey the rule that even + even = even, and odd + even = odd.
* Thus, by swapping the last two elements of a lexicographically least range,
* it is turned into the first odd permutation. Then calling
* nextEvenPermutation on this first odd permutation will generate the next
* even permutation relative to this odd permutation, which is actually the
* next odd permutation of the original range. Thus, by repeatedly calling
* nextEvenPermutation until it returns false, one enumerates the odd
* permutations of the original range.
----
// Enumerate odd permutations
int[] a = [1,2,3,4,5];
swap(a[$-2], a[$-1]); // a is now the first odd permutation of [1,2,3,4,5]
while (nextEvenPermutation(a))
{
// a now contains the next odd permutation of the original array
// (which is an even permutation of the first odd permutation).
}
----
*
* Warning: Since even permutations are only distinct from all permutations
* when the range elements are unique, this function assumes that there are no
* duplicate elements under the specified ordering. If this is not _true, some
* permutations may fail to be generated. When the range has non-unique
* elements, you should use $(MYREF nextPermutation) instead.
*
* Returns: false if the range was lexicographically the greatest, in which
* case the range is reversed back to the lexicographically smallest
* permutation; otherwise returns true.
*
* Examples:
----
// Step through even permutations of a sorted array in lexicographic order
int[] a = [1,2,3];
assert(nextEvenPermutation(a) == true);
assert(a == [2,3,1]);
assert(nextEvenPermutation(a) == true);
assert(a == [3,1,2]);
assert(nextEvenPermutation(a) == false);
assert(a == [1,2,3]);
----
* Even permutations are useful for generating coordinates of certain geometric
* shapes. Here's a non-trivial example:
----
// Print the 60 vertices of a uniform truncated icosahedron (soccer ball)
import std.math, std.stdio;
enum real Phi = (1.0 + sqrt(5.0)) / 2.0; // Golden ratio
real[][] seeds = [
[0.0, 1.0, 3.0*Phi],
[1.0, 2.0+Phi, 2.0*Phi],
[Phi, 2.0, Phi^^3]
];
foreach (seed; seeds)
{
// Loop over even permutations of each seed
do
{
// Loop over all sign changes of each permutation
size_t i;
do
{
// Generate all possible sign changes
for (i=0; i < seed.length; i++)
{
if (seed[i] != 0.0)
{
seed[i] = -seed[i];
if (seed[i] < 0.0)
break;
}
}
writeln(seed);
} while (i < seed.length);
} while (nextEvenPermutation(seed));
}
----
*/
bool nextEvenPermutation(alias less="a<b", BidirectionalRange)
(ref BidirectionalRange range)
if (isBidirectionalRange!BidirectionalRange &&
hasSwappableElements!BidirectionalRange)
{
// Ranges of 0 or 1 element have no distinct permutations.
if (range.empty) return false;
bool oddParity = false;
bool ret = true;
do
{
auto i = retro(range);
auto last = i.save;
// Find last occurring increasing pair of elements
size_t n = 1;
for (i.popFront(); !i.empty;
i.popFront(), last.popFront(), n++)
{
if (binaryFun!less(i.front, last.front))
break;
}
if (!i.empty)
{
// Find last element greater than i.front.
auto j = find!((a) => binaryFun!less(i.front, a))(
takeExactly(retro(range), n));
// shouldn't happen since i.front < last.front
assert(!j.empty);
swap(i.front, j.front);
oddParity = !oddParity;
}
else
{
// Entire range is decreasing: it's lexicographically
// the greatest.
ret = false;
}
reverse(takeExactly(retro(range), n));
if ((n / 2) % 2 == 1)
oddParity = !oddParity;
} while(oddParity);
return ret;
}
unittest
{
auto a2 = [ 1, 2, 3 ];
assert(nextEvenPermutation(a2));
assert(equal(a2, [ 2, 3, 1 ]));
assert(nextEvenPermutation(a2));
assert(equal(a2, [ 3, 1, 2 ]));
assert(!nextEvenPermutation(a2));
assert(equal(a2, [ 1, 2, 3 ]));
auto a3 = [ 1, 2, 3, 4 ];
int count = 1;
while (nextEvenPermutation(a3)) count++;
assert(count == 12);
}
unittest
{
// Test with non-default sorting order
auto a = [ 3, 2, 1 ];
assert(nextEvenPermutation!"a > b"(a) == true);
assert(a == [ 2, 1, 3 ]);
assert(nextEvenPermutation!"a > b"(a) == true);
assert(a == [ 1, 3, 2 ]);
assert(nextEvenPermutation!"a > b"(a) == false);
assert(a == [ 3, 2, 1 ]);
}
unittest
{
// Test various cases of rollover
auto a = [ 3, 1, 2 ];
assert(nextEvenPermutation(a) == false);
assert(a == [ 1, 2, 3 ]);
auto b = [ 3, 2, 1 ];
assert(nextEvenPermutation(b) == false);
assert(b == [ 1, 3, 2 ]);
}
unittest
{
// Verify correctness of ddoc example.
enum real Phi = (1.0 + sqrt(5.0)) / 2.0; // Golden ratio
real[][] seeds = [
[0.0, 1.0, 3.0*Phi],
[1.0, 2.0+Phi, 2.0*Phi],
[Phi, 2.0, Phi^^3]
];
size_t n;
foreach (seed; seeds)
{
// Loop over even permutations of each seed
do
{
// Loop over all sign changes of each permutation
size_t i;
do
{
// Generate all possible sign changes
for (i=0; i < seed.length; i++)
{
if (seed[i] != 0.0)
{
seed[i] = -seed[i];
if (seed[i] < 0.0)
break;
}
}
n++;
} while (i < seed.length);
} while (nextEvenPermutation(seed));
}
assert(n == 60);
}